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THE NATURE OF RESONANCE IN A SINGULAR PERTURBATION
PROBLEM OF TURNING POINT TYPE*

P. P. N. DE GROEN’

Abstract. On the interval (a, b) with a < 0 < b we study the boundary value problem

-eu"+xp(x,e)u’+xq(x,e)u=r(e)u, u(a)=A, u(b)=B, O<e<<l.

The related eigenvalue problem has a discrete set of eigenvalues for each e > 0. We expand each eigenvalue in
a formal asymptotic series in integral powers of e and we prove the validity of the expansion with the aid of the
Rayleigh quotient characterizations of the eigenvalues. If r(e is not equal to an eigenvalue, the solution exists
and is unique; we prove that it decays exponentially for e +0, provided the distance between r(e) and the
nearest eigenvalue is larger than exp (-3’/e) for some positive 3’ depending on p. If r(e) is equal to an
eigenvalue, no solution exists (in general) and, if r(e) is near enough to an eigenvalue, the dominant term in
the solution is a multiple of the corresponding eigenfunction. From a spectral point of view the "Ackerberg-
O’Malley resonance" is the familiar effect that the nearest free mode of the equation is amplified by the
inverse of the distance from r(e) to the corresponding eigenvalue.

1. Introduction.
1.1. The problem. In this paper we study the singularly perturbed two-point

boundary value problem of turning point type on the real interval [a, b]

(1.1a) Lu := -eu"+xp(x,e)u’+xq(x,e)u=r(e)u, (’=d/dx),

(1. lb) u(a)=A, u(b)=B, a <O<b,

where e is a small positive parameter, and where p, l/p, q and r are sufficiently smooth
functions with respect to both parameters x and e. We shall treat the case p > 0 only,
since the analysis for p < 0 is analogous. Without loss of generality we can assume
p(O,O) 1 and

b t"0

(1.2) A := J0 tp(t, O)dt <- J, tp(t, O)at.

This problem has some intriguing features due to the fact that the coefficient of u’ in
equation (1.1 a) changes sign in the interval. In the easier and well-analyzed case where
the coefficient of u’ is of one sign and is positive (negative) throughout the interval, the
contribution to the solution coming from the prescribed boundary value at the right
(left) endpoint is exponentially small outside a small boundary layer near that endpoint;
cf. [11] or [12]. We note that "exponentially small" means "of the order (?(exp(- y/e)),
e +0, for some 3’ > 0". The analysis in this easier case transferred to problem (1.1)
suggests that the contribution from the boundary value at both endpoints is exponen-
tially small; hence the solution of problem (1.1) is exponentially small uniformly in
every compact subinterval of (a, b) and boundary layers are located at both endpoints.
However, this suggestion is not always true, as can be seen from the following example,

(1.3) -eu"+xu’-ru=O, u(a)=A, u(1)=B, a_-<l,

which can be solved exactly in terms of parabolic cylinder functions or in terms of the
confluent hypergeometric functions F 1/2r, 1/2, x2/2e and x aft(1/2- r, , x2/2e ), cf. [5,

2]. By well-known asymptotic formulas for these functions we indeed find exponential
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decay if r is not a nonnegative integer,

(1.4a)

u(x).-.Aexp{(a-x)/e}+Bexp{(x-1)/e}, e+0andr0, 1,2,. .,
where means "asymptotically equivalent".

However, if r is a nonnegative integer, one of the confluent hypergeometric
functions is equal to the rth Hermite polynomial and we find for e +0 and r
0,1,2,..."

+A exp {(a x)/e}, if a < 1
(1.4b) u(x)---

1/2(B+(_I)A)x +1/2(B_(_l)A)exp{_(x_l)2/2e}, ira= -1.

We see that the solution of (1.3) does not decay at all in the exceptional case where
r 0, 1, 2,. and that in general (if a # 1) one of the boundary layers disappears.

1.2. l-Iistory. In [2] Ackerberg and O’Malley draw attention to problem (1.1).
They establish exponential decay of its solution in the case r(0) 0, 1, 2,.... For
nonnegative integral values of r(0) they construct by the WKBJ method a formal
approximation, which does not decay for e - + 0. This approximation converges to a
solution of the reduced equation xpu’+ xqu ru, whose magnitude is fixed by the
boundary condition u(b)=B if equality in (1.2) does not hold and by u(b)=
1/2(B + (- 1)’A) otherwise. This phenomenon, that the solution of (1.1) does not decay
exponentially and converges to a definite nonzero solution of the reduced equation,
Ackerberg and O’Malley have called resonance. Their publication has drawn much
interest and has been followed by a large number of papers which study this
phenomenon of "resonance"; e.g. see [3], [8], [9], [10] and the references there. These
papers steadily propose better approximations to the "resonant" solution of (1.1) and
more refined criteria for "resonance" to occur, most derived by formal methods only
and not supported by proofs. For a review of these papers we refer to the introduction of
[10]. Olver constructs in [10] an approximation by linking together uniform approxi-
mations of two pairs of independent solutions of the equation. The boundary conditions
at a and b and the continuity conditions across the turning point yield four linear
equations which can be solved under certain conditions on r(e). His final conclusion is
that for each nonnegative number n a function r(e) exists such that the approximation
and hence the solution itself shows "resonance" (in the sense of Ackerberg and
O’Malley); moreover the "resonant" approximation remains valid if r(e) is changed by
an amount not exceeding e-/ with 3’ > A and A as in (1.2). We remark (1) that the same
conclusion can be drawn from [5, Thm. 4.4 and Cor. 4.5], and (2) that the existence
proof does not (and cannot, as we shall explain later on) yield a method for construction
of such an r(e).

1.3. Re-evaluation of the problem. In the papers cited above the secondary
question "Under what conditions does the solution of (1.1) show resonance in the sense
of Ackerberg and O’Malley?" has obscured the original question "Can we find an
asymptotic approximation to the solution of (1.1) and how does it look like if r(0) is a
nonnegative integer?"; Ackerberg-O’Malley-resonance has been considered as a
fundamental property of the solutions of equation (1.1). However, from the example
(1.3) we can read that the first question is not the best one to ask. If a 1, the solution
of (1.3) is

1Fl(-1/2r; 1/2; x2/2e) AF(1/2-1/2r; 3/2; x2/2e)(1.5) u(x, r)=1/2(A +S) 1Fl(-1/2r; 1/2; 1/2e) +1/2(A-B) Fl(1/2-1/2r; 3/2; 1/2e)
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provided the denominators are nonzero. These denominators, considered as functions
of r, have denumerably many simple zeros for each e > 0 and the zeros converge to the
nonnegative integers for e- +0. Our first conclusion from this example is that a
solution of problem (1.1) need not exist, a fact that is not mentioned in any of the papers
cited above. The second conclusion is that it is not very interesting to ask for the
conditions under which the solution of (1.1) (if it exists) converges to a definite solution
of the reduced equation, since for every multiple of this limit we can ask the same
question. As a matter of fact, for any point x0 (0, 1), any nonnegative integer n and any
real number C we can find a function r(e) with r(0) n such that u in the example (1.5)
satisfies u(xo, r(e))- C, because n is the limit of a zero of a denominator; since the
restriction of problem (1.3) to (x0, 1) has no turning points, the well-known analysis
implies that u(x, r(e)) converges on (Xo, 1) (pointwise) to that solution of the reduced
equation which takes the value C at x0. Clearly the interesting question is how the
mechanism works that provides solutions of any magnitude.

The answer to this question also can be read from the example (1.3) with a 1.
The zeros of the denominators in (1.5) are the eigenvalues of the operator ed2/dx2 q-

xd/dx in d(- 1, 1) f’) f2(_ 1, 1). Let us denote these eigenvalues and the correspond-
ing eigenfunctions by (k(e), k(", e)) and let us assume that the eigenvalues are
ordered in increasing sense (i.e. Ak+l > Ak); they satisfy the relations

(1.6) -e+x Zrkk and lim 7rk(e)= k.
e+0

We define Z to be the ordinary boundary layer terms, as given in (1.4a),

Z(x) := A exp {-(x + 1)/e}+B exp {(x 1)/e}

and we expand the residue L(u,-Z) in the eigenfunctions,

L(u Z E Cg.(1.7)
The solution u satisfies

(1.8) u=Z+ Y’. kOk
k=0 7"/’k

If "/’/’k r is bounded away from zero for all k, the infinite sum in (1.8) is small, as is the
residue in (1.7). However, if r(0) n for some integer n, the nth term can be quite large
and we obtain the approximation

u z +t.().(’, 6)
e-+O and r(O)=n.

"n’,, (e r(e

This formula displays the mechanism at work in a resonant situation and it explains why
the solution is so extremely sensitive for small variations in r(e). It is clear that an
analogous formula can be given for the solution of (1.1). Problem (1.1) can be
considered as the equation for the steady state of a vibrating system and in such a setting
the phenomenon, that the solution grows beyond bound in the vicinity of an eigenvalue,
is commonly called resonance. From this point of view the phenomenon, which
Ackerberg and O’Malley have called resonance by chance (?), is a quite familiar
spectral effect. We have pointed at this connection to the spectrum already in [13, 9].

1.4. Outline oi the paper. The purpose of this paper is to construct a uniformly
valid approximation to the solution of problem (1.1), if it exists. The explanation of the
phenomenon of resonance clearly indicates the road to follow in order to arrive at such
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an approximation. First we have to determine the eigenvalues of the operatorL acting
on o9’2(a, b) og(a, b). Next we have to construct uniform approximations to the
corresponding eigenfunctions. Finally we have to estimate the coefficients in an
eigenfunction expansion of type (1.8) and we have to approximate the sum of the series,
since the infinite series itself hardly can be considered as a satisfactory approximation.
The techniques we shall use in our analysis are quite classical, namely the Rayleigh
quotient characterization of eigenvalues, Sturm-Liouville theory for eigenfunction
expansions, matched asymptotic expansions for the construction of approximations of
the eigenfunctions and the maximum principle for the proof of their validity; cf. [4] and
[12].

Our first result concerns the location of the eigenvalues. The eigenvalues are the
values of A for which the problem

(1.9) Lu eu" + xpu’ + xqu Au, u(a) u(b) O,

has a nontrivial solution. Sturm-Liouville theory implies that a denumerable set of
eigenvalues and eigenfunctions

{(A,(e),,g,(.,e))lk=O, 1,2,...} withLgk=AkYk

exists; ordering these eigenvalues in an increasing sequence we find

(1.10) Ak(e)=k+(e), fore+O.

This result is already contained in [5] and [6], but the proof there is fairly complicated.
Here we shall present an easier proof, based only on the minimax and maximin
characterizations of the eigenvalues by Rayleigh’s quotient; cf. [4]. We transform
equation (1.9) to a selfadjoint form and we construct formal approximations of its
eigenfunctions. The maximum of Rayleigh’s quotient over the span of the first k of
these approximate eigenfunctions yields an upper estimate for Ak-1 and the minimum
over the orthogonal complement yields a lower estimate of Ak. A good estimate of the
maximum is derived easily since the maximum is taken over a finite dimensional space.
An estimate of the minimum over the orthogonal complement, which is of infinite
dimension, is more complicate since the estimates of the eigenfunctions are not
uniform. We split this space into two subspaces such that in one of them Rayleigh’s
quotient is large enough to be estimated from below by the Rayleigh’s quotient of the
Hermite operator, cf. (1.3), whose eigenvalues are known, and such that the other
subspace is of finite dimension.

Once the convergence of the eigenvalues to well-separated limits is established, we
can expand the eigenvalues and the corresponding eigenfunctions of the symmetrized
problem in formal power series in powers of e. If p and q are c we can compute all
terms of these series by a formal asymptotic method which is analogous to the
"suppression of secular terms" in celestial mechanics. The coefficients in the power
series expansion of Ak (e) are uniquely determined by the condition that nonpolynomial
solutions (which are exponentially large) have to be suppressed in every step of the
iteration. The validity of these series is proved by expansion of the residue of the
approximate eigenfunction in the true eigenfunctions of the symmetrized problem and
by use of well-known estimates for the coefficients of such eigenfunction expansions.
Transforming back to the original nonselfadjoint form we find an approximation of the
eigenfunction which is uniformly valid in the interior boundary layer of width (?(e 1/2).

At both sides of this interior boundary layer we can match the interior expansion to
the regular expansion, whose lowest order term is the solution of the reduced equation
xpu’+xqu Au. Both regular expansions are matched to the boundary conditions



RESONANCE IN A SINGULAR PERTURBATION PROBLEM 5

u(a)= u(b)=0 in ordinary boundary layers. The validity of the approximation on
[a, -el/2m] and [el/2m, b] for some m > 0 is proved by the maximum principle. We
shall restrict our computation of an asymptotic approximation of the eigenfunction to a
first order approximation, which outside the boundary layers has a relative error of the
order (7(e 1/2).

if r(e) is not equal to any eigenvalue, problem (1.1) has a unique solution U. By
"matched asymptotic expansions" we construct a formal approximation Z, which
satisfies the boundary conditions (1. lb), and which is exponentially small in the interior
of the interval. Assuming that n is the nonnegative integer nearest to r(0), and using the
eigenfunction expansion as in (1.8) we finally obtain the result

(1.11) U =Z + ,n (e)-- r(e)
+ an exponentially small error,

where/n is the coefficient of n in the eigenfunction expansion of (L r)(U Z). The
magnitude of the (resonant) eigenfunction term in (1.11) can be read from the formula

(1.12) max IB.(e).,,(x,e)l=Ce-"-/e-a/(l+(e/)),
ax<-b

(e --, + 0),

where C does not depend on e and A is given by (1.2). We see that the magnitude of the
resonant part of (1.11) is of order unity if the distance from r(e) to the nearest
eigenvalue , (e) is of the same order as (1.12) and that the resonant part vanishes if the
distance is of larger order.

Formula (1.11) together with the approximation of the eigenfunction gn and the
estimate of the coefficient 3n give a precise picture of the asymptotic behavior of the
solution of problem (1.1) in the neighborhood of an eigenvalue. Unfortunately this
picture inevitably contains the distance from r(e) to the nearest eigenvalue. Since in
general no better approximation for an eigenvalue can be obtained than an asymptotic
(nonconvergent) power series in e, the exponentially small orders in the distance cannot
be detected (by asymptotic rnethods). Hence, if the asymptotic series of An and r do not
agree, the solution of (1.1) decays exponentially, but, if they agree, the magnitude of the
resonant part cannot be determined in general. Only in the exceptional case where a
solution of the equation Lu ru happens to be known, which is normalized by
lu(0)]+ lu’(0)l 1 and which is bounded by some negative power of e uniformly with
respect to e and x, can the magnitude of the resonant part be determined. Examples of
such a case are problem (1.3) and problem (1.1) with xq-r =-0. Moreover, if in a
problem of type (1.1) the resonant part Of the solution is of order unity, small changes in
e l/2p, q and r do not affect the magnitude of the resonant part in first order, provided
those changes are of an order smaller than (1.12) is, uniformly in x.

The methods employed here admit considerable generalizations, to the case where
the sign of p is negative, to the case where there are several turning points, where a
turning point is located at the boundary or where it is of higher order and to analogous
(elliptic) problems in several dimensions; cf. [6] and [7].

1.5. Notations. N, No, R and C are the sets of natural, nonnegative integral, real
and complex numbers. If I is an (open) interval in R, 2(i) denotes the set of square
integrable functions on I and k(I) the subset of functions in 2(i) whose kth
derivative is still square integrable (k N). g(I) is the subset of gl(i) of functions
which are zero at the endpoints of the interval L If I refers to the interval (a, b) it is
dropped: in that case we shall write2 instead of &2(a, b), etc. The inner product in2
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is denoted by (.,.) and the norm by I[’ II:
b

(u, v) I, u(x)(x) dx, Ilull := (u, u)

If is a subspace of ,2(i), then +/- denotes its orthogonal complement:

+/-={u 2(I)[(u(x), v(x))= 0 for all v o//,}.

2. The eigenvalues and Rayleigh’s quotient. For the study of its eigenvalues
problem (1.9) does not have a very suitable form, since the differential equation is not
symmetric. This is amended by the transformation

(2.1) v(x, e)= u(x, e)J(x), J(x) := exp --e-e tp(t, e) dt

it results in the equation

lx /3(2.2) -ev"+{xp/4e +xq-1/2p- p t Av, v(a) v(b) O.

We recall that p and q are -functions of x and e such that

(2.3) p(x, e) >- po > O, p(O, O) 1,

that because of assumption (1.2) Je satisfies the inequality

Je(a)<__Je(b)=e -a/2’)

and that A is a complex and e a small positive real parameter.
Although the transformation (2.1) makes v exponentially small with respect to u

for all x 0, it is clear that u is an eigenfunction of (1.9) if and only if v is an
eigenfunction of (2.2); hence the eigenvalues of (1.9) and (2.2) coincide. Let us denote
the differential operator connected with equation (2.2) by

(2.4) Teu := -eu"+{x2pE/4e+xq-1/2p-1/2xp’}u forallua0f’la2.
It is well-known that the (symmetric) eigenvalue problem (2.2) has a denumerable set of
real eigenvalues for each e > 0 and that this set is bounded from below. We shall denote
the eigenvalues of (2.2) by Ak(e) with k hlo, arranged in increasing order such that
k-1 Ak for all k N.

Rayleigh’s quotient for problem (2.2) is the quotient

Re(u) := (Teu, u)/(u, u).

Integrating the denominator once, we see that it is defined for all u , provided u 0.
The eigenvalues of (2.2) can be computed from Rayleigh’s quotient by the following
minimax and maximin characterizations"

(2.5a) h(e) inf sup Re(u),
g R’, dim fgk+1 ug,uO

(2.5b) Ak(e) sup inf Re(u).
rc.2,dim r_<_ k 6F fq :7’, 0

In the minimax characterization (2.5a) the maximum of Rayleigh’s quotient in a
k + 1-dimensional subspace is minimized over all such subspaces and in the maximin
form (2.5b) the minimum of Rayleigh’s quotient in the orthogonal complement of a
k-dimensional subspace is maximized. The proof of these characterizations is straight-
forward using the (orthogonal) eigenfunctions; cf. [4, Chap. 6, 1.4]. We remark that it
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is not necessary to maximize Rayleigh’s quotient in (2.5a) over all u ; because of
linearity it suffices to maximize over all u satisfying ]lull for some > 0. The same
is true for the minimum in (2.5b). Moreover we remark that the maximum of Rayleigh’s
quotient over a subspace g and the minimum over the orthogonal complement of a
subspace yield an upper and a lower bound for the eigenvalue under consideration
for each choice of ’ and . The bounds become better as ’ and are better
approximations of the span of the first k + 1 and k eigenfunctions.

The minimum over all subspaces in (2.5a) is attained by the span of the
eigenfunctions belonging to the first k + 1 (counting from zero on) eigenvalues and the
maximum in (2.5b) by the span of the first k eigenfunctions. If II is a second operator of
the form (2.4), which satisfies

(2.6) (IIu, u) <- (Tu, u) for all u ,
whose sets of eigenvalues and eigenfunctions are the sets

{zrk(e)lko} and {Ok(x,e)[kNo}

such that rk < Zrk/l and IIOk rkOk, then we have by (2.5b)"

(2.7)
Ak(e) _--> inf (Tu, u)

span{o, ,tOk- 1}a-fq ,]lull

->_ inf (1-Iu, u 7rk (e).
span{1 li--> k},llu II--

3. Approximate eigeniunctions. Since estimates of eigenvalues by Rayleigh’s
quotient require approximations of the eigenfunctions, we define the functions X,, by

(3.1) X’,(x, e):= exp (-x2/4e)H,(x/x/e),
where H, is the nth Hermite polynomial. These functions are "approximate eigen-
functions" (or better: formal approximations of the eigenfunctions). We show first that
they are approximately orthogonal"

LEMMA 1. The functions Xn satisfy for all n, m No
(3.2) (Xn, Xm)=(27re)1/22nn!{t$n,m+(e /2-"/2-m/2 exp(-b2/2e))}.
where 6,. is the Kronecker delta. If w is strictly positive and has a piecewise continuous

first derivative, they satisfy ]’or all n, m No (rn <- n)

(3.3) (X., wx.,) w(O)(27re)l/22"n!{.., +6(el/2(n + 1))},

and if w has a piecewise continuous second derivative they satisfy for all n, rn N (m <- n)
with In -ml 1

(3.4) (X,, wx,,) w(O)(27re)X/22"n!{6n,, +(en2+e)}

Proof. The well-known recurrence relations for the Hermite polynomials imply

(3.5) XXn=(2e)l/2(nXn_l+1/2Xn+l) and Xn=(2e)-l/2(nXn-l’--Xn+l)
and their orthogonality on I implies

I_ X(x, e),,.(x, e) dx (2e)/ exp (-x)H,.(x)H,.(x) dx

(3.6)
(27re)/22nn
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Since in the left-hand side the integral over the tails x < a and x > b (with 0 < b =< ]a I) is
of the order

(e a-"/-’/ exp (-bZ/2e)),
this proves formula (3.2).

If the weight function w has a piecewise continuous derivative, it satisfies w(x)=
w(0)+ 7(x), (x -0); hence (3.5) and (3.6) imply

(wx., X.)- w(O)(27re)1/2n!2"6..., ((w- w(O))x., X.)+(

e(llxx. IIx II)
and this implies (3.3). Formula (3.4) is proved in the same way; we remark that (3.4) is
not true for In-m]= 1. Q.E.D.

Next we show that Xk is a formal approximation of an eigenfunction of T:
LEMMA 2. For every n, k e No, n >- k, the approximate eigenfunctions satisfy

(3.7) [ITx. nx.ll2 (e(n 3 + 1)llx.[IZ),
[e(E(n4 + a)llx,,llllx,,ll) ifn k 1,

(3.8) (Tx"--nx"’Xk)=i (n +l)llx,,l[llx,,ll) ifn-k=l.

Proof. Since g. satisfies the equation

eu"+ x2u/4e -1/2u nu

we find from the recurrence relations (3.5) by straightforward calculations

TX, nx, (p2_ 1)(1/2n (n 1)X,_2 + 1/4Xn+2)
(3.9)

+{(n + 1/2)(p2_ 1)+ 1/2(1 -p)+ x(p -1/2P’)}X,.
Since p 1 + ?(e) + (?(x), Lemma 1 implies the estimates (3.7)-(3.8). Q.E.D.

Remark 1. Strictly speaking, the function X, is not in Y(, since it is nonzero at the
endpoints a and b of the interval. However, it is of the orders c(e-n/2 exp (-a2/4e))
and (Y(e"/Zexp(-bZ/4e)) there and we can easily amend this drawback by adding
suitable boundary layer corrections. The corrected function X, is defined by

,,(x, e):= X,(x, e)-x,(b, e)p(bx) exp{b(x-b)/2e}
(3.10)

g,(a, e)p(ax) exp {a(x a)/2e},

where p is an infinitely differentiable cut-off function satisfying O(x)- 0 if x < 1/4 and
p (x) 1 if x > 43-. The correction is of exponentially small order and can be disregarded in
the computations above; more precisely we find:

(3.11) (,,,,,,,)=(2rre)1/ZZ’n!{6,, +(s-"/2--’/2 exp (-bz/Ze))},
(3.12) 11- e’ + (x2/4e n 1/2))nl[2 t(el-n exp (- b2/2e)),

)n(3.13) (-e,, +(xZ/4e-n-)X,,,,)= tb(2b2/e exp (-bZ/2e)(l+tg(e)),

where t= 1 if b < -a and t=2 if b -a.
Remark 2. Since it is expedient to have an orthogonal set of approximate

eigenfunctions, we orthogonalize the set {, In e No} by the Gram-Schmidt process,
resulting in the set {, In N0}. In view of formula (2.6) this orthogonalization adds to
only terms of the same exponentially small order, such that the Lemmas i and 2 remain
valid if X. is replaced by ,. or
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Remark 3. In view of the proof of convergence of the eigenvalues (Theorem 1) we
have chosen the functions gn such that they are approximate eigenfunctions for all
operators of type (2.4) at once. In 7 we shall construct approximations of higher order,
which depend on the operator given.

4. An upper bound for the eigenvalues. In the minimax characterization (2.5a) we
can use as trial space the span 7/’k of the first k + 1 approximate eigenfunctions

(4.1) 7/’k := span {0, ,1,""",

and for this choice we can compute an upper bound for ,k.
LEMMA 3. The kth eigenvalue hk (e) satisfies the upper estimate

(4.2) hk(e)<-_k +Cle(k + 1)6

for some constant C1 and for all k No.
Proof. The lowest eigenvalue satisfies by (3.8):

Xo=< (T)o,)o) <-- Ce
for some constant C. As induction hypothesis we assume that the supremum of
Rayleigh’s quotient over

_
is bounded by

sup Tu, u) <= k 1 + Ck6E.
’k-1,1lull=

A function v 7/’ can be written uniquely as the sum u + tXk for some C such that
u k_ and Ilvll=- [lull=+ II0? ll=, Formula (3.8) yields a constant C such that

(T,, ,)N (k + Cek4)[lll=
and

2t(u, T) 2tcel/Z(k 3 + 1)llullllll Ilull2 + etZCZ(1 + k)Zllll=.
Hence we can reduce the supremum of Rayleigh’s quotient over to a supremum over
k-l:

sup R (v) sup sup R (u + t,)

-<_ sup sup (Tu, u)+ 1

+ (k + eCk4
4- eC:(1 + k))llt:l[= } /( / IIt,f,ll=)

<-k+e(k+l)6.
This proves the estimate (4.2). Q.E.D.

5. The differential equation of Hermite. Before deriving a lower bound for the
eigenvalues of T we shall study first the eigenvalues of the particular turning point
problem

(5.1) eu"+ xu’= Au, u(a) u(b) 0;

we remark that the differential equation becomes Hermite’s differential equation by the
stretching x :/--e. By transformation (2.1) we obtain the symmetrized form

(5.2) Hv := -ev"+x2v/4e-1/2v=Av, v(a)=v(b)=O.
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Denoting the set of its eigenvalues by {k(e)lk 0}, arranged in increasing order, we
find by analogy to Lemma 3 from the estimates (3.11)-(3.13) the better upper bound for
()"

LEMMA 4. A constant C exists such that

7rk(e) <-- k + Ce -"-1/2 e -b2/(2)

for all e > O.
For a lower bound we apply the stretching x :x/ to (5.2) and we obtain on the

interval (a/4-, b/4-) the eigenvalue problem

(5.3) e/ +1/42v --V AV, v(a/4-) v(b/4-) O, (" did,f),

whose eigenvalues are identical to those of (5.2). We introduce the notations

b14-
(u, v) := | u(:)(:) d,

,/

Y{ := g(a14-, bl’,/-) and := 2(a/s/-, b14-);
moreover, we continue all elements of Y{’ and by zero outside the interval (a//-,
b//-), such that we have the inclusions Y{ Y{ and a provided 0< 6 < e.
Rayleigh’s quotient for (5.3) is

O(u) := (u’, u’) + (1/4:u U, U)e,

Its value does not change if (for fixed u {’) the interval of integration is enlarged, i.e. it
satisfies

(5.4) O(u) O(u) for all u Y{’ and 3 (0, e).

In conjunction with the maximin characterization (2.5b) and the previous lemma we
obtain

LEMMA 5. For every k No we have the inequality

(5.5) k <- 7rk(e) <= k + Ce -k-1/2 e -b2/2.

Proof. Assume 0 < 6 < e. If - is a k-dimensional subspace of then its restriction
to cannot have a larger dimension; moreover, if u 6 Y{’ is orthogonal to the
restriction of to o, it is orthogonal to in too; hence
Consequently formula (5.4) implies that the minimum of Qs(u) as u ranges over
x (3 Y{’8 cannot be larger than the minimum over - f) Y{’. Taking the maxima over all
these minima we find

rk (t) sup inf Oa(u)
;c.,dim:--<k uSg;+/-fqK,uO

<= sup inf O (u) 7rk (e);
Src.,dimr--< k u:r+/-fqK,uO

hence rk(e) cannot increase as e decreases.
In the limit for e --> +0 Rayleigh’s quotient Q(u) of (5.3) tends to the Rayleigh

quotient of Hermite’s operator (which is well-known as the "harmonic oscillator" in
quantum mechanics), whose eigenvalues are known to be the nonnegative integers.
This implies that rrk(e) is bounded below by k. Q.E.D.
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We define the function lk(X e) to be the normalized eigenfunction of problem
(5.2) associated with the eigenvalue 7rk(e), i.e.

I-Ielk--’lT"kCk and

It is well-known from Sturm-Liouville theory that they form a complete orthonormal
set in 2; in conjunction with the estimates (3.11)-(3.13) this implies:

LEMMA 6. For each k No the eigenvalue and eigenfunction satisfy the estimates

(5.6a) k(e) k +(t/kl)(27r)-X/2b2k+1 -k-1/2e exp (-bE/2e)(1 + (e)),

(5.6b) (,k, 0k)kl[2= (Y(e 1-k exp (-b2/2e)).

Proof. We expand ,k in the eigenfunctions of II,,

/k E ()k, 0/’)0/" and II,kll2-- 2 I(,k, )l2.
i=o =0

Since the previous lemma implies Ik-Tri(e)l >=1/2 if # k, we find from formula (3.12)"

2
i=O,ik

<=2 Y’. I(m(e)-k)(x,, O)l=il(rI-k)[I

(e- exp (- b2/2e)).
This proves formula (5.6b); moreover, it shows that IIk[12--(k, Ok)2 is of the same
order, hence

,f,)= E
i=0

7rk(e)llk[12+((e x-" exp (-b2/2e)).
In conjunction with (3.11) and (3.13) this implies (5.6a). Q.E.D.

Remark 1. Formula (5.6) agrees with [5, Formula (2.6)], which was derived by
different means.

Remark 2. The estimate (5.6b) implies that Lemma 2 remains valid if 0, is
substituted for X, in the estimates (3.7)-(3.8).

6. A lower bound tor the eigenvalues. According to the inequalities (2.6)-(2.7) the
lower bound on the eigenvalues of Hermite’s operator is shared by the eigenvalues of all
operators whose Rayleigh quotient is larger than Rayleigh’s quotient of Hermite’s
operator. This property we shall use in order to derive a lower bound for Ak(e).

Explicitly we have

(6.1) (Tu, u)=ellu’ll2+((xEp2/4e +xq-1/2P-1/2xp’)u, u).

Since we assumed p(x, e)= 1 +6(e)+6(x), the coefficient in the second term in the
right-hand side has a local minimum (provided e is small enough) at a point a(e) near
x 0, where it has the value -1/2 +/3 (e),

fl(e) := x2p2/4e +xq 1/2p +1/2 ’1xp x=,(),

a and/3 are both of the order tg(e) and the second derivative of the coefficient at a (e) is
equal to 1 + tg(e). Without loss of generality we can assume a (e) 0, since we can shift
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the x-variable over a distance a(e); the endpoints a and b are then shifted over the
same distance, but this does not change our asymptotic estimates. Thus we find that the
function/,

/(x, e) := 4ex-2(x2p2/4e + xq 1/2p + 1/2- 1/2xp’- (e)),

satisfies

/(x, e)

This implies

and ,6(x, e)>=1/2po>O

(6.2)

(if e is small enough).

(ru, u)-- llu’ll=+(xZu/4-1/2u +u, u)

1/2po{ Ilu’ll= +(x2u/4e -1/2u, u)} + (1/4Po-1/2+/3(e))[lu[I2

1-IgPo( u, u) + e(llull)
Dividing by Ilull= we find in the right-hand side of the inequality the Rayleigh quotient of
II. Using this estimate we can find a satisfactory lower bound for Ak(e)"

THEOREM 1. For every k No the eigenvalue Ak (e) of T satisfies the estimate

(6.3) Ak(e) k +(ek6 + e).

Proofi We define the spaces k and ?#’k,, by

7/’k := span {491i e No, i -> k} and 7/V’k,. := span {4,11 e No, k _-< 1 < n}.

A lower bound for "k (e) is obtained by minimizing Rayleigh’s quotient over k, since
k is (by definition) orthogonal to a k-dimensional space. We choose n to be the
smallest integer such that

npo + 1/4Po 1/2 + (e >-- k + 1.

Each u k can be written as the orthogonal sum u u + U2 such that u e k, and
u2 ,,. By Lemma 5 and (6.2) we find

(6.4) +1/4Po 1/2+ k+l.inf Re (u2) - npo >-

By analogy to formula (4.2) we can prove by induction

(6.5) inf R(ux)>-_k-Cxe(k6+ 1)
k,n

and Lemma 2 and the second remark following Lemma 6 imply

2(T,u, uz)>- -Cg_e1/2(k3 + a)lluallllu2ll
(6.6)

>-_ C(k/ 1)=11u111_ [lull12"
Formulae (6.4)-(6.6) now imply

x(e) >- inf (Tu, u)

-> inf inf inf
te[O,1] uxe _W’k.

{tR(Ul)+(1-t)R(u2)+2(.TUl, u2)}

>=k-Cle(k6+ 1)-C2e(k3+ 1)2

This proves the lower estimate for Ak(e). Q.E.D.
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COROLLARY. Let ek (X, e) be the normalized eigenfunction of T associated with the
eigenvalue Ak(e ); then

(6.7)

Proof. The proof is analogous to the proof of Lemma 6.
Remark. From the proof of Theorem 1 we easily derive the following stability

property of the eigenvalues. If the coefficients p and xq-r of Le are changed by
amounts which are of the orders 6(el/2tr(e)) and 6(r(e)) respectively uniformly in x

1/2
0with (e)--(1), - +0, then Rayleigh’s quotient T and hence the eigenvalues

change by the order ff(r(e)) at most.

7. Higher order upproximutions o eigenalues nd eigenunctions. Approxima-
tions of higher order of the eigenvalues and eigenfunctions can be computed most easily
from the original nonsymmetric equation (1.9). Since the leading term of the asymptotic
expansion of the nth eigenfunction --]-le of (1.2)is equal to H(x//e) (modulo a
constant factor), we can choose all approximants to be polynomials in and x//-e;
doing so, we need not bother about the boundary conditions in view of Remark 1 in 3.
However, in order to prove that these formal computations yield the correct result, we
have to apply transformation (2.1) to the approximants and to operate with the
symmetric equation (2.2) as before.

In the differential equation (1.9) we introduce the substitution x -/-e and the
(formal) asymptotic expansions

p(x,e) 1+ Y’. piix
i+ae, q(x,e)= qiixie i,

i,i =o i,i =o
(7.1)

&(U4-e, e s Y e.i()e i/ . (e) Y .ie i,
i=0 j=0

where e..o := H., A..o := n and s.is a scaling factor. Collecting equal powers of e/2 and
setting their coefficients equal to zero we obtain the recursive system of equations

d/d)"

k’,,,. 2.,,,. + 2ne.., Y’. 2A,,e.,._2
/=1

(7.2)
,,-1 1/2,.-a-i)

+Y",=o,=o 2i+(Pi’+q’i)
with the side condition that the solution e.,,. has to be a polynomial. Since the leading
term e..o := H. is a polynomial of degree n which is even or odd if n is even or odd, we
see by induction (1), that the right-hand side of (7.2) is a polynomial of degree n + m
which is even or odd if n + m is even or odd, (2) that this right-hand side can be
expanded in a finite sum of Hermite polynomials, which does not contain H. if m is odd
and (3) that ,,,. can be chosen such that the coefficient of H, in the expansion of the
right-hand side is zero, if m is even. We conclude from this that for each m N a unique
scalar A,,, exists such that the equation (7.2) has a polynomial solution (which is unique
too). This procedure of solving e.,. and A.., recursively from (7.2) under the side
condition that the solution has to be a polynomial is known in other contexts as the
"suppression of secular terms".

In order to prove that we have obtained the correct asymptotic series for eigen-
value and eigenfunction, we apply the transformation (2.1) and we define the partial
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sums Ank and Enk by

k

A.k (e):=
j=O

k

E,.k(X, e):= s , e i/2 e.j(x/x/-e)Y(x)
=0

and we choose the scaling factor s such that ]lE..k[I 1. From the construction of the
functions e. we see that the partial sums satisfy

(7.3)

since the remainder is a polynomial in x/ of degree n + 2k + 1 multiplied by e
g+

and by the exponential. Expanding E,.2k+l in the set of orthonormal eigenfunctions
{ei IJ o} of r,

/=0 i=o

we find by Theorem 1:

II(T A)E.,+II
/=0

Since [IE.,2+[I is of order unity this implies

(7.4) A,(e)= A,k(e)+(e

for all k, n s o. Since each u s satisfies (Sobolev)

(7,5a) max lu(x)l 211ullllu’ll+ 211ulI/(b -a)
a<x<b

and since a positive constant Cexists, such that

(7,5b) Ilu’ll 4-llullillT -xull+(c/
for all u and for all A e C, cf. [6, chap. 2], the estimate of the error in E,.2k+ is valid
in the maximum norm too. Summing up we have derived:

THEOREM 2. The eigenvalues and eigenfunctions A,(e) and e,(x, e) of the operator

T have for e + 0 the asymptotic series expansions

(7.6)

(7.7) e(x, e)= sJ(x) H(x/)+ 2 e/ e(x/)
where the coecients are determined recursively [rom the system o equations (7.2).
Nxplicit computagon shows

n+e{3npo+ (2n + 1)qo- 12npgo-(12n + 2)pooqoo

The formal series expansion of in (7.1), from which (7.7) is derived, is not
asymptotic in the whole interval [a, b]. Since the ]th coecient e is a polynomial in
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x/x/e of degree n +/’, the ]th term is of the order [(SF_.-n/2xn+]) and hence all terms
are of the same order of magnitude for fixed x 0 and for e +0. In (7.7) it is the
exponential factor J, that makes the series asymptotic. The formal series expansion of
g, is asymptotic only in an e-dependent neighborhood of the point x 0 whose
diameter shrinks to zero for e +0. Theorem 2 implies that this series is asymptotically
correct in a neighborhood whose diameter is of the order (e 1/2) only.

For a better approximation of g, outside a neighborhood of x 0 we construct the
regular expansions in the subdomains [a, e n] and [e , b] for some 6 6 (0, 1/2]. In these
regions we expand g,, and the coefficients of the differential equation into the formal
power series

e’,,(x, e)= ekv,,k, p(x, e)= , ekpk(X), q(x, e)= ekqk(X);
k =O k =0 k =0

substituting them in the differential equation and collecting equal powers o e we obtain
the system of equations

k

(7.8) (xpod/dx +Xqo--n)Vnk V,k-i (xpjd/dx +xqj--Ani)Vn,k-i.
/=1

The constants of integration are obtained from matching to the inner expansion
obtained before. The lowest order term v,.o is

V.o(X) C.oX" exp (n npo(t)- tqo(t)) dt/tpo(t)

because po(0)= 1 this function is c and satisfies

(7.9) V.o(X)=C.oX"(1 + t(x)) (x 0).

For matching we substitute the intermediate variable r := xe- eTM with 6 (0, 1/2)
in both expansions for g. and we expand both series again into powers of e. Since the
leading terms of both series must agree, we find

2n/2Sen/2(7.10) C,oe"(" S21/2""e "-"/2 C.o

The regular expansion of Y, is matched to the boundary conditions g,,(a, e)-
e (b, e) 0 in ordinary boundary layers. In the boundary layer at x b we substitute the
local variable 0 := O"b (X)/e, where o’b is c and satisfies

(7.11a) trY,>0 and trb(X)=x-b+((x-b)2) forx-b,

and we expand the solution and the coefficients of the differential equation in (formal)
power series in e"

gn(X, e)= Z eiwi(O), xp(x, e)= E i(O)ei, xq(x, e)= 4i(O)e i.
/=0 /=0 j=0

This results in the system of differential equations

k

(7.11b) (’=d/dO)W ,,k + 6oW,,k , (id/dO + 1-1 + A,,.i-)W,,.k-i

with the matching conditions

(7.11c) W,,k(O) --V,,k(b) and lim W,,k(O) O.
0-
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Since/0 bp(b, 0), the lowest order term of this expansion is

W,o(O) -V,o(b) exp {bp(b, 0)0}.

Remark. We could have chosen 0 (x- b)/e as the boundary layer variable;
however, in order to have a better control over the decay of the boundary layer
correction w in a neighborhood of the boundary layer we prefer to have some extra
freedom in 0. Outside the boundary layer we cut the correction off multiplying it by
o(bx), where p is a -function satisfying p(x)=O if x <1/4 and p(x)= 1 if x >.

In the boundary layer at x a we construct analogously the formal expansion
en g w,i, clearly we find

VL,o(,1)= -V,,o(a) exp {-ap(a, O)l}, e,1 := o’(x)= x-a +((x-a)).
Thus we have constructed a formal approximation for the nth eigenfunction g, of (1.2).
The lowest order term of this approximation is F,o,

F,,o(X, e):= sH,,(x//-2) + V,,o(X)-C,,oX" + p(bx)w,,o(o’b(X)/e) + p(ax)ff,’,,o(O’,(x)/e);

the term C,,oX" is subtracted since it is contained in sH,, and in v,0 and it is counted twice
otherwise. We shall prove the validity of this approximation with the aid of the
following consequence of the maximum principle:

LEMMA 7. Let n and r satisfy r <= n and let m be larger than the largest
zero ofH, (x//-). I[ a constantM exists such that the [unction z satisfies
(7.12a) [-ez"+xpz’+xqz-rz[<-Me-/x forallx[me 1/2, b],

(7.12b) Iz(eX/2m)l<-Mm and Iz(b)[<=Me-"/2b,
then a constant N exists such that

Ne-"/2x" if r # n,
(7.12c) Iz(x)l <

Ne-"/Zx" Ilog el if r n,

[orall x free /2 b]
Proof. We choose the barrier function Wr"

Wr(x, e):=sH,,(x//e)+ V,,o(X)-C,,oX" if n # r,
(7.13a)

W,,(x, e):= (sH,,(x/x/e)+ V,,o(X)-C,,oX") log (2e-/Zx/M).
From the computations above we easily find positive constants d and D such that

sDx"e-"/Z[log el if r n,
(7.13b) dx% -’/2 <- W(x, e) <= sDxe -/2 if r < n,

sdx"e
-/2 if r n,

(7.13c) (L, r)W _>-
sd(n r)x%-/2 if r < n,

1/2provided e is sufficiently small and e m _-< x _-< b. According to the maximum principle
it follows from (7.12a) and (7.13c) that (-MW, sdz)/W, cannot have positive
maxima in (el/am, b). Since (7.12b) and (7.13b) imply that they are negative at

/2rrx e and at x b, they are negative everywhere. If r # n we use the same
argument. Q.E.D.

THZORM 3. A constant Cexists, such that the n-th eigenfunction ofproblem (1.2)
satisfies the estimate

(7.14) IY, (x, e)-f,,o(X, e)l<-sC(1 +Xne-n/2)eX/2]log el
uniformly ]:or all x [a, b ].
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Proof. Theorem 2 and formula (7.9) imply that for each m > 0 a constant C,,, exists,
such that

[n(x, e)-fno(X, e)l_<- CmE 1/2 provided Ixl < me 1/2"

moreover, since en(b, e) F,0(b, e) 0, condition (7.12b) is satisfied. From the con-
struction of the approximation it follows that

(L -X.)(Y -F.o- ewes) (se/z-"/Zx ")

and that Wnl is of the same order as w,0 is; hence to the subinterval (el/2m, b) we can
apply the previous lemma (with r n). To the subinterval (a, e /2m) we can apply the
same argument. Q.E.D.

In order to compute higher order terms of the expansion of g, we must solve (7.8)
(and (7.11), but this is well-known) recursively and match each term to the inner
expansion by "intermediate matching"; cf. Eckhaus 12]. Having computed the regular
expansion up to the index j 1, we must verify that the jth equation has a solution which
is c at x 0; this is guaranteed by the fact that the coefficient of x in the Taylor
series expansion at x 0 of the right-hand side in the equation (7.8) is made zero by the
choice of ink in (7.2); otherwise the solution would contain a term of the order
(?(x log x) (x - 0). For the matching we substitute the intermediate variable r xe-el/E-withO<6<1/2in..k=ose/.ek and in yi k

k=O e V.k and we expand the new series
in powers of e up to the order o(sei-); the constant of integration, which is in the term
of the order 6(se-") is now determined by the condition that both series must agree up
to this order. The proof of validity is analogous to the proof given above.

The approximation for g., we have constructed, is such that the relative error is
a/2M 1/2Muniform outside the boundary layers, i.e. if a + me < x < -e and if e < x <

b- me for sufficiently large constants M and m. Hence we obtain by transformation
(2.1) an approximation of e with a good relative error, which is better than (7.7) is.
However, its Rayleigh quotient does not yield a better approximation of the cor-
responding eigenvalue, since it differs from (7.6) by exponentially small terms only,
which are too small to be proved correct, unless the asymptotic series happens to
converge. In Lemma 6 we have given an example in which the dominant asymptotic
series of the eigenvalues terminates, such that exponentially small terms can be
computed.

8. Exponential decay and resonance. Having established the conditions under
which the solution of the boundary value problem (1.1) exists and s unique, we can
study the asymptotic behavior of this solution.

The construction of a formal asymptotic approximation to the solution U of (1.1)
is analogous to the construction of the approximation of , in the preceding section.
Now we assume that the inner and the regular expansions are zero and hence that the
approximation consist of boundary layer terms only. As in (7.11) we substitute in the
boundary layer at x b the local variable 0 := trb(X)/e and we expand everything in
formal power series in e:

U(x) , e’zi(O), xp , e’fii, xq , e’qi, r(e) e’ri.

Hence, we obtain the system of differential equations

k

(8.1) -z +/0z E (id/dO+i-l-ri-1)Zk-i
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with the boundary conditions

zo(b) B, Zk(b) 0 (k >= 1) and lim zk(O) 0 (k >= 0).
0-oo

The lowest order term is

(8.2) zo(O) B exp {bp(b, 0)0}

and higher order terms are computed easily; since pj and qj are polynomials in of
degree , zk is equal to a polynomial in : of degree 2k multiplied by exp (bp(b, 0)0) and
constants Ck exists such that each partial sum satisfies for all 0 -< 0"

(8.3) (L r(e)) Z e%(O) eClBl(1 + 0z) exp (bp(b, 0)0).

In the same way we construct at x a the boundary layer expansion

(8.4)
U(x) E e z(n) with err := tra (x) x a + 6((x a)Z),

o(n) A exp {ap(a, 0)n},

which satisfies an estimate analogous to (8.6). So we have constructed the formal
approximation z k of U"

k

(8.5) zk(x) := Z eJ(p(bx)zi(x)+o(ax)Y.i(x)),
i=0

where p is a coo cut-off function (O(x) 0 if x < 1/4 and p(x) 1 if x > ]). Exploiting the
relation T,u JLu between T and L and the eigenIunction expansion of T, we
prove the validity of this formal approximation"

THEOREM 4. Let n No be the nonnegative integer that is nearest to r(O) and let U be
the solution ofproblem (1.1). The formal approximation Z satisfies

.,(x,e)
U (x zk (x +

h, ",,’(e " r(e’ {Bbp (O )y2 (b )v,,o(b +ala p(a )y2 (a )v,,o(a )}(1 + (7(x/))
(8.6)

(AekJ(a))+7(BekJ(b)J;l (x)) ifx 0,+ (Bekj(b))+(Aekj(a)J- (x)) ifx <=0,
where , J-Xe, is the n-th eigenfunction ofproblem (1.9) and where V,o is the lowestorder
term of the regular expansion of, cf. (7.9),

no(X) ( !/2rF, )-l/2,-n/2Xn ep
t

(n-rip(t, O)-tq(t, 0)) dt/tp(t, 0) (1 + if(e))

for x # 0 and e + O.
Proof. Let U be the solution of (1.1) if A 0. The construction (8.1) implies that

the error Dk,
k

Dk(x) := U(x)- E e"p(bx)zj(trb(x)/e)
i=0

is an element of fq yg2. Hence, JDk can be expanded in the eigenfunctions of T and
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its component orthogonal to e, satisfies by formula (8.3) and Theorem 1"

IIJD (jDk- e.)e.II E I(JD, e;)l

i=O,in
I(J (L r)D, ei)/ (Ai r)l2

_-< Ilar (L, r)Dll2 7(e2k+ ar2 (b)).
Sobolev’s inequality (7.5) now implies existence of a constant C such that

]J (x)D(x)- (J,D, e,,)e,, (x, e)l <= Ce ’J (b)

for all x s [a, b ]. In particular, this is true if x <= e 1/2m for some m s R, where we have
J(el/2m)=?(1) for e --> +0; since we also have (L-r)Dk =0 for x <0= we can apply

1/2mLemma 7 to the restriction of D g, to [a,-e ]. Hence, the component of D ke
orthogonal to Je. satisfies the estimate

(x)) ifx.->0,
(8.7) Dk(x)--(Dk,Je.)e.(x, e)

(Bekj(b) if x-<-0,
uniformly for all x [a, b].

In order to compute the inner product (J.D k‘, e.) we choose the function Orb in the
boundary layer variable as follows"

(8.8a) tr(x)=x-b-i(x-b)2 withl=-1/2(p(b,O)+bp’(b,O))/bp(b,O).

If u is a sufficiently large positive number this implies
b

(8.8b) Ix tp(t’O) dt+bp(b’O)crb(x)=-u(x-b)2+((x-b)3)<O

for all x s [0, b]. Hence, we find by (7.14)

(jDk, e,)= -(J(L-r)zo(trb/e), e,)/(A,(e)-r(e))(1 + (e))

Bbp(b)j2 (b)v,,o(b) [b(8.9) "(’’,-3- r(e )) .a
e-(x-b)2/{2(x b) + 7(e /[x-bl2)} dx

Bbp(b)j2 (b)vo(b)/(h,, (e) r(e ))(1 + 7(4-)).
For the solution UA of (1.1) with B 0 we can derive estimates analogous to (8.7) and
(8.9); since U UA + UB this implies formula (8.6). Q.E.D

Remark. In fact we have used in the proof the generalized eigenfunction expansion
in the biorthogonal series {Je,,} and {Je,} of eigenfunctions of L and its adjoint L*.

This theorem gives all information we want about the solution U. We see from
(8.6) and (7.14) that U, decays exponentially fast in the interior of the interval if the
distance between r(e) and the nearest eigenvalue of T satisfies condition (1.4).
Moreover, it gives a good estimate of the magnitude (and the form) of the resonance and
it displays exactly how the resonant part of the solution explodes if r(e) approaches the
eigenvalue sufficiently fast. Unfortunately it is in general not possible to determine
exponentially small terms in the asymptotic expansion of X,(e); hence, in general it
remains unknown whether or not the denominator X, (e)- r(e) in (8.6) is smaller than
the numerator.

In the special case of the Hermite operator (5.1) the exact solution can be
determined, e.g. in confluent hypergeometric functions. Its asymptotic expansion
agrees with formulae (5.6a) and (8.6); cf. [5, formula (2.7a, b, c, d)].
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Another example in which we can approximate accurately the resonant solution
occurs near the smallest eigenvalue, when the coefficient q is equal to zero. In the
particular eigenvalue problem

(8.10) eu" + xpu’ Au, u(a) u(b) 0

the inner and regular expansions of o reduce to only one term, namely o constant.
By Theorem 3 we then-find the uniform approximation o Foo(1 + (e)), where

Foo(X, e)= s{1 -p(bx) exp (bp(b, O)rb(x)/e)--o(ax) exp (ap(a, O)ra(x)/e)}.

Rayleigh’s quotient of JFoo is (by analogy to (8.9))

(TJFoo, JFoo)/llJ,Fooll2 (2re)-l/2(LFoo, 2JFoo)(1 +

(2rre)-l/2{bp(b)j2 (b)+ lalp(a)J2 (a)}(1 +

if the functions ra and orb in the boundary layer variable are chosen as in (8.8). Since Foo
satisfies

IITLFooII2 IlLLFo0lf (e J (b))= (e/z J (b)llFoollZ),

we find from the eigenfunction expansion of JFoo

(8.11) Ao(e)=(27re)-I/2{bp(b)j2(b)+lalp(a)j2(a)}(l +(?(x/-))

in the same way as in Lemma 6. By formula (8.6) we find for the solution U of the
boundary value problem

the result

(8.12a)

provided

eu"+xp(x, e)u’ 0, u(a)=A, u(b)=B

U(x) B + (B -A) exp {ap(a, O)(x a)} +

tp(t, O) dt > tp(t, O) dt,

cf. (1.2), and

U,(x) {bp(b)B ap(a)A + ap(a)(A- B) exp (bp(b, O)(x b))
(8.12b)

+ bp(b)(a-B)exp (ap(a, O)(x-a))}/(bp(b)-ap(a))+(Y(/-).
provided both integrals are equal.

9. Generalizations and related problems.
a. Imposing on problem (1.1) the condition "p strictly negative" instead of "p

positive" we obtain a problem which is intimately related to problem (1.1). Such a type
of problem is represented by the adjoint of (1.1a)

(9.1a)

(9.1b)

L*u := -eu"-xpu’ +(xq-p-xp’)u ru.

u(a) A and u(b) B.

Clearly its eigenvalues are equal to the eigenvalues of (1.2) and the eigenfunction
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connected to Ak(e) is Jeek. If r(O) # n the solution u of (9.1) satisfies

A exp dt (1 + Y(ex-2)), if x < 0,

(9.2) u(x)

Bexp{Ib w(t) dt}(l+(Y(ex-2)), if x>0,

where w(t):={tq(t, O)-p(t, 0)- tp’(t, O)-r(O)}/tp(t, 0); cf. [7, Thin. 3.15]. If r(0)= n, we
have to add a multiple of Je,/((A, (e )) r(e )) as before. Due to the exponentially
decaying nature of J this resonant part is dominant only in a subinterval (containing
x 0) whose diameter depends on the magnitude of 1/IA, rl; if 1/IA, rl (e-) for
some/3 > 0, then the diameter of this subinterval is of the order 6(e1/2 log e).

b. We can add to the differential equations (1.1) and (9.1) an inhomogeneous term
f and construct an asymptotic approximation to the solution, provided r(0) is not equal
to the limit of an eigenvalue.

In (9.1) the leading term of the outer expansion is the solution of the reduced
equation, which satisfies the boundary values at a and b. In order to prove convergence
for r(0) > n => 0 we have to embed the problem in the negative Sobolev space -"-1 and
to prove first convergence in weak sense; afterwards we can show convergence in
stronger sense by interpolation; cf. [5] and [6].

In (1.1) the leading term of the outer expansion is that solution of the reduced
equation that is continuous at x 0. This solution is an analytic function of r(0) which
can be continued analytically in the positive halfplane up to the line 2e r(0)= n,
provided f has n derivatives at x 0 and which has poles at the points r(0) k No (this
continuation is the smoothest solution of the reduced equation). In order to prove
convergence for r(0)> n ->_ 0 we have to restrict the problem to the positive Sobolev
space Yg"+a (i.e. to prove convergence of the nth derivative first); cf. [6] and [1].
Alternatively we can use the technique by which Theorem 4 has been proved:
transform the error by (2.1), expand it in the eigenfunctions of T resulting in a
max-norm estimate in an (el/2)-neighborhood around x 0 and apply Lemma 7 for an
estimate on the remaining part of the interval.

c. If a turning point is located at the boundary point a, the boundary condition
u(a)=0 eliminates the approximate eigenfunctions which have an even index and
hence it also eliminates the associated eigenvalues.

d. If the interval (a, b) contains several turning points, i.e. if we study the problem

(9.3) eu" +u’ + xqu ru, u(a) A, u(b) B,

where/5 has several distinct zeros in [a, b ], we can do exactly the same as before. Each
turning point gives rise to a denumerable set of eigenvalues, which satisfy Theorem 1 (or
the analogous result for problem (9.1)) and the spectrum is the union of these sets. In
order to generalize the proof of Theorem 1 to this case we have only to perform a
transformation analogous to (2.1) and to construct a complete set of approximate
eigenfunctions for each turning point. The construction (and proof) of asymptotic
approximations of the solutions is analogous to the cases sketched above.

e. If the interval contains a turning point of higher order or if two (or more) simple
turning points coalesce in the limit for e + 0, i.e. if p(x, 0) has a multiple zero, then the
spacing between the eigenvalues tends to zero for e + 0 and the set of eigenvalues
tends to a dense subset of the positive real axis. In order to prove such a result we impose
on the coefficients ,6 of (9.3) the more general condition

/(x, O)=xlxl’-l(l+(e)) or if(x, o)=lxl’(l+(e)).
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To this problem we apply the analogue of the symmetrizing transformation (2.1), which
results in the equation

(9.4) ev"+v/4e -1/2p’v + xqv Av, v(a) v(b) O.

If 0=< v < 1, its Rayleigh quotient is bounded from below by an arbitrarily large
constant if e is small enough, such that all eigenvalues vanish at infinity in the limit for
e +0. If v > 1, we substitute x e/<+): and we multiply the equation (9.4) by
(v--l)/(v+l)e Comparing the Rayleigh quotient of the resulting equation to the Rayleigh

quotient of Hermite’s operator (cf. 5) we can show that all eigenvalues of (9.4) tend to
zero with the order ?(e <-)/<+x)) and that their spacing diminishes with the same
factor. For more details see [7].

fo By analogous methods we can attack the elliptic singularly perturbed boundary
value problem on bounded domain G s ".

eLu + piOu/Oxi + qu O, uloo prescribed,
i=1

where L is a uniformly elliptic operator and where the vector p has an isolated zero with
a nonzero Jacobian; cf. [6, chaps. 4, 5, 6] and [14].
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CHARACTERIZATION OF CONTINUOUS SELECTIONS
FOR THE METRIC PROJECTION FOR

GENERALIZED SPLINES*

MANFRED SOMMER"

Abstract. In this paper we give a characterization of those generalized spline spaces which admit
continuous selections for the metric projection. We denote by generalized splines those weak Chebyshev
spaces which can be decomposed in Chebyshev spaces by finitely many knots. This characterization is a partial
solution of a problem raised by Lazar-Morris-Wulbert and generalizes a result of Niirnberger-Sommer
established for polynomial splines. For constructing a continuous selection we show some properties of
generalized splines. We prove an interpolation theorem and give a characterization of the existence of best

approximations. These results generalize in a certain sense results of Karlin, Rice and Schumaker established
for polynomial splines.

Introduction. If G is a nonempty subset of a normed linear space E, then for each f
in E we define P(f):= (go GI Ill-g011 inf (ll -gll Ig G)$ which is called the set of
best approximations of f from G. Pc defines a set-valued mapping of E into 2 which in
the literature is called the metric projection onto G. A continuous mapping s of E into G
is called a continuous selection for the metric projection Pc(or, more. briefly, continuous
selection) if s(f) is in Pc(f) for each f in E.

In this paper we treat the problem of the existence of continuous selections for n
dimensional subspaces G of C[a, hi, with C[a, b] as usual the Banach space of
real-valued continuous functions on In, b] under the uniform norm.

Lazar, Morris and Wulbert [7] have been the first to characterize those one
dimensional subspaces G of C(X), X compact, which admit a continuous selection.
They have raised the problem of characterizing the corresponding n-dimensional
subspaces.

With new methods and in the setting of weak Chebyshev subspaces Niirnberger
and Sommer [9] have established the existence of continuous selections for a subclass of
those weak Chebyshev subspaces of C[a, b] whose nonzero elements have no zero
intervals. From this, there follows a result of Brown [2] for five dimensional subspaces
of C[- 1, 1]. Combining the result in [9] with recent results of Sommer 14] and Sommer
and Strauss [16] we get a characterization of the spaces which have continuous
selections from among the n-dimensional weak Chebyshev subspaces G of C[a, b]
whose nonzero elements have no zero intervals"

There exists a continuous selection for G if and only if each g in G, g 0, has at
most n 1 distinct zeros on In, b]\{x0} where x0 only depends on G.

Recently, Nfirnberger [8] has shown that the weak Chebyshev property is necessary for
the existence of continuous selections for subspaces G of C[a, b]. Thus the above
formulated problem of Lazar-Morris-Wulbert is solved for all n-dimensional
subspaces G of C[a, b] except for the following case" G is weak Chebyshev and there
exists at least one nonzero g in G vanishing on intervals. We denote this subclass of the
class of the n-dimensional weak Chebyshev spaces by

For special elements ofn the problem of Lazar-Morris-Wulbert has been treated
by Niirnberger and Sommer [10] and Sommer [13]. Nfirnberger and Sommer [10] have
given a characterization of those spline spaces which admit continuous selections and
Sommer [13] has given a characterization of those 1-Chebyshev spaces which also

* Received by the editors May 25, 1978, and in revised form December 4, 1978.
f Institut fiir Angewandte Mathematik der Universitit Erlangen-Niirnberg, Erlangen, West Germany.
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admit continuous selections. Spline spaces and also special 1-Chebyshev spaces are
elements of Z,.

In this paper we examine the problem of Lazar-Morris-Wulbert for the elements
of Zn. We define a great subclass Vn of Zn consisting of all n-dimensional weak
Chebyshev spaces G which can be decomposed in Chebyshev spaces by a finite set of
knots (see Sommer [15]). Therefore, we may denote these spaces by generalized
splines. Since the spline spaces with dimension n are elements of n and the splines are
the prototypes of the weak Chebyshev spaces [6], the class 7/’n seems to be the most
important subclass of the class of the weak Chebyshev spaces. But there are also many
elements of n which are not elements of 7/’n. We give a complete characterization of
those spaces G in which admit continuous selections. We show that a continuous
selection for G exists if and only if the following conditions are satisfied:
(,) No nonzero g in G has more than one zero interval in [a, b and the number of the

boundary zeros of g is bounded in a certain sense.
In order to prove the characterization we first prove an interpolation property and

a characterization theorem for best approximations for any G in n satisfying condition
(,). From these theorems there follow for a special class of spline spaces results of Karlin
[5, p. 503], Rice [11, p. 152] and Schumaker [12] established for all spline spaces. By
using our results we are able to construct continuous selections provided that condition
(,) is satisfied.

The construction of the selection is highly local and based on local alternation
elements whose local uniqueness is guaranteed by condition (,).

If for any G in Vn condition (,) is not satisfied, then we are able to show the
nonexistence of a continuous selection applying a fundamental lemma of Lazar-
Morris-Wulbert.

Our construction of a continuous selection is based on the construction of a
continuous selection for splines established by Niirnberger and Sommer [10]. While in
that paper the authors have been able to use well known results from spline theory, we
have at first in this paper to establish some results about the elements of

Finally we show that from our characterization it follows the characterization of
continuous selections for splines established in 10]" There exists a continuous selection
for splines of degree m with k fixed knots (m + k + 1 n) if and only if k <_- m + 1. We
also apply our characterization theorem to other special elements of 7/’, namely to the
continuously composed Chebyshev spaces and get a characterization of the existence of
continuous selections for those spaces.

We also show by examples that not all G in o//. have the same behavior as the spline
functions. Therefore, the class , does not only consist of those weak Chebyshev spaces
which have the same properties as the splines. This statement is also verified by a result
of Sommer [15] having shown that there are elements of n which are not uniqueness
spaces in the L1-norm, while L1-uniqueness for spline spaces is always satisfied.

1. Preliminaries. In the following let G be an n-dimensional subspace of C[a, b].
DEFINITION 1.1. G is called Chebyshev if each g in G has at most n 1 zeros on

[a,b].
G is called weak Chebyshev if each g in G has at most n 1 changes of sign, i.e.

there do not exist points a<=xo<x< .<xn<=b such that g(x), g(x+a)<0 for
i=0,... ,n-1.

We denote the class of all n-dimensional weak Chebyshev subspaces of C[a, b by

Jones and Karlovitz [4] have characterized the elements of Wn. For this charac-
terization we need the following definition"
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DEFINITION 1.2. If f is in C[a, b], then g in P(f) is called an alternation element
(AE) of f if there exist n/l distinct points a_<-Xo<Xl<...<xn<-b such that
e(-1)i(Z-g)(x,)=llf-gll, i=0,..., n, e +1. The points Xo,’’’, xn are called alter-
nating extreme points of f-g.

Jones and Karlovitz [4] have proved the following theorem:
THEOREM 1.3. The following statements are equivalent:

(i) G is in 74/’.
(ii) For each f in C[a, b] there exists at leastone AE in Pc(f).

(iii) Given a Xo < X <"" < x,-i < x, b there exists a g in G, g 0, such that
(-1)i+lg(x) >- 0, xi-i < x < x, 1,. ., n.

(iv) If gl, g2,." g is a basis of G, then a <-_ t < t2" tn <= b, a <= s < $2 <
< sn <-- b imply

det [g,(t)l det Igi(s)l >- O.

Applying this theorem and Definition 1.1 it is easy to show:
LEMMA 1.4. (i) If G is weak Chebyshev, then there exists a g in G with exactly n 1

changes of sign on (a, b);
(ii) If G is not weak Chebyshev, then there exists a g in G with at least n changes of

sign on (a, b).
Furthermore we need the following standard definition:
DEFINITION 1.5. A zero Xo of f in C[a, b] is said to be an isolated zero if there is a

neighborhood of Xo such that f(x) 0 on U\{xo}.
A zero Xo of ]" in C[a, b is said to be a double zero if x0 is an isolated zero on (a, b)

and f does not change sign at Xo.
A zero Xo of f in C[a, b is said to be a simple zero if Xo is not a double zero of f or if

xo a or xo b.
Two zeros x, xz off in C[a, b] are said to be separated if there is a x0, x <x0 <xz,

with [(Xo) 0.
Let Z(f) be the set of all distinct zeros of and Zd(f) the set of all double zeros of fi

Furthermore, let bd Z() be the set of the boundary points of Z().
We denote by [Z<f)l and Iz*<f)l the number of the distinct zeros of f or the number

of the zeros of [ counting simple zeros as one zero and double zeros as two zeros,
respectively.

In [15] we have shown that weak Chebyshev spaces, under appropriate hypo-
theses, can be decomposed in Chebyshev spaces by a finite set of knots. For this we need
the following definition"

DEFINITION 1.6. A zero Xo of f in C[a, b] is said to be a nonvanishing zero with
respect to G if there is a g in G with g(xo) O.

In the following the term "with respect to G" will be omitted.
We have proved in [15]"
THEOREM 1.7. Let G be in 7#’ and each x in [a, b be a nonvanishing zero. Let at

least one nonzero g be in G having zero intervals. Assume also that them exists a 6 > 0
such that i]: g in G and g=-O on [c, d]=[a, b] where c, d {x [a, b]lg(x)O}{a, b},
then d c >- . Then there exists a minimal set o] knots a Xo < x <. < Xs b such that
the spaces G G]tx,_,.x, are Chebyshev with dimension n for 1,. , s.

We define:

{G o ]G fulfills the hypotheses of Theorem 1.7}.

By Theorem 1.7 , contains exactly those spaces G in o/g., which we can decompose by
finitely many knots in Chebyshev spaces. In 3 we will give a characterization of those
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elements of n which admit continuous selections. In order to establish this charac-
terization we have to define the following: Let G be in 7/’n and a Xo < x <" < xs b
be knots for G according to Theorem 1.7. Then we define for any i, {0, 1,..., s},
i</"

i/ {g Gig =- 0 on [xi, xj]}, dim i] mii.

In general the spaces Gii are not weak Chebyshev. But we now define two subclasses of
n for which all Gq are weak Chebyshev"

:, {G F, lbd/(g)l -< mii for each g 6 0 and each i/}
7/’n {G 7/’n ]No nonzero g G has two separated zero intervals}

Furthermore we .clefine for any G in 7/’n and any k, {0, 1,. , s}, k < l"

Gkl GIt.x.. dim Gkl nkl

and for any subinterval [xi, x/] c [Xk, Xl]"

G,- ,ltx... dim / mii.kl
In [15] we have proved that Gk is weak Chebyshev for any k, {0, 1,. , s}.

2. Properties o "t, and "g’,. In order to construc a continuous selection for G
provided that G is in n we need some pr.operties of Fn.

In 15] we have shown that any G in 7/’n is a uniqueness space for approximation in
the L1-norm. For this we have proved a fundamental lemma which is also very
important for our characterization of the existence of continuous selections:

LEMMA 2.1. Let G be in :n. Then for any i, j {0, 1,. , s}, < 1, the following are
true"

(i) Gij is weak Chebyshev with dimension mj.

(ii) For any function gl in 0ltx,.bl there is a 1 in G such that ,1 gl on [x, b and, =0 on [a, xi].
(iii) For any function gz in riilta,x, there is a ,z in G such that ,z gz on [a, xi] and

ff,2 =- 0 on [xi, b ].
Next we show an interpolation property for any G in 7/’n which we need for a

characterization theorem for best approximations from G. For the proof of this
interpolation theorem we first need a lemma on the number of separated zeros of
functions in weak Chebyshev spaces.

LMMA 2.2. (Stockenberg 17]). Let G be in Wn. Then thefollowing assertions hold"
(i) If them is a g in G with n separated, nonvanishing zeros Xl < x2 <" < xn, then

g(x) 0 forallx with x<=xa orx >-xn.
(ii) No g in G has more than n separated, nonvanishing zeros.
LV.MM 2.3. LetG be in l/’n. Let n points a <= y < y2 <" < Yn <= b be given satisfying

Yn-nis Xi Yno+l, i= 1,.. ,s-l,

(for n- nis= 0 and noi + 1 n + 1 the first or the second inequality is omitted, respec-
tively). Then ]or any n real numbers {zi}’=x there exists exactly one go in G with g0(yi) zi
)or l, n.

Proof. We first remember that nij dim Gi dim G[tx,,x. Let any function go s G
with g0(y/)= 0 for 1,. , n. Then the lemma is proved if we can show that go -= 0.

We now assume that go 0 and distinguish two cases: First" Let go have no zero
intervals. Then from Lemma 2.2 it follows that go has exactly n distinct zeros on [a, b
such that yl a and yn b. Since there is at least one nonzero element g G having
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zero intervals, by Lemma 2.1 there exists a nonzero function e G with exactly one
zero interval [a, xi] or [xj, b l, respectively. Therefore dim Goi =moi -> 1 or dim Gts
mrs --> 1, respectively.

Without loss of generality let mo => 1. Since Go is weak Chebyshev by Lemma 2.1
and G e F,, by Lemma 1.4 there is a e Go such that g has exactly one maximal zero
interval [a, xt] with xt -> x and has exactly moi- 1 changes of sign on (xt, b). Because of
Ibd Z()1 -< moi the function has exactly moi zeros on [xt, b] where mo- 1 zeros are
zeros with changes of sign. In particular (b) 0, since (xt) 0.

Let rl be the number of the common zeros of go and on [a, b). We classify the
other n -rl- 1 distinct zeros of go on (xt, b) as follows"

Let r2 be the number of the double zeros having the property that for each of these
zeros there exists a neighborhood U such that go" g->-0 on U.

Let r3 be the number of the double zeros having the property that for each of these
zeros there exists a neighborhood U such that go" =< 0 on U.

Let r4 be the number of changes of sign.
Then n rl + r2 + r3 4- r4 4- 1 and for sufficiently small c > 0 either the function

go-c or the function go +c has at least n nonvanishing separated zeros on [a, b). But
by Lemma 2.2 this is not possible.

Second" Let [xi, xi] be the maximal zero interval of go (i<]). Therefore, the
function go has no zero interval in [a,x]U[xt, b]. Without loss of generality we
may assume that xt < b. By hypothesis, the function go has at least n- not separated
zeros on (xj, b] and because of go(xt) 0 even n-not+ 1 separated zeros on [xt, b].
Since go Gt, we get dim Gj => 1. Since go 0 on [x, b ], it follows from Lemma 2.1 that

moi= dim to -> 1. From the definition of Gi and toj it follows immediately that
n no + mo.

Since go Git, by Lemma 2.1 there exists a ff s Got such that go on [xi, b].
Therefore ]bd Z()l -> n no. + 1 mot + 1. But this is a contradiction of the hypothesis
that [bd Z(g)l-<- mo for all g s to.

klFurthermore we need a lemma dealing with the spaces Gij. We show that for any
k, {0, 1, , s}, k < l, these spaces also satisfy the conditions made for the elements
of 7/’,.

LEMMA 2.4. Let G be in ,. Then ]:or an k, {0, 1,..., s}, k < l, and any
subinterval [x, x] of [x, xz] the following is true"

Ibd Z(g)l <--- mkil for each g in J.’.
Proof. At first we treat the case that [Xk, Xl] is a boundary interval of [a, b].
First: a Xo < xl < b (the case a < Xk < X b follows analogously). We assume

that there is a subinterval [xi, x] c [a, Xl] and a function go s tii such that lbd Z(go)l >=
0l 01

m i] 4-1 on [a, Xl]. Since Ibd Z(go)[ <= mij on [a, b], we get mit >mii. Therefore, there
01exist exactly mii mii linearly independent functions gl g2, g,,,j_,,.o.,in tii vanishing

identically on [a, x]. Then we get o <g, g2,""", gm,-m’>, since o q. Hence
Ol

tool mq m q

We now show that go, g," , g-o, are linearly independent of [x, ]. If there is a
o such that go on [x, b], then go 0 on Ix, x], since otherwise go- has two

separated zero intervals [x, x] and [x, b]. This would be a contradiction of the
Olhypothesis that G 7/,. Then [bd Z(go)l--> m it + 1 on [a, xi]. By Lemma 1.4 there exists

a g tOl with exactly mol 1 changes of sign on (Xl, b). Hence [bd Z(g)l mo on [Xl, b ].
01Then for sufficiently small c > 0 the function g cgo has exactly m i + 1 separated

zeros on [a, Xl) and at least toOl separated zeros on [Xl, b]. But this is a contradiction,
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because - cgo Gi. Thus we have proved that go, g1," ", g-o, are linearly indepen-
dent on [Xl, b]. Then by Lemma 1.4 there exists a function

n1Ol. aogo + aigi
i=1

with at least mot changes of sign on (x, b). Since by Lemma 2.1 Go is weak Chebyshev
with dimension mo, we get a0 0. Then Ibd Z()I >-m + 1 on [a, Xl] and Ibd Z()I->-
toOl on (x, b). Therefore Ibd Z()I mii+ 1. Because of ff tii we get a contradiction
again.

Second" a < Xk < Xl < b. At first we consider again the boundary interval [a, xt]
[a, b ]. By the first case it follows:

Ibd Z (g)l =< m. for each g (.

where [x, xi] is an arbitrary subinterval of [a, xi]. From a remark in 1 it follows that
Gl is weak Chebyshev with dimensio not. Therefore, the space G C[a, x] satisfies
the same hypotheses as the space G if we replace [a, b] by[a, Xl] and the dimension
n by nol. Since [Xk, Xl] is a boundary interval of [a, xt], we may conclude as in the first
case and get the desired statement.

Now we are able to show that all g in P(f) coincide on a knot interval for any f in
C[a,b].

LEMMA 2.5. Let G be in . Then there exists an interval [x, x] such that g (. on
[xi, x] for all g, (, in P(f). Furthermore, for each g in P(f) the error f-g has at least
ni + 1 alternating extreme points on [x, xi].

Proof. Let f C[a, b]. By Theorem 1.3 there exists at least one AE go P(f).
Without loss of generality let go 0.

If there is an interval [x, x/] such that f-0 has at least n/ + 1 alternating
extreme points on [xi, xi/], then by the well-known characterization theorem of
Chebyshev spaces all g P(f) coincide on [xi, Xi+l], since Gi+1 is Chebyshev.

But if there does not exist such an interval, there will exist an interval [xi, x/] such
that f- 0 has nil + 1 alternating extreme points x =< tx < t2 <" < t.,+ -<_ xi, butf- 0 has
no nk + 1 alternating extreme points on any subinterval [Xk, Xl] [X, Xi]. Then

t.,+_.o < x. < t.,o+a, p + 1, ,/’- 1

(for ng.= ni the second inequality is omitted).
Now let an arbitrary gP(f) be given. Then because of I1 11 >

e(-1)P(f-g)(t.), p=l,.",nii+l, e=+/-l, we get e(-1)"g(t.)>-O for p=
1, ., nii+ 1. Therefore, the function g has at least one zero on each interval [t., t./l],
but in general not nii distinct zeros on [tx, tn,/], since it is possible that the zeros on
[t._ !, t] and It., t.+l] coincide at t.. But we show that in this case the function g has an
isolated double zero at t..

We now choose exactly one zero of g on each interval [to, t./] for p 1, , no as
follows"

If g has a zero on Its, t2), then we define z to be an arbitrary zero on [tx, t2). If g has
no zero on It1, tz), then g(t2) 0 and we define zx t2. Let now p 1 zeros z Its, t+x),
r 1,. , p 1, of g be defined. We define a zero z. 6 It., t./x) as follows"

If g has a zero on (t., t/a), then we define z to be an arbitrary zero on (to, t./). If g
has no zero on (t, t./), then g(t.)= 0 or g(t.+x)= 0. We distinguish:

(i) If g(t.)= g(t.+l)= 0 and z._ < t, then we define z. t.. If g(t.)= g(t.+x)= 0
and z.-x=t, and g has a double zero at tp, then we define z.=to. If
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g(tp) g(tp+l) 0 and zp-1 to and g has a change of sign at t,, then we define
Zp tp+ l.

(ii) If g(tp+l) 7 O, then g(to) 0..and we define z, to.
(iii) If g(to) 0, then g(to+l) 0 and we define zo

Thus we have defined ngj zeros where at most two of these zeros coincide. We next show
that from zo- zo for some p e {2, , n0} it follows that g has a double isolated zero
at Zo-x zo: Let zo- zo for some p e{2,..., nij}. Because z,_ e [to-i, to] and z,
[to, to+i] we get zo- zo to and g(to)=0. Moreover, g has no zero on (to-i,
(to, to+l). If also g(to+l) 0, then by selection of zo g has a double zero at zo and we are
ready.

Therefore, there remains only the case that g(to+): O. Then e(--1)O+Xg(to+x 0.
We distinguish"

(i) If g(to_l) O, then e(-1)-Xg(to__) > 0 and thus we get that to is a double zero
of g.

(ii) If g(to-l)-O, then by selection of Zo_l g has a change of sign at to-I and,
moreover, zo_2 to_. If also g(to_a)= g(to_3) g(tl) O, then we would get by
definition"

Zl tl, Z2 t2, Zp-1 to-1 < O.

But because of zo_ --ZO --to this case is not possible. Therefore, there is a t. with
g(ti) O. Let to-s be. the greatest point less than to-1 such that g(to-s)SO. Then
g(tp-s+X) g(to_x g(tp) 0. Then g has zeros with changes of sign at to_/l, ,
to-x and because zo-2 to-l, zo-3 tp-2, , zo-s to-s+x no further zero on [t,_, to] by
definition. Because e(- 1)-g(to_) > 0 we get e(- 1)-lg(x)>O for all x (to-, to).
Then because e(- 1)/lg(x) > 0 for all x (to, tp/x) the function g has a double zero at tp.

Thus we have shown that if zo-1 zo to for some p {2, , nii}, g has a double
zero at to. Because tn,j+l-npi < Xo < tn,p+ for p + 1, , j-- 1, and because zo [to, to+i]
for p 1,. ., nii we get:

z,,i-,,,j < xo <’z,+, p + 1, , j- 1.

If all zo are distinct, then by applying Lemma 2.3 and Lemma 2.4 to the space Gij we
conclude thht g ---0 on [xi, xj] and we are ready.

But if only r < ni. of the zeros {zo}p"x are distinct, then the function g has s ni- r
isolated double zeros zp, zoo/l, zo z/, , zo z/l.. We denote the r distinct
points from {zp}L1 by Vl,’’ ", v, arranged ascendingly. We choose e > 0 such that

(i) z,,_n, + e < Xp < z,,,,+ e, p + 1,. , ]- 1,

(ii) e < min (Vp+l--/Ap), UO Xi, Vr+l Xj,
p=O,... ,r

is satisfied. In case v xg or Vr Xi or /-)1--Xi and Vr- Xi we only determine the
minimum for p 1, , r or for p O, , r- 1 or for p 1, , r- 1, respectively.

We now add to each double zero zp, z,v..., z, one further point Zol/ e, z, +
e, , zo + e and get a new set {v, , Vr, ZO + e, , Zp + e } consisting of n0 points.
We denote the elements of this set by 1, t2," ", t,,, arranged ascendingly. Then we
get:

nii-nr,i < Xp < nir,+l, p + 1,- , ]- 1.

Let U(zo,,) be a sufficiently small neighborhood of zo on which the function g has only
the zero z (remember that zo is an isolated double zero of g). Then by applying
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Lemma 2.3 and Lemma 2.4 to the space Gii there exists exactly one Gij such that
(i) (zpk+e)=0, k 1,..., s;
(ii) (zp) 0, p {pl, pl + 1, p2, p2 + 1,. ., ps, ps + 1};
(iii) g(zok) sgn g(x), x U(zo,)\{zo,}, k 1,..., s.

Then the functions g and have at least nij 2s common zeros and for sufficiently small
c > 0 the function g-c has at least two distinct zeros on [zo- e, zp + e] for k
1, , s. Thus g- cg has at least nii distinct zeros, denoted by wl, , wn,, arranged
ascendingly. Then because of the choice of e we get:

wn,_,pj < xp < w,p+l, p + 1, ,/"- 1.

This is true, since wo z forp {pl, pl + 1, p2, p2 + 1,. , p, p + 1} and {wpk,
[zo e, zok + e ] [zk+l e, z+l + e for k 1,. ., s.

Now we may apply Lemma 2.3 and Lemma 2.4 to Gii and we get that g c --- 0 on[x, x]. But this is a contradiction, since (g c,)(zp) 0 for k 1,. , s.
Thus we have proved that all of the zeros {zo}’L are distinct and we get that g =- 0

on [x,x] as shown above. Since g ePc(]’) has been chosen arbitrarily, all best
approximations of " from G vanish identically on [x, xj]. Therefore,/-g has n + 1
alternating extreme points on [x, xi] for any g e Pc (1).

By applying Lemma 2.5 we now are able,to prove a characterization theorem for a
best approximation from G, in cause G is in

THEOREM 2.6. Let G be in . A ]’unction g in G is a best approximation ]:or ]’ in
C[a, b][rom G i]’ and only i]’ there exists a knot interval [xi, xi] such that]- g has at least
ni + 1 alternating extreme points on [x, xj].

Proo’. Let [ C[a, b] and gPc(]"). Then by Lemma 2.5 there exists a knot
interval [x, xi] such that/- g has at least ni + 1 alternating extreme points on [x, x].

Conversely let e C[a, b and g e G and [x, xi] c [a, b] be a knot interval such that
/- g has at least n + 1 alternating extreme points on [xi, xi] i.e. there exist n + 1 points
x, _-< tl < t2 <’" < tn,,+l _-< x such that e(-1)P("- g)(to) !1- gll for p 1, , n + 1,
e=+/-l. If g!Pc(f), then there exists a ffG such that e(-1)(C’-)(tp)<
e (-1)(f- g)(t) tor p 1,. ., nij + 1 and, therefore,

e(-1)(, -g)(to)>O.

Hence-g has ni changes of sign on (x, x). Since Gii is weak Chebyshev by Theorem
1.4 in [15], this is a contradiction.

3. The characterization theorem. Now we are able to give a characterization of the
existence of continuous selections for all G in o//.,. We will prove the following
statement:

TrEOREM3.1. Let G be in . Then there exists a continuous selection ]’or G if and
only if G is in .

At first we will show the nonexistence of a continuous selection for G, in case G is
in ,, but not in o//.. For proving this we need the following fundamental lemma
established by Lazar, Morris and Wulbert [7].

LEMMA 3.2. I]S is a continuous selection o]’ C[a, b into G andf is in C[a, b ],
and 0 is in Pc(f), then there is a go in Pc(]’) such that

(i) ]’or every x in bd Z(Pc(f)) f’l /-1(1) and every g in Pc(I:) there is a neighborhood
U o]’ x ]’or which go >- g on U and

(ii) for every x in bd Z(Pc(/)) f’1’-1(-1) and every g in Pc(]’) there is a neighbor-
hood V o]’ x ]’or which go <- g on V.
Here Z(Pc(])) {x [a, b]lg(x) 0 ]’or all g Pc(I:)}.
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We will now show by two lemmas that in case G is in 7/’n but not in //’n there does
not exist any continuous selection for G. This proves the one part of Theorem 3.1.

LEMMA 3.3. Let G be in t/’,,. Let no g in G have two separated zero intervals. If there
existsome i, {0, 1,. , s} and a function go in ij with Ibd Z(go)[ > mij, then there does
not exist any continuous selection ]:or G.

Proof. Since by Lemma 2.2 no g G has more than n separated, nonvanishing
zeros and all x [a, b] are nonvanishing, there exists an integer p such that Ibd Z(g)l <- p
for all g G. Now let Gi be such a subspace of G having an element go with
Ibd Z(go)l-- rn > mij. Without loss of generality we may assume that

m Ibd Z(go)l Ibd Z(g)l for all g

This is possible because [bd Z(g)[-<_ p for all g . Furthermore we set [Igo[[- 1.
Let I [Xk, X] [Xi, X] be the maximal zero interval of go. We now only treat the

case a < Xk < Xl < b, since the cases a Xk and xt b follow analogously. Furthermore,
we only treat the case that Xk is in the closure of {x [a, b]lgo(x)<O} and Xl is in the
closure of {x [a, b]lgo(x)>O}. That means that go(x) < 0 on [Xk--5, Xk) and go(x) > 0
on (xt, Xl + 8] for 8 > 0 sufficiently small. By hypothesis, the function go has only the zero
interval ! and, therefore, exactly m- 2 distinct zeros

a Zozlz2 <. "<Zr<Xk <Xl<Zr+l <" "Zm-2Zm-1 =b

on [a, b]\I.
We define m points {to}"-1p=o by

to (z + z/)/2,

tr=(Z,+Xk)/2,

tr+l (Xl 2f. zr+l)/2,

tt, (zt,-l + Zp)/2,

for p =0,. , r-l,

for p=r+2,..., m-1.

We choose e > 0 such that

{zl, z2," , z,,-2, Xk, X} [to e, to + e for p 1," , rn 2.

We now construct a function f C[a, b as follows:
(a) Let f have np/ + 1 alternating extreme points on (xp, xp/ 1) for p k, , 1

with If] 1 on these points.
(b) f(Xk)-- 1 and f(x)= 1 for all x [x, t+l].
(c) If Zl > a, then we set f(x) sgn go(to) for all x e [a, to]. If Zx a, then we set

f(a) -sgn go(t1) and f(x) sgn go(t1) for all x [tl-e, tl + el.
(d) If z.-2 < b, then we set f(x) sgn go(tin-I) for all x e [t.-x, b]. If z.-2 b, then

we set f(b)=-sgn go(t,.-2).
(e) If for some p {1,. , m 2} zp is a zero with a change of sign on (a, b), then

we set

sgn go(to) for all x [zp, tp if p -< r,
f(x)

sgn go(to+l) for all x [zp,/p+l] if p _-> r + 1.
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If for some p {1, , m 2} zp is a double zero on (a, b), then we set

-sgn go(tv
f(Zo)

-sgn go(to+l)
if p <_- r,
if p->r+l,

sgn go(to) for all x [to e, to + e if p <- r,
f(x)=

sgngo(to+l) for allx[to+l-e, to+l+e] ifp.>=r+l.

(f) max {-1 +go(x),-1}_-<f(x)_-<min {1 +go(x), 1) for all x [a,b].
Because of (a) every g Pc(f) vanishes identically on [Xk, Xl]. From Ilfll- 1 on Ea, b] it
follows immediately that 0 Pc(f) and, because of IIf- goll--< 1, go Po(), too. There-
fore, Xk, Xl bd Z(Pc (f)).

At first we show that Zd(go) c Z(Po(f)), in case Za(go) . We assume that there
is a function Pc(f) and an d Za(go) such that () # 0.

Since ff s Pc(f), it follows from the definition of f:
’go---->O on[t-e, to]forp=O,...,m-1 if a < Zl, Zm-2 < b,

ff’go-->O on [to-e, to]forp=l,’",rn-1

(a) 0 or sgn (a)=-sgn go(h)

and

if a Zl, Zm-2 < b,

(*) ’go ->0 on [to-e, to]forp=O,’’’,m-2 and

(b) 0 or sgn (b)=-sgn go(t,-z) if a < Zl, Zm--2 b,

g’go--->0 on [to-e, to]forp=l,"’,m-2 and

g(a) =0 or sgn g(a)=-sgn go(t1) and

g(b) 0 or sgn (b)=-sgn go(t,-2) if a Zl, Zm--2 b.

Now we consider for sufficiently small c > 0 the function

go + cg.
Then g 0 on [Xk, Xl] and it follows immediately from (,) that g has at least as many
changes of sign on (a, Xk) and on (Xl, b) as the function go. Additionally the points Xk and

x are boundary points of Z(g) and, if go(a) 0 or go(b) O, Z(g) has further boundary
points on neighborhoods of a or b.

Since Zd(go), there exists a p e {1, , m 2} such that zo. Without loss of
generality let zo>xl. Then to <zo <tv/l and because of ft. go=>0 on [to-e, to]U
[to/l e, to/l] and sgn (zo) -sgn go(tv/l) the function g has two changes of sign on a
neighborhood of zo. But this is also true for all double zeros of go which are no zeros of .
In this way we get

Ibd Z(g)l > Ibd Z(go)l m.

But this is a contradiction, because g t0. and [bd Z(g)[ _<-m for all g e t0.. Thus we
have shown that Za(go)C Z(Pa(f)). Since Za(go)cbd Z(go), we even get Zd(go)C
bd Z(Po(f)) (f-l(1).J f-1(--1)).

Now we distinguish the following cases" First: Zd(go)# . Without loss of
generality we may assume that there is an e Zd(go) such that > x and f() 1. We
now apply Lemma 3.2" If there exists a continuous selection, then there exists a
gl Pc(f) such that

(i) for Xl and go there is a neighborhood U of x for which gl --> go on U and
(ii) for and 0 there is a neighborhood V of for which gl -> 0 on V.
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Since gl go > 0 on (Xl, Xl + i) for a sufficiently small 8 > 0, by hypothesis, g has no
zero interval in [Xl, b]. Therefore, is an isolated zero of gl and because of (ii). Za(gl). Then it is easy to verify that for all sufficiently great positive numbers d the
function go + dg satisfies

[bd Z(go / dga)l Ibd Z(go)].

Since Z,(go) and > Xl, there is a p {r + 1, , m 2} with zo. Then it follows
from the definition of f that gl _<-0 on [to e, to] and on [to+l- e, to+l]. Since go + dgl has
no zero interval in [x, b for any d > 0, the function go + dgl has for some d > 0 at least
two changes of sign on (to, to+a) and, therefore, we get

Ibd Z(go + dgx)[->- 2 + [bd Z(go)[.

But this is a contradiction, because go+ dgx Gii. Thus there does not exist any
continuous selection in this case.

Second" Zd(go)= and {a, b}fq Z(go)= . Then go has exactly m- 2 zeros with
changes of sign on (a, b)\I and, by hypothesis, one further change of sign on (xk 6, xt +
8) for sufficiently small 6 > 0. Therefore, go has exactly m 1 changes of sign on (a, b).
Since dim G0 mij, there exist n- m0 functions in G linearly independent on [xi, xi]
and by Lemma 1.4, therefore, a function h G with at least n mii- 1 changes of sign
on (xi, xj).

We now distinguish: if n -mii 1 is an odd number, then for sufficiently small c > 0
either the function go + ch or the function go- ch has at least n mii 1 changes of sign
on (x, x.) and further m changes of sign on (a, b) (at least one on a neighborhood of Xk
and another one on a neighborhood of Xl) and, therefore, at least n- mii- 1 + m
n- mii--1 +mii + 1 n changes of sign on (a, b). But this is a contradiction of the
hypothesis that G is weak Chebyshev.

Therefore, there remains only the case that n mii 1 is an even number, in this
case we first apply Lemma 3.2 again: if there exists a continuous selection, then there
exists a gl PG(f) such that

(i) for xk and 0 there is a neighborhood U of Xk for which gl _-> 0 on U and
(ii) for x and go there is a neighborhood V of Xl for which ga -> go on V.
Since gl -> go>0 on (xt, xt + 6], by hypothesis, gl has no zero interval in [xt, b]. Let

[Xh, Xt] be the maximal zero interval of ga. We denote all distinct zeros of g on
[a, b]\[Xh, Xt] by a yO <-- yl < < yu Xh < Xl y,+l < y,+2 < < y,., .-l <= y, b. We
define:

=1/2 min Ilgllc.,o+3l
o=O,...,v-1

where [y0, Yl] or [Y-I, Y] or [yo, y] and [Yv-1, Yv] are omitted, if y a or y_ b or

Y a and y-a b, respectively. Then > O. We set d min (1/2, ) and define the
function g2 by g2 ga-dgo (remember that Ilgoll 1). Then from the definition of f it
follows that

gl go ->0 on [zo, to] for p 0,..., r, and

on[zo, to+a]forp=r+l,...,m-2 and

on [Xl, tr+

Therefore, Z(g2) has at least one boundary point on each interval (zo, zo+l] for
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p 0, , r- 1 and on (x, z+] and on (Zp, zp+a] for p r + 1, , rn 3. These are at
least rn 2 points. Moreover, we get two further boundary points on neighborhoods of
x and x,. Therefore, Ibd Z (gz)i >= Ibd Z (go)l and from Ibd Z(g2)l <- rn it finally follows
that [bd Z(gz)[ m.

We now distinguish once more: If Za(gz) , then we conclude as in the first case
by replacing go by g2 and get in this way that there does not exist any continuous
selection for G. If Za(g2)= , then gz has exactly rn-2 changes of sign on (a, b)\I.
Since gl => 0 on the neighborhood U of x, we get gz > 0 on [x 8, x) for sufficiently
small 6 > 0. Since gl > dgo on (Xl, x + e for sufficiently small e > 0, we also get gz > 0 on
(Xl, x + e ]. By hypothesis, n mi 1 is an even number. But if we replace go by g2, then
we may conclude in the same way as in the case that n- mi- 1 is an odd number.
Therefore, for sufficiently small c > 0 either the function gz- ch or the function g + ch
has at least n mi 1 + rn 2 + 2 => n mi 1 + mi + 1 n changes of sign on (a, b) (at
least one on a neighborhood of x and another one on a neighborhood of x). But this is a
contradiction of the hypothesis that G is weak Chebyshev.

Third" Za(go) and a Z(go), b Z(go) or a Z(go), b Z(go). Without loss of
generality we may assume that aZ(go), b Z(go). We distinguish two cases:

(i) g(b)=0 for all gP(f). Then bbdZ(Po(f))f(f-l(1)t.Jf-l(-1)). Without
loss of generality let f(b) 1. Then go <= 0 on a neighborhood of b by hypothesis. If there
is a continuous selection, then by Lemma 3.2 there exists a function gx PG(f) and a
neighborhood U of b for which gx 0 on U and a neighborhood V of Xl for which
g => go on V. Therefore, g has no zero interval in [x, b ]. Then it is easy to verify that for
sufficiently great d > 0 the set Z(go + dg) has at least rn + 1 boundary points. But this is
a contradiction, because go + dg i and, therefore, ]bd Z(go + dgl)[ _-< m.

(ii) There exists a ,P(f) with g(b) 0. Then for some constant c >0 the set
Z(go+c,) has at least m boundary points and {a, b}fqZ(go+c,)= . Then we
conclude as in the first or the second case by replacing go by go + cg.

Fourth" Za(go) and {a, b}c Z(go). If g(b) 0 for all g P(f), then we can
conclude as in the third case.

Otherwise, there is a ,Po(f) with (b) # 0. Then for some constant c >0 the
function go +c satisfies Ibd Z(go + cg)] => m and b Z(go + c). Then we may conclude
as in the first three cases by replacing go by go + c.

LEMMA 3.4. Let G be in F,. Let (, be a function in G having two separated zero
intervals. Then there does not exist any continuous selection for G.

Proof. Let G having two separated knot intervals [X-x, x] and [xi, xi+] with
<. Without loss of generality we may assume that there does not exist any g G such

that g =0 on [xg_, x]tA[xi, Xi+x], g0 on [x, xi] and g has a zero interval in [x, xi].
Such a choice of the knots x, . is a_lways possible._ Then in ,particular g has ,n zero
interval in [x, xi]; We define: G Gg_.g Gi.i+x. Then dim G -> 1, since G and it
follows immediately that no g G, g0 on [x, xi], has a zero interval in [x, xi]. Since

G and G is weak Chebyshev, there exists a nonnegative number r <-n- 1 and a
function go such that go has exactly r changes of sign x < z Z2" Zr X and,
furthermore, no g G has more than r changes of sign on (xi, xi). We may assume that
go >= 0 on a neighborhood of x and [[g0[[ =< 1. Then we choose r distinct points (/-)pp=X
satisfying X . Z I)1 Z2 I.)2"(" <( Zr l)r X and we choose e > 0 such that
{z, z2, ", z, xi} f) [vp e, vp + e p 1,. ., r, and xi + e < Z l.

We now construct a function f C[a; b] as follows:
(a) f(x)= go(x) for all x [a, xi-1]t.J[Xi+l, b].
(b) Letf have n + 1 alternating extreme points on (xg-1, x) and ni+l + 1 alternating

extreme points on (xi, Xi/l) with If[ 1 on these points.
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(c) f(x) 1 for all x [xi, xi -1" E

f(x) (- 1)P for all x [vp e, vp + e for p 1,. ., r
f(xi)=(-1)r+l.

(d) max {-1 + go(x), -1}-<f(x)_-< min {1 + go(x), 1} for all x
Then f-0 Ii- f- go II-- 1. Since f-0 has ni + 1 alternating extreme points on [xi-1, xi]
and Gi-1 is Chebyshev with dimension hi, it follows from the well-known alternation
theorem for the Chebyshev spaces, that all g PG(f) vanish identically on [xi-1, xi].
Therefore, 0 s Pc(f) and go P(f), too. Now let g Pa(f), g 0 on [xi, xj]. Then g 0
on [xi-1, xi]l,.J [xj, Xi+l] and, therefore, g s G. By hypothesis, g has no zero interval in
[xi, xj]. Then it follows from the definition of f that g has at least r changes of sign on
(xi, xi) and by hypothesis, therefore, exactly r changes of sign on (xi, xi). Thus (- 1)rg >_ 0
on a neighborhood of xi.

Since go has no zero interval in [xi, xi], we get x, xi s bd Z(P(f)). We now apply
Lemma 3.2: If there exists a continuous selection for G, then there exists a g P(f)
such that for xi and g0 there is a neighborhood U of xi for which g -> go on U and for xi
and 0 P((f) there is a neighborhood V of xi for which (-1)r+lg >--0 on V.

Since g ->_ go on U, we get g0 and, therefore, g has no zero interval in [xi, xi]. As
shown above there is a neighborhood ’W of xi for which (- 1)rg _>_ 0 on W. Thus there is a
W V with (--1)rg()>0 and hence we get a contradiction to Lemma 3.2.

Therefore, there does not exist any continuous selection for G.
If G is in F, but not in 7/’,, then it follows from Lemma 3.3 and Lemma 3.4 that

there does not existany continuous selection for G. Therefore, we have only to treat the
case that G is in 7/’. In this case we are able to show the existence of a continuous
selection. For constructing such a selection we need the following two lemmas"

LEMMA 3.5. (Niirnberger and Sommer [9]). LetG be in t1/’. andfbe in C[a, b ]. Ifgl,
g2 in Pa(f) are two AE’s for f, then at least one of the following is true"

(i) gx- g2 has at least n + 1 distinct zeros on [a, b];
+2 zeros on [a, b] counting multiplicities.(ii) g g2 has at least n:

LEMMA 3.6. Let G be in V,. Thenfor any] {0, 1, , s} and any g in Goi withg 0
on [xj, xi+l] the following is true"

[Z*(g)[ <- moi + 1.

Proof. We assume that there is a j %.{0, 1,. , s} and a go Goi, go 0 on [xi, xi+ 1],
satisfying [Z*(go)]--> moi + 2. Since G s , and go --- 0 on [a, x.], go has no zero interval in
[x., b]. Therefore, we may assume that go has exactly p distinct zeros on [xj, b] and
go(b)=O. The case go(b)O follows analogously. Let =max{x [xi, b)lgo(x)=O}.
Let xi < yl < y2 <" < Yr < b be all the zeros with changes of sign and xi < Zx < z2 <

< zt < b be all double zeros of go. Therefore, p r + + 2 and because of ]Z*(go)[ >-
moj + 2 we get r + 2t + 2 >- moi + 2.

We choose moi r- 1 points

max (, Xs-1) < Yr+l <" < Ymo,-1 < b.

Since Goi is weak Chebyshev by Lemma 2.1, there is by Theorem 1.3 a nonzero g s Go/
such that

(--1)ig(x) => O, Yi-1 <X <( Yi, 1,..., moi

Yo a, Y-o b.

Without loss of generality let g go >= 0 on [a, Yr/ 1]. Since G s ,, g has no two separated
zero intervals. Therefore, gO on [x-l, b], because g---O on [a, x] with x, ->xi.
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We distinguish: First" g(zi) 0 for 1, , t. Then for sufficiently small c > 0 the
function go-c, has no zero interval in [xj, b] and at least 1 + r + 2t _>-moj + 1 distinct
zeros on [xi, b]. Since go-cg Goi, this is a contradiction of the hypothesis that
Ibd Z(go- cg)l--< m0i.

Second" There is some io {1, .., t} such that g(Zio) 0. Then for sufficiently small
c > 0 the function g cgo has no zero interval in [xi, b and at least one zero at xj, r zeros
at y, y2," , y, one zero on a neighborhood of y for p r + 1,.. , moi- 1 and one
zero at Zip. These are at least moi+ 1 distinct zeros on [x., b] and, therefore, we get a
contradiction again.

Now we are able to construct a continuous selection for G, in case G is in V,. For
this we need local AE’s. These are local best approximations of the following form’
If f is in C[a, b] and G is in 7/V, and if we approximate f by ( Gl[c,d] (dim t m)
for any subinterval [c, d] of [a, b], then go in G is said to be a local AE for f, if
Ilf-golltc.d<-llf-gllt.da for all g in G and if there are m + 1 points c---yo< Yl <’’" <
y.--_< d such that

e(-1)i(f -go)(yi)=llf -goll[,a] fori=O,...,m,e=:l.

In general go is not an AE for f from G and, therefore, go is not in Pc(f) in general.
The construction of a continuous selection for any G in Fn is based on the

construction of a continuous selection for splines established by Niirnberger and
Sommer [10]. But while in that paper the authors have been able to use well-known
results from spline theory, we now use some of those results about the elementsof Fn
which we have shown in 2.

LEMMA 3.7. Let G be in . Then there exists a continuous selection for G.
Proof. Letf C[a, b] and go Pc(f) arbitrarily. Then by Lemma 2.5 there exists an

interval [Xp, X.+l] such that g=go on [x.,x.+l] for all gPo(f). We construct a
continuous selection step by step"

(i) Local approximation. If dim Go,p/ >= 1, then we approximatef- go in [xp/ 1, b]
by Go,p/ 1. Since Go,p/ is weak Chebyshev by Lemma 2.1, Theorem 1.3 guarantees the
existence of a local AE gl E Po.,+l(f-go) for which

Ill- go- glllta,x./l]--Ill- go llta.x./l] Ill- goll,

Ill- go gllltx.+l,  ---Ill- go 0 Ill- goll.

Therefore go + gl e Pc(f). If Go,p+1 (0), then go o on [Xp+l, b] for all go, ff,o Pc(f),
because otherwise by Lemma 2.1 there exists a nonzero Go,p/1. In this case we
define the function gl by gl =-0.

(ii) Uniqueness oflocalAE’s on [Xp/l, xp/2]. We will now show for approximation
in [Xp+l, b] that any two AE’s gl, ,1 Pdo../l(f- go) are the same on [Xp+l, Xp+2], i.e.
gl gl on [xp/l, xp/2]. We as.sume to the contrary that gl gl on [xp/l, xp/2]. Since
gl gl on [a, xp/l] and G e 7, the function gl- gl has no zero interval in [xp/l, b].
Then by Lemma 3.6 we get IZ*(gl-.x)l<=mo.,+x / 1 on [x+x. b] and, since G
[Z(gl-gl)l <= rap,p/1 on [xp/l, b]. But because of Lemma 3.5 this is not possible and,
therefore, we get that gl gl on [xp/l,

(iii) We show: If ff,osPo(f), ,ogo, and ff, eP8o.,,/l(f-ff,o) is a local AE for
approximation in [xp/l, b], then go+ gl = o+ ffl on [xp, xp+]. Since go o on [xp,
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the function go-o e Go,o+1. Then by Lemma 2.1 the function 0, defined by

go- go on [Xp+l, b],
go

0 on [a, Xo+l]
is an element of Go,o+1. The functions f- go- gl and[- fro- 1 [- go-(-go +o+ 1)
have mo,o+l+ 1 local alternating extreme points on [xo+l, b]. Since o Go,o+1, the
function gl 1 go Go,u+1 and this function is a local AE for [- go by approximation
in [Xo+l, b]. Since according to (ii) all of these local AE’s coincide on [x+l, xo+2], we
must have gl=l-go+o on [xo+l, xo+2]. Because g1=1-=0 on [xo, xo+l] we get
finally

go %- gl-- gO %- 1 on [xo, Xo+z].
(iv) This method will be continued in [xo+2, b in the following way: If

dim Go,p+2 => 1, then we approximate f-go-gl in [xo-2, b] by Go,+2 and by Theorem
1.3 we get a local AE gz Pe,o.,/(f-go-gl), As in (ii) we see that all of these AE’s
coincide on [xp/2, xo/3] and as in (iii) we see that go + gl + g2 0+1 +2 on [xo, xp+3]
for any choice of go, 0, go+g1, 0+1. We also see that go+gl+g26PG(f). If
Go.p+2 (0), then we define g2 by g2 0.

(v) We continue this method up to the last interval [xs-1, b] and get a function
go + gl +" + gs-l-p PG(f) such that 0 +1 +" + s-l-o on [xo, b] for any

choice of go, 0, go + gl, 0 + 1," , go +" + gs-2-o, 0 +" + -2-o.
(vi) Using the same kind of arguments as in (i) to (v) for the interval [a, xo] we get a

function g g_o + g-+l +" + g-1 + go P(f) where for each {1, 2, , p},in case
dim Go+l-i. >= 1, g-i is a local AE in Pe,p+l_,.(f-go-g-1 g-g+1) by approxima-
tion in [a, xp+l-i] and, in case (+1_i, =(0), g_ is defined by g_---0. As before,
g g-o + -o+1+" + -1+o on [a, xo+l] for any choice of go, o, g-l+ go, -1 +
o," g-u+1 +" + go, -+1%-" %- 0.

Now we define: s(f) g-o + g-o/1 +" + g-1 + go + gl +" + g-l-p which is an
element of P(f).

The continuity of this selection follows exactly in the same way as in the case of the
spline functions established in 10]. Therefore, we will omit the proof of the continuity
of this selection.

Thus by applying of Lemma 3.3, Lemma 3.4 and Lemma 3.7, Theorem 3.1 is
completely proved and so we have given a complete characterization of the existence of
continuous selections for

4. Examples. In this section we will define some important subclasses of , and
will apply the results of 3 to those classes.

At first we will show that the spline spaces and the generalized spline spaces in ,
have not the same behavior in general, even if we consider generalized spline spaces in,. In order to show this we first define the spline spaces" Let m, k with m + k + 1
n. Let a Xo < x <" < Xk/ b be a partition of [a, b ]. Then the space S,,, of spline
functions of degree m with the k fixed knots Xl, x2, , Xk is spanned by the functions
1 x," x" (x xl)+,m (X X2) (X Xk). In [15] we have shown that S.,k .
From results of Curry and Schoenberg [3] it follows that $,,, o//., if and only if
k <= m + 1. Therefore, Lemma 2.3, Lemma 2.5 and Theorem 2.6 are valid for all spline
spaces $,, with k -< m + 1. But from results of Karlin [5, p. 503], Rice [11, p. 152] and
Schumaker [12] it follows that the statements of Lemma 2.3, Lemma 2.5 and Theorem
2.6 are also valid for k > m + 1 and, therefore, for any spline space $,,.. But this is not
true for all elements of , as we will show by the following example. Therefore, there
are elements of , having not the same behavior as spline spaces.
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Example. We define four functions in C[-2, 2] by go(x) x,

gl(x) (x 1)/, g2(x) (-1 -x)/,

x [-2, -1],

g3(x) 1--X 2, X e[--1, 1],

0, X [1, 2],

where

x-t ifx->_t,
(x t)+

0 if x<t.

Then G (go, gl, g2, g3)c C[-2, 2] is weak Chebyshev with dimension 4 and can be
decomposed in Chebyshev spaces by the knots Xl =-1, x2 =0, x3 1. Hence G01
(gx, g3), Go2 (g), Go3 (gl), G2 (g, g2), G3 (gl, g2), G4 (g2), G23 (gl, g2),
24 (g2), G34 (g2, g3). Therefore, G ,. Since g3 has two separated zero intervals,
we get G n. Since nol 2, no2 3, no3 3, hiE- 2, n13 2, hi4 3, ,n23 2, n24 3,
n34 2, the points yl -2, y2 -1, y3 1, Y4 2 satisfy the condition

y4-n,, < xi < Yno,+l for 1, 2, 3.

Then Lemma 2.3 is not fulfilled, because g3(yi) 0 for 1, 2, 3, 4 and g3 0.
We now define a function f in C[-2, 2] by

-3 2x, x [-2, 1],

f(x) 1 2x 2, x e [- 1, 1],

-3 +2x, x [1, 2].

Then f has exactly five alternating extreme points -2, -1, 0, 1, 2 and, therefore, 0 is in
Pc(f). Then it is easy to verify that also g + g2 + g3 is in Pc(f). But there is no knot
interval [xi, xj] on which f-(gl + g2 + g3) has at least nij + 1 alternating extreme points.
Thus Lemma 2.5 is not satisfied. But because of 0, gl + g2 + g3 in Pc(f) Theorem 2.6 is
also not satisfied, since gl + g2 + g3 has no zero interval in [-2, 2].

Remark. As shown before all spline spaces S,,k satisfying k <-m + 1 are elements
of ,. For this special class of spline spaces there follow from Lemma 2.3, Lemma 2.5
and Theorem 2.6 results of Karlin [5], Rice [11] and Schumaker [12] established for all
spline spaces.

Now we will apply Theorems3.1 to the spaces S,,.k. We have shown before that S,k
(m + k + 1 n) is an element of n if and only if k =< m + 1. Thus from Theorem 3.1 we
get immediately a characterization of those spline spaces which admit a continuous
selection.

TI-IEOREM 4.1. Let Sm,k be a spline space. Then there exists a continuous selection for
Sm,k in and only if k <- m + 1.

In this way we have obtained a result established by Niirnberger and Sommer [10].
Since the statements of 2 are also valid for spline spaces having knots with

multiplicity less than or equal to m, Theorem 4.1 is also true in this case.
Finally we will derive from Theorem 3.1 a characterization of the existence of

continuous selections for another very important subclass of ,, that is for the
continuously composed Chebyshev spaces (CC spaces). For defining this class let
a=xo<x<...<xs=b be a partition of [a,b] and for i=l,...,s let G be
Chebyshev spaces with dimension ni, ni-> 1, on [x_, xg]. Bartelt [1] has proved that
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each CC space G, defined by

G {g C[a, b] Igltx,_., Gi, 1,..., s}

is weak Chebyshev with dimension i=1 ni-(s- 1). Therefore, if Y.i=l ni-(s- 1) n,
G is an element of W,, and, since each x [a, b is a nonvanishing zero, G is an element
of r,, too.

It should be observed that the class of the CC spaces is a small subclass of o//.,, since
by definition the elements of those spaces satisfy at the knots no stronger condition than
continuity in general. But for many elements of W, stronger conditions are valid at the
knots, e.g. any function of the spline space S,._ with the knots x, x2,.-’’, x_ is
(m- 1)-times continuously differentiable. We will make this clearer by the following
example.

Example. Let a x0 < x <-.. < Xs b be a partition of [a, hi. Then the spline
space S,.-I with the knots xl, , x_ is spanned by the functions 1, x, , x", (x
X1) (X--X2) (x-x_)" and, therefore, dim S,. m + 1 +s 1 m +s. As+ --1+ +

said before S,,.-1 W, if n m + s.
From the definition of S,,.-1 it follows immediately that

Sin,s-1 {g cm-l[a, b]l glt,_.x, 0z,., 1, , s}

where [,, is the space of all polynomials of degree <=m. Now we can see that S,.s-1 is no
CC space, because the CC space Go belonging to the given knots x 1, , xs- and to the
Chebyshev spaces Gi= I) for 1,. , s is defined by

Go {g CEa, b] glt,_., .,, i= 1,’.’, s}.

Hence dim Go ’.i=1 (m 4- 1)- (s- 1)=sin + 1 > n m +s =dim Sm,-a for m > 1. For
example, the function go, defined by

go(x) 10, xe[a,x_],
x-xs-, x [x_, b]

is for m > 1 an element of Go but not of S.,_.
In [15] we have proved thatany CC space G is an element of @.. Thus it is only to

examine in which case G is in ?/’n. We get:
LEMMA 4.2. Let G in l/’n be a CCspace. Then G is in 1/’ ifand only if nij <-- 2 for any

i,](1,.. .,s-1},i<].
Proof. Necessity" We assume that nii>=3 for some tup!e (i,]) with i,]

{1, , s 1}. Since Gii is also a CC space, we get nii= dim G
ii p=i+ no (] 1).

Since n _-> 1 for p + 1, ,/’, there is, therefore, either some p {i + 1, , ]} with
n _-> 3 or there are at least two integers r, {i + 1,..., ]} such that n nt 2 and
no =< 2 otherwise.

In the first case we can construct a function gong satisfying go--0 on
[a, xo_i]l.3[xt,, b] and go((Xp-i + xp)/2) 1. Since xi > a and x. < b, go has two se..parated
zero intervals in [a, hi. But this is a contradiction of the hypothesis that G W,.

In the second case we can choose two knots x, xt with x <- Xr < X,+ < Xt <= Xi such
that n+=n=2 and no=l for all p{r+2,...,t-1}. Then nt=dimG=
=+ no-(t r 1) 3 and n+l. n._ 2. Applying Lemma 2.3 to the weak

Chebyshev space G’ we can construct a function go
Ix,, b] and go 0 on Ix,, x,]. But this is a contradiction again.

Sufficiency" We assume that G is not in W. Therefore, there exists a function
go G having two separated zero intervals [Xh, Xi], [Xi, Xk ], Xi < Xi, such that go 0 on
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EXi, Xi+l] and on [x.-1, x.]. If Xi+l X], then go0 on xi, Xi+l]. Since go has at least the
two zeros xi and Xi+l on [x, xi+l], it follows from Definition 1.1 that ni+l 3. But this is a
contradiction of the hypothesis that n0 =< 2 for any i,/" e {1, , s 1}.

If X+x<X., then because of go(xi)=O, go(xj)=0 and go0 on [x,xi/] and
on [xj_, x] we get ni+ >- 2 and n _>- 2. Here we have to consider again that Gi+ and
G are Chebyshev. Then n0 dim G -1p=i+ n (] 1)

_
2 + Y’.p =+2 n + 2-

(j 1) -> 2 +/" 2 + 2 j 1) 3. But this is a contradiction again.
Thus it follows from Theorem 3.1"
THEOREM 4.3. Let G in 7g/’n be a CC space. Then there exists a continuous selection

for G if and only if nii <- 2 for any i, j {1,. , s 1}, < ].
Remark. The dimensions no1 n and ns-x.s ns of the Chebyshev space G or Gs,

respectively, are not considered in the above characterization. Therefore, the existence
or nonexistence of a continuous selection depends only on the "inner" dimensions n,
p =2,,.. ,s-1.

Thus, if we choose only one knot a x0<x <x2 b, then we always get a
continuous selection for any choice of the dimensions n and n2.

Acknowledgment. I thank the referees for many helpful comments about the
rewriting of this paper.
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ON THE BOUNDARY VALUE PROBLEM FOR SYSTEMS
OF ORDINARY DIFFERENTIAL EQUATIONS WITH A SINGULARITY

OF THE SECOND KIND*

FRANK R. DE HOOGf AND RICHARD WEISS$

Abstract. A Fredholm theory for linear boundary value problems t’y’= G(t)y + g(t), 0< t= 1, y
C[0, 1][q C1(0, 1], a->_ 1; B0y(0)+ Bly(1) 3’ is established, together with existence and regularity.results
for continuous solutions of nonlinear systems of ordinary differential equations t’y’= f(t, y). This theory is
applied to boundary value problems on infinite intervals and is illustrated by two examples. Finally, some
fundamental properties of the generalized linear eigenvalue problem ty’-(G(t)-AH(t))y =0, 0<t= 1,
y C[0, 1] CI(0, 1]; Boy(0)+ Bly(1)= 0, are derived.

1. Introduction. Boundary value problems for singular systems of ordinary
differential equations

(1.1)
tY’=f(t’ y)’ 0<t_-<l, yC[0,1]CI(0,1],

b(y(0), y(1)) 0

where ce => 1, y is an n vector and f, b are continuous nonlinear mappings on appropriate
domains, and linear eigenvalue problems

ty’- (A(t)+ AC(t))y O,

Boy(O)+By(1)=O

0<t<=l, y C[O, 1] C(O, 1],

where A, C C[0, 1] and B0, B1 are matrices, often occur in applied mathematics.
When a 1, (1.1), (1.2) are said to have a singularity of the first kind, while the
singularity is of the second kind when a > 1.

The case ce 1 is obtained, for instance, when partial differential equations are
reduced to ordinary differential equations in the presence of symmetry. A variety of
examples can be found in Rentrop 10], 11 ]. Certain analytic aspects of problems with
a singularity of the first kind and their numerical solution by difference schemes have
recently been studied in de Hoog and Weiss [3], [4], [5].

A singularity of the second kind arises when a differential equation on an infinite
interval is transformed to one on a finite interval. There is a large variety of sources of
differential equations on infinite intervals, ranging from exterior problems for elliptic
equations in separating coordinates to similarity solutions of the equations of boundary
layer theory, see Schlichting [13]. Eigenvalue problems (1.2) with a singularity of the
second kind are common in quantum physics.

The present paper provides a study of basic analytic properties of (1.1), (1.2) for
a > 1. We establish a Fredholm theory for the case when (1.1) is linear and provide
existence and smoothness results for nonlinear problems. This theory is applied to two
examples. Finally we investigate some fundamental properties of invariant subspaces
associated with isolated eigenvalues of (1.2).

The results developed here also provide the analytic background for the derivation
and analysis of approximate methods for the case a > 1, which is examined in de Hoog
and Weiss [6].

2. The scalar case. Here, we examine the equation

(2.1) ty’ Ay t-Og(t), 0<t=<l, ReA0,
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where a, p are real, a > 1 and g C[0, 1]. The study of such scalar equations is the first
step in the analysis of vector systems. The general solution of (2.1) is

(2.2)

where

y(t) Y(t)y(8) + Y(t) Y-l(s)s-g(s) ds

Y(t) exp [h (81-a tl-a)/(cg 1)]

and 0< 8 <= 1. For the analysis of continuous solutions of (2.1) it is convenient to
examine the operator p defined by

t-y(t) y-l(s)s-g(s)ds; 0<t-<_l, ReA<0,

(Nog)(t)= to_y(t) y_l(s)s_Og(s)ds; O<t__<l, Re1>O,

-g(0)/A t=0.

We shall now establish various properties of p. As the proofs of these results are very
similar for r Re A < 0 and cr > 0, they will be given only for the case cr < 0. However,
all arguments carry over to o-> 0 without difficulty.

The first result we require is
LEMMA 2.1. Let g C1[0, 1]. Then
(i) /f Re A < 0,

(og)(t) {(a p)t-(o+l-g)(t) + (,_g’)(t)- g(t)}/A

and
(ii) if Re A > 0,

(pg)(t) {(a p)t-(gdo+_g)(t) + (p_g’)(t)- [g(t)- (t/8)P-Y(t)g(8)]}/A.

Proof. If Re A < 0,

(log)(t) t;Y(t) [s-Y-(s)]s-g(s) ds.

Note that y-1 satisfies the adioint equation

d y_l(t)= _At_y_(t)
dt

and that
lim t-Y-l(t) 0.
t0+

Integration by parts therefore yields the result or Re <0. A similar argument
establishes the result when Re A > 0.

LEMMA 2.2. There exists a constant C independent of 8 such that

I}ogll -< CIIgll

where I1" I1 sup,(0,)I" I.
Proof. If o" Re A < 0,

I(g)(t)l <= - e-cnl-/(a-1) erS-/(a-1)S- dsllgll, 0 <= <= 8.
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Let

1
min {1, [r/2(a 0)]1/(-1)},

Then, it is not difficult to verify that

t-o ertl-/(2(u-1))-o erS-’/(2(-l)) <S -o s-"l(2(-))e

Combining these estimates, we obtain that
a-o s-/(2(-l))< Clta-o et-/(2(a-1))s e

where

0 < < <=s =t 61
s>61.

0<__s<t<l

C1--max {1, 8-o}

and hence

I(og)(t)l Cle -rt’-’/(2(a-1)) --rsl-](2(a-1))S-a dsllglle

-2Clllglldr, 0 <- <-- 6.

This establishes the result for Re A <0. A similar argument can be used when
ReA >0.

LEMMA 2.3. If g C[0, 1] then gdog C[0, 1]fq C(0, 1].
Proof. Clearly, Nog C(O, 1]f’l C(0, 1], and it only remains to show that

lim (og)(t) -g(O)/A ---=- (Nog)(O).
t.,0

For Re A < 0, Lemma 2.1 yields

-g(O)/A (9og(O))(t) + (p )t-(o+,-, 1)(t)g(O)/A.

Hence, from Lemma 2.2,

I(og)(t) (.g)(O)l I(o[g g(o)])(t) (19 a )g(O)t-’(,,+1-a 1)(t)/A

const. { sup [g(s)- g(O)i + t-l]g(O)[}.
s(O, t)

Since g is continuous and a 1 > 0 it follows that the term on the right hand side can be
made arbitrarily small. This establishes the result for Re A < 0 and a similar argument
can be used if ReA >0.

Further smoothness can be established when a is an integer. In particular, we have
LEMMA 2.4. Let a be an integer greater than one and g C’[0, 1]. Then, og

C’[0, 1If] C"+(0, 1] and

I(og)()(o)l const. E
k=O

Proof. Differentiation yields

(2.3) (og)’(t)=(p-a)(og)(t)/t+A(og)(t)/t +g(t)/t.
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If Re A < 0, two applications of Lemma 2.1 to (2.3) give

(pg)’(t) (p o )[(log)(t) (3p_+lg)(t)]/ + (3o_g’)(t)

(2.4) (p c)[(o -p)t-:(Y3o_+xg)(t)
+ t-a(jo_g’)(t)-(2a -p 1)t-(jo+:_zg)(t)

t’*-(o+l_2g’)(t)]/A + (lo_g’)(t).

The result for rn 1 now follows from Lemma 2.3. A simple inductive argument based
on (2.4) completes the proof for Re A < 0.

For Re A > 0, two applications of Lemma 2.1 to (2.3) yield

(2.5) (og)’(t)=(p-)[(c -p)t-(o_+lg)(t)+ t-(o_g’)(t)
-(2x p 1)t-2(o+2_zg)(t)

t-a(So+l_2g’)(t)]/A + (So_g’)(t)
p

+g((3)Y(t)() [(p-o)t-lA-l+t--+(o-p)() t-lA -1

and the result follows as previously.
We now return to (2.1) and examine continuous solutions.
LZMMA 2.5. I]" Re a < 0, c > 1 and p <- , then for every g C[0, 1] there is a

unique y C[0, 1] which satisfies (2.1).
Proof. From (2.2) every continuous solution of (2.1) satisfies

Y(t)Jo Y-l(s)s-g(s)ds + Y(t)[y(6)-Jo Y-a(s)s-g(s)ds]y(t)

Clearly,

lim Y(t) oe
t->O

and from Lemma 2.3, 3og C[O, 1]. It follows that y C[O, 1 iff

Y($)- J0 Y-l(s)s-g(s) ds 0,

and hence the unique y C[0, 1] is

y (t) -(og)(t).

LEMMA 2.6. If Re A > 0, c > 1 and p <- , then for every g C[0, 1] and scalar ’1,

there is a unique y C[0, 1] satisfying (2.1) and y(6)= rt.
Proof. As in Lemma 2.5 the solution has the form

y(t) Y(t)rt + t-(Nog)(t).

Since Y e C[0, 1] the result follows from Lemma 2.3. El
Combining the results of Lemmas 2.5 and 2.6 we obtain
THEOREM 2.1. Let a > 1, to <-- c and g C[0, 1 ]. Then every continuous solution of

(2.1) has the form
y(t) PY(t)y(6) + -(Nog)(t),
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where P 0 if Re A < 0 and P 1 when Re A > 0.
We now consider (2.1) when a 1. Define

g(+)g(ts) ds,

(2.6) (Y3og)(t) (x+g(s) ds,

(o
( +0-1)’

0<=t<=l, ReA <0;p<=l,

O<t-< 1, Re h >0; p 1,

/-’0.

THEORZM 2.2. Let a 1, p be as in (2.6) and g C[0, 1]. Then
(i) IIogll <= const. IIg]],

where the constant is independent of 6,
(ii) og C[0, 1 f’) C (0, 1 ],

(iii) for Re A < 0 and g Ca[0, 1] we have og Ca[0, 1] and

(3og)’= 3o_1g’

(iv) every solution o] (2.1) which is in C[0, 110 C1(0, 1] has the form

y(t)= P() y(6)+tl-(3og)(t)

where P 0 if Re A < 0 and P 1 if Re A > 0.
Proof. (i) This is clear for Re A < 0, while for Re A > 0 it follows immediately from

Lemma 3.4 in de Hoog and Weiss [3].
(ii) Again, the result is obvious for Re A < 0; for Re A > 0 see Lemma 3.4, de

Hoog and Weiss [3].
(iii) The proof is obvious.
(iv) See pp. 778-779 in de Hoog and Weiss [3].
Remark. When a > 1, p <_- a and a, p are integers, it follows from Lemma 2.4 that

the solution y of Theorem 2.1 is in cm[0, 1] provided that g e C"[0, 1]. For a 1 this
is true when Re < 0, but does not hold for Re A > 0. In this case the smoothness
properties of y depend on the size of Re A as well as g; as can be seen from Theorem 2.2,
(iv).

3. Linear systems. Initially we examine

(3.1) ty’-My=t-g(t), 0<t<=l,

where M is an n x n matrix whose eigenvalues Ai satisfy Re A. 0, ] 1, , n. The
general solution is

(3.2) y(t) Y(t)y(6) + Y(t) Y-l(s)s-g(s) ds

where

exp [M(8-- t-)/(a 1)],
Y(t)

It/8]M exp [log (t/8)M],

is the fundamental solution satisfying

al,
a=l

tY’-MY=O, 0<t-<l, Y(6)=L
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and 0 < 6 -<_ 1. Let

O / (hi-M)- dA

(3.3)

P=/ (AI-M)- dA

where F_ and F+ are closed contours in the left- and right-hand side of the complex
plane respectively such that each eigenvalue of M is enclosed by either F_ or F+.
Clearly, O and P are proections onto the invariant subspaces ofM associated with the
eigenvalues having negative and positive real part respectively.

Via the Jordan decomposition of M it is straightforward to obtain an explicit
representation of Y(t). This representation immediately yields
LA 3.1. Let >- 1. Then for an arbitrary vector r, Yr C[0, 1] iff Or 0.
For > 1 we define- Y(t) OY-(s)s-g(s) ds

(Nog)(t)= +to_y(t) py_(s)s_Og(s)ds, 0<t<__l,

-M-lg(0), t=0.

The above operator is the analogue of p defined in 2. This becomes apparent on
noting that (for a > 1)

1 fr A($1--t--tl--t)/(o--l)(hI M)-1 dh,Y(t)oy-X(s)= e

1 Ir ---/-(I M)- dX,Y(t)Pr-l(s) ti e

which yields
1 --/("-) e-/(-)s-(AI M)-g(s) dsdA(3og)(t) =- t- e

(3.4)
1 --"/(- e’-’/(-s-(,I M)-g(s) dsdA+ - e

Since F_ and F/ are contours in the left- and right-hand sides of the complex plane
respectively, the results of 2 immediately yield

LEMMA 3.2. Let a > 1 and g C[0, 1]. Then
(i) IIogll --< const. Ilgll

where the constant is independent of 6
(ii) og C[-0, 1]f’l C1(0, 1].
Regarding continuous solutions of (3.1) we find
LEMMA 3.3. Let a > 1, p <-_ a and g C[0, 1]. Then every y C[0, 1] f’) C1 (0, 1]

which satisfies (3.1), has the form
(3.5) y(t) Y(t)Py(6)+ t"-(Oog)(t).

Proof. Equation (3.2) may be rewritten as

y(t)= Y(t)Py(6)+ t-(3og)(t)+ Y(t)Q[y(6)- | oy-l(s)s-g(s ds].
ao
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From (3.3), QPy(6) 0 and, from Lemma 3.2, og C[0, 1]. Lemma 3.1 now yields
the result, f-I

For the case a 1, Theorem 2.2 yields
LEMMA 3.4. Let a 1, g C[0, 1], p <= 1 when P O, p 1 when P O, and

o
Os-(M+X)g(ts) ds

(g)(t) + Ps-(+xg(s) ds, 0 < <- 1,

.-(M + (p 1)I)-Ig(O), O.

Then the results ofLemmas 3.2 and 3.3 are valid.
Finally we consider the case when in (3.1) a 0, p 0 and M 0. On defining

(0g)(t) g(s)ds

we immediately obtain
LEMMA 3.5. Let p O, M 0 and g C[0, 1], Then
(i) IIogll --< llgll;

(ii) every y C[0, 1If-) C1(0, 1] satisfying (3.1) has the form
y(t)= y (tS) + (og)(t).

We now examine the system

(3.6) T(t)y’-My(t)=g(t), 0<t-<l,

where y, g are n-vectors, g C[0, 1], and

(i) M= M22

L o o
(ii) T(t)= diag (t’*lI, t’*212, t’*’I,), where the Ik are unit matrices;
(iii) either ak >- l, k l, r or a >- l, k l, r- l and ar O;
(iv) eachM is a square matrix of the same size as 1 which is nonsingular when

ak 0 and has no eigenvalues that are purely imaginary. When ar O, Mr O.
In the sequel we shall say that

Condition 3.1 holds if all a are integers, andM has no eigenvalues with positive real
part whenever a 1.

Let

M D + U, D diag (MI, M., , Mrs),

and

Y(t) diag (Yx(t),..., Y(t)),

P diag (PI,. , Pr),

Q =diag (O,. ., Or)

R 1-P- O {diag (0,. ., 0, L), ar 0,
0 aO,
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where

I’exp [(- t-)M/( 1)], c 1,
Yk(t) t exp [log (t/6)Mkk ak 1,

and Pk, Qk are defined by (3.3) with M replaced by Mkk if ak 7 0 and Pk Qk 0 if
k O. In addition, define

(Ng)(t) Y(t) OY-(s)r-(s)g(s) ds

+ Y(t) PY-(s)T-l(s)g(s) ds + R g(s) ds.

From Lemmas 3.2, 3.4 and 3.5 we obtain
LEMMA 3.6. Let g C[0, 1]. Then

(i) IIgll const. Ilgll, IIRgll llegll
where the constant is independent of ,

(ii) Ng C[0, 1] Ca(0, 1];
(iii) ((I-R)Ng)(O)=(N(1-R)g)(O)=-(D +R)-(I-R)g(O).
With the aid of Lemmas 3.3, 3.4 and 3.5, it is easy to verify that any continuous

solution of (3.6) must satisfy

y(t)= Y(t)[Py()+Ry()]+(N[Uy + g])(t)

Y(t)(P + R)n + (N[Uy + g])(t)

where 0 (P + R)y(8). Now consider the iteration

y+l(t) Y(t)(P+R)+(N[Uy+g])(t), =0, 1,.. y0=0.

Since P, Q, R, Y(t) and T(t) are block diagonal and U is strictly upper triangular it
follows that

(NU)g
0, k n.

Hence

(3.7)

where

and

y(t) yk(t) (t)r/+

(t)= [(NU)kY(P+R)](t)
k=0

(3.8) = (Nu)kN.
k=0

Some basic properties of and (t) which are immediate consequences of Lemma
3.6 and the structure of Y(t), (t) and o are listed in

LEMMA 3.7. Let g C[0, 1]. Then
(i) IIgll -<-const. Ilgll, IIRgll -<-const. llRgll,

where the constants are independent of
(ii) g e C[0, 1 f’l C (0, 1 ],
(iii) (og)(0)= -(M+ R)-I(I-R)g(O)+ (M + R)-(NRg)(O),
(iv) C[0, 1]f’)C(0, 1] and rb(O)=(M+R)-IR.
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Furthermore, if Condition 3.1 holds, then dO C[0, 1], and if in addition ar # 0, then
O(t) and all its derivatives vanish at O.

The most general linear equation that we shall consider is

(3.9) T(t)y’-(M+A(t))y(t)=g(t), 0<t=<l, y6C[0, 1]CICX(0, 1],

where T, M are defined as previously, A, g 6 C[0, 1] and

(3.10) (I-R)A(O)=O.

It follows fr’cm (3.7) that every solution of (3.9) must satisfy

(3.11) y (t) cI)(t)r/+(Ygg)(t)+(YgAy)(t)

where rt =(P+R)y(6). Now for some rt X, consider the iteration

(3.12)y+x(t)=(t)[P+R],l +(Wg)(t)+(WAy)(t), ,, =0, 1, 2,... yo C[0, 1].

From Lemma 3.7, yv c[0, x], IIg[l <=const. Ilgll and IIAII <- const.
(11- R)AII + IIRAII). Hence, by (3.10), the iteration is contracting for 6 [0, 6] if 6 is
taken sufficiently small. This establishes the existence and uniqueness of a continuous
solution of (3.11) on [0, 6 for any rt when 6 is sufficiently small. A standard contraction
and translation argument on the rest of the interval now establishes the existence of a
unique solution there.

Hence, every solution of (3.9) satisfies

y(t) Z(t)l + (g)(t)(3.13)

where

and

c= (I-’- aA)-lo%a, Z (I- ,,A)-I,

1 (P +R )y(,5)

when 5 is sufficiently small. Note that Z is the unique solution of

(3.14)

T(t)Z’(t)-(M.+A(t))Z(t)=O; PZ(6)=P, RZ(8)=R, Z6C[O, 1](’1C1(0, 1]

and that 37 g is the unique particular solution satisfying

T(t)’(t)-(M+A(t))(t)=g(t); P)7(8) 0,

R)7() 0, )7 C[0, 1]VI C1(0, 1].

Let p rank [P + R], W be an n x p matrix consisting of linearly independent
columns of P + R, and define

(3.15) X(t)=Z(t)W.

Then, by (3.13), we have
THEOREM 3.1. Any solution ol (3.9) has the form

(3.16) y(t) X(t)fl + (t)

with a unique fl Xp.
We now consider (3.9) subject to the linear boundary conditions

(3.17) Boy(0) +Bxy(1) y.
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Our aim is to establish conditions on Bo and B1 which lead to a Fredholm alternative for
(3.9), (3.17). To do this, it is convenient to introduce the differential expression

/(y) Ty’- (M + A)y

and associate with it the operator defined by

,y l(y)

for y @ =(y C[O, 1][Ty’ e C[O, 1], Boy(O)+Bly(1)=O}. Then we have
THEOREM 3.2. If

(3.18) rank [Bo, Ba] k

then .L# is Fredholm with index p k. Furthermore, if LP-lexists, it is bounded.
Proof. From (3.16), y and/(y) C[0, 1] iff

(3.19). y(t) (g)(t) +X(t) (t) + X(t)fl

for someg C[0, 1] and/3. Hence, y iff (3.19) holds and

[BoX(0) + BaX(1)]/3 [Bo)7(0) + B1)7(1)].
Thus g 6 C[0, 1] is in the range of iff

(3.20) Bo(O)+Bl(1)range[BoX(O)+BxX(1)].

To examine this condition, we need only examine the k linearly independent rows
of [Bo, BI]. Hence we may assume that Bo and Bx have k rows.

Let rank [B0 (0)+ BX(1)] q and vt, 1, , k -q be a basis for the nullspace
of [BoX(0)+ BIX(1)]*. Then (3.20) is satisfied iff

(3.21) v[Bo(O)+Bl(1)]=O, l= 1,..., k-q.

We now show that the k-q linear functionals on C[0, 1] defined by (3.21) are
linearly independent. If this were not so, then there would exist a nonzero vector w in
the nullspace of [BoX(0)+ B1X(1)]*, i.e.

(3.22)

such that

(3.23)

By (3.16), (3.22) and (3.23),

w*[BOX(0)+ BIX(1)] 0

w*[B0)7(0) + B)7(1)]- 0.

w*[Boy(O) + Bly (1)] 0

whenever y satisfies (3.9) for some g. As the set of such y contains C1[0, 1], it follows
that

w*[B0, Bx] 0,

which contradicts (3.18).
Thus, the range of is the intersection of the nullspaces of k-q linearly

independent bounded linear functionals on C[0, 1]. So the range is closed and its
codimension is k -q. Clearly the nullspace of is {X(t)I[BoX(O) + BxX(1)]fl 0} and
so has dimension p- q.

To establish that is Fredholm with index p k it remains to show that is closed.
Let y be a sequence in such that y y and v y v as v o. Since the range of
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y(t) Z(t)[Py(6) + Ry (6)] + (fgv)(t)

Hence is closed.
As is closed, with the norm

Ily IIe Ily

is a Banach space. Hence if -1 exists it is bounded by the bounded inverse
theorem.

Observing (3.10) and noting that B and R commute, we obtain from (3.11) and
Lemma 3.7, (iii), (iv),

(1 R)(M + R)y(0) -(I R)g(0).

Since (I R)(M +R) M, this yields

(M + R)y(0) (R -1)g(O)+ Ry (0),
or

(3.24) y(O)=(M+R)-I((R-I)g(O)+Ry(O)).
Hence the boundary conditions (3.17) are equivalent to

(3.25) BoRy(O) + Bly(1)

where

/= y+Bo(M+R)-I(I-R)g(O).
It turns out that (3.25) is advantageous for some numerical schemes applied to the
boundary value problem in question.

In applications we are primarily interested in the case when is Fredholm with
index zero. We therefore assume that Bo, B1 are p n matrices, 3’ is a p vector and that
(3.18) holds with k p. On substitution of-(3.16) into (3.17) we find

THEOREM 3.3. The problem (3.9), (3.17) has a unique solution for all g C[0, 1]
and 3’ iff the p p matrix [BoX(O)+BIX(1)] is nonsingular.

Remarks. The restriction that the solution be continuous at 0 is unsatisfactory
when constructing numerical schemes. What is desired in this case is an algebraic
restriction on the solution. It turns out that the relation obtained from (3.24),

(3.26) Qy(0) Q(M+ R)-I((R I)g(O) + Ry (0))

is satisfactory. Equations (3.25) and (3.26) are the n linearly independent boundary
conditions which must be employed when (3.9), (3.17) is discretized by a difference
scheme. This and related questions are discussed in de Hoog and Weiss [6].

Clearly, certain extensions to the above theory are possible. For example, the
structure ofM can be generalized to M D + U where D is the block diagonal matrix
defined previously and U satisfies S US2U.. SnU 0 for any set of block diagonal
matrices $1, , Sn. Then Lemma 3.7 and all subsequent results can be established in a
straightforward manner. Also M can be replaced by M +E when ]JEll is small. In this
case, the iteration corresponding to (3.12) will still converge and all subsequent theory
is easily extended. Such an analysis can be used to examine the perturbation in the
solution due to perturbations in the boundary conditions and in the coefficients of the
differential equations.

Another possible extension is to allow that the coefficients of RA be in C(0, 1] fq

LI(0, 1) rather than in C[0, 1]. The iteration (3.12) still converges when is sufficiently



52 FRANK R. DE HOOG AND RICHARD WEISS

small and hence Theorems 3.1, 3.2 and 3.3 remain valid. It is for this reason that we
have not treated explicitly the case where some of the ak are in (0, 1).

4. Nonlinear problems. Here we examine systems of the form

(4.1) T(t)y’-f(t, y)= 0, y C[0, 8]f’) C1(0, 8],

where T is as in (3.6), and f is a nonlinear mapping from a subset of [0, 1] Xn to Xn.
Under appropriate hypotheses on f we shall derive an existence result for (4.1) with 8
sufficiently small,

We now list these hypotheses.
(i) There is vector sr Xn, with (0, ’) in the domain of f, such that

(I R )f(O, sr) O.

With " and some po > 0 we associate the set

&o {z xl [z 1- 0}.

(ii) f(t, z) and Of(t, z)/Oz are continuous on [0, 1Ix Soo,
(iii) The matrix

M (I R)M (I R)zf(0, )

is block upper triangular as in (3.6).
THEOREM 4.1. Assume that the above conditions hold. Then there are positive

constants "/, 6 and p <= po such that (4.1) subject to the conditions

(4.2)

has a unique solution on

provided that

(P + R)y()= (P + R)n + (P + R)(

I(P +R )nI <= /.

Proof. By hypothesis (ii) there are constants F and L and nondecreasing scalar
functions a, b C[0, 1 ], c, d C[0, o] with a (0) b (0) c (0) d(0) 0, such that for
all [0, 1 ] and z Soo,
(4.3a) If(t, z)[ =<F,

(4.3b) z(t, z) <-L,

(4.3c) I(I-R)(f(t, z)-M(z-f))l<-a(t)+c(Iz-l)lz-l,

We now rewrite (4.1) as

T(t)(y-()’-M(y-()-(1-R)(f(t, y)-M(y-())-Rf(t, y)=0.

With the new dependent variable x y-sr, the problem (4.1), (4.2) becomes

T(t)x’-Mx-(I-R)(f(t, (+x)-Mx)-Rf(t, sr +x) 0,

(e+R)x()=(e+R)n.
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By (3.7), this can be written as

(4.4)

where

(4.5)

x =,(x),

(qt(z))(t)

(t)(P + R)rl + ((I R)(f( , + z)- Mz))(t) + (gfRf(., + z))(t).

We now show that is a contraction on

To, -{x C[0, 6][ Ilxll <--p}

for sufficiently small 8, o and I(P + R)nl. First, note that although q(t) andH depend on
8, we have the estimates

(4.6) I1"11 <- 0, IIzll - h(llRzll /11(1 "e)zll)
where the constants o and h are independent of 6. The first estimate follows from the
definition of and Lemma 3.6(i), while the second estimate is just Lemma 3.7(i). When
z To. it follows from (4.5), (4.6) and (4.3a, c) that

[l(z)ll-<- 0[(e +R)nl + h(6F + a(6) + c(p)p).

Hence if p, 6 and y are taken so small that

(4.7) hc(p) <-1/2, h(6F + a(8)) <-_p/3, ,q <--0/3,

then maps To, into itself. The mean value theorem for operators yields

I01 (0Z M)at/’(Z1) xI)’(Z2) (I-R) (" ,Zz+S(Zl-Z2))- dS(Zl-Z2)

+ YgR(f(’, Zx)-f(", zz)), z, z:e To,,

and using (4.5), (4.3b, d),

So, if in addition to (4.7), p and 6 are such that

(4,8) h(b(6) + d(p) + 6L) < 1,

then is a contraction on To.. [3

Let W be the n p matrix introduced in 3, whose columns span range (P + R).
Then for each r/e X, there is a unique vector/3 X such that (R + P)rt W/3. Hence
Theorem 4.1 ensures the existence of a p parameter family of solutions to (4.1),
parameterized by/3, with I/3[ sufficiently small, and p additional conditions are needed
to extract a particular solution out of the family.

Theorem 4.1 extends a result of Russell [12] who considers the case where the
matrix M consists of one block and has only eigenvalues with negative real part.

5. Smoothness results, Here we examine the smoothness of solutions of (4.1). Use
will be made of the following lemma.

LZMMA 5.1. Let Condition 3.1 be satisfied and g C"[0, 1]. Then
(i) $(gC’[O, 1], and there are linear operators t" C[0, 6]-->C[0, 6], k=
0,. , l; 1, 2,. , with

I111 =<c/
where the constant C is independent of 3, and matrix-valued [unctions d
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C[0, 6], k =0,.’’, l- 1, with d/k(0) 0, such that

m--1
,,k (k k(og)(’)(t) Y (,,g))(t)+ d,,(t)g(k)(6),

k =0 k =0
O<=t<-6;

(ii) when R O, there are matrices E such that ]’or h C[0, 6],

(h)(O)=Eh(O).

Proof. (i) For the scalar case, the simplest cases of all, the result for a # 0 follows
immediately from Eqns. (2.4), (2.5) in Lemma 2.4 and Lemma 2.6(iii), respectively,
using induction in I. For a 0, the result is obvious.

WhenM consists of just one block, the result follows at once from (3.4) for the case
a > 1, from the analogous representation of o for c 1, and the result is obvious for
a 0. This immediately yields the result for the case when M is block diagonal, i.e.

The general result now follows from the representation (3.8).
(ii) when ar O, (i.e. R 0), and Otf/Ot(0, ) O, 0,. , rn, then y(/)(0) 0,

the general situation in .the way outlined in (i). I-!
The main result of this section is
THEOREM 5.1. Assume

(i) f satisfies the hypotheses of 4;
(ii) Condition 3.1 is satisfied;
(iii) f C" ([0, 1] x Soo).

Then
(i) y C’[0, a]f3 C"+1(0, 6];
(ii) when ar O, (i.e. R 0), and Offat(O, () O, 0,. , m, then y)(0) 0,

l=O,...,m.
Proof. (i) We first assume that R 0, and start with (4.4) which we write as

where

x(t) O(t)Px(6) + (,gO( x))(t)

O(t, z)=f(t, + z)-Mz.

Note that by Lemma 3.7(iii), (iv)

(5.1) x(O)----M-IO(O,x(O)).

Since (.g)(0)=-M-lg(0), it follows that

[M-l<_h,

where h is defined in (4.6). So (4.3d) and (4.8) applied to (5.1) yield

(5.2) x(O) O.

The argument in the proof of Theorem 4.1 yields the (uniform) convergence of the
sequence

x0(t) 0,
(5.3)

Xi+l(t)=dP(t)Px(6)+(IO(. ,xi))(t), i=0, 1,. ,
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to x(t) on [0, ;], for t sufficiently small. By Lemma 5.1(i), xi C’[0, 8], and

x1+’1 (t)= ( (0(., (+xi)-M)xl’)(t)
(5.4) + I(’, (+x) (t)+((/(., (+x)-Mx))(t)

+ (l(t)Px()+ d(t)((& C + xi())-Mx()).
Now take so small that

Then, as lx- xll 0 for , the iteration (5.4) converges uniformly and x C[0, ]
(1with lim x (t) x((t).

(l)When m > 1, successive differentiation of (5.3) yields iteration schemes for x
2,. , m, of the form

where rl depends in a continuous fashion on Xi, X1), XI/-1). For sufficiently small 8
the same argument as above yields convergence of these iterations; hence x C"[0, 8]
and the proof for the case when R 0 is complete.

If R 0, then it is clear that Ry cX[0, 8]. After replacing Ry in f(t, y) by Ry(t),
we may consider (4.1) as a differential system for the unknown (I R)y only, and from
the above it follows that (I-R)y C1[0, 8]. If m 1 the result is proved. If m > 1, the
fact that y CX[0, 8] implies Ry C2[0, 8], which in turn yields (I-R)y C2[0, 8], and
so on.

(ii) Setting 0 in (5.4) and using (5.2) and Lemmas 5.1, 3.7(iv), yields the result
for m 1. When m > 1, note that by Lemmas 5.1, 3.7(iv), ri(0) 0 as when xi(0),

(1) (/-1)x (0)," , x (0) tend to zero and (okf/otk)(o, ) O, k 1," , I. The result now
follows by induction. !-I

6. Problems on infinite intervals. Since problems on infinite intervals are a rich
source of singular equations, we shall now show how they fit into the framework
developed and give two examples.

Consider the linear first order system

(6.1) x’(r) S(r)(B(r)x(z)+ h(r)), 1 <= r <
where

(i) S(r) diag (I17t31, I27"B2, Lr)
where the Ik are unit matrices of dimension => O,/3k -> 1, 1 =< k <- r 1, fir < 1,

(ii) B e C[ 1, ),

lira B (r) N

Nll N12 Nlrq
0 N22

Nr0 0 0
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where each Nkk is a square matrix of the same size as Ik and is nonsingular if k-1,

(iii) h C[1, oe) and lim,_,oo h(r) exists.

We are interested in "regular" solutions of (6.1), i.e. solutions which tend to a finite
limit as

The transformation r 1/t applied to (6.1) yields

(6.2) T(t)y’- (M +A(t))y g(t), 0 < <= 1,

where y(t)= x(1/t),

and

T(t) =diag (Ilt1+2, ,/r_lt’-1+2, L),

Mtk -Ntk, (l, k) # (r, r), Mrr 0

with

A(t) -D(t)(B(1/t) +M), g(t) -D(t)h(1/t)

D diag (I,..., L-l, Lt--2).

If fir<=--2 then AeC[0,1], and if -2</r<-l, then (I-R)AeC[0,1], RA
C[0, 1 f"l L1(0, 1). So all results of 3 and 5 are valid for (6,2) and give corresponding
results for (6.1). (Note the remark at the end of 3.)

As an example we examine a problem which was considered recently by Franklin
and Scott [8]. The fourth order equation

(6.3) z(4)(-)+a(-)z(r)=O, l_--<r<oo,

describes the horizontal deflection of a pile vertically imbedded in soil (r-1 is the
distance from the surface). Since soils usually get stiffer with depth we assume that the
foundation coefficient a(r) has the form

a(-) rd(r), cr >=0,

with

dC[1,), O<d(r), r[O,c); limd(r)=p>O.

We use the transformation suggested in Coddington and Levinson [2, p. 169]

x(r) r-(-)z(l-1)(r), K r/4;

to rewrite (6.3) as a first order system

x’(r)=rB(r)x(r)
where

/=1,2,3,4,

B(r)

0 1 0 0
0 --tcr

-(+1) 1 0
0 0 -2r-(+) 1

-d(r) 0 0 -3x"-(+1)
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This is a special case of (6.1) with r 1, 1 0"/4 and

0 1 0 0

0 0 1 0

0 0 0 1

-p 0 0 0

The matrix M=-N of the transformed system (6.2) has the eigenvalues h
1/4 e(21-1)i/4 1 2 3 4, with

Re hi =Re h4>0, Re h2= Re h3<0.

So R 0, rank P p 2, and by Theorem 3.1, (6.3) has exactly two linearly indepen-
dent regular solutions. By Theorem 3.2, two linearly independent conditions must be
imposed at 7. 1 to have a Fredholm alternative. We may prescribe any of the pairs
(y(1), y’(1)), (y(1), y"(1)), (y’(1), y"(1)), (y’(1), y"’(1)), and (y"(1), y’"(1)). In each case it
is clear from the physical interpretation of the problem that homogeneous boundary
conditions can only lead to the trivial solution; and the Fredholm alternative then yields
the unique solvability in the case of nonzero boundary values.

In the nonlinear case, Theorem 4.1 can be used to examine regular solutions of first
order systems

(6.4) x’(7.) S(7.)f(7., x), 1 <= 7" <,
where f satisfies conditions analogous to (i)-(iii) in 4. The resulting existence theory
for (6.4) is an extension of work of Chang 1], who considers systems (6.4) with r 1 and
/1 0. An example is furnished by the Blasius problem

2z’" + zz" O, 1 _-< 7" < co, z(1) z’(1) O, z’() 1,

which describes the boundary layer on a fiat plate; see Schlichting 13]. This problem is,
of course, thoroughly understood, but its structure and the transformation to the form
(6.4) are typical for a variety of other flow problems. We write

where c is a constant, and introduce the new dependent variables

X3 T3U m, X4 C._.7"2X1 TU, X2 U

Then x satisfies the first order system

(6.5)

X X1/ 7" "[" X2/ 7",

X 2X2/7" + X3/7",

X --7"X3/2 -b (3/7"- x4/2- Xl/27")x3,

x’4 =0.

This is a system of the type (6.4) with r=4, Nx =Nx2=(1), N2=(2), N:z3=(1),
N33 (-1/2), Nlk (0) otherwise, fll f12 -1, f13 1, 4 --2. Theorem 4.1 guaran-
tees the existence of a two parameter family of regular solutions of (6.5) on an interval
[?, ) with ? sufficiently large. Each solution is uniquely defined by prescribing x3(?)
and x4().
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7. The eigenvalue problem. The eigenvalue problem we consider is

Ty’-(M+A)y=A(N+C)y, y C[0, 1] f’)C1(0, 1]
(7.1)

Boy (0) + Bly (1) 0

where T, M, A, Bo and B1 are as in 3,

N11 N12 NlrtN= 0 N22 N2,
0 0 Nrr

is a constant matrix structured in the same way as M, and

(Cy)(t) C(t)y(t), C e C[0, 1],

with (I R)C(0) 0.
Employing the notation of 3, we write (7.1) as

.xy {.- h (N + C)}.y 0, y e .
Define

def () codimension of the range of x
and

nul (x) dimension of the nullspace of.
We assume that nul ()= 0, i.e. is invertible. Let f be the open connected set
containing zero such that h f implies that all eigenvalues of (I-R)(M + AN)+R
have nonzero real parts. From Theorem 3.2, x is Fredholm with index zero for h f.
Furthermore we have

LEMMA 7.1. For each ho fl there is an e > 0 such that nul (h)= const, for all
0<l* -*o<.

Pro@ Clearly,

& &o+ (Xo-)(N+ C).

As N + C is bounded, it is also Xo bounded, and the result follows from Kato [9, Thm.
5.31, p. 241]. fi

Define the spectrum

A {A [nul ()> 0}.

Since nul ()= 0 Lemma 7.1 immediately yields
COROLLARY 7.1. Every compact subset of contains at most a finite number of

eigenvalues.
We have established the first part of
THEOREM 7.1. (i) The spectrum A has no limitpoint in . Forh A, exists and

is bounded.
(ii) Let

o -- fF 1(N + C) dh

where o A, Fxo {A al Ix-xol and is so small that there is no 1 A with

lh h . Then Xo: C[0, 1] is a pro]ection with a finite dimensional range, which is
invariant under the mapping1(N + C), A.
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Proof. (i) Proceeding as in Dunford and Schwartz [7, pp. 600-601] we can derive
the identity

(7.2) /x 2(/zI --(N+ C)) =/xI +,-1 (N + C), 1/h h A.

Hence

(7.3) o / (/z o’-l(N + C))-’ d/z,

where/-o 1/Ao and F,o is defined analogously to Fxo. By (7.3) Xo is a projection, and
the invariance of range (o) under the mapping -1 (N + C) follows from (7.2) and
standard properties of spectral projections.

To see that range (Xo) is finite dimensional we proceed as follows. It is easily
verified that txoI--(N+C): is Fredholm with def (tzoI--l(N+C))<
and nul (tzoI--(N + C))< o. Hence it follows from Kato 19 Thms. 5.10 (p. 233),
5.28 (p. 239)] that Xo is finite dimensional. But range(ao)=oC[0, 1]=
ooC[0, 1]co whence range(o)=o- I-1

Let range (ao) span {1," , 0}. The . are generalized eigenfunctions of (7.1)
corresponding to the eigenvalue Ao.

THEOREM 7.2. Assume that A, C C"[0, 1] and that Condition 3.1 holds. Then
,,(l)i e C [0, 1]f3 C"+X(O, 1], ] 1, ,/3. Furthermore, if Ol 0 then .i (0) O,

0,...,m;]=l,...,.
Proof. As the range of Xo is invariant under -(N+ C),. Y. ai, (N + C), ] 1,. ., fl,

k=l

where the/ / matrix (Oljk) has the single eigenvalue Ao and can be assumed to be
in Jordan canonical form. Hence each is contained in a "chain" of elements
{r, &s, .t, } satisfying

(7..4) Xo&r 0, o-XoOs (N + C)0, ’Xot (N + C)O,

The result now follows on applying Theorem 5.1 to each equation in (7.4). !1
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VALUE SET AT xfl FOR AN ARBITRARY DISTRIBUTION WITH
APPLICATIONS TO LOCAL EXTREMA OF [eC(l) AND A MAXIMUM

PRINCIPLE FOR ORDINARY DIFFERENTIAL EQUATIONS*

R. E. WHITEr

Abstract. In this paper we define a value set at x f c R which is nonempty for any distribution
u ’(). We use this notion to generalize the classical theorems for monotonicity (I) c R) and local extrema
for distributions in C(I)) which do not necessarily have classical derivatives. Also we show how these results
are applicable in developing maximum principles for ordinary differential equations which have coefficients
or an inhomogeneous term that may be distributions which are represented by locally integrable functions.

1. Introduction. The main result of this paper is the definition of a value set at
x n for any distribution u @’(f). Roughly, a value set at x of a distribution reflects
the range of values for suitable approximating continuous functions. Our definitions
will give the following examples" One, the value set at x 0 for the Heavyside function,
H(x) 0 when x < 0 and 1 when x => 1, is equal to [0, 1 ]. Two, the value set at x 0 for
the delta functional 6(&)---b(0) where q @(), is equal to [0, oo]. Three, if f is
continuous at x, then the value set of f at x is {f(x)}. All distributions have a nonempty
value set at each x f. Also if u ’(f) has value at x as defined by S. Lojasiewicz [6]
(also see P. Antosik, J. Mikusinski and R. Sikorski [2]), then the value set is a singleton
with element being the value at x. In particular, the derivative of any distribution will
have a value set at x which we will call the derivative set at x of the original distribution.
Also any regular Mikusinski operator which properly contains

_
(f) as defined by T.

K. Boehme [3] will have a nonempty "value set at x".
The idea of assigning sets with derivatives that do not exist classically has been

touched upon in at least two areas. One, in R. T. Rockafellar [8] the subdifferential of
convex functions fromn into is defined as the set of 0(x) -= {x* "Ifor all z n such
that f(z)>-_[(x)+ x*. (z- x)}. In particular, if f is differentiable, then 0f(x)= {Vf(x)}.
The notion of a subdifferential of convex functions is used to study minmax problems.
The notion of value set is defined for all distributions and will be used to study minmax
problems for continuous problems. The value sets of the partial derivatives give more
information about the function being considered than just the subdifferential. Two, in
G. Stampacchia 10] the notion of a second derivative of a distribution being positive in
the sense of distributions is used. This is used to establish a weak maximum principle for
elliptic differential operators with badly behaved coefficients or inhomogeneous term.
For example, consider the well known steady state string problem with point force at x,
Lu =--u"= 6(x- Xo). Then u does not have a second derivative at Xo and it does not
make sense classically to say that Lu >=0. However, it is true for all O_<-b (a, b)---
C (a, b) that

b t"b

(Lu)(b) Jo
Because of our more refined tools (value sets) for studying minmax problems, we are
able to establish a strong maximum principle for elliptic operators with badly behaved
(but not quite as bad) coefficients or inhomogeneous term. Because of these generaliza-
tions and the applicability of this notion, it seems the definition of a value set is and will
be of significance.

* Received by the editors May 14, 1976 and in final revised form November 8, 1978.
f North Carolina State University, Department of Mathematics, Raleigh, North Carolina 27650.
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In 2 we review some of the pertinent facts concerning distributions. Section 3
contains the definition of value set of an arbitrary distribution as well as examples and
some of the basic properties. In 4 we demonstrate via value sets that the classical
theorems about monotonicity and local extrema may be generalized to continuous
functions. Finally in 5 we use the results of the previous sections to prove the strong
maximum principle for the ordinary differential equation (pu’)’+ gu’+ qu =f where
O<m<-_pLoo(a,b), gLoo(a,b), q=Q’, f=F’ with QLC(a,b) and FL2(a,b).
qu is defined via integration by parts as the derivative of Qu _x Qu’ LE(a, b). In
particular, q andf could be the delta functional or could be a function of the form x -x-s,
a >1/2 and II (-1, 1).

2. Distributions. This section contains some of the basic facts about distributions.
For more details the reader should consult L. Schwartz [9].

A testfunction, 4), on 1) c R" is any C(l)) function whose support, the closure in
of the set of x 1) such that b(x) 0, is a compact subset of 1). We will denote all such
test functions by (1)). A sequence of &k @(f) is said to converge in (f) to b if and
only if (i) support bk, b c K where K is a compact subset of 12 independent of k and
(ii) (01’l/0xl a’’ OX")tk (01l/0x1 OXn")qb converge uniformly on all compact
subsets of II for all a =(eel,..., a,), a 1,..., a, nonnegative integers and
a +"" + a,. A distribution, u, II is a linear map from (f)- (or C) which is
continuous; i.e.,when qbk - b in (f), then u (bk) u (b). The set of all distributions is
a linear space when (au +flv)(4))=-au(qb)+flv(4)) and is denoted by ’(f). Examples
include (i) u(b)--"a f(x)4)(x) dx where f L]C(I)) and often we shall write u =f, (ii)

bi(j) whereu(b)---b(0) (b) the so called delta "function", and (iii) u(b)---Y.j=0
O=N.

The Oll/OX OX" @ derivative of u ’(II), @u, is defined by
u((-)b) and is itself a distribution. Examples include (i) II=N, u(&)=H(&)=
o qb(x) dx and so u’(b)= u(-&’)=Io -b’(x) dx =b(0)=8(&) and (ii) lIcN" and
u(4)) Ia f(x)4)(x) dx where f cl(f) and so for I 1-1,
Ia f(x)(-;’)c(x) dx -f(x),C,(x)lo. + .. ’f(x),(x) dx . ;’f(x)c(x) dx.

In general the product of distributions is not a distribution. However, the following
subsets of ’(II) are closed in @(I)) under multiplication. First, consider b, Coo(l))
and u ’(1)) and then define u(b)= u(b). Since b@(f), the definition is
well-defined and in fact flu @’(12). Second, consider f Llc(I)) and g LC(I)) and

locdefine (fg)(b) =n f(x)g(x)4)(x) dx. Because fg L12c(l)) c LI (1)), this definition is
properly defined. Third, let H_(a, b) {q ’(a, b)lq Q’, Q LE(a, b)} and
Hi(a, b) {u LE(a, b)lu’ LE(a, b)}. Define qu as the derivative of Qu- Qu’. Since
u’ L(a, b), u C[a, b] and so Qu LE(a, b). Also u’, Q L2(a, b) implies Qu’
L(a, b) and so Qu’ C[a, b]. Thus Qu- Qu’ LE(a, b) and consequently qu
H_i(a,b).

Not all distributions have value at a point. S. Lojasiewicz’s [6] definition of value at
a point will exist only for certain distributions of finite order. In fact, the existence of this
value at x0 f is equivalent to lim_.0 u (F) existing where F C(S (x0)), S (x0)
{x fl IX-Xol<e}, Ia F(x)dx= 1, r(x)_->0, supl’F(x)l=o(e -’-1) where
the order of u m and u =@F, F C(f). In this case the value of u at xo is
lim,_.o u(F) and must be independent of the choice of F C’ (S(xo)). The definition
of symmetric value given by P. Antosik 1 is equivalent to lim_.o u (b) existing where
cb e C (S(xo)), 49 >-0, is even about xo and Ia b(x) dx 1. For example let b,(x)=
(n/c1) e -1/(-nEx21 where Cl-’lx_xol<_l/ne-I/(-nExE)dx and let u =H. In this case
lim,_.oo u(b,) =1/2 and in fact if & is any such b, then u(b)=01/" lb,(x)dx=1/2 and
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consequently the symmetric value of u at 0 is 1/2. Clearly the value of u at x 0 does not
exist in the sense of S. Lojasiewicz for the possible limits range from 0 to 1. It is
important to note that if b C (S (x0)), b => 0, , b(x) dx 1 and u is continuous at x0
on S(x), then lim_,0 u(b)= u(x). Finally one should note that the delta "functional"
does not have symmetric value and hence does not have value in the sense of
S. Lojasiewicz.

3. Value sets at x of distributions. Even though not all distributions have values at
a point, all distributions do have a nonempty value set at x, @(u, x). The value set of
u s ’(fl) at x fl reflects the values of suitable approximating functions of u. Since any
distribution has a value set, any derivative of a distribution has a value set or derivative
set of u at x.

The value or derivative sets will be subsets of the two point compactification of the
real line which is denoted by [-, ]. Let T,(x)={c C(S(x))]x s fl, qb >=0 and
,4(x) dx=l}, @(u,x)=-{u((-)4)lqbsT(x)} and D(u,x)c[-,] be the
closure in [-, c] of @(u, x).

DEFINITION. The a-th order derivative set at x fl n of u ’(fl) is (u, x)
f3 ,>0(u, x). The value setofu atx is @(u, x). u is said to have value atx if and only
if (u, x) is a singleton and in this case we denote the element by u(x) and call it the
value of u at x. In case lq we may define left and right value sets and values at x of
u s ’(fl) in the obvious manner.

Remark. The elements of T (x) are called mollifiers. It is well known that they may
be used in the approximation of distribution by smooth functions. This suggests that we
use the set of values of approximating smooth functions for the definition of value set.
This has two drawbacks. First, it is not clear which set of approximating smooth
functions to use. Second, it is more difficult to prove the theorems in this paper.

Before giving some examples, we shall prove the following theorem which gives
some of the routine properties of value sets.

THEOREM 1. Let v, u ’(fl).
1. @ (u, x) c and is closed interval contained in [-, ].
2. @(u, x)= (@u, x).
3. If u has value at x, then lim_,o u(b) u(x) where c T(x).
4. The notion ofvalue as defined in this paper is equivalent to the notion of value as

defined by $. Lojasiewicz. In particular, if u s LC(fl) and limy_.,, u(y) exists,
then the value exists.

5. If(u, x)c (-c, c) andleftandrightvaluesatx, u(x +) andu(x -) existthen
(u, x)=[u(x-), u(x+)] or D(u, x)=[u(x+), u(x-)].

6. @(u + v, x) @ (u, x) +@(v, x). If@u has value at x, then @ (u + v, x)
u(x)+(v,x).

7. I[ u, v L]c(f), u is continuous at x and @(v, x) (-, c), then (uv, x)
u(x)(v,x).

/-loc8. If u 1(1"), v .,.., (12) and 0 D(v, x), then 0 (uv, x).
9. If u, H(a, b) and u, u’, , ’ hae values atx, then (uv)’ has value atx equal

to u(x)v’(x) + u’(x)v(x).
10. With the obvious assumptions, rules 6, 7, 8 and 9 hold]:or right and left value set

and values when f .
Proofs. 1. @(u, x) is an intersection of a nested family of closed sets contained in a

compact space. Thus (u, x) and is closed. Since T, (x) is convex and u is linear,
’(u, x) is an interval and consequently @(u, x) is an interval.

2. This is just notation since @u(b)= u((-@)b).
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3. Consider F (x) {., T,(x)le -< e’}. Then the intersection
71>0 {u(&)l F(x)} is closed and nonempty. Since F(x) = T.(x), the intersection is
also contained in @(u, x). Because @(u, x) {u(x)} and u() {u()1 F(x)},
u(.) must converge to u(x) as e -0.

4. In order to see this, we need the following characterization of value in the sense
of S. Lojasiewicz which is proved in [2]: lim._.o u(6.) exists and is independent of
6. C (S/.(x)) with t. ->0 and s/.() 6.(y) dy 1. Property 3 implies that if (u, x)
is a singleton, then this characterization holds. This characterization certainly implies
that @(u, x) is singleton.

5. Suppose u(x-)<-u(x+). One can show as in the proof of property 3
that for -{.C(x-(1/_n),x)l.n>-_O, _l/..(y)dy-1} and

x+l/n{,,6C(x,x+(1/n))l.>-O, x &.(y) dy=l} we have u(.)-u(x-) and
u(+.)-u(x+). Now let O.=--A++(1-A)-T1/.(x),. O<A<I-- and u(,.)=
,u(&.+) + (1-A)u() Au(x+)+(1-A)u(x-). Thus N(u, x) = [u(x-), u(x+)].

In order to show (u, x) [u(x-), u(x +)], let v @(u, x) and let . rl/n(x) be
such that u(&.)v as noo. Let RkC(x,b) such that Rk(y)l for y

b(x + (l/k), b-(1/k)) with k in general much larger than n. Let Ck.. ----L Rk(y).(y) dy.
In a similar way define Lk and dk,. for the left side of x. Since Rk./Ck,. and Lk./
are in r/,,(x)r-IC(x,x+(1/n)) and T1/,,(x)f’lC(x-(1/n),x), respectively,
U(Rk6,,/Ck.,,) u(x+) and U(Lk6./dk.,,)- U(X--) as n oo. Also for each fixed n,
dk,.U(Lk6./dk,.)+C.,,U(Rk6./Ck,,,)u(.) as koo. Since (y) dy= 1, cg. c.,
dk,. d. as k oo and c. + d. 1. Either the sequences {c.} and {d.} or subsequences of
{c.} and {d.} converge to c and d, respectively, and c+d= 1. Thus u(.)-
cu(x-) + du(x +) [u (x-), u(x +)]. Consequently, @(u, x) = [u (x-), u(x +)].

6. First, we show that @ (u + v, x) = (u, x) + @ (v, x) even when @ (u, x) is
not a singleton. Let . s T1/.(x) such that (u + v)((-@).)- s @(u +v,x). Since
(u + v)((-).) u((-@).) + v((-@)6.) and by an argument similar to that given
in the proof of Property 3, we must have u((-@).) and v ((-@).) or subsequences
converge to elements in @(u, x) and @(v, x). Thus s r + where r @(u, x) and
t(v,x).

Second, let @(u, x) {@u(x)} and show @(u + v, x) u(x) +@(v, x). Let
r e @(v, x) and . e T1/.(x) be such that v((-@).) r. By property 3 we also have
u((-@).)- u(x). Since (u +v)((-@).) u((-@).)+v((-@).) and (u +
v)((-50).) @u(x)+r, we have that @u(x)+re@(u +v,x).

7. First, we show @(uv, x) u(x)@(v, x). Let r e @(v, x) and . T1/.(x) such
locthat v(.) r. Since u is continuous at x and u, v eL (fl), we have

n>=N.

Thus u(x)r e (uv, x).
Second, in order to show that there is an r e @(v, x) c (-oo, oo) such that s u(x)r

when s e (uv, x), let , e Tx/,(x) be such that (uv)(&,) s. Since u(x) exist, u (,)-->
u(x). Now @(v,x) is bounded and so either v(,) converges or a subsequence
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converges. If the latter is the case, u (bn,) still converges to u(x) and so assume v (,;b,,) - r.
Now apply the above inequalities to show s u (x) r.

8. Let 4n T1/n(x) be such that v(bn)-0. Since y LC(Ft), for y support
there exist M such that -M<-u(y)<-M. Thus we have Inu(y)v(y)4)n(y)dyl <-

M. Ia v(y)bn(y) dyl and consequently (uv)(4))-O and so 0 @(uv, x).
9. It is clear that uv Hl(a, b) and that (uv)’ u’v + uv’. Since u’, v’ L2(a, b), u,

v C[a, b]. By properties 4 and 7 we have @(u’v, x)= v(x)@(u ’, x) v(x)u’(x). By
property 6 we have ((uv)’, x) v(x)u’(x)+ D(uv ’, x). Again by properties 4 and 7
we have @(uv’, x) u(x)v’(x) and so (uv)’(x) u’(x)v(x) + v’(x)u(x).

10. These proofs follow by inspection of the previous proofs.
Examples. 1. Let u =H =the Heavyside function. Since limy_,0-u(y)=0 and

limy_.o+ u(y)= 1 exist, by 4 and 5 we have D(u, 0)= [0, 1].
2. Let u 6 the delta "function". Clearly, by the proper choice of b T1/,(x),

@(u, 0)D[0, ]. If there exists r D(u, 0) which is negative, then there are
Tl/n(O) such that u(g,n)r. But u(O,,)=H(-O’)=0-4,’(y)dy=-On(y)ly=o
n(0)_-> 0 and so we have a contradiction. Also D(u, x) ={0} when x

3. Let u 6’ and v 6". Both u and v have the same value sets for each x
namely, @(u, 0) (v, 0) [-oo, oe] and @(u, x) @(v, x) {0} when x 0. Thus
the notion of value set of a distribution is in general not descriptive enough to retrieve
the distribution from the collection of all value sets. It was proven in [6] if all the value
sets are singletons, then we may retrieve the distribution from the collection of all
values.

4. The following examples show that the assumptions in properties 6, 7, 8 and 9
are to some degree necessary. If u 1 -H and v H, then @(u, 0) [-oo, 0], @(v, 0)
[0, oo] and @(u + v, 0) {0}. Also @(v, 0) [0, 1], @(u, 0) [0, 1] and (uv, 0) {0}.
If u x -1/2 and v x 1/2, then @(u, 0+) {+oo}, (v, 0+) {0} and @(uv, 0+) {1}.
Also (u, 0+)= {-o}, @(v, 0+)= {+oo} and @(uv, 0)= {0}.

5. u(4)---Y..__0 b()(]). @(u,x)={0} when x is not a positive integer or zero.
@(u, 0) [0, ] and @(u, ]) [-oo, oz] when/" > 0.

6. See [6] or [2] for examples when the value exists at x but the distribution is not
continuous at x.

7. See the examples at the end of the next section for examples of distributions in
several variables.

As additional possible examples we note that the notion of a value set may be
extended from @ (f/) to the regular Mikusinski operators, J//, as defined by T. K.
Boehme [3]. For those readers who are familiar with this paper we briefly describe this
extension. We shall use the notation of T. K. Boehme. A regularMikusinski operator is a
Mikusinski operator, a, in which the following are in its equivalence class fn/cb, where
f, b, C the usual convolution algebra of continuous functions and {4n} is an
approximate identity. Thus the following sets are nonempty D (a, x) {f (x)la f,/cb.
f, & C, b, >- 0, b 1}. Consequently, D(a, x) c I-co, oe] is a nested family of
closed subsets of a compact space and so D(a, x) f’l>o D(a, x) may be defined as the
nonempty value set of ae at x. If a =u @, then f(x)=u(x)4)(x) where
b, T(0) and thus [D(a, x) D@(u, and upon intersection we have (u,x)=
@(u, x). Also if a }-’.k--O (1/(2k)!)sk, then [D(a, x) ={0} when x 0. It is not clear
what (a, 0) equals.

A shortcoming of the present notion of value set is that it is not descriptive enough
to retrieve the original distribution or regular Mikusinski operator from the collection
of value sets. We will not at this time discuss this problem or other obvious problems
relating value sets of general distributions or Mikusinski operators to the classical
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distributions. However, the present notion of value sets will prove quite useful in the
next two sections. We have only developed the properties of value sets which we will
need to study local extrema of u C(1)) and the maximum principle. The maximum
principle was the original motivation for this study. The maximum principle will be a
crucial tool in another paper [11] in which monotone methods are used to construct
solutions to certain nonlinear problems. This method will be similar to the work of J.
Chandra and P. W. Davis [4].

4. Local extrema o u C(I). In this section we use the first and second order
derivative sets of u to test for monotonicity and local extrema. The methods of proof
basically follow the classical methods once the operator of differentiation is transposed
from ’(f/) ’(f/) to @(f/) @(fl).

THEOREM 2. Let u L (a, b ). lfu is increasing (decreasing) almosteverywhere, then
(u, x) [0, oo]( [-oo, 0]) almost everywhere.

Proof. Suppose u is increasing almost everywhere; i.e., 0 <_- u (x + h) u (x) for h => 0
for almost all x (a, b) and h +x (a, b). If d T(x) and h <_-e, then as h -0we have

0<-- (u(y+h)-u(y))ck(y) dy

u(y) _b(y- h)-qb(y)
dy u(y)(-b’(y)) dy.

-h

Thus for all e > 0, u(-b’) _-> 0 and so (u, x) [0,
THEOREM 3. Let u C(1)) and f ". lfx fl gives a local maximum (minimum)

of u, then O ;(u, x) where [a[ 1.
Proof. If O_(u,x) with ]al 1, ci 1, then because @(u,x) is an interval,

(u, x) is either contained in [d, +oo] or [-oo,-d] where d>0. Suppose 0<r
min (u, x). There exists b, Tx/,(x) such that a u(y)(- 1)(O/Oyi)&,(y) dy r
as noo. Let N be such that n>-N implies au(y)(-1)(o/Oy)cb,(y)dy>-_r/2.
Now as Ihl-0, h=(0,...,h,,...,0), au(y)(-1)(d,(y-h)-c,(y))/(-h)dy-.
au(y)(-1)(/Oy),(y)dy and so there exists 6=5(n)>0 so that 0<h<(n)
implies a u(y)(- 1)(,(y-h)-,(y))/(-h,) dy =. ((u(y + h)-u(y))/h),(y) dy >
r/4. Since u is continuous, a ((u(y + h)- u(y))/hi)c,(y) dy (u(x + h)- u(x))/hi as
n -oo. Because u has a local maximum at x, (u(x + h)-u(x))/h <=0 for suitably small
h >0. Thus we may choose n so that o ((u(y + h)-u(y))/hi)c,(y) dy < r/8. This is a
contradiction to r > 0.

If 0> r max (u, x), then let hi < 0 and multiply the integrals by (-1). This also
leads to a contradiction.

Finally we state and prove the main theorem in this section which gives sufficient
conditions for extrema. Let dkb represent the kth order differential at x of b.

THEOREM 4. Let u C(f), fl and h . If
(i) for all h such that Ih[= 1 there exist qb, T1/,(x) such that as n

u ((d lxqb, )h )O($O),
(ii) ]or all n and for all c T/,,(x) there exist m>0 such that u((d2xqb)h) <-

-m(>-m), then x I gives a local maximum (minimum) of u,

Proof. Apply Taylor’s theorem to b, of Assumption (i) to obtain

1
,(x +h)-,(x)=(dl)h +..(d,)h +

where Oh (Oh, , O,,h,)O<-_ O _-< 1 and 1, , n. Since u is continuous, as n
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u(rkn(x+h)-On(x))-->u(x-h)-u(x). Thus it suffices to show that u(4n(x+h)-
b,(x)), n =>no, are nonpositive. So consider

( h) 1 ( . h) 1 [3 ( __)u(4,(x+h)--4,(x))=lh[u (d4,)-[ +.[hlau (dO,) +lh u (d+oh6n)

First, consider the third term on the right side.

( h) ( h)U (d+ohn)N Iu]=3E gaU (-)6.(x+Oh)
where c are the coefficients of the third order differential. Let C (Sx/(.o-x)(x))
such that 1 on Sa/.o(X) and no is to be chosen. Since u is continuous we may choose
no so that for all e > 0 n no implies. O(y)u(y)(- )O.(y +Oh)dy-u(x)

Also note

u((-)O.(x + Oh))= n u(y)(-)O(y + Oh)dy fn O(y)u(y)(-).(y + Oh) dy.

Since is continuous and . e Tx/.(x), as n , ja O(y)(- ).(y + Oh) dy
J O(y Oh)O(y) dy O(x Oh). Thus for all bounded [h, u((- )O(x + Oh))
is bounded by a constant which is independent of n
implies

where m is from assumption (ii).
Second, consider the middle term on the right side. By assumption (ii)

u((d6.)h/h[)-m and so we have

Third, for each fixed direction hi.hi choose &, as given in assumption (i) so that
u((dx.)h/Ihl)tO as n. Consequently, u(,(x +h)-.(x))(-m/4)lhl2O for
nno.

COROLLARY 1. Let u C(O) and. fffor all [hi 1 there exist T1/(x)
such that

(i) (u (- 6.)hx + u (- .)h:)O as n
(ii) u(&,x)U(&,)-u():m’>Oforall,andeitheru(&,)< O(>O) or

u(6.) < 0 (>0),
then x gives a local maximum (minimum) of u.

COROLLARY 2. Let u C a, b) and a, b) . If there exist T (x such
that

(i) u(-6)0 as n,
(ii) u (&) m < 0( m > 0) for all

then x gives a local maximum (minimum) of u.
COROLLARY 3. Let u C(a, b) and (a, b) . If x gives a local maximum

(minimum), then there is a sequence , T/, (x) such that
(i) u(-6’)0 as n (0 as n )
(ii) either u()O or u()O as n (0 or 0 as n ).
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Proof. Theorem 3 gives a sequence b, T1/,(x) such that u(-b’,)’0 as n c.
Suppose of all such sequences u(b) is not less than or equal to zero. Then there is a
sequence +n such that u(b)>0. Either u(b) has a subsequence greater than some
m > 0 or u() has a subsequence that goes to zero. By Theorem 4 the former case
yields that x gives a local minimum which is a contradiction. Note if u constant, u" 0
and u() must go to zero.

The next two examples illustrate Corollaries 2 and 1.
Examples. 1. Let and define u (x) x + 1 when x 0 and u (x) -2x + 1

when x 0. (u, 0)=[-2, 1] and 2(u, 0)= [-, 0]. Thus we must attempt to apply
Corollary 3 Let y be such that --1/(1--y2)8(Y) dy 2/3 where 81(y) (1/Cl) e with
c1 =1 e-/(I-y dy. Also let 8(y) nS(ny) and .(y) 8(y +(T/n)).

0

U(n(y))
0

0

dy
o

-4)tv)"-.’’" =--e-3n _1/(1_3,2) --->
1

as n c. Thus the two conditions of Corollary 2 hold and we may conclude that x 0
gives a local maximum of u.

2. Let f (-1, 1) (-1, 1) c 2 and define U(Xl, x2) as follows

U(X1, X2)

1 Xl x2, Xl, x2 > O,
1--Xl+X2, Xl0X2,
1 + X + X2, 0 X1,

1 +X1--X2, X20Xl,

(u, 0)=[-1, 1] when lal I and@ (u, 0) [-, 0] when lal 2. Therefore we need
to attempt an application of Corollary 1. Let b, =n(xl, xz)=(n/cz)e. -/(-(x+x2n)
where c Ia e-/(-(+ dx dxa. When lal 1, u((- @)’b) @u(b)
Ia (Ou/Oxi)(y)qb,(y) dy =0’0 as no and so SUPlhl= (u(-qbxl)hl + u(-nx2)h2)=OO
as r/---> o0.

o

u((Dnxlxx)’- uxl(-nx)-- I- I1 l(-nxl) dx2 + I-1 Io (-1)nxl dxl dx2

0

=2f-loqb"xldXxdx21
=211 bn(1, x2)-Cn(O, x2) dx2-- -2 fl qb(O, x2) dx2

-2 c-z1 < 0,
C2

U(nx2x2)=--2Cl<o,--
C2

o

U(l)nXlXe)--Ux2(--lnXl)-- I_ I_ "nxl dXldX2+ I0 I_ (--1)(--nxl) dXl dX2

=2 fo I )nx2 dXl dx2=2 fo n(1, x2)-tn(-l, x2)dx2= O.
-1
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Thus U(nXlxl)U(nx2x2)--(ll(nXlX2))2=4(/C)>O and u(,,xlxl)=-2(cl/c2)<O and
therefore we may conclude that (0, 0) gives a local maximum for u.

5. A maximum principle. In this section we consider the differential equation
Lu=-(pu’)’+gu’+qu=f where p,gL(a,b), O<m<=p(x) for all x(a,b), q=Q’,
f= F’ with Q, F LE(a, b). Recall that qu is defined as the derivative of Q(x)u(x)-
2 Q(y)u’(y) dy when u Hi(a, b)=-{u LE(a, b)lu’ L2(a, b)}c C([a, b]).

DEFINITION. Let p, g, q, f be as above, u H1(a, b) is a weak solution to Lu f if
and only if for all g/@(a, b)--C (a, b)(Lu)(d/)=f(d/) i.e.

bI,, [p(y)u’(y)(-,(y))+ g(y)u(y)d/(y)+ O(y)u(y)(-’(y))-O(y)u’(y)(y)] dy
bI,, F(y)(-d/’(y)) dy.

We prove the strong maximum principle as defined below for the above operator L
when QLoo(a, b). This generalizes the classical strong maximum principle when
u C2(a, b), p, p’, g, q C(a, b). The proof of the classical version may be found in M.
Protter and H. Weinberger [7]. The proofs of this section closely follow those given for
the classical results in [7] once, as in the previous section, the operation of differen-
tiation has been transposed from @’(a, b)--> @’(a, b) to @(a, b)-> @(a, b).

A weak maximum principle as defined below for elliptic operators of more than
one variable when Q Ln (12) with 12 c R has been proved in G. Stampacchia [10]. At
the end of this section examples are given that illustrate the importance of the
assumptions on q. In particular, in one variable Q must be in Loo(a, b) in order that the
strong maximum principle holds.

DEFINITION. Strong maximum principle. If Lu f, for all x e
(a, b)@(q, x)c [-co, 0], 0(f, x) [0, co], and u # constant, then supya.b) {0, u(y)} >
U(X) for all x e (a, b).

DEFINITION. Weak maximum principle. If Lu f, for all x e 12@(q, x) c [-co, 0],
@0(f, x) [0, co], and u constant, then supya,b){0, u (y )} --< max {u(a), u(b)}.

The maximum principle has applications to the question of uniqueness for the
linear problem and to certain nonlinear problems. In particular, one often wishes to use
fixed point theorems which involve self maps or perhaps to use monotone methods in
order to obtain existence or construction of solutions to nonlinear problems. For
examples of both, consult Courant and Hilbert volume two [5], or., in the case of
monotone methods, see [4] or [11].

The next theorem is perhaps the simplest maximum principle. In the classical case
it is trivial. In all that follows L will be as above with the additional restriction that
Q Loo(a, b) and @(p, x)[-K, co], K <co, Vx (a, b).

THEOREM 5. If u eHl(a, b), @(q, x) = I-co, O] for all x e(a, b) and @(Lu, x)=
[rn (x), co] where m(x) > 0 for all x (a, b), then u cannot have a nonnegative maximum
in the interior of [a, b ].

Proof. Since u’e L2(a, b), then by H61der’s inequality u C[a, b]. Thus u has a
maximum which is attained at some x [a, b]. Assume x e (a, b). By Corollary 3 of
Theorem 4 there exists , e Ta/n(X) such that as n -->co, u(-’)T0 and u(’,’)-< 0 or
u (")$0..

Note we may assume q - 0. This follows from D(-qu, x) [0, co] when 0 -<_ u(x)
sup,b) U, U is continuous at x and D(q,x)c[-co, 0]. Hence D(Lu-qu, x)
[rn(x), co]. For the moment, let p and q be continuous at x and consider Lu(,)=
pu’(-’,) + gu(,). By a proof similar to property 7 of Theorem 1 and p(x)>0, there
exists N1 >0 such that when n >_-N1, pu’(-& ’,,) <-_ rn(x)/8. By property 8 of Theorem 1,
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gu’(ckn) 0 and thus there exist N2 > 0 such that when n _-> N2, gu’(ckn) <- m (x)/8. Thus,
when n ->max {N1, N2}, Lu(ckn) <= re(x) This is a contradiction and so x a or x b.

If p or g are not continuous at x, since u is a weak solution pu’+o gu’=
F+constant. Thus p(x+)u’(x+)-p(x-)u’(x-) F(x+)-F(x-). Since (Lu, x)c
Ira(x), oo] and re(x)>0, F(x+)-F(x-)>O. Since U(X)=SUp(a,b)U, U’(X+)<--O and
u’(x-) >--O. Since p > 0, this yields a contradiction.

The main theorem of this section will now be stated and proved by contradicting
the above theorem.

THEOREM 6. Let u Ha(a, b) be a solution of Lu =f. If o(f, x)c [0, c] for all
x (a, b), O(q, x)c [-oo, 0] ]:or all x (a, b) and u assumes a nonnegative maximum,
M, at c (a, b ), then u =-M.

Proof. By the remarks in the second paragraph of the proof of the previous
theorem, it suffices to demonstrate this theorem when q 0.

As in the classical case we define z(x)=e(X-c)-i on (al, d) where u(d)<u(c)
and c (al, d). We shall find a > 0 so that Lz(@) -> re(x) > 0 where re(x) is to be defined
and ckT(x). Since ’(p,x)c[-K, oo] and p(x)->ml>O, pz’(-b’)
(p(y)a2e’(-))(ck)-(p(y))((a e’(-)ck)’)>=(ml/2)ce 2 e ’(’-) -2Ka e’(’-), for suit-

e (x-c)able e > 0. Since g Lo(a, b), Ig(Y)l < K1 <. Thus gz’(4)) > -2Kac for suit-
able e > 0. Consequently, Lz(ck) >- (ma/2)c z e(- 2Kc e"x-) 2Kaa e’- for
suitable e > 0. Therefore, we may choose c large enough so that (Lz, x)

e(X-C)where m(x)- a [(ma/2)a -2K-2Ka]>O.
Let 0 < y < (M- u(d))/z(d) and consider u + yz. Since @(Lu, x) c [0, oo],

(L(u + yz), x) (Lu + yLz, x) (Lu, x) + (TLz, x) c [Tm,
(aa, d). Thus we may apply Theorem 5 to u+yz on (aa, d). Note (u+yz)(d)=
u(d) + yz(d) < u(d) + ((M- u(d))/z(d))z(d) M and u(c) + yz(c) M. Thus max (u +
yz) >=M (u + /z)(c) and consequently the maximum of u + 3,z on [aa, d]is attained in
the interior of [aa, d]. This is a contradiction and so u(d)= u(c).

Remark. The restrictions of O sLoo(a, b) and a(p, x)[-K, oo] were needed in
order to construct z such that 50(Lz, x) [m(x), 0] with re(x) > 0. If we consider the
example given by Lz--((2-H(x-O))z’)’ and let b be an even delta sequence
about x 0, then we obtain Lz(ck,) -z’(0)b, (0) o -oo as n oo unless z’(0) 0. Thus
we are not able to construct z such that (Lz, x) [re(x), oo] for re(x) > 0 and for all
x(a,b).

COROLLARY 1. Let u Ha(a, b) be a solution ofLu =. I[(/, x) = [0, ][or all
x (a, b), O(q, x) [-c, O][or all x (a, b), u(a) <- 0 and u(b) <- O, then either u(x) < 0
for x (a, b) or u =-0.

Proof. If u 0, then by Theorem 6 u cannot have a nonnegative maximum in the
interior of [a, b]. Since the maximum must be at the boundary, u(a)<=O and u(b)<=O,
then u(x)<-M<-O. If u(x)=0 for x(a,b), then by Theorem 6 u--0. Thus either
u(x)< 0 for x (a, b) or u =0.

COROLLARY 2. Let u Ha (a, b) be a solution ofLu f, u (a) and u (b) given. The
solution is unique when (q, x)= [-oo, O] for all x (a, b).

COROLLARY 3. Let u eHa(a, b) be a solution of Lu f, u(a) and u(b) given. If
u(x)>-_O for all x.(a,b), u(a) and u(b)<-N, (q, x)= [-oo, 0] for all x (a,b) and
(f-qN, x)=[O, oo] for all x (a,b), then O<-u(x)<-N for all x (a,b). An added
constraint on f on 0(f, x) = [-oo, 0] implies that u(x) >- O.

Proof. Consider u N. L(u N) f- qN. Apply Corollary 1 with u replaced by
u -N and f replaced by f-qN to conclude that u(x)-N <-0 for all x e (a, b). In order
to show that o(f, x) c [-oo, 0] implies u(x) >= O, apply Corollary 1 with u replaced by
-u and f replaced by -f.
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We finally give the examples which illustrate the importance of the assumptions
onq.

Example 1. @0(q, x) c [-, 0] is a necessary restriction. Lu =- u" + u, u (-Tr) 0
u(Tr) is the simplest example. Consider the differential equation u"+ 28u 0, u(-1)
0 u(1) on the interval [- 1, 1]. In this case q +2 and 0(q, x) c [0, ] if x # 0 and
O(q, 0)= [0, ]. Let u(0) be any constant and define

+u (O)x + u (0),
(xU

-u(O)x + u(O),

This is a family of solutions to the given equation which depends on the choice of u (0).
Thus the solution to the equation u"+ 2u f, u (-1) and u (1) given is not unique. See
Fig. 1 for the graph of u.

Example 2. This example illustrates Q L2(-1, 1)\L(-1, 1) such that the weak
maximum principle holds but the strong maximum principle does not hold. Let
Lu=--u"-I/9x-4/3u, Q=-l/3x -1/3 and U2--X2/3--(1--[X])2/3. Then Lu=f=
2/9(1--]X1)-4/3+ 1/9X-4/3(X 2/3 +(1-- [X[)2/3) and so (L x) [0, c] for all x (-1, 1)
and @0(f, 0)= {}. The graph of u is given in Fig. 2 which clearly shows the desired
result.

Example 3. At the beginning of these sections we mentioned that G. Stampacchia
had proved a weak maximum principle for elliptic operators in more than one variable
with u HI(-) and Q L,(). One reason why this may not in general work for

(a, b) is that the product qu is not defined when Q Lx(a, b). One must then place
further restrictions on Q or u. This example illustrates u L2(a, b) and u’ Lx(a, b),
such that neither maximum principle holds for a QLI(a, b)\L2(a,b). Let Lu=-
U"--IXI-5/3U, Q=-1/2lx[-2/3 and u=-1--Ix[ 1/3. Then Lu-’f-’lX[4/3 and so @0(f, x)c
[0, ] for all x (- 1, 1). Note that -x-/3u may be defined as the derivative of an
element of L (a, b). The graph of u is given in Fig. 3 which shows that neither maximum
principle holds.

u

x(-1, O) (1,0)
FIG.

u

(1,1)

FIG. 2
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THE ZEROS OF THE ODD AND EVEN PARTS
OF A HURWITZ POLYNOMIAL*

AARON FIALKOW"

Abstract. This paper is a study of some properties of the zero distributions of Hurwitz polynomials and
also of polynomials Hr(x) of the form I-Ir(x)= xF(x)+G(x), where F(x), G(x) are independent of r. In
particular, it is proved that if a sequence of strict Hurwitz polynomials Q(z) satisfies Qr(Z)Qr(-Z) Hr(x),
x -z 2, then an increasing number of the zeros of both the odd part and even part of Qr(z) become arbitrarily
small and arbitrarily great as r--> o. This theorem has application in network theory as the guarantor of the
validity of a new synthesis method for realizing quite general filters by means of a transformerless, inductance,
capacitance ladder network terminated in resistance (LC-R ladders). A special case of the theorem has been
used to validate a method of even part synthesis of an arbitrary impedance by means of at most four LC-R
ladder networks.

1. Introduction. The importance of electric filter networks in the solution of many
engineering problems is well known. As a result, there is a considerable literature
concerned with the theory and design of filter networks. The actual realization of a
preassigned filter function is generally by means of a lossless ladder network terminated
in the resistance which represents the load. For arbitrary distributions of passbands and
stopbands, this ladder realization frequently requires the unavoidable use of trans-
formers.

A recent investigation [2] has studied the impedance of transformerless,
inductance, capacitance two-ports terminated in resistance (LC-R networks). This
analysis led to a synthesis criterion and algorithm for a wide class of impedances. Their
realization is in the form of an LC-R ladder having considerable element economy
relative to the degree of the impedance.

Based on this synthesis procedure, quite general filter functions may be realized
without resort to transformers, provided the filter function has either a reflection zero or
an attenuation pole at the origin. A statement of this and similar results appears in [3].
The principal theorem may be paraphrased as follows: Any real rationalfunction having
only pure imaginary poles is the characteristic function of a filter which is realizable as an
LC-R ladder, provided that the function has a zero or pole at the origin ofsufficiendy high
order. While the actual synthesis depends upon the methods developed in [2], the
guarantee that the procedure must be successful also rests upon some purely mathema-
tical results which are the subject of the present paper.

These results are concerned with the distribution of the zeros of certain poly-
nomials, the distribution of the zeros of their odd and even parts, and their formal
structure. Theorem 1 describes the zero distribution of polynomials of the form
xrF(x) + G(x), with polynomials F(x), G(x) independent of r, for large values of r. The
second theorem and its corollaries finds conditions on the zero distribution of a
sequence of Hurwitz polynomials Or(Z) sufficient to guarantee that a preassigned
number of the (real) x zeros, (x -z2) of the odd and even parts of Or(Z) be less than (or
greater than) a preassigned magnitude. All of these developments culminate in
Theorem 3 which is required for the filter application described above. This theorem
states that the conclusion of Theorem 2 is true if Or(z)Or(-z) xrF(x)+ G(x), with r
sufficiently great.

* Received by the editors November 16, 1978.

" Department of Mathematics, Polytechnic Institute of New York, Brooklyn, New York 11201.
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2. The zeros ot xrF(x) + G(x). The required performance specifications of a filter
dictate the choice of a characteristic function. The characteristic function of a filter is a
real rational function $(z)/T(z). It is well known [4, (12, 14)], that a strict Hurwitz
polynomial O(z) exists such that

(1) O(z)O(-z) S(z)S(-z)+ T(z)T(-z).

Based on [2], the realization of this filter by a transformerless ladder requires that
the characteristic function have a zero or pole at z 0 and further depends upon a
guarantee that enough zeros of the odd and even parts of O(z) are sufficiently small (or
great). There is no obvious, direct relationship between this last condition and the
corresponding structure of the characteristic function. A principal goal of the
subsequent mathematical analysis is to establish such a connection.

Suppose that the polynomials S(z), T(z) are prescribed, except for an arbitrary
factor z in one of them. Then (1) takes the form

Q(z)Q(-z) xrF(x)+ G(x), x -z 2,
where F(x) and G(x) are independent of r. In this section, we investigate the zeros of
this polynomial in x. The subsequent sections relate the location of these x zeros to the
zeros of the odd and even parts of Q(z).

THEOREM 1. LetF(x), G(x), with F(0)G(0) # 0, be relatively prime polynomials of
degree rl and r2 respectively, and

(2) H(x)=xrF(x)+G(x).

Let be any angle of the complex x-plane, with vertex at the origin, defined by

(3) dp. O <_ arg x <__ O + c, c <
1 + min (rl, rE)"

Then, for e, 0 < e < 1, and every positive integer c, an integer r0(e, c) exists such thatfor all
r ->- ro, Hr(x) has at leastc zeros which lie within the ring, 1 e _-< Ixl--< 1 / butoutside the
angle

Proof. We first prove a number of lemmas.
LEMMA 1. Let G(x) (x a)"Gl(X), G(a) O and la[< 1. Also let Cg be the circle

[x a R, where R is any positive numberfor which Cn lies inside the unit circle Ix I- 1,
and contains no zeros ofF(x)Gl(X). Then, for all sufficiently great r, H(x) has exactly u
zeros within the circle Cg.

Proof. Since F(x), G(x) are relatively prime, F(a)#O. Consequently, for all
sufficiently small R, Cg lies in Ix[ 1 and no zeros of F(x)Gl(X) lie in or on Cn. Then
Gx(x)/(F(x)) is analytic in and on Cn and not zero there. Applying the maximum
modulus theorem to its reciprocal, we conclude that G1 (x)!(F(x)) assumes its minimum
modulus K on the boundary of C. Consequently, on the boundary,

F(x) c. IF(x)

Also,

For any ladder, the zeros of T(z) must all be pure imaginary [1’ p. 184]. This fact plays no role in this
paper.
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Since lal+R < 1, it follows that for all sufficiently great r,

KR">(]a]+R).
It follows from Rouch6’s theorem that G(x)/(F(x)) and G(x)/(F(x))+x have the
same number of zeros in CR; that is, Hr (x) has exactly u zeros which approach x a as
r-, oo. B

LEMMA 2. LetF(x)= (x -b)VFl(X), Fl(b) # 0 and Ibl> 1. Also let CR’ be the circle
Ix- bl- R’, where R’ is any positive number for which CR, lies outside the unit circle

Ixl- 1 and contains no zeros Of Fl(x)G(x). Then, for all sufficiently great r, Hr(x) has
exactly v zeros within the circle CR,.

Proof. For sufficiently great r, r + rl r2 > 0. We assume this is so. Then by means of
the transformation, y 1 Ix, from (2) we obtain

(4) H’r, (y) y"+rHr() yr’G’(y) + F’(y),

where r’ r + rl r2, and F’(y), G’(y) are polynomials in y are defined by

F’(y) ylF,,y/,
Clearly F’(0)G’(0) # 0. Also, since neither 0 nor oo is a zero ofH(x)F(x)G(x), the zeros
of H’, (y), F’(y), G’(y) are also bifinite and the reciprocals of the zeros of Hr(x), F(x),
G(x) respectively. In particular, the factor (x- b) of F(x) corresponds to the factor
(by-1) of F’(y). Also, (4) has the same structure as (2). Hence Lemma 1 may be
applied to H’,(y with (by 1 , F’(y) occupying the roles of (x a ’, G (x) respectively.
When the result is translated from y to x variables, we obtain Lemma 2.

LEMMA 3. Let the ai, of multiplicity ui, be those zeros of G(x) for which lal < 1 and
let the bi, of multiplicity v, be the zeros ofF(x) ]’or which Ib;I > 1. Let e, 0 < e < 1, be such
that the circular regions

and the ring

G,: [x ai <- e, :Ix bil e

: 1-e<-lxl-<l+e
are all disfoint. Then 01 >0 exists such that]or all r > pl, ui zeros ofH(x) are in Ca,, v
zeros of Hr(x) are in Cb, for each ai, hi, and all the remaining zeros ofH(x) are in .

Proof. According to Lemma I and Lemma 2, p’ > 0 exists so that for r > O’ exactly
ui zeros of Hr(x) are in each Ca, and exactly v. zeros are in each Cbi, and DelHi(x)]
r + rl. Let x (r) be one of the remaining zeros of Hr(x). If possible, contrary to Lemma 3,
let

(5) Ix l(r)l--< gl < 1

for an increasing sequence S of values of r. Now a constant B >0 exists so that
IF(x1)[ <B for all Xx which lie in the region defined by (5), since a continuous function
has bounded modulus on a closed bounded region. Hence

(6) ]XrlF(XI)I < BKI.
Since, by hypothesis, x l(r), with r > p’, is outside each Ca,, a constant K > 0 exists so
that, for all r > p’

(7) [a[xl(r)]l> g.



76 AARON FIALKOW

From (2), (6), (7), for r belonging to and also r > p",

0= [H(Xl)I>=[G(x)I-IxrF(x)I>K-BKr >0.

This contradiction proves that (5) cannot be true for r > max (p’, p"). The assumption
]xl(r)[>-K2 > 1 may be disproved for values of r >p’" by similar analysis of the zero
yl= 1/x of H’r,(y), given by (4). Hence all these remaining zeros xl(r) of Hr(x)
eventually enter and remain within for all r > pl, where pl max (p’, p", p’").

LEMMA 4. Suppose P2 Pl (ofLemma 3) exists such that, for all r > P2, the number
of zeros ofH(x) which are outside an angle do defined by

(8) 0:00 _<- arg x <- 00 + &, b < -,
where k is a positive integer, does not exceed a fixed integer po. Then the elementary
symmetric function Ek of order k of the zeros of H(x), where r > p2, cannot be equal to
zero.

Proof. For r > pl, in accordance with Lemma 3, each of the circles Ca,, Cb contains
a fixed number of zeros of Hr(x), while the remaining zeros are in . Let p of the zeros
of Hr(x) be in those Ca,, Cbj which have points in common with 0. Further let1 be the
intersection of o and . Therefore, if n and p are the number of zeros of Hr(x) which
are respective points of 1 and its complement,

(9) P<-po+pl, n =r+r-p,

since De[Hr(x)] r + r.
An elementary symmetric function of order h of some variables is the sum of all

possible products, without repetition, of h of these variables. Denote the elementary
function of order h of the p zeros of Hr(x) outside 1 by E and the corresponding
function of the n zeros inside 1 by E. Since, by Lemma 3, all the zeros of Hr(x), for all
r, lie in a closed bounded region, and the number of them which enter E is bounded by
(9) for all r, the I1 are each bounded, independent of r. Thus there exists a number
B > 1 so that, for all r,

lY-.,I< B, h 1, 2,..., p,
(10)

E=-l, E 0, h>p.

Let xj be one of the remaining n zeros of Hr(x) given by

xj rj e i, 1- e <-_ ri <- l + e, 0o <- 0 <- 0o +.(11)

If

X(h) r(h) e io(,)

is a typical product in X, from (11),

(12) (l--e) h --< r(h) <-- (1 "I-E) h,
(13) hOo <-_ O(h <---- hOo +
Hence each product term is a point in the intersection t’h Of the ring h, defined by (12),
and the angle h, defined by (13). In view of (8), the vertex opening of lI)h is less than r if
h =< k. The average or centroid .(h) Of all these product terms X(h lies within the convex
hull of h, and cannot be zero if h =< k. Consequently, from (12) and (13),

(14) (l--e)h cosh--2<=lX(h)l<=(lq-e)h, l<--h<--k,
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where, since hO/2 < 7r/2, all quantities are positive. The total number of X(h) equals

(n) =_n(n -1) (n -h + l)
h h!

and E is the sum of all these X(h ). Therefore

n

and, from (14),

(151 (a- cos<ll < (a+)a, 0<h<k.
h

(The inequalities for h 0 are a consequence of Y. 1).
Now the elementary symmetric function Zk of all the zeros of Hr(x) obeys

k k-1

(16t Zk Z (’-’’Z’-h)"-" Z, -+- E (--h).
h=0 h=0

From (101 and (15),

(17)

(,.,Z.c-h) < B (1 + e) h

h=O h=0 h

k
(1-e cos--

Now limn_ ()/(h) (X) if h < k. Also, (9) implies that n o iff r m. Finally, from (8),
h4,/2 < zr/2 for h 0, 1, 2, , k. Consequently, a constant 02 --> pa exists so that, for all
r > P2,

h=O

after using (17). But, from (16) and this.equation,

We now complete the proof of Theorem 1. According to Lemma 3, if r > 01, a fixed
number of the zeros of Hr(x) lie within the circles Ca,, Cb, while all the remaining zeros
are in . Now the coefficients of a polynomial are multiples of the elementary
symmetric functions of its zeros. For H,.(x), since the term involving x r-1 is missing if
r > r2 + 1, it follows that E(rl+l) 0 for all sufficiently great r. Then Lemma 4 proves that
as r m, the number of zeros of H(x) inside but outside any angle

(I)1" 0 arg x _-< 0 + tl,
1

cannot remain bounded.
In a similar manner, if we proceed with H,(y), defined by (4), we find that as

r’ c, the number of y zeros of H’, (y) inside the ring Yt’ (which is the transform of Yt by
y 1 Ix) but outside any angle in the y plane

(I)2" 0 arg y 0 + t2, __2
1 +r2
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cannot remain bounded. If this result is restated in terms of x quantities, it is identical
with the conclusion of the preceding paragraph, except that bl is replaced by b2. The
results concerning 1 and 2 taken together are equivalent to the conclusion of
Theorem 1. F1

3. Hurwitz polynomials with zeros in prescribed regions. Let Or(z),r=
1, 2, 3,’", be a sequence of strict Hurwitz polynomials. By definition of Or(Z), its
zeros lie in the interior of the left half plane. In this section, we show that if mr of the
zeros of Or(z), with mr O0 as r - 00, are further restricted to certain subregions of the
left half plane, then an increasing number of the zeros of the even and odd parts of Or(z)
tend to 0 and oo as r- c.

THEOREM 2. Let ’ be the sector of the z plane

(18) " Izlgo, Ro>0; r-Oo<=argz<=Tr+Oo, 0_<- 0o<-.

Let Or(z), r 1, 2, 3,..., be an infinite sequence of real, strict Hurwitz polynomials
written as

(19) Or(z) =fi(x) + zgr(x), x -z 2.

Suppose Or(z) has mr zeros in ’ and that

(20) lim mr .
r--

Letpositive constantXo and positive integer c be prescribed. Then a constant ro(xo, c) exists
such that, for all r > ro, fi(x) and gr(X) each have at least c zeros xr such that 0 < xr < Xo.

Proof. As z ito varies along the/-axis from 0 to , the corresponding x, obeying
2x o varies on the real axis from 0 to . From (19), it follows that Or(ito) is pure

imaginary at a zero of fr(tO 2) and is real at a zero of gr(.02). Thus the angle b [Or(ito)] of
2the complex number Q,.(ito) is an odd or even multiple of zr/2 if and only if to is a zero of

f,.(x) or g,.(x) respectively. Consequently, we study the function qb[Qr(ito)].
Write Qr(z) in factored form as

Qr(Z) "-K H (Z + Ch) H (Z all-Rrei’)(z + R e-i’),
h

where K, Ch, Rr are real positive numbers and 0< 0r < zr/2. The angle function
satisfies the equation

(21) [Qr(ito)] E (io + Ch) "" 2 [ (ito +R e i’) + ck(ito + Ri e-i’)].
h

If we write

(22) tan "}/h "-, tan/3rl
to + Rr sin 0r tan/3r2

to Ri sin 0i
Ch Ri cos 0r R cos 0r

then (21) becomes

(23)
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Also define ao, a. by

(24) tan a0 tan a =--.Ro’ Ri
Then, using (22) and (24),

2toRt cos 0r
2 2 COS 0r tan 2at.(25) tan (/3rl +/3.2) R to

As the real variable to increases from 0 to oo, each Yh and each ar increase
monotonically from 0 to r/2, while the 0j are constants in the range 0 < 0r < r/2. Thus,
using (25), (/3rl +/3r2) increases monotonically with to, varying from an initial value 0 to a
final value zr. Consequently, &[Qr(ito)] is a monotonically increasing function of to, with
each of the angles, Yh, (/’1 +/3r2), in (23) making a positive contribution to the total.

According to the hypothesis of the theorem, mr of the zeros of Qr(z) lie in the
sector q’. Let m’r of these zeros be negative real and m be pairs of conjugate complex
zeros, with

(26) m

For each of the m’r negative real zeros, Ch <- Ro. Then, from (22) and (24), "h O0" Also,
for each of the m’’ pairs of complex zeros, R _-< Ro and 0r -< 0o. Consequently, from (24),
c. -> Co and cos 0r --> cos 0o. Then

tan 2ar >_- tan 2ao > 0 if ao 5- , a. =< ,
0 > tan 2at >= tan 2cro if ao >, -> Crr > -,

tan [COS 00 tan 2ao] <- - and tan- [cos 0 tan 2a] > if ao--< , -> aj >.
Hence, in all cases, for any of these m ’ pairs of zeros, we find, after reference to (25),
that

Then, from (23),

(27)

rl + fir2 >-- tan-1 [cos Oo tan 2ao].

4[Or(ito)] >- mrao + mr tan-1 [cos 0o tan 2ao].

Since ao, 0o are constant, independent of r, it follows from (20), (26) and (27) that, for
any real positive to,

lim b[Or(ito)]

X/2,This equation implies that if too a constant ro exists such that, for r > to,

0[Qr(itoo)] > cTr. Then the discussion in the first paragraph of the proof shows that fi(x)
and b(x) each have at least c zeros which obey 0 < x < Xo.

COROLLARY 1. Let the sequence of strict Hurwitz polynomials Qr(z), defined by
(19), have mr zeros in the sector exterior qt,, defined by

(28) ": Izl>=Ro’ Ro>0; r-Oo<-argz<--cr+Oo, 0-<- 0o < -,
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where mrobeys (20). Then a constant ro exists such thatfor all r > r0, fi(x) and gr(x) each
have at least c zeros Xk with Xk > X0, for arbitrary choices of Xo > 0 and positive integer c.

Proof. We consider the effect of the transformation w 1/z. Suppose De[Qr(z)]
n. Since Qr(Z) has no zeros at z 0 or z o, the zeros of the polynomial

are the reciprocals of the zeros of Or(z). Also

where

if n is even and

O;(w)=f(y)+wg’(y), 2

f,(y)= y,,/2f(), g,(y) y(,,-2)/2g(),

f,(y)= y(n-1)/2g(), g,(y) y(,,-)/af(),
if n is odd. Furthermore the transformation maps "(z) onto ’(w), defined by (18). It
follows that O’r(w) satisfies the hypothesis of Theorem 2. Consequently, for any
positive l/x0, c, at least c zeros yk of f’r(y) and of g’r(y) obey yk <l/x0. The
corresponding zeros x of fr(x) and gr(x) equal 1/y and so satisfy x > Xo. 71

COROLLARY 2. Let o be the intersection of a ring and an angle given by

(29) o’O<Rl<=lzl<-R2<o; zr-Oo<-argz<-zr+Oo, 0<-00<
2

Let Or(Z), r 1, 2, 3, , be strict Hurwitz polynomials (19), with mr zeros in the ring
section o, where mr obeys (20). Let constant Xo, 0 < Xo < 1, and positive integer c be
prescribed. Then a constant ro exists such that, for all r > ro, ]:r(x) and gr(x) each have at
least c zeros x so that 0 < xi < Xo and each have at least c zeros x so that xk > 1/Xo.

Proof. The ring section W0 lies in the sector W’ with circular boundary [z I= R2, and
also lies in the sector exterior W" with circular boundary [z[ R 1. Consequently both
these regions have at least mr zeros of Zr(z), with mr obeying (20). This means that the
hypotheses of both Theorem 2 and Corollary 1 are satisfied. Thus positive constants r’
and r" exist so that for r > r’ and r > r", the respective conclusions of the theorem and the
corollary are true. Then the conclusion of Corollary 2 follows for ro max (r’, r"). 71

4. Hurwitz polynomials Qr(z) which satisfy Qr(z)Or(-z) xrF(x) + G(x), x
2-z If the results of 2 and 3 are combined, we can obtain a property of Hurwitz

polynomials having the special structure described by (30) below.
THEOREM 3. Let {r(Z), r-1, 2, 3,..., be an infinite sequence of real strict

Hurwitz polynomials

Or(Z)-"fr(X)-[" Zgr(X), X --Z 2.
Suppose that

Or(Z)Or(--Z) nr(x) xrF(x) + G(x),

where F(x) and G(x) are relatively prime polynomials, independent ofr. Let Xo, 0 < Xo < 1
and positive integer c be prescribed. Then a constant ro(xo, c) exists such that for all
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r > r0, fi(x) and gr(X) each have at least c zeros xi so that 0 < x. < x0, and each have at
least c zeros xk so that xk > 1/Xo.

Proof. The proof depends upon using Theorem I to place an increasing number of
zeros of Hr(x) in a suitable ring segment, and then Corollary 2 to obtain information
concerning the zeros of fi(x) and gr(X). If F(x) contains a power of x as a factor, this
factor may be absorbed into x r. Hence we may assume, without loss of generality, that
F(0) 0. Also G(0) 0, else Qr(0) 0, which is impossible since Qr(z) is strict Hurwitz.
These results and (30) prove that the hypothesis of Theorem 1 is satisfied.

Before applying this theorem, we consider the relevant regions of the x plane and
the z plane. Choose to be the angle of opening b satisfying (3) which is positioned so
that it is bisected by the positive x-axis. Under the map, x -z 2, corresponds to two
vertical angles of opening b/2 in the z plane which are each bisected by the imaginary
axis. The region outside these angles in the left half z plane satisfies

(31) r 00 =< arg z -< 7r + 0o, 00
2 4"

Since, from (3), 0 < b < 7r, it follows that rr/4 < 00 < 7r/2. Also corresponding to the ring

5: 1-e<=]x]<=l+e, 0<e < 1,

is another ring

As a consequence of Theorem 1, the number of zeros of Hr(x) which lie outside
but inside increases beyond all bounds as r c. Consequently, the number of zeros
of Or(Z) which lie within the intersection 0 of the angle (31) and the ring ’ is
unbounded as r-+. We identify o with the region defined by (29). Then the
hypothesis of Corollary 2 is satisfied. Hence, after choosing thex0 and c of Corollary 2,
a constant ro exists so that, for all r > ro, fr(X) and gr(X) each have at least c zeros x. with
0 < x. < x0 and each have at least c zeros x with x > 1/Xo.

We note that if F G 1, then the Or(z) are the Butterworth polynomials. In this
case, Theorem 3 specializes to Theorem 20 of [2]. This theorem is used in [2] to devise
an even part synthesis of a general impedance, using at most four LC-R ladder
networks.
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PROPERTIES AND APPLICATIONS OF THE RESOLVENT OPERATOR
TO A VOLTERRA INTEGRAL EQUATION IN HILBERT SPACE*

T. KIFFEf AND M. STECHERt

Abstract. This paper discusses the existence, uniqueness, and asymptotic properties of solutions to the
equation u + a*Au f, where A is a positive self-adjoint operator on a Hilbert space. These properties are
studied via the resolvent operator for this equation. The authors also consider a nonlinear perturbation of the
above.

1. Introduction. In this paper we will discuss existence and uniqueness of solutions
for the equations,

(1.1)

(1.2)

u(t)+ a(t-s)Au(s) ds f(t), 0-<t<_- T,

u(t)+ Io a(t-s)Au(s) ds + Io a(t-s)Bu(s) ds f(t),

where A is a positive self-adjoint linear operator densely defined on a Hilbert space H,
B is a possibly multiple valued maximal monotone operator, and a(t) is a real valued
function. We will also give some results concerning the asymptotic behavior of the
solutions to (1.1).

Cl6ment and Nobel [4] have recently considered (1.1) and established existence
and uniqueness results under various hypotheses on the forcing term f(t). Their
technique is essentially that of constructing a resolvent operator for (1.1), and by use of
its properties, deducing that (1.1) has solutions for various f’s. Using a different analysis
of the resolvent operator we have been able to extend their existence results in the case
where X is a Hilbert space and A is self-adjoint, and also derive some asymptotic
properties of the solutions.

Friedman and Shinbrot [6] have also considered existence, uniqueness, and the
asymptotic behavior of solutions to (1.1). Their approach is to analyze the resolvent
operator of (1.1) using Laplace transforms, while C16ment and Nohel’s and our’s is to
analyze the associated scalar resolvents. For related results on linear Volterra equations
we refer the interested reader to [9], [14].

Equation (1.2) written as

(1.3) u(t)+ a(t-s)g(u(s)) ds f(t),

where g is an accretive operator has been studied by various authors [1], [2], [5], [7],
[13]. All of the above papers basically require that f(t) be ditterentiable. Viewing (1.3)
as a nonlinear perturbation of (1.1) and using some of our results for (1.1) we have been
able to extend the existence results for (1.3) to include some nonditierentiable forcing
terms.

Section 2 of this paper contains the statements of the results for (1.1), while their
proofs are in 3. Equation (1.2) is discussed in 4. Examples which illustrate our results
are worked out in 5.

* Received by the editors February 22, 1978 and in revised form January 19, 1979.

" Department of Mathematics, Texas A & M University, College Station, Texas 77843.
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(1.4)

Throughout this paper we Will use the following notation:

H denotes a real Hilbert space with inner product (-,.) and norm I" I,
LP[0, T; H]= {f: [0, T]--> HIf is strongly measurable and lf(t)le dt <
c} l=<P<,
L[0, T; HI= {f: [0, T]- HIf is strongly measurable and
ess sup0__<,=<[f(t)l <
((.,.)) and I1" will denote the inner product and norm respectively on
LZ[0, T; HI,
B(H) is the space of bounded linear operations from H to H equipped
with the operator norm topology,
A denotes a positive, linear, self-adjoint operator from H to H with dense
domain,
{Ex}o will denote the resolution of the identity determined by A,

will be the usual extension of A from H to LZ[0, T; HI and D()=
{u LZ[0, T; n]lau e LZ[0, T; HI}.

For the standard results concerning the resolution Of the identity we refer the reader to
[16].

2. The linear equation. The standard approach to solving (1.1) has been to first
consider solutions of the resolvent scalar equations

(2.1) r(t, A) +hi0 a(t-’)r(’,h)d-=a(t), O<=t<=T,

s(t,A)+A a(t-r)s(z,A) d’= 1,(2.2) O<=t<=T.

If we define resolvent operators R (t) and S(t) by

(2.3)

(2.4)

R (t) Io r(t, A) dEx,

S(t) [o s(t, A) dEx,

then the solution of (1.1) can be written in the form

u(t)=f(t)- R(t-z)Af(r) dr

or

(2.6) u(t)=S(t)f(0)+ S(t-’)f’(-) dr

under various hypotheses of [ and f’ [4]. We begin by stating various properties of the
resolvent functions which will be used in studying (1.1).

Throughout we will assume that a (t) is a real-valued function defined for 0 < < oo
satisfying

a C(O, c), a sLoc(O, o), a(t)is positive and nonincreasing
(2.7)

and log a (t) is convex.
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LEMMA 1. Suppose (2.7) is satisfied and let r(t, A) and s(t, A) denote the solutions
(2.1) and (2.2) respectively. Then

(i) r(t,A)>=O,s(t,A)>=OtorA >Oandt>O,
(ii) supxor(t,,) <= Ca (t)[ a (r) dr] [or 0 <= <= 1, 0 < t, where C is a

constant depending only. on ,
(iii) supx>__o,r(t, A) Lo[0, c) for 0 <= < 1,

supoA r(t, )t - 0 as - c ]:or 0 < a <= 1, and
supxor(t, A)- 0 as t-c if a(t)-O as t-,

(iv) s(t,,)=<[l+, toa(-)dr]-fort>=O,A>=O.
We remark that in (iii) if a 1, then supx __>oAr(t, A L (0, 6) for any > 0. The proof of
Lemma I is based on an inequality due to Gripenberg [8, Thm. 1]. The properties of the
operators R (t) and S(t) are contained in the next two lemmas.

LEMMA 2. Suppose (1.4) and (2.7) are satisfied and let R(t)be defined by (2.3).
Then

(v) AR(t)B(H)forO<=a<=l, 0<t<,
(vi) A"R(t)6Lo[O, ;B(H)] for O<=a <l and il a 6LX(O, ) then

o AR(s) ds gta[I + gta]-x where K o a(s) ds,
(vii) ]:or each x H, AR(t)x is a continuous [unction of ]:or 0 <= a 1 and

0<t<oo,
(viii) AR (t) 0 as oo in the operator norm topology on B(H) for 0 < <= 1 and

R(t)x a(oO)EoX as t-oo for each x eH, where a(t)a(oo) as tc,
(ix) gin addition to (2.7) we assume that a(t) 0 as oo, then R (t)

in the operator norm topology on B(H),
(x) i in addition to (1.4) and (2.7) we assume that o-(A)___[,0, oo) ]:or some

)t0>0, then also R (t) - O as

Regarding (vi) it is not known if AR(t)eLo[O, oo; B(H)] under hypotheses (1.4) and
(2.7). In (viii) the projection Eo can be characterized as the projection of H onto the
kernel of A if zero is an eigenvalue of A and as the zero projection if zero is not an
eigenvalue cf. [16, p. 319]; and in (x), r(A) denotes the spectrum of A.

LEMMA 3. Suppose (1.4) and (2.7) are satisfied and letS(t) be defined by (2.4). Then
(xi) $(t) B(H) for 0 < < oo and S(t) is a continuousfunction oft in the operator

norm topology on B(H),
(xii) S(t)[l+aA]- as t-oo in the operator norm topology on B(H)

L(O, oo) and a= a(s) ds; and S(t)-F_.o i[a:La(O,
Our next result is concerned with the existence and uniqueness of solutions to (1.1).
THEOREM 1. Suppose (1.4) and (2.7) are satisfied and let[, A+] Le[0, T; H]for

some 0<c -<_ 1 and 1 <=P<=oo. Then the function u(t) defined by (2.5) satisfies u(t)e
D(A) a.e. 0 <-_ <= T; u(t), Au(t) e LP[0, T;H], and u(t) satisfies (1.1). Moreover u(t) is
the unique function having these properties.

We remark that f, A x+’[ Le[0, T; HI implies that Af LP[0, T; HI since A
being self-adjoint implies Iaxl <= Ixlz + Ia+xlz for x D(A+). Theorem 1 provides
the existence and uniqueness, of a strong solution to (1.1). We can define a weak solution
u(t) of (1.1) as follows.

DErImTON 1. A function u(t) is a weak solution of (1.1) if there exist sequences
{u,(t)}, {/,(t)} where each [, e LP[0, T; HI and each u,(t) is a strong solution of (1.1)
with [ replaced by [, such that [, /e and u, - u in Le[0, T; HI as n

It will be clear from the proof of Theorem 1 that (1.1) has a unique weak solution if
f, A’f LP[o, T; H] for some a, 0 < a <_- 1.
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C16ment and Nohel [4] have considered (1.1) in a Banach space X with the
assumption that A generates a strongly continuous contraction semi-group. They
proved existence and uniqueness of a strong solution to (1.1) if f, Af, A2f LP[o, T; X]
and a weak solution if f, Af LP[o, T; X]. Our Theorem 1 extends their results by
relaxing the restrictions on f at the expense of assuming that X is a Hilbert space and A
is self-adjoint. They also have shown the existence and uniqueness of a weak solution
u(t) to (1.1) if f e W1’1[0, T; X]. Under our restrictions on X and A their represen-
tation for the weak solution becomes (2.6) when S(t) is given by (2.4). We will use this
representation for weak solutions when we consider the asymptotic behavior of
solutions to (1.1).

One of the purposes of this paper is to study the nonlinear equation (1.2). Our
proof of existence and uniqueness of solutions to (1.2) rests heavily on the properties of
maximal monotone operators in a Hilbert space and on the properties of solutions to
(1.1). For this reason we have considered (1.1) in a Hilbert space setting. Theorem 1 has
a significant extension if p 2, and this extension, which was proved in [12], is stated
below:

THEOREM 2. Suppose a(t) is ofpositive type, i.e., a Lloc[0, c) and Re d(s)>= 0 for
Re s >=0 where d(s) e-S’a(t) dt. Then

(xiii) if f, Af e L2[O, T; H], (1.1) has a unique strong solution u(t) L2[O, T; H],
(xiv) iff L2[O, T; H], (1.1) has a unique weak solution u(t)L2[O, T; HI satis-

fying

(2.8) u(t)+A( a(t-s)u(s) ds =[(t) a.e. O<=t <- T.

We refer the reader to [15] for properties of functions of positive type. If a(t)
satisfies (2.7) it is well known that a(t) is of positive type so Theorem 2 handles more
general kernels than Theorem 1. Also it should be noted that kernels of the form
a (t) e -bt cos (3,t) are of positive type for b -> 0 but do not satisfy hypothesis H4 of [4].

Theorem 3 below summarizes the asymptotic properties of weak solutions to (1.1).
THEOREM 3. Let (1.4) and (2.7) be satisfied and suppose u(t) is a weak solution of

(1.1).
(xv) ira LI(O, 03), (Af)(t)- x as t--c and either f 6L[O, c; H] or Af

L[0, c;H] for some a, 0<a _-<1, then f(t)-u(t) Al-[I +tA]-lx,
as t c, where =!0 a(s) ds,

(xvi) /f a(0) < c, AfLI[O, c;H] and either Af L1[0, c;H] for some a,
0_<-a <1 or cr(A)_[ho, c) for some ho>0, then u(t)-f(t)-O as o,

(xvii) if a(O)<c, a(t)-O ast and AfLI[O, cx3; H] then u(t)-f(t)-O as
O)

(xviii) if Af L[0, ; H] for some 0 < a <- 1 and a LI(0, c), or if Af
L[0, cx3; H] [")LI[0, cx3; H] then u-f6L[O, ; H],

(xix) if f wX,; [0, c;H] and f’ Ll[O, c;H] then u(t)-Eof() as t if
a L(O, o) and u(t) [I + dA]-af() as - oifa LI(0., c) where f(t)
f() as .

We remark that in the second part of (xviii) it is not assumed that a s LI(O, ).
Friedman and Shinbrot [6] have also considered the existence and asymptotic

behavior of solutions to (1.1) in a Banach space setting. Their approach consisted of
using Laplace transforms to study (1.1). Our hypotheses on the kernel function are
quite different from theirs and we need not assume that A is invertible.
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3. Proofs.
ProofofLemma 1. Part (i) is contained in Proposition 1 of [4]. To prove (ii) we first

note that if r(t, A) is defined by (2.1) then At(t, A) is the resolvent function associated
with the kernel Aa(t). Hence [8; Thm. 1] gives us the inequality

(3.1) O<Ar(t,A)<-la(t) I+A a(s)ds 0<t<o, 0<A<m.

Hence we have, for 0 N N 1,

(3.2) 0<1r(t,)Na(t -+- a(s) ds

Fixing and and maximizing the right side of (3.2) we get (ii). Combining (2.7) and (ii)
we easily establish (iii). To prove (iv) we first note that

(3.3) s(t, A 1 A J0 r(r, A) dr.

By [8, Thm. 1] we have, recalling that At(t,

(3.4) A r(r, A) dr X a(r) dr 1 + X a(,) dr

Combining (3.3) and (3.4) we get (iv). This completes the proof of Lemma 1. The
remark following Lemma 1 follows from the observation that (3.4) implies

1Nfo [ supAoAr(z,A)] dr foranyt>0.

Proof of Lemma 2. From well-known results from the theory of self-adjoint
operators in a Hilbert space we have

(3.5) AR(t) Jo A r(t, A dEx, 0<t<,

Hence (v) follows directly from (ii) and we have

(3.6) IIAR(t)ll Ca(t) a(s) ds

Hence the first part of (vi) follows from (3.6). If a s La(0, ) then

r(g A) dt a(s) ds I + A a(s) ds

and for each x H we have

Io AR(t)x dt= Io fo Ar(t’A) dExx dt= !o fo Ar(t’ A)dtdExx

[ 8A dExx aA[I + A]-lx.o I+8A

The change in the order of integration is justified by (ii) and Fubini’s theorem. This
proves the second part of (vi). Since r(t, A) is a continuous function of for each A 0,
(vii) follows from (ii) and Lebesgues dominated convergence theorem. The first part of
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(’viii) follows from (3.6). By (3.1)

r(t,A)_.>la(c), ifA =0,
0, ifA >0,

as t-> oo,

so by (ii) and Lebesgue’s theorem we get the second part of (viii). Again (ix) follows
from (ii) when a(t)-->O as t-. To prove (x) we note that (3.2) implies

-1(3.7) supr(t,A)<-,a(t)[l+Ao lo a(s)dsI 0< t<oo,
AoA

which immediately implies (x) since now R (t)= Jao r(t, A) dE.
Proof ofLemma 3. By (iv) we have that

(3.8) 0_-<s(t,h)=<l, 0__<t<m, 0__<h<o.

This establishes the first part of (xi). For the second part we have by (3.3) that if tl < t2
then

(3.9)

and hence

t2
Is(ta, ,x s(h, A )I <---- Xr(r, A) dr

(3.10) sup ]s(t2, A)- s(h, A)I_<-- sup Ar(r, A) dr.
O--<---A<c

By (ii) we have sup0___x<Ar(t, A) s L(8, oo) for any 8>0. Since s(t, A) is a continuous
function of for each A >= 0, the second part of (xi) follows from (3.10). To prove (xii) we
note that by (iv), if a(t)=L(O, oo) then

1 ifA =0,
(3 11) s(t,,) as t- oo

0 ill >0,

and if a(t)eL(O, oo), then it iS well-known that

s(t,A)->[l+aA]-1 ast-->oo, 0--<A

By (3.10) we have that the resolvent operator S(t) converges in the operator norm
topology on B(H) as --> m and (3.11), (3.12), and Lebesgue’s theorem now imply (xii).

Proofof Theorem 1. We wish to show that u(t) defined by (2.5) is a solution to (1.1)
if f and A+f are both in LP[0, T;H], 1 <-_ p <-_ oo. That u will then lie in LP[O, T; H]
follows from (2.8), (vi) and the remark following Theorem 1. We first establish that u(t)
is contained in the domain of A a.e. Hence we show that R,Af is in the domain of A.
The calculations below are easily justified by the functional calculus for self-adjoint
operators and (vi):

(3.13)
A(R*Af)=A R(t-s)Af(s) ds =A- AR(t-s)Af(s) ds

=A- R(t-s)A+f(s) ds A-R(t-s)Aa+f(s) ds.

Thus since AI+R.Ax+f exists and A is a closed operator we must have R .Af D(A)
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a.e. To see that (2.5) is actually a solution to (1.1) it suffices to show,

(3.14) a,(R.Af)=a.f-R.f.

This formula is first shown to hold for f(t)---x and then for

f(t)={O’ O<=t<=c,
x, t>c.

That it holds for such f’s follows easily from the functional calculus and (2.1). Linearity
and continuity then imply (3.14) for arbitrary f. The uniqueness of these solutions has
been established in [4].

The existence of weak solutions to (1.1) under the hypotheses that f and Af
LP[o, T; HI, 1 <= p <= c, now follows easily from the fact that D(A) is dense in D(At)
if a > fl, (2.5), and (v).

Proof of Theorem 3. To prove (xv) with AfL[O, z; HI we observe that
aLl(0,) implies AI-R(t)LI[O,;B(H)] by (ii) and since f(t)-u(t)=
o A1-R (t- s)A"f(s) ds the result follows immediately. If f L[0, ; HI, then we
can write

(3.15)
t/2 t/2

aof AR(t-s)f(s)dS-fo Al-R(t-s)xds

+It A1--R(t-s)[Af(s)-x] ds + It Al-R(s)x ds.

Since AR (s) LI[1, o; B(H)] by (ii) the result follows from (3.15). To prove (xvi) with
AfLI[O,;H] we note that a(0)<c implies R(t)L[O, o;B(H)] and since
A-R(t)-> 0 as t--> c by (viii), (xvi) follows from observing that A1-R (t-
s)Af(s) ds =/2AI-R(t-s)Af(s) ds+,/2 R(t-s)Af(s) ds. If o’(A)_ [A0, ) for
some A0>0 then A/ LI[0, ; HI implies Af LI[0, ; H]. To prove (xvii) we note
that a(0)< and a(t)->O as t--> c imply that R(t)L[O, c; B(H)] and R(t)->O as
t--> by (ix). By (2.5) the result follows.

The first part of (xviii) follows directly from the fact that a L(0, c) implies
A-R(s)La[O, c; B(H)]. To prove the second part of (xviii) we note that u(t)-[(t)
is clearly bounded for _-< 2. For > 2, write

t-1

(3.16) f(t)-u(,)= / A-R(t-s)Af(s) ds + I A-R(t-s)Af(s) ds.
ao -1

The first term on the right side of (3.16)is bounded since A-"R(s)L[1, c; B(H)]
by (ii) and the second term is bounded by (vi).

To prove (xix) we observe that by [4, Remark 2.3], (1.1) has a unique weak solution
given by (2.6). By (xii) we have

(3.17) ijnu(t) S(o)f(O)+ S(c) Jo f’(r) dr.

Hence u(t)--> $()f(o) as t--> where S(t)--> S(c) as t->. By (xii) S(o)= Eo if
aeLl(O,c) and S(c)=[I+tA]- if a ELl(0, cx3). This completes the proof of
Theorem 3.
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4. A nonlinear perturbation. Equation (1.3) has been studied by several authors.
Their results have been of two types; either f 6 W1’2[0, T; H] and one can differentiate
(1.3) cf. [1], [2], [5], [7], [13], or the nonlinear term g must satisfy either a local
boundedness condition [10], or a linear growth condition [11]. By viewing (1.3) as a
nonlinear perturbation of (1.1) the present authors have been able to extend the known
existence results. Throughout the rest of this section we will assume that B is a possibly
multiple valued maximal monotone operator which satisfies

(4.1) lyl--<c lxl/c2, y Bx.

Jx will denote (I +AB)-1, and B will denote the Yosida approximate of B, i.e.,
Bx A-l[I-Jx], cf. [3]. Our next result provides for the existence and uniqueness of
solutions to (1.2).

THEOREM 4. Suppose a(t) is locally absolutely continuous on [0, o), a’(t) is of local
bounded variation on [0, a3), a(0) > 0, and a(t) is ofpositive type. LetB satisfy (4.1), and
let A satisfy (1.4). Iff fl +rE where fl 6D(s) and fEZ W1’2[0, T; H], rE(0)--0, then
equation (1.2) has a unique solution. That is there esists a unique pair offunctions u(t),
w(t) such that

U, W G L2[0, T; H],

(4.2) u(t) 6D(A) a.e., au eL2[O, T; H], w(t)Bu(t) a.e.,

(4.3)

u(t)+ Io a(t-s)Au(s) ds+ a(t-s)w(s) ds=f(t).

Proof. Let ux be the unique solution to the following equation,

ux + a*Aux + a*Bau f.
That (4.3) has a unique solution ux D(sg) follows from [12, Thm. 2] since Bx is
Lipschitz continuous.

Our next step is to show that the ux are uniformly bounded in L2[0, T; HI. To this
end multiply (4.3) by ux and integrate from 0 to 6 where 6 satisfies cllallt0, < 1/2. This
gives us

(4.4)

Thus

(4.5) Ilu I1=0, 211fll=t0,3 + 2c24l’llallLl[o.r],
from which we may infer that not only are the norms of ux uniformly bounded in
L2[0, 6; HI but also in L2[0, T; HI since 6 depends only on a(t) and cl and not on the
nonhomogeneous term in (4.3). By picking subsequences of subsequences, if necessary,
we may assume the following

(4.6) ux---u, a*u---a*u, Aa*u---Aa*u, Bxu---w, a*Bxux---a*w.
Note that the graph of is closed with respect to weak-weak convergence and once the
ux are uniformly bounded in L2[0, T; H]so are the Bxux by (4.1) and In xl--<lyl for any
y Bx. Clearly u(t) and w(t) satisfy

(4.7) u+Aa*u+a*w =f.
We now need to show that w(t)Bu(t) a.e. and u D(s). We will first show that
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w(t) Bu(t) a.e. Rewrite (4.3) with r/instead of A, subtract the two equations, and then
multiply by Aux Au, +Baux B,u and integrate. Since a (t) is of positive type we get

(4.8) ((ux u,, Au Au,)) + ((u u,, Bxu B,u,)) <= O,

from which we infer by the positivity of A

(4.9) ((ux u,, Bxux Bu,)) <= O,

and this in turn gives us

(4.10) lim((u, Bxux)) <-_ ((u, w)).

Since Bxux is bounded and equals (1/A)(I-Jx)ux we see that ux-JxuxO in
L2[0, T; HI, and since BxJxux BJxux we conclude from (4.10) and [3, Prop. 2.5] that
w(t) Bu(t) a.e. To see that u e D() we denote the map u u +Aa*u by (! +v) and
note that (I+v)-1 exists as a bounded operator on L2[0, T; HI, [12]. Moreover
(I +v)-1 maps our f into D(). Thus multiplying (4.7) by (! +v)- we see that u
satisfies

(4.11) u (I + sgv)-f- (I + dv)-l(a* w).

Moreover a*w W1’2[0, T; HI, a*w(O) 0, and (! +dr)-1 takes such functions into
D(d). This establishes the existence part of the theorem. Uniqueness is proven as in
[13].

We remark next that a simple asymptotic result is obtained if the kernel function
a (t) and the nonlinear term B satisfy

(4.12) clla I1,(0,)< 1, cz o.
If this is true, then (4.3) gives

1
(4.13)

from which we may conclude that u e L2[0, o; HI and satisfies (4.13) also.

5. Examples.
Example 1. LetH L2[0, 7r], A& -d2qb/dx2 for b e H2[0, 7r] and b satisfies the

Neumann boundary conditions, that is dqb/dx H [0, 7r]. Hence we may write b as

(5.1) b(x) b, cos nx,
n=O

where 2= n4lqb,12 <. Let a(t) e -c’, then ti =0 e-a dt 1/c. Now suppose f(x, t)
L2[(0, "rr) (0, T)] and A’f( t) L[0, T; H] and that

(5.2) lim A’f( t) (x) , cos nx.

Then, if u(x, t) is the solution to (1.1), we have from (xv) that

(5.3)
(limf(., t)-u(., t)=l-A- I+ A 4’

n2(1-a)
E 0, cos nx.
n=l c+n
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We remark that the operator A does not have an inverse as is needed in the theory
developed in [6].

To illustrate Theorem 4 we give the following example.
Example 2. Let H L2(), where f is a bounded open subset of R with smooth

boundary. Let A =-A, with D(A)= H2(f)(qH (f). Let a(t)= cos t. Let

1, 4(x) >0,
B4(x) sgn 4(x) [-1, 1], b(x) O,

-1, 4(x) < 0.

Then B satisfies (4.1). Let/(t)= h(t)O where h" [0, T]LZ[0, T] and OeD(A). Then
by Theorem 4 there exist functions u and w such that

(5.4) u(t)- cos (t-s)Au(s) ds + cos (t-s)w(s) ds h(t)O,

and w(t) Bu(t) a.e.
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ASYMPTOTIC EXPANSION OF THE HILBERT TRANSFORM*

R. WONGt

Abstract. Asymptotic expansions are obtained for the Hilbert transform

_
f(t)

H:(x) dt (x real),

where the bar indicates that the integral is a Cauchy principal value at t= x. The function f(t) is locally
integrable in (-c, ), continuously differentiable there except possibly at the origin, and decays algebraically
at +/-. Explicit expressions are given for the error terms associated with these expansions. From the explicit
expressions, realistic error bounds can be obtained. Two examples are considered to illustrate the use of these
results.

1. Introduction. Let f be a locally integrable function on (-c, c). The Hilbert
transform of f, when it exists, is defined by

(1.1) Hr(x)=
1 f(t)

dt, x e(-o )
77" d-t--X

where the bar indicates that the integral is a Cauchy principal value at x. This
transform plays an important role in the theory of Fourier analysis [12], and also in the
study of singular integral equations [8].

For many years, the problem of finding asymptotic expansions of integral trans-
forms has been the subject of intensive study. Among the recent papers dealing with this
problem, we mention those of Jones [4], Handelsman and Lew [3], and Olver [11]. As
far as we are aware, there is no asymptotic result for the Hilbert transform available in
the literature, and it appears to be desirable to obtain such a result: this will be done in
the present paper.

We remark that if x is a complex parameter and Irn x > 0 (or Irn x < 0) then the
integral in (1.1) is no longer singular, and it has already been considered by Millar [7].
However, Millar’s approach fails if x is real.

By subdividing the range of integration at the origin, we obtain

(1.2) H(x)
1
{H- (x) +H7 (x)},

where H- (x) and H (x) denote the integrals corresponding to the intervals (-, 0)
and (0, ec), respectively. For definiteness let us restrict x to be positive. In this case,
H- (x) is simply the Stieltjes transform of -f(-t). Asymptotic theory of this transform is
fairly complete; see, for instance, the recent article of McClure and Wong [6]. Thus we
may confine ourselves to the consideration of the one-sided Hilbert transform

(1.3) H- (x)=
f(t)

dt.
Jo t-x

Throughout this paper we shall assume that the function f(t) has an asymptotic
expansion of the form

(1.4) f(t) e ict E ast as t-> c
s=0

* Received by the editors September 20, 1978 and in revised form January 11, 1979.
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A7359.

92



EXPANSION OF THE HILBERT TRANSFORM 93

where 0 < a <= 1 and c is a real number.

2. Main results. For 0 < a < 1 and c real, we set
ict

(2.1) E,c (x) t(t_x-- dt.

It can be proved by using contour integration that if c ->_ 0 then
icx

(2.2) E,(x) [e-i=F(1 a)r(a, icx) + iTr]
X

Here F(a, z) is the incomplete gamma function

F(a, z) Jz t-I e-’ dt (larg zl < 7r),

whose asymptotic expansion, complete with error bounds, is given in [9, pp. 110-111].
Since E, (x) E,_ (x), a similar result holds for c < 0. If c 0 then (2.2) reduces to

1 7rcot ar
(2.3) E,o(X

(t x)
dt x--"

Let o(t)=f(t) and define n(t) by

(2.4) f(t) E as eitt + n(t)
s=0

for n 1, 2, 3,.... Put

(2.5) 6.(x) r/ t"b.(t_____) dt (n 0 1 2 ).
t-xJo

Since On(t)= O(t--) as , the above Cauchy-principal-value integral exists for
each n _---0. Note that 6o(X)=H (x).

The following results provide explicit expressions for the error terms associated
with the asymptotic expansions of the Hilbert transform.

THEOREM 1. Letf(t) be a locally integrable function on [0, ) and satisfy (1.4) with
0 < a < 1. Then for any n >= 1

(2.6) +Hf (X) E,c(X) - + 1
s=OX s=l X X

where the coefficients bs are given by

(2.7) bs J0 ts-ls(t) dt.

Proof. For any n >_-1, we have

(2.8) n(t) n-X(t)- an-1 eiCtt-a-n+1,
and

(2.9) 6,(x) t"-b,(t) dt + x dt.

The first integral is simply the coefficient b,. Inserting (2.8) in (2.9) gives

n(X) bn Q- X[(n--l(X)-- an-lLZ,,c(X)],
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which implies

an-1 b 1. .(x)= -E,c(X) ,_ + + ._ ._l(X).
X X X X

Repeated application of this identity leads to

1 lasb +6n(x)= -E,,,c(x) --z + + H: (x),
X s-O X s=l X

which is the exact statement of the theorem.
We observe that if a 1 in (1.4) then the integral E,c(x) diverges. However, the

above analysis can be extended to include this case. We shall separate the discussion
into two cases: (i) c 0 and (ii) c # 0.

THEOREM 2. Letf(t) be a locally integrable function on [0, oo)andsatiffy (1.4) with
a 1 and c O. Then for x > 1 and for any n >- 1

(2.10) s+ --; +-- .(x),
s=OX s=lX X

where the coefficients cs are given by

(2.11) c IO ts-llls-l(t) dt + I1 ts-Os(t) dt.

Proof. For any n _-> 1, we write

ntpn
6n(x)

t-x

From (2.4), with a 1 and c 0, we have

tn"(t)
t--X

(2.12)

dt + oo tntPn(t)t--x dt.

dt + an-x In (x 1).

Coupling the results (2.12) and (2.13) together, we obtain

6n(x) cn + an-lln x + x6n_(x),

which is equivalent to

Cn an-1 11
6n(x) + (lnx) + n:a6n-x(X)

X X X X

Repeated application of this identity yields

1 n--1 as Cs +--Sn(x)=(lnx) Y. --77i+ --;+Hr(x).
X s=OX s=lX
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This completes the proof of the theorem.
For the case in which c 0 and 1, we need the identity

ict.e. dt e icx (C > 0),(2.14)
t-x

see [1, p. 251]. A similar result holds for c < 0. For convenience, we shall also introduce
the notation

(2.15) E(x) ex +E(-ic),

where E(z) denotes the exponential integral [9, pp. 40-42]. Note that the second term
on the right is simply a constant.

THEOREM 3. Let]’(t) be a locally integrable function on [0, o) and satisly (1.4) with
1 and c O. Then lor any n >- 1

"- a c(2.16) H-(x) E(x) E + --’z + 6,,(x),
s=OX s=l X X

where c is given in (2.11).
Since the proof of this result is very similar to that of Theorem 2, we omit it

completely.
Remark. There seem to be two other approaches to the above problem, which are

entirely different from the one given above. One approach is to use the Plemelj formula
[5] to write

H(x) lim + f(t) dt.
-,o t- x + ie t- x ie

The integrals on the right-hand side are Stieltjes transforms of/(t) and hence one may
use the results already developed in [6]. The disadvantage in this approach is that one
meets a formidable difficulty in estimating the error term 6, (x). (A simple method is
given in the next section.) Another approach is to view H- (x) as a repeated Fourier
transform and apply the results available for this transformation. However, in this
approach, there arises the question whether asymptotic expansions of Fourier trans-
form can be differentiated (see Condition (ii) in [10]): bear in mind that f(t) decays only
algebraically.

3. Bounds or /.(x). To show that the expansions obtained in 2 are indeed
asymptotic in nature, one must prove that

(3.1) 6n(x) o(1) as x c.

We shall, in fact, prove that there exists a positive constant Mn such that

In x
(3.2) I,(x)l <-M,

x

for all x > e.
THEOREM 4. Letf(t) be a locally integrablefunction on [0, c) and satisfy (1.4). If, in

addition, C1(0, ) and the asymptotic expansion off’(t) is obtained by differentiating
(1.4), then the function 8,(x) given in (2.5) satisfies (3.2).

Proof. Write

(3.3) 6,(x)- n.l(X)+ ,.2(x)+ ,.3(x),

where the integrals ,.1, &.2, &.3 correspond respectively to the intervals (0, x- 1),
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(x 1, x / 1), (x + 1, ). Put

(3.4)

(3.5)

Mn.a I0 tl(t)l dt,

sup (t+"lO.(t)l l}.

Under the hypotheses, both numbers M.,a and Mn,2 are finite. To estimate tn,l(X we
further divide the range of integration at 1. It is easy to see that

Mn,1 I1
’-a 1

/ M.,2 t(x_t-- dt.

In the last integral we make a change of variables xu. The resulting integral is
dominated by

X al/x u(1- u)
du,

which is in its turn dominated by 2 In (x- 1). Therefore

(3.6) [&,,(x)l 2(M.,1 + M..)
In x
X

The integral 6n.3(x) can be estimated similarly. Here we have

16.,3(x)[<=__M. 2
1

x /x (1 + u)u
du.

In the interval (x -a, 1), we use the bound (1 + u)-- <= 1, whereas in the interval (1, c),
we use (1 + u)- _-< u -. Thus

(3.7) 16.,3(x)1 =< 1 +- M.,2 x
We now turn to the consideration of n,2(X). Let o.(t)= tnO.(t) and write

x+l 49n(t)__(,tgn(X) x+l

(3.8) 6,,z(x) I dt= I q’(j) dt,
ax-- --X ax-1

where is between and x. By hypotheses, as t, O.(t)=O(t-"-) and 4/(t)
O(t-"-). Put

(3.9)

Then we have

sup {t"+ I’. (t)[’t > 1}.

Iq’ (t)l < (nM,2 + M,,3)t

for all 1. (Note that Mn,3 is finite). It now follows from (3.8) that

()
a+l

ln(3.10) [6n,2(x)] < (nMn,2 + Mn.3)
X

Combination of this result together with (3.6) and (3,7) gives the desired conclusion
(3.2).

We remark that the quantities M.,i, 1, 2, 3, were introduced merely to provide a
rough estimate of the constant M. in (3.2). Of course, much better bounds may be
obtained in specific instances.
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4. Examples. Examining the statements in Theorems 1, 2 and 3, one immediately
observes that the major difficulty in applying these results resides in the evaluation of
the integrals in (2.7) and (2.11). In this section, we shall illustrate some techniques by
which one may succeed in calculating these integrals explicitly. For further examples of
this nature, we refer to the paper by Grosjean [2].

Example l. From the Cauchy-type nature of the integral (1.3), one is tempted to
conjecture that the dominant term of the asymptotic approximation to H- (x) is of the
same order as the function f(x). This conjecture is, however, not true as we shall see in
this example. Let f(t) /-t/1 + t. As oo, we have

(4.1) f(t)--. Y, (-1)st-s-/e.
s=O

Hence, in the notation of 1 and 2, c 0, a 1/2 and as (- 1)s. Since

,(t) tn-1/2(l+t)

the coefficients bs are given by

dt
bs=(-1)s

4;(1+0
dt (-1)2

From (2.6) it now follows that

(4.2) H}(x)= - (-1)s
s=l X

A simple calculation shows that

0.44,
1 n

Thus we obtain, from (3.2),

(4.3)
In x16, (x)] =< [3.38 + 1.84n --7=.
/x

The estimate (4.3) is rather crude in comparison with the actual result [6n(x)l
r/(1 + x), which can be obtained from the closed form evaluation H- (x) r/(1 + x);
see [1, p. 251]. We have chosen this example mainly to illustrate the calculation of the
coefficients bs and to make the observation that dominant approximation in this case is
O(x-) and not O(x -/2) as one might have expected.

Example 2. Consider the integral

e
du (x > 0).(4.4) I(x)

1 -xu

In terms of the Hilbert transform we have

f(t) dt,I(x)
t-X
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where

f(t) =-el_/,_ (-1)*. t-- as --> c.

Thus c 0, a 1 and as (-1)S/s!. To calculate the coefficients Cs, we note that the first
and the second integrals in (2.11) are, respectively, equal to

f s-2 (_1)
u-Se-du+ko= k)(1. +k-s)

and

lie
s--2 (_1)k

lim u-S e- du ,
-0 =0 k !(1 + k s)

Adding these two quantities together gives

(s-l)!

cs =lim e Es(e)+ In e + feii-7---o (s-l)! =o

where Es(e) is the generalized exponential integral [9, p. 43]. Using the identity
[9, p. 43]

(4.5) Es(e)
(-e

{-In e+g,(s)}+ Y’ (-e)
(s- 1) k=ok(s-k 1)’

we have

(-1)
c (s).

s!

In (4.5) the prime on the summation signifies that the term k s 1 is omitted, and 4,(s)
denotes the logarithmic derivative of F(s). It now follows from Theorems 2 and 4 that

(4.6) I(x)---(ln ). (-1)s
s=0 S IX s+l s=l SlX

Taking the first two terms in the expansion, we have

(4.7) I(x)--
1

In
1 Y+ 8(x),

X X X

where y is the Euler constant. A simple calculation gives M1 -< 12.5. Hence

In x
lal(x)l -<- (12.5) .--:--.

x/

Similar results can be obtained for higher error terms.
In conclusion, we wish to make the following remark. If the path of integration

(0, ) in (1.3) or (2.5) can be deformed into a ray, arg t y(y # 0), then the resulting
integral no longer has a singularity at x and hence better error bounds may be
obtained; (see the estimates in [6]). However, such deformations presuppose that f(t) is
the restriction of an analytic function and that the asymptotic expansion (1.4) is valid in
a sector. In this paper, we have confined ourselves entirely to the real-variable methods.
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PRODUCT FORMULAS FOR q-HAHN POLYNOMIALS*

DENNIS STANTON

Abstract. Product formulas for general q-Hahn polynomials are derived from counting arguments
involving subspaces of a finite vector space.

10 Introduction. Product formulas for orthogonal polynomials appear most
naturally as first terms of addition theorems. An addition theorem for a family of
q-Hahn polynomials has been found by Dunkl [7]. We shall give a product formula for
general q-Hahn polynomials which will be the first term of a yet undiscovered addition
theorem for q-Hahn polynomials. The derivation will depend upon the q-Hahn
polynomials being functions on the general linear group over a finite field satisfying
certain invariance properties. This was first discovered by Delsarte [3]. The problem
then is reduced to a combinatorial one involving subspaces of a finite dimensional
vector space. In 2 we give the elementary properties of q-Hahn polynomials, describe
the geometry leading to the polynomials, and state two combinatorial propositions. The
product theorem for q-Hahn polynomials (Theorem 1) is proved in 3. Using a
transformation this formula becomes a linearization formula for dual q-Hahn poly-
nomials. Sufficient conditions for the positivity of the coefficients are easily found. We
also give a sharp bound for some q-Hahn polynomials.

2. Preliminaries. First we briefly describe the circumstances leading to product
formulas. All of this material can be found in Dunkl [6].

If X is a finite set let L(X) denote the complex valued functions on X and Ixl
denote the cardinality of X. If f, geL(X), define the inner product (f, g)=
Ixl-x E,xf(x)g(x) with (f, f) I[fll. Suppose G is a finite group with identity e. For any
subgroup H of G, let Ln(G) {f L(G)lf(hg) f(g) for all h H and g G}. We can
identify Ln(G)L(X), if X =H\G ={Hg[gs G}. Let R denote right translation,
(R (g)f)(gz) f(gEgx), f L(G), gX, g2 a. Suppose V Ln(G) - L(X) is an irreduci-
ble G-module such that Vn {f VIR (h)/= f for all h H} and V: {f VIR (k)f f
for all k K} are 1-dimensional subspaces of V for some subgroup K of G. Let
CnH Vn and end: V be normalized by 11n:1122= [[nnl[ (dim V)-. Then the
following product formulas hold for any g, g2 G;

(2.1) &nH(g)nn(g) lH1-1 _, nn(gxhg2),
hH

(2.2) CHr(e)H:(g)H:(g2)=(IHIIKI)- E CHr(gkhg2),
kK

(2.3) qbHI,:(gl)qbHK(g2) IKI- E tHH(glkg- ),
kK

(2.4) &HH(gl)&H:(gE)=IHI- E &H:(glhg2).
hH

* Received by the editors September 20, 1978 and in revised form January 10, 1979.

" Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903. Much of the
material in this paper appears in the author’s thesis under the direction of Richard Askey.
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in this paper we shall explicitly compute the product formulas (2.1)-(2.4) when bHn
and &me are q-Hahn polynomials.

The q-Hahn polynomials [9] are defined in terms of basic hypergeometric series, if
k is a nonnegative integer, let

-k

c d
q;x ...q)j(a;q)j(b;q)ix i,

,-_o (q; qi,(C; q i;. id ;"q i;.

where (a;q)=(1-a).(1-aq)...(1-aqi-1), (a;q)o=l. If k and N are integers,
0 -<_ k <= N, the kth q-Hahn polynomial is defined by

(2.5) Ok(q-"; a, b,N" q)=3qb2(q-k abqk+l q-X )aq q- q;q

This is a polynomial of degree k in A (x)---q-X. The orthogonality relation for these
polynomials is [2]

N

(2.6) y,. Q(q-X; a, b, N; q)Qi(q-X; a, b, N; q)w(x) 6ikh-,
x’-O

where

(q-N., q),c(aq q)x
w(x)

(q; q)x(q_N/b; q),,
(abq)-x,

hk
(q-/b; q)N-k(aq; q)k(q-; q)k

(q-N-k-/ab q)N-k(q -’, q-)k(abq k+’, q)k

The weight function w (x) is positive if 0 < q # 1 and 0 < a, b lie in the same component
of the complement of the closed interval from q-1 to q-N. We shall need a trans-

formation of a terminating 3b2 [2]

-k -k

(2.7) 3qb2( q a b ) (c/a;q)k k3ck2(q a dd/b] _)a q;
c d

q’ q
(c;q) aq-/l/c

For q-Hahn polynomials (2.7) implies

(2.8)
(q-k/b; q)k(abqOk(q-X; a, b, N; q)= "(aq;q)k k+l)kOk(qN-x; b-’ a-l’ N; q-),

(2.9) Qk(q-x" a, b, N" q)=
(bqN; q-)x

QN_k(q-X, q-N-lb-1 q-N-1 -1,
(1/aq; q-1)x a N, q).

Finally we mention the dual q-Hahn polynomials Ek (q-X a, b, N; q)
Q(q-k., a, b,N’, q), which are polynomials in/x(x) (1- q-X)(1 + abq+1) orthogonal
with respect to hx.

The q-Hahn polynomials Qk(q-x; qn-O-x, q-,-, n’, q) were realized as spherical
functions on GL(v, GF(q)) by Delsarte [3]. We recall the situation. Let E be a vector
space of dimension v over GF(q) with a fixed basis {el, ’, eo}. If A is any subset of a
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vector space, we denote by spA the span of A. Let Xn, 0 =< 2n _-< v, denote the set .of
n-dimensional subspaces of E. In terms of the q-binomial coefficient [1] we have

Ix l= n q (q;q)n

Fix a base point ton Xn, ton sp {el, , en}. Then G GL(v, q) acts transitively on
with isotropy subgroup Hn {g Gltong ton}. The permutation representation of G
on L(Xn) is multiplicity free with n + 1 irreducible constituents, L(Xn)=.,k=O Vk.
The modules Vk were first described by Steinberg [10], and their relation to
q-Hahn polynomials is discussed by Dunkl [7]. The spherical functions are the
Hn-invariant functions in each Vk. They are constant on the Hn-orbits on
which are l)n.x {a Xnldim (a fq ton) n x}, 0-< x <- n. For Vk we have [7]

[v] [ v ] and bnt4(g)=Ok(q-X’qn-o-1 --n--1q n; q), wheredimVk- k k-l
n x dim (tong f’) ton).

If n <-m <-v-n, the H,,-invariant functions on Xn are constant on An.,-
{a Xn]dim (a (3 to,,) n x}, 0 -< x _-< n. It is straightforward to verify [7] that the
H,,-invariant elements of Vk are spanned by bnr (g)= Qk(q-X; qm-O-1, q-m-l, n’, q),
where x n-dim (tong f3 to,). Henceforth we shall have H Hn and K H,,.

Before working out the product formulas (2.1)-(2.4), we state two enumerative
propositions involving q-binomial coefficients.

PROPOSITION 1. Let Vlv and Wu be N and M-dimensional vector spaces over
GF(q).

(i) The numberofpairs ofn-dimensional subspaces Vn, Wn), Vn Vlv, Wn Wt,

(ii) For any pair (Vn, Wn) there are IGL(n, q)l- (q; q)nq((-) nonsingular linear

transJ’ormations [rom Vn to
(iii) The number o1 k-dimensional subspaces W .Wsuch that W

qq
(iv) The number o[linear trans[ormations g[rom Vn to W such that dim (Vng) ] is

PROPOSITION 2. Let t, n, m, l, k, ], and be integers such that 0 <-t <-_ n <-m,
O<-_]<-_m-n+t, ]-t+l-k<-i<-], and max(l-t,O)<-k<-min(l,n-t). Let {el,"’,
e,/} be a basis ]’or Vover GF(q), and letA be a fixed l-dimensional subspace o]’ sp {el,
", en} such that dim (A Flsp {e,..., en_}) k. Then the number o]-dimensional

subspaces B o]’ V such that dim ((A +B) f’l sp {el,. , en-, en/l," ", e,,/}) k +

andBfqsp{el, en} {O}is[m-n+t] aft, t- + k, j- i)qi(n-t+l-k).
1

Proof. If Bi sp {el," ", e,} {0}, the projection ofBi on sp {e,/, ., e,,+,} is a
j-dimensional subspace F.. Fix F. with a basis {fl,"’, .}. Then Bi is uniquely
determined by {zl," ", zi}c sp {e,. ., en} such that {fl + Zl," ", . + zi} is a basis
for Bi. Let C-+k be a .fixed (t- +.k)-dimensional complement in sp {en-+, ,
to the projection of Al on sp{en-+l,’’’,en}. If dim((A+Bi)f’lsp{el,...,en_,
en+l, , e,,/}) k + i, the projection of sp {z,. , zi} on C-/k is (j--/)-dimen-
sional. The projection of sp {z x, , zi} on sp {e 1," , en-} +A is arbitrary. This gives
a(j, t- + k, j-i)q(n-/-k) possible choices for"{zl, , z}. E!
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3. The product formula for q-Hahn polynomials. In this section we shall explicitly
calculate the product formula (2.2) for q-Hahn polynomials. For any 0 _-< _-<
be defined on the basis {el, , ev} by eig ev+l-i, 1 <- <- l, v / 1 <-_ <- v, eg e,
/ 1 -< -<_ v l, and go identity. Fix 0 =< s, =< n and let gl gs and g2 g, in the

product formula (2.2). In order to evaluate the argument of the q-Hahn polynomial on
the right hand side of (2.2), we need to find dim (oongskhg, (3 w,,) dim (ongskh
This is the intent of the next two lemmas.

LEMMA 1. Let wn and g be as above. The number of kK such that

n--s--Or q n--s--og q

, q)l]m-n] q"lOL(a, q)l IOL(m-n +s, q)]q’-’.
L’Ol.Jq

Proof. Clearly angs-sp {es/l," ", en, eo-/l,’", e}, so that Om (’langs
sp {es/l, , en}. Since k K fixes w on, wgsk VI n sp {e/l, , en}k
Choose (n -s- a)-dimensional subspaces An-s- and A’-s- of sp {es/l, , en} and
n respectively such that An__k A’__ angk VI an. By Proposition 1 (i)-(ii) there

are IGL(n-s-, q)l possible choices for k. To extend k to
n--s--o q n--s--og q

sp {es+l, , en}, let B, be a fixed complement ofA,__ in sp {e+l, , en} and B’ be
an a-dimensional subspace of to,, such that ton 71B’ {0}. If k maps B to B’, by

Proposition l(iii) there are q possible choices for B’ and thus
o q

Im n qIGL(, q)l possible choices for k. Finally extending k to co,. k and to
k

we obtain from Proposition 1 (ii)-(iii)lGL(m n + s, q)lq(m-+(-lGL(v m, q)l
q(- possible choices for k.

Given keK as in Lemma 1, we now consider gkh. Since h fixes ,
dim (gkh)=n -s-. This implies that dim (gkh sp {e+, , e})
n s , for some B, 0 N n s N n t; and that dim (gkh g)
n-s--B+ for some ,

LMMa 2. I k e K satisfies the hypothesis oLemma 1, then the number o[ h e H
such that dim (gkh sp {e+, , e}) n -s-- and dim (.gkh mg)
n--s----B+ is

, n n s c
IGL(n s- , q)l qq IGL(, q)l

o n-s--I n-s--/

q+),__)lGL(s+a,q)l[m-n+t] [s+a] iGL(y+O,q)lq,_,+o)+o)
3/+0 q 3,+0 q

a(y+O,t-fl, O)[ v-m-t ] q
s +ce -3/-O q

(s+a --/--O)(m +t)

IGL(s + a y O, q)lq (’-’-’-’)(’+’+s

IGL(v n a s, q)l,

.where a (y + O, t-, O) is given by Proposition 1 (iv).
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Proof. From Lemma 1 A’,_s_,, o)ngsk f) ton, and since h fixes
An__h f’lsp {et+l, en}. Let C’sp {et+l, ,en} ,___ and C be (n-

s-a -/3)-dimensional subspaces of A’,_s_ and sp {et+l, en} respectively. If h

mapsC’ [ n-t I [ n-s- ],___ to C"n___, there are IGL(n s a
n s o -13 ,, n s o -13 ,,

/3, q)[ possible choices for h by Proposition l(i)-(ii). As in Lemma 1, fix a/3-dimensional
complementD to C’-s--t in A’n-s-o,, and letD be a/3-dimensional subspace of
such that Dt(3sp{e,+l,’", e}-{0}. If h maps D to D, there are

3 qq ]GL(, q)} possible extensions of h to A,,__ by Proposition 1,(ii)-(iii).

Extending h to wn, by Proposition l(ii)-(iii) there are q(+)(n--)lGL(s+,q)
possible choices for h.

Let Z’+ =wngk be a fixed complement to A’_s_. We shall define h on
Z]+. If dim (tongskh t0mgt) n s a --/3 + y, then dim (tongkh (3 sp {el, , e,,
ev_,+a,...,ev})=n-s--3+y+O for some O,n-s-a-3+y<=n-s--3+
3’ + 0

_
n. Choose a (0 + 3")-dimensional subspace F+r of sp {e,. ., e,,, ev_,+, , e}

such that dim ((F+/+ C’n’--- +D) 0 to,,g,) n-s-a - + y andF’+v f’) to, ={0}.
By Proposition 2 (] 0 + y, I= n-s- a, k n-s-a-, i= y, Al C’,-s-- + D’,

V=sp{e,... e,,ev_,+l,.., e})thenumberofsuchF+is[m-n+t]qa(O+ t-
0+3", O)q(+)("-t+). Let F+v be a (0+3")-dimensional subspace of Z’+ and let h

a
IGL(O+3",q)I possible choices for h.map Fo/ to Fo/. There are

0+, q

Choose an (s+a-0-3’)-dimensional subspace G’/-0-,/ of E such that

Gs+"-o-(qsp{e,"" e,,,e_t+l,"" e}={0}. By Proposition l(iii) there are

[ v-m-t ] q(+-v-O)(m+t) such G,,s+-o-v, and any of the IGL(s+a-O-3",
s+a-O-y q

transformations from a fixed complement of F’0+v in Zs+’ to Gs+-"0-v will complete
the definition of h on Z’s+.

Extending h to E there are q(O-n--s)(++S)lGL(v-n-a-s,q) choices. By
collecting terms and summing on 0 Lemma 2 is established.

The q-Hahn polynomials in the product formula (2.2) are normalized

by IlcO llN ]I&rKIlaZ (dim V)-. Using dim V k q k 1 q’ IA , l

q and the orthogonality relation (2.6) with a =q
n-x q x q

b q-’-a, and N n, we obtain

n

After changing 3’ to s + a-3"- 0 and collecting terms in Lemma 1 and Lemma 2 the
product formula (2.2) can be stated.

THEOREM 1. Let k, s, t, n, m, and v be integers and q be a prime power. If
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0=< k, s, <- n <- m <-v-n, then

(3.1) k q k q (m-n)k(k m-v-1 -m-1 m-v-1 -m-1q (q ;q ,q n;q)Ok(q -t’,q ,q n;q)

n-s q sff-ce q

oq () OqA(q; q) (_) Ok(q-0--,.,qm-V-l,q-m-l,n;q),
where A (s + a)(2fl + a 3’) +/ (fl t) 3’(fi 3’ 2t +.n m).

COROLLARY. The productformula (3.1) holds if 0 <-_ k, s, <- n are integers, q is any
complex number ]q] 1, and qm-V-1 and q-m-1 are replaced by complex numbers a and b
respectively, a, b q-l, ab q-n-l-l, 1, 2, n.

Proof. Both sides of (3.1) are rational functions of q, a, and b. We have equality for
infinitely many values of q, a, and b; and the stated conditions on q, a, and b are
sufficient to avoid the poles. The sums remain finite since s, t, and n are integers.

Theorem 1 implies product formulas for various limiting cases of q-Hahn poly-
nomials. Its major importance is that it is the first term of an addition fcrmula for
q-Hahn polynomials. For m n this is a result of Dunkl [7]. As q- 1 the product
formula for Hahn polynomials is obtained [5], [6].

We could use the positively of the kernel in Theorem 1 for q > 1 and either 0 < a,
b < q-2n or a, b q-n-l, 1, 2, n, to obtain a bound for the q-Hahn polynomials.
However, a sharp bound can be derived from (2.7) with a q-X, b abq k+a c q-"
and d aq. The result is

(bq -k’, q-X)i
(3.2) [Ok(q a, b, n; q)]<- max

_
x =0, 1,..., n, q >0.

O<_j<_k (1/aq q

If 0 < a, b < q-" and q > 1 (3.2) implies

(3.3) IOk(q-X; a, b, n;q)l--<max {1, [Qk(q-"; a, b, n; q)l}, x=O, 1,...,n,

and thus for 0 < a _-< b < q-" and q > 1

(3.4) IO,(q -’’, a, b, n;q)l <= 1, x 0, 1,-.., n.

By using (2.8) and (2.9) the bound (3.3) gives a bound for any of the q-Hahn
polynomials for q > 0. For q 1, see Dunkl [4] and Gasper [8].

The analytic continuation can be done in another way to obtain a linearization
formula for some dual q-Hahn polynomials. George Gasper has pointed out to the
author that by iterating (2.7) to obtain

q 3(2 qm-V q;q 3(2
q q q

q;q

[m] [v-nI q q q

k q k q

the k-dependence in (3.1) lies entirely in the polynomials. To retain the dual poly-
nomials if rn n =/’, s, and remain nonnegative integers, we can replace q" and q by
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A and B if A # qt, B/A q-i+l, 0, 1, s +j- 1. We can replace qk by x if
t+lB/A # q 0, 1, , s +]- 1. Then (3.1) can be interpreted as a linearization or a

mixed linearization formula for dual ab2 polynomials with sufficient conditions on A, B,
q, and ] to make the coefficients positive.

The product formula (2.1) follows from Theorem 1 with m n. We now state the
mixed product formulas (2.4) and (2.3).

THEOREM 2. Let k, s, t, n, m, and v be integers and q be a prime power. If
O <- k, s, t <- n <- m <-n-v, then

Ok(q-s qn-V-1 q-n-l, -t. m-v-1 -m-1n;q)Qk(q ,q ,q ,n;q)

(3.5) [ n-t

qG)q,Ok(q--t3-.,q m-v-l, q--,n;q),

where A (a + s 8)(s + a t) + (m + n + fl s 2.

[n] i-v- l

"), , Y q

q-’-, n; q)Ok(q -t’, q m--v--1 --m--1,q ,n;q)

(3.6) [ n-t ] [m-n+t]
y n-s-a q a q[ ] [v-m-t] [m-n+t-a] [s-/3]

L J[Jn-sq s q

(q; q)(_)q()qAOk(q-,-O- q,-V-1, q-,-1, n’, q),

where A (a + s )(s + a t) +(m n + +)-s(m n + s).
As in (3.1) we can analytically continue q", q", qO, and q in (3.5) and transform

(3.6) to obtain a linearization formula for dual polynomials.
Finally we mention a family of q-Krawtchouk polynomials obtained from the

q-Hahn polynomials by letting a 0, b oo, and ab c. For various values of c these
are spherical functions on the other infinite families of Chevalley groups over a finite
field. The analogous geometry and product formulas for these polynomials will be
described in a forthcoming paper.

Acknowledgment. The author would particularly like to thank Professor Dunkl
for access to his preprints.
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A NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATION
OF LURIE TYPE*

E. N. CHUKWU?

Abstract. The problem of Lurie is posed for systems described by a functional differential equation of
neutral type. Sufficient conditions are obtained for absolute stability for the controlled system if it is assumed
that the uncontrolled plant equation is uniformly asymptotically stable. Both the direct and indirect control
cases are treated.

1. Introduction. Consider a system of real ordinary differential equations

dx
Ax + bf(tr),

dt
(1)

do" 7-c x rf(r)
dt

in which f: (-, o)(-c, ) is sectionally continuous with of(g)>0 for cr 0,
f(0) 0, A is an n n matrix, c and b are constant n-vectors and r is a scalar. The
problem of Lurie consists of finding a necessary and sufficient condition for every
solution (or(t), x(t)) of (1) to tend to (0, 0) as oo whenever it is assumed that the
uncontrolled equation

dx
(2) --=Ax

dt

is uniformly asymptotically stable in the large (el. [1, p. 9]). The entire monograph by
Lefschetz was devoted to this problem. Recently, Somolinos [2] has generalized this
problem of Lurie to functional differential equation of retarded type. In this paper we
shall treat the problem of Lurie when the system is described by functional differential
equation of neutral type. We shall assume that the uncontrolled system is uniformly
asymptotically stable. Utilizing a theorem of Cruz and Hale in [3] which ensures the
existence of a Liapunov functional, we then obtain conditions for the uniform asymp-
totic stability of the feedback system.

2. Notations and preliminary results. Let E" be a real n-dimensional Euclidean
vector space with norm[. ]. Let h _-> 0 be a given real number. Let C be the space
C([-h, 0], En) of continuous functions taking I-h, 0] into E with I111, c defined
by I1 11- sup -h _-< 0 _-< 0). For any continuous function x(O) on -h -< 0 -< tl,

tl > 0 and a fixed t, 0 <- <-_ tl, xt denotes the function xt(O) x(t + 0), -h <- 0 <- O. Let
D(. )" [to, oo) x C E be a continuous function defined by

(3) D(t)qb qb(O)- g(t, ), for 6 [to, oo) ---/, b C,

where

g" [to, oo)x CEn,

* Received by the editors August 18, 1977 and in revised form June 20, 1978. This research was
supported by National Aeronautics and Space Administration under Contract NSG 1445.

" Cleveland State University, Cleveland, Ohio 44115, U.S.A. Now on leave of absence as Reader,
University of Jos, Jos, Nigeria.
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is continuous, g(t, ) is linear in 4 and is given by
0

(4) g(t, qb)= I_ [dstx(t, s)]b(s).
h

The function x(t, s) is an n x n matrix L s I-h, 0], with elements of bounded
variation in s which satisfy the following condition:

o

0 --OrO

for all /, b C, where is continuous nondecreasing for 0 s [0, h ], l(0) 0.
Let A" I C -> E be continuous and consider the equation

d

(6)
d-(D(t)xt) A(t, xt),

Xto &, to 6 L
The following theorem ensures the existence of a Liapunov functional when (6) is
uniformly asymptotically stable.

THEOREM 2.1 [3]. Let D(t) and A(t, .) be bounded linear operators from C into E
such that ]:or some constant L > O, for all qb C, for all >-_ to,

]O )4 <- t[14 l].

/.f (6) is uniformly asymptotically stable, then there exist positive constants M, a and a
continuous scalar function V on 1 C such that

(i) ID(t)6} <- V(t,

(7) (ii) (t, 4)<=-aV(t,

(iii) IV(t,
]’or all >= to, qb, d/ C; Q is the usual upper right hand derivate along the solutions of (6).

In Theorem 2.1 it is assumed that D(t) and A(t, are linear. However, Cruz and
Hale [3] stated a similar result when A(t, ) is not linear in b, but g(t, 4) in (3) satisfies

[g(t, 6)[-<Zl16[I, for all _>- to.

We now state the result and point out the required lemma needed to carry out the
proof in [3]. It was communicated to the author by Professor J. K. Hale.

THEOREM 2.2.Let A(t, O)= O, and let A(t,
uniformly with respect to t, with Lipschitz constant N. LetD satisfy locally the condition

for all >= to, for some K.
Assume that the null solution of (6) is uniformly asymptotically stable. Then there

exist a S0>0, a M=M(So)>O, positive definite functions b(u), c(u), on O<=u<=So
and a scalar function V(t, ) defined and continuous for e ! C, I111 -< So such that

(a) [D(t)4[ <- V(t, qb) <= b(llll)
(b) f/(t, ) <-_-c([D(t)[)
(c) IV(t, 1)- W(t, =)I-<-MIII-

for all >- to, bl, &2 C, I[&ill--< So, 1, 2. The condition (b) can be replaced by
(b’) (/’(t, qb)<- -V(t, qb), fl>O.
Remark. The problem with the proof of Theorem 7.2 in [3] is contained in verifying

(c). The following lemma is needed.
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LEMMA (Hale). In (6) assume thatD satisfies the conditions of Theorem 2.2. Then
for any ro > 0, there is a constant L L(ro) such that

IIx,(to, 1)- xt(to,

for all >- to, qbx, 2 for which

IIx,(to, )11 <-- ro, Ilx,(/0, )11--< r0.

Remark. The proof is not as easy as for retarded equations since one cannot apply
the Gronwall inequality directly. One must take small steps in time and make careful
estimates using properties of D(t).

To prove Theorem 2.2, set

V(t, ) sup ID(t + s)x,+s(to,
s>>_O

and proceed as Hale [4, p. 310]. Our lemma replaces the inequality on page 310, bottom
line.

The first case considered is the indirect control system

d
(D(t)xt)=A(t,x,)+bf(r), t>-to,

dt

(8) r(t) B(t, x(t))- rf(o’),

xto qb, to e I,
in which A is as above, B(t, y) is a scalar continuous function in =>0, y eE", and f is a
scalar function which is continuous.

DEFINn:tON. The operator D in (3) is uniformly stable if there are constants a > 0,
/ > 0 such that the solution of the "difference equations"

D(t)x, O, xto qb, D(to)ek O,

satisfies IIx, ll-<- e-"-’llll, >-_ to.

3. Main theorems.
THEOREM 3.1. Assume that in (8) the uncontrolled system (6) is uniformly asymp-

totically stable. Leta andKbe as given by Theorem 2.1. Assume thatA(t, andD(t) are
bounded linear operators from C into E such that ID(t)l <--Mi]&[I for all >- to, qb C.
Assume that:

(i) f(s) ds -* O, as

there exists a positive constant c such that

(ii) [B(t, x(t)l <-- c([D(t)x,I)
for all I, where x is continuous;

(iii) for all 0 e [0, h ] the relation

4r> C+l_l(O)
holds where is defined in (5);

(iv) the operator D is uniformly stable.
Then (8) i uniformly aymptotically stable.
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Proof. Since (6) is uniformly asymptotically stable, there exists a Liapunov
functional for (6) given by Theorem 2.1. Let V(8) denote the derivative of V along the
solutions of (8). Let y y(t0, b), x X(to, 4) be the solutions of (8) and (6) respectively,
then the relations (7) imply that

(9) r(8)(/) t) ir(6)(/, b)+K lim
1

h-,O lYt+h(t, O)--Xt+h(t, q)l"

But then
t+h

D(t + h)(yt+h --Xt+h) It bf(tr) ds,

for any h N O. Since g satisfies (5) we have that there exists an ho > 0 such that

1 Itt+hly.+. x,+,l<-- [bf(o-)[ ds.1-/(ho)

for 0-< h -< h0. We now use this inequality in (9) to obtain

K
(10) Q(s>(t, b) <= r(6)(t, b) + Il(ho------- ]bf(’)l"

Hence, by (7(ii))

Kf%(t, )=<-v+I/()[.
1 (h0)

Define W V2/2 +f(s) ds. The derivative of W along the solutions of (8) satisfies

V2 [2 ( K )=<-a r[f(tr) + V
1 l(ho){bf(tr)[ + [f(cr)B[.

By conditions (ii) of Theorem 3.1 and (i) of Theorem 2.1 we obtain from this that

( Klbl -c)[f(o’)[.(11) W<--aV:-rlf(o’)l+ V
1-/(ho)

The right hand side of (11) is a quadratic form in V and ]/(tr)]. It is obviously negative
definite by condition (iii). Hence, there exists a positive number 3’ such that

g" <-- -v(v +

From this it follows that

<-_-,[D(t, )[=,
so that the second condition of (4.2) in Theorem 4.1 of Cruz and Hale [3] is met for the
Liapunov function W. Trivially, also the other conditions in (4.2) are satisfied. Because
D is a uniformly stfible operator the operator D given by

D (0)- g(t, if),

where



112 . N. CHUKWU

is uniformly stable. Therefore, by Theorem 4.1 of [3] the system

dt

is uniformly asymptotically stable. Here

D(t)y,

[A(t,x,)+bf(cr)]g(t, ,)=
[B(t, x(t)-

The proof is complete.
THEOREM 3.2. Consider (8), and assume that A(t, 0)=0, A(t, ) is locally Lip-

schitz in uniformly with respect w t, and the operawr D satisfies
]D(t)lMl]]],

locally in C, for all to and some M. Assume thatD is uniformly stable and that (6)
is uniformly asymptotically stable. LetK and be as given by Theorem 2.2 and assume
that

(i) For all 0 [0, h the relation

4r> c +i,_/(0)
holds where is defined in (5), and where c is a constant such that

(ii) IB(t, x(t)l clD(x,I

for all continuous x and all L

(iii)
]:(s) ds -> oo, as Irl-->

Then there exists a 80 > 0, such that]or any e, 0 < e < 6o and any to >- O, there is a 6 6 e
such that ]lr[[ < 6 implies Ilxt(to, 4))11 < or all Eto, oo); and [or any q > O, 0 <= rt <= 6o,
there exists a T(rt)> 0, such that I111 =< , implies IIx,(to, )[[-< rt, if >- to+ T(7). In other
words all solutions in the ball S(6o)

_
C are uniformly asymptotically stable.

Proof. The hypotheses of the theorem imply there is a Liapunov functional V
satisfying the conditions of Theorem 2.2. Choose 6o as in Theorem 2.2. Let I2(s) denote
the derivative of V along solutions of (8). If y y(to, &), x X(to, 4)) are the solutions of
(8) and (6) respectively, then, as before,

r(8)(t, b) Q(6)(t,b)+K
1-/(ho)

provided [111-<-60. On using

w=5-+ (s)ds,

one easily verifies that the conditions of Theorem 4.1 of [3] are satisfied for W, provided
IIll--< 0, By the cited theorem the trivial solution of (8) is uniformly asymptotically
stable when confined to the ball $(60) C.
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Consider the direct control case"

(12)

d
td
"-7(D(t)x’) A(t, x,)+ bf((r),

-(D(t)xt) B(t, xt) + bf(r),

=cD(t)x,,

Xto 0",

where the stable atomic operator D is atomic at 0, and where the letters are there
defined above and c rb =-r < 0.

THEOREM 3.3. Assume that D(t) and A(t, are bounded linear operators from C
into E such that

for all >= to, & C, and

(13) IB(t, )1-<- fllD(t)l, /3 > O.

Suppose (6) is uniformly asymptotically stable and
(i) f(0) 0, rf(r) > 0, (r # 0, f continuous and

Io" f s ds - oo as Io-I -->

(ii) Let 12 and K be given by Theorem 2.1 and let the relation

(14) 512r

hold for all s [0, h ], where is defined in (5).
Then (12) is uniformly asymptotically stable.
Proof. Proceed as before, using Theorem 2.1 to obtain a Liapunov functional V for

the system (6). Differentiating V along solutions of (12) yields

r(12)(t ) -- r’(6)(t b)+
K

1-/(h0)

Set

W --2--+ d(s) ds.

Then

v Vklbf(r)l
W(2)__< -c + +f(r)6-

1 (ho)

where we have used (13) and the property of V. We now use (14) to deduce the result as
before.
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A NOTE ON MULTIPLE ASYMPTOTIC SERIES*

R. D. GREGORY,

Abstract. There has appeared in the literature [K. D. Shere, Introduction to multiple asymptotic series
with an application to elastic scattering an attempt to extend the concept of asymptotic series to "multiple
asymptotic series" of the form

e-Amx

E Ea,,n-----g--.
m=0 n=O X

Applications referring to this work have also appeared in W. Biihring [J. Mathematical Phys., 18 (1977), pp.
1121-1136], W. Biihring [Angew. Math. Mech., 57 (1977), T226-T227], K. D. Shere [SIAM J..Math. Anal.,
3 (1972), pp. 263-271], and K. D. Shere [SIAM J. Math. Anal., 3 (1972), pp. 272-:84]. It is the purpose of
this note to show that the definition of a "multiple asymptotic series" given in K. D. Shere
[J. Mathematical Phys., 12 (1971), pp. 78-82 is unsound in the sense that it fails to satisfy certain basic criteria
(for instance when the series involved are convergent then they are not necessarily asymptotic, according to
this definition)" also even though uncountably many alternative definitions exist which overcome these
difficulties, each is quite arbitrary and has little practical value.

1. The definition of multiple asymptotic series given in [$]. Suppose that we wish
to give a meaning to the formal expansion

an
e

bn(1.1) F(x) E --+ Y asx.
n=0 X =0 X

(Actually the work in [5] is carried through in greater generality, but there is no need for
this in the present note.)

If anF(x)-- Y --’z asxm,
n=OX

(where here and elsewhere the symbol is used in the normal Poincar6 sense) and this
series is convergent for x sufficiently large, then there is no difficulty. We would merely
regard (1.1) as meaning

{ . a.} b,,
(1.2) e F(x)-

n=O =0 X

However, if the series ,--o a,x-" is not convergent but only asymptotic as x -+ oo, the
expression on the left in (1.2) is without meaning. The device suggested in [5] is to
replace the divergent expression Y,--o a,x-" in (1.2) by a constructed function F*(x)
which is known to be asymptotic to

an
----ff as x ---> oo.

n=OX

To be precise (for the case in which [a.I >-- 1, /n), the choice of F*(x) given in [5] is

(1.3) F*(x)= 2 1-exp

a construction due to Ritt [3].
The series in (1.3) is convergent and

an(1.4) F*(x)
n=OX

* Received by the editors August 23, 1978, and in revised form January 4, 1979.

" Department of Mathematics, University of Manchester, Manchester, England M13 9PL. On leave of
absence at the University of British Columbia, Vancouver, B.C. V6T W5 Canada, during 1977-79. This
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In terms of this F*, the definition of the multiple asymptotic series (M.A.S.) (1.1), as
given in [5], is that

bn(1.5) eX[F(x)-F*(x)]
n=oX

This definition does however have very serious disadvantages, namely:
(i) if F(x) is such that the series in (1.1) are both convergent, then F(x) may not

possess an M.A.S. in the above sense;
(ii) the functions which do possess an M.A.S. in this sense do not form a linear

space.
To show (i), consider the function

(1.6) F(x)= +e E +e-",, (x>l).
x-1 ,=oX

Then F*, as given by (1.3) is

(1.7)

and so

eX { lx).}(1.8) eX{F(x)-F*(x)} --zexp + 1
n=0 X

Now let x through the sequence of values X-= (x,), where Xm (rn !)1/2, rn --> 0.
Then

A, =- e{F(x)-F*(xm)} 1 + 2= exp

(1.9)

( 1 x)ex (’>’"

>exp =e-/ae
x (m)/z"

So

(1.10)

Hence

log Am > (m !)l/2 1/2m log (m !) 1/2-+ as m

(1.11) e {F(x)-F*(x)} --> co

as x -+ through X, and so no choice of the (b,,) may be made to satisfy (1.5). Thus no
M.A.S. exists for the function (1.6).

To show (ii), consider the function

(1.12) G(x)= Y, -- 1-exp
.=ox 2(i)2 +

Since

n!
(1.1.3) G(x)--- ., -’z as x -+ ,

n=OX

it follows from the construction (1.3) that

(1.14) G*(x)=,,Y"o’-ff=x 1-exp
X
2
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and hence from the definition (1.5) that G(x) has the M.A.S.

(1.15) G(x) _, ---+ e -x.
n=OX

But the function H(x)=-2G(x) has no M.A.S., since

(1.16) eX{H(x) H*(x)}= Y
2n!e" x x

n=0 xn exp -4(n!) -exp -2i-niiZ +2

(1.17) as x through X,

as with counterexample (i).
These two counterexamples contradict Theorems 2.1 and 2.2 in [5]. The error in

these theorems is an (apparent) assumption that relations such as

(1.18) exp
2 la.i! (e-X) as x m,

are uniformly valid in n. In particular the statements f * in Theorem 2.1, and
fo(x)go(x) in Theorem 2.2 are false.

2. Alternative definitions of multiple asymptotic series. It could be argued that
the preceding difficulties arise from the fact that (1.3) is a "wrong" choice for F*, and
that by a "correct" choice of F* these difficulties would disappear. This is in fact so,
and indeed there are uncountably many such definitions which will avoid the difficulties
(i), (ii).

To show that such choices for F* exist, proceed as follows:
Let

= F(x); F(x). 2 -- as x oo, for some (an)
n=OX

and define on , the equivalence relation

Fl(x)-=-F2(x) iff Fl(x)-F2(x)= O(x-n) as xoe, Vn =>0.

Let T be the linear space of equivalence classes generated on by (with the linear
operations defined in the obvious way, as with the ,-spaces). Then T is clearly
isomorphic to the linear space S of all sequences (an). Thus any definition for F*(x)
merely consists of selecting a single representative from each of the above equivalence
classes. Let be the subspace of $ whose sequences (an) are such that the series

n=o anx is convergent for sufficiently large x, and let be the corresponding
subspace of T. Take a Hamel basis/ of , and extend it to be a Hamel basis B of T. [See
Rudin [4], p. 52 for a definition of Hamel basis.]

Now select F*(x) as follows"
(a) For the elements of/ let

anF*(x)= E ---,
n=OX

which is defined for x sufficiently large.
(b) For the elements of B not in/, assign F* arbitrarily.
(c) For all other elements of T, construct F* by finite linear combinations from (a),

(b).
Any of these uncountably many definitions of F* will overcome the difficulties (i),

(ii).
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Unfortunately, each of these definitions is quite arbitrary so that in a problem
where F(x) is unknown, and where we are seeking to determine its asymptotic behavior
as x oo, one would not know the correct F* to choose unless perhaps there were some
physical motivation to guide this choice. This is best illustrated by an example. Suppose
we have shown that an (unknown) F(x) is such that

n!
(2.1) F(x) as x oo,

n=OX

and we wish to proceed on to find an M.A.S. for F(x). Suppose we have made the
selection of F*, corresponding to (n !), to be (say)

(2.2) F*(x)= Y’. -- 1-exp
.=0x (n!)

Then if the unknown function F were actually

(2.3) F(x)=Eo--:x l-exp +e

it follows that F(x) would possess no M.A.S. In short, one only knows the correct"
choice for F* when F(x) is already known correct to O(e-).

3. Comparison with uniform asymptotic expansions. For functions of the form
F(x, e), where e -> 0 is an additional parameter, the statement

a.(e) b.(e)
(3.1) V(x, e)"- Y. + e E

n=O X n=O X

as x , uniformly for e >-O, certainly has a meaning and implies more information
than the nonuniform asymptotic series

(3.2) F(x, e) E ),
n=O X

valid for each e > 0. The point of the previous sections is that a uniform formula such as
(3.1) cannot be deduced by seeking further precision from the nonuniform formula
(3.2), unless the series in (3.2) is actually convergent.
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STRUCTURE OF RESOLVENTS OF VOLTERRA INTEGRAL AND
INTEGRODIFFERENTIAL SYSTEMS*

G. S. JORDAN? AND ROBERT L. WHEELER

Abstract. Conditions are given which ensure that the resolvent of a linear Volterra integral or
integrodifferential system whose kernel belongs to a weighted L1 space may be written as a matrix whose
entries are finite sums of products of polynomials and exponentials, plus a matrix which belongs to the same
weighted L1 space. These results are obtained from theorems of the same type which we prove for more
general linear Volterra-Stieltjes equations. The results are stated in terms of Laplace transform hypotheses
and moment conditions.

1. Introduction. The integral resolvent r(t) and differential resolvent R (t) deter-
mined by the equations

il.1) r(t)=B(t)- r(t-s)B(s) ds (t R+-[O, c)),

(1.2) R’(t)=R(t)M+ R(t-s)B(s) ds (R(0)=I, tR+)

are associated with the linear Volterra integral and integrodifferential systems

(1.3) x(t)=f(t)- x(t-s)B(s) ds (tR/),

(1.4) x’(t)=x(t)M+ x(t-s)B(s)ds+f(t) (x(O)=xo, tR/),

respectively. Here r(t), R (t), M and B(t) are n x n matrices, I is the identity matrix, and
x(t) and f(t) are row vectors with n components. Under mild assumptions on B(t) and
f(t) (see [10, Chap. 4] and [4]), (1.3) and (1.4) are solved by

(1.5) x(t) =f(t)- f(t-s)r(s) ds (t e R+),

(1.6) x(t)=xoR(t)+ f(t-s)R(s) ds (tR+),

respectively.
Let B(t)LI(R +) and let/(z) =-o e-ZtB(t)dt denote the Laplace transform of

B(t). Then a classical result due to Paley and Wiener [13] is that r(t)La(R +) if and
only if

(1.7) det [I +/(z)] 0 (Re z >- 0),

and a more recent result of Grossman and Miller [5] is that R (t) LI(R /) if and only if

(1.8) det[zI-M-(z)]O (Re z _>-0).

For results on the integrability of resolvents when the kernel B(t)LI(R+), see [14],
[7], [9], [3].

* Received by the editors June 21, 1978, and in revised form March 13, 1979.
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Analogues of the results of Paley and Wiener and of Grossman and Miller when
B (t) belongs to a weighted L space have been proved by Gelfand, Raikov and Shilov
[2, p. 116] (see also 1 ]) and by Shea and Wainger 14], respectively. Our purpose here is
to describe the structure of r(t) and R(t) when B(t) belongs to a weighted L space and
the determinants in (1.7) and (1.8) have finitely many zeros in the associated closed
half-plane of convergence of B(z).

We consider a positive continuous weight function O(t) on R / such that O(0)= 1,

(1.9)

and if

p(s + t) <= p(s)p(t) (0 <-- s, < o),

po -= lim log p(t)
with -o < po < c

then

(1.10) O(t)e’ is nondecreasing on R+.
(The existence of the limit Oo follows from (1.9); see [2, p. 113]. The regularity condition
(1.10) is used to estimate certain integrals and is a crucial hypothesis of the proposition
of [8] which we use in 3; no regularity condition is assumed in [1], [2], [14].) The space
L1 (R /, O) consists of all n x n matrix functions B (t) for which each component B is
Borel measurable and satisfies

Io O(t)lB(t)l dt < (l<-_i,j<-_n).

Some of the many interesting and important special choices of p(t) satisfying our
conditions (1.9) and (1.10) are

pl(t) e-t

p2(t) (1 + t)kp(t)
(t R + -<po <)

(tR +, k =>0),

p3(t) [1 + log (1 + t)]Pp2(t) (t e R *, p >= 0).

For B(t) LI(R +, p) the determinants in (1.7) and (1.8) exist for Re z -> po and are
analytic in Re z > po. Thus, the meaning of a zero of order m (1 _-< m < m) in this open
half-plane is clear. If Zo on Re z po is a zero of one of the determinants, then we say
that Zo is a zero of order m if t"B (t) L(R /, O) and the determinant and its first m 1
derivatives vanish at Zo, but its ruth derivative is nonzero at Zo.

THEOREM 1.1. Let B(t)eL(R+,p) and assume that the only zeros of det[I+
/} (z)] in Re z >= po occur at z zi, 1 <= ] <= M. Let rn be the order of the zero z and assume
that either (i) Re z > po, 1 <-__ ] <= M, or (ii) Re z po, 1 <= ] <= N, and Re z. > po, N < ] =<
M. In case (i) put m 0 and in case (ii) put rn max {m,. ., rn}.

If t"B(t) L(R +, p), then the solution r(t) of the integral resolvent equation (1.1)
may be expressed as

(1.11) M

r(t) , Pi(t) eZ’t + r(t) (t R +),
1=1

where, for each ], Pi(t) is a matrix ofpolynomials of degree at most m 1 which depend
only on B(t), and r(t)eLl(R /, p).

(In Theorem 1.1 and in similar situations later the requirement Re zi > po, N < ] =<
M, is to be ignored when N M.)
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The analogous result for the differential resolvent R (t) is
THEOREM 1.2. Let B(t)LI(R+,p) and assume that the only zeros of det [zI-

d B (z)] in Re z >-_ po occur at z zi, 1 <- j <- M. Let tni be the order of the zero z and
assume that either (i) Re z > po, 1 <- j <-_- M, or (ii) Re zj po, 1 <- j <-_ N, and Re zi > p0,

N<j<-_M. In case (i) putm =0 and in case (ii) putm =max{rex,..., mN}.
If t2mB(t)Ll(R.+,p), then the solution R(t) of (1.2) satisfies (1.11) with r(t) and

rl t) replaced by R t) andR t) respectively, and with R t) andR t) both in L (R +, p ).
The scalar case of Theorem 1.2 (with p(t) 1) was proved by Miller [11, Thm. 6]. If

(1.2) and (1.4) are not scalar equations (i.e., if n > 1), then Theorem 1.2 is new (even for
p(t)=-1) and sharpens Theorem 5 of [11] in which the kernel B(t) is required to have
2M1 moments where MI "-ml +’’’ + tnN is the total multiplicity of the zeros on
Re z p0. Theorem 1.1 is new since a study of the structure of the integral resolvent r(t)
in (1.1) has not previously been made when the determinant in (1.7) vanishes at a finite
number of points in the closed half-plane Re z _>-p0.

We remark that it is easy to show (see the discussion on pp. 613-614 of [8]) that the
moment condition assumed in Theorems 1.1 and 1.2 is best possible even in the scalar
case.

Hannsgen [6] has recently obtained the above decomposition of the differential
resolvent R (t) in the scalar case when d 0 and when the kernel is piecewise linear and
in LI(R+). The assumption that the kernel is piecewise linear enables Hannsgen to
avoid the moment hypothesis of Theorem 1.2.

As formulae (1.5) and (1.6) show, knowledge that the resolvents r(t) and R (t) have
the form (1.11) with rl(t) and Rl(t) in LI(R+,p) is clearly usefulin analyzing the
solutions of the linear Volterra equations (1.3) and (1.4), respectively. Moreover, r(t)
and R(I) also occur in "variation of constants" formulae (see [10, Chap. 4] and [4])
which solve certain nonlinear perturbed forms of (1.3) and (1.4). An examination of the
results in [11, 6] shows that formula (1.6) and the variation of constants formula may
be combined with the fact that the remainder term RI(I) is absolutely integrable to
investigate the behavior of solutions of certain forced linear and nonlinear perturbed
integrodifferential equations. For another application, see the paper [12] by Miller and
Nohel. Also, results similar to those in [11, 6] hold in the case of (1.3).

Theorems 1.1 and 1.2 are consequences of results in 2 for more general
Volterr-Stieltjes systems of convolution type; see 5 for their proofs.

2. Linear Volterra-Stieltjes systems. In this section we consider the linear
Volterra-Stieltjes systems.

(2.1) u. A(t)=- u(t-s) dA(s)=f(t) (teR +)

and

(2.2) u’(t)+u ,A(t)=f(t) (u(O)=uo, teR +)

where f (fl,"" ", fn) and u are complex vector functions with n components, and
A =[Aii] is an n x n matrix of complex-valued functions.

Our setting is similar to that of [8]. Namely, if p(t) is a weight function as defined in
the Introduction, the weighted space V+[p] consists of all n x n matrix functions A(t)
for which each component Aii is ofbounded variation on every finite interval [0, T], is
normalized to be left-continuous and vanish at 0, and satisfies

yoIIA,II=- p(t)ldA,(t)[ < oo (1 -<_ i, j -<_
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oo ztFor A(t) V/[p] the Laplace-Stieltjes transform A(z)o e- dA(t) converges
absolutely for Re z -> p0. Moreover, A(z) is bounded and continuous in Re z -> p0 and
analytic in Re z > p0. Also, A(t) may be decomposed as

(2.3) A(t) hA(t) + gA(t) + SA(t),

where hA [hA,,] is a matrix of discrete functions, gA [gA,,] is a matrix of functions
absolutely continuous on each finite interval, and SA [SA,j] is a matrix of singular
functions. See [8] and [2, p. 166] for a more complete discussion of these ideas.

If p (t) is a weight function, m is a nonnegative integer, A V+[p andf L (R 4, P),
then we denote by H(A, m, p) and H(f, m, p) the (absolute) moment conditions

H(A, m, p)" J0 p(t)t"ldA(t)[< (1 <_- i, j-< n),

Jo p(t)t"[f(t)[ dt < (1-< i_-< n).H(f, p).m,

We remark that the definition of H(f, m, p) used here differs from the one used in [8].
Associate with A(t) V+[p] the scalar function

D(t) Y. sgn (tr)a lo-(1)
o’Sn

where $,, is the symmetric group on {1,..., n} and sgn (tr)= +1 according as the
permutation tr is even or odd. Equivalently, D(t) is the scalar function which satisfies

D(z) det A(z) (Re z ->-po).

Since det A(z) is analytic in Re z > po, the meaning of a zero of order m in Re z > p0 is
clear. If Re Zo po, then we say that Zo is a zero of det A(z) of order m if H(A, m, p)
holds and

I?e-ZottJdD(t)=O (0_-<]_<- m- 1),

but

e-Ztt dD(t) # O.

Note that if we decompose D(t) as D(t) ho(t) + go(t) + so(t) (as in (2.3)), then,
since the discrete part of the convolution of two functions in V/[p] is the convolution of
their discrete parts [2, p. 179], we have

h’o(z) det fA(Z) (Re z ->Po).

Finally, in Theorem 2.1 we assume that the solution u(t) of (2.1) exists and is Borel
measurable on R / and that Ip(t)lu(t)[ dt < oo for all T>0.

THEOREM 2.1. Let A V/[p] and assume that in Re z >=p0 det A(z) has zeros
only at z zj, 1 <- <-M. Suppose that

(2.4)

and

(2.5)

except near the points zi, 1 <- j <- M,
1//(z) is bounded in Re z =>p0

inf Idet/A (Po + itr)[ > IlsolI.
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Let mj be the order o[ the zero zj and assume that either (i) Re zi > 0o, 1 <= <=M or (ii)
Re z 0o, 1 <= j <= N, and Re zi > 0o, N <j <= M. In case (i) put rn 0 and in case (ii) put
m =max{m1,..., raN}.

ffteLl(R/,p) and H(A, 2m, p), H(] re, O) hoM, then the solution u(t) of (2.1)
satisfies

M

(2.6) u(t) , pi(t) e z’’ + ul(t) (t R+),

where, for each L pi(t) (Pil(t)," pi,(t)) with each p/k(t) a polynomial of degree at
most mj 1 which depends on A and [, and u L (R +, p ).

The proof of Theorem 2.1 is given .in 3.
We next consider (2.2). By a solution of (2.2) we mean a vector u(t) absolutely

continuous on bounded intervals [0, T], and such that u (0) Uo and (2.2) holds a.e. on
R +. To describe the solution of (2.2) we consider the zeros of

(2.7) det [zI + (z)] (Re z >_- po),

where I is the n n identity matrix. Since this determinant is analytic in Re z > po, the
meaning of a zero ot order rn in Re z > po is clear. If Zo on Re z po is a zero of the
determinant, then Zo is a zero of order m if H(A, m, p) holds and

d
dz---7(det[zI+A(z)])=O (z =Zo, 0-<j<-m- 1),

but

(det [zI +A(z)]) 0 (z Zo).
dz

We then have
THEOREM 2.2. Let A V+[O] and assume that in Re z >-po the determinant in

(2.7) has zeros only at z zi, 1 <-_ j <- M. Let mi be the order ol the zero zi and assume that
either (i) Re zj > Oo, 1 <= ] <- M, or (ii) Re zi Oo, 1 <- ] <- N, and Re zi > Oo, N <] <- M. In
case (i) put rn 0 and in case (ii) put rn max {ml,. ", mr}.

ff]’ L(R+, O) andH(A, 2m, o), H(]’, m, O) hold, then the sotution o[ (2.2) has the
form (2.6) with ul(t) and u’ (t) both in Lt(R +, p).

We note that in the case of Theorem 2.2, unlike Theorem 2.1, we do not require
hypotheses such as (2.4) and (2.5). The reason for this will be apparent in the proof of
Theorem 2.2 which is given in 4.

Theorems 2.1 and 2.2 are somewhat similar to the results in [8] where it is proved
(under different moment hypotheses) that if ’eL(0, T) for all T>0 and ’(t)=
o(1/O(t)) as too, then the solutions of (2.1) and (2.2) have the form (2.6) with
u(t) o(1/O(t)) as oo. Theorems 2.1 and 2.2 are more useful than the results in [8]
in view ot the fact that they may be used to obtain results of the type in [11, 6] (see the
discussion at the end of 1) which are more useful than the results one obtains from
Ra(t)=o(1/O(t)) as too. For example, properties of O(t)C’(t) such as boundedness,
convergence at +o, and integrability on R + propagate the same behavior to the
convolution I[(t-S)Rl(S)ds when Rl(t) is integrable with respect to O(t), but not
necessarily when R(t) o(1/O(t)) as o.

It would be of interest to analyze the behavior of solutions of (2.1) (respectively,
(2.2)) when det (z) (respectively, det [zI +(z)]) has an infinite number of zeros in
Re z _>-00. However, our technique of stripping zeros which comprises the heart of the
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proof of Theorem 2.1 leads to convergence problems when there are infinitely many
zeros. In particular, it is not clear what happens to the first term on the right in (2.6) as

3. Proof of Theorem 2.1. We break the proof into three parts: (A) the scalar case
when condition (i) holds, (B) the scalar case when condition (if) holds, and (C) the vector
case. We remark that in the two scalar cases D(t)= A(t).

ProofofpartA. The proof of this case is similar to the proof of Theorem 1 of [8]. Let

mi 0V.(t) tel= Cl,i l-leZTdr/(l-1) (-oo < <

mjwhere V.(z) E=I Cl,j(z zi)-l is the principal part of 1/(z) at z z/.. The proposition
in [8] yields the existence of Co(t) V/[p] such that

M
(3.1) u(t)=f ,Co(t)+ E f* V/.(t) (t6R+).

/’=1

A simple argument using (1.9), an interchange of the order of integration,
f LI(R /, p) and Co V+[p shows thatf, Co L (R /, p). Also, the Laplace transform
f(z) exists for Re z => Oo. Thus, as in [8],

f * V.(t) lE1= Cl,j f(s)(t- S)l-1 e -z’s ds e ’’/ (l- 1).

}/lm Cl,]{ l-1 tp f(s)(_s)l_l_Pe_Z,SdS eZ,t (/-1)’.
p=O p

It }/lm Cl,]{l 1-1 l_l_p)(zj)tP eZit f(s)(t-s)l-l ds (I- 1).
p =-O [9

e zit iE zi(t-s)--Pi(t) l,i f(S)(I--S)l-! e ds (l- 1)!,

where clearly pi(t) is a polynomial of degree at most m.- 1 which depends only on A
and f. Furthermore, if we write Re zi =po+,6i, 8i>0, then using (1.10) and f
LI(R +, p), we find that

p(t) f(s)(t- s)l-a e ’(t-) ds dt p(t) I (s)t It-s]-1 e ds dt

Nfo t P(s)lf(s)llt--sl-le"(t-Sldsdt

o(s)lf(s)[ It-sl l-a e ’(‘-s) dtds

Combining these results with (3.1) yields (2.6) and completes the proof of Part A.
Prooopart B. The proof of this case is similar to the proof of Theorem 2 of [8];

however, to avoid numerous references to the argument in [8], we give the proof in
some detail. The idea of the proof is to reduce this case to the situation covered by Part
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A. First, let Nk, 1 =< k <- m, be the number of zeros of (z) of order k on Re z 00, and
put M0 0, Mk Y’.7= 1Nt, 1 <= k <= m. Furthermore, let the zeros be labeled so that zi is a
zero of order k for

The proof is by induction on m. Thus, suppose m 1, so that all the zeros of (z)
on Re z po are simple. Fix Zo, Re z0 < po, and define

(3.2) Si(t)=(zi-zo) eZ’Sds (I<=f<=N,tR +)

and

Ba(t) (J + S1) . . (J -Jr- SN)(t) (tR+),

where J is the unit step function

(3.3) J(0) 0, J(t) 1 (t > 0).

Finally, put

(3.4) C(t) A, B(t) (t R +).

Observe that Bl(t) may be written as

(3.5)

where

N

Bl(t) J(t) + Y aiSi(t
/’=1

(tR+),

N Zj_ZO
Oti-- I]

k=l Z
(j 1, 2," .,N).

This representation may be obtained by a simple Laplace transform argument; see
[8, p. 604] for details.

Combining (3.4), (3.5) and (3.2) with A(zi) 0, 1 <=/" =< N, yields

where

Consequently,

N

Cl(t)=A(t)- y’. cei(zi-zo)Ei(t),
/=1

(eZ’tlt e-Z’SdA(s)+A(t))/zi, (z,#O),
Ei(t

dA(s)+ sdA(s), (zi 0).

dCl(t) dA(t)- Z ai(zi-zo) e -z’ dA(s) e z’t dt.
/=1

(We remark that the expression (3.7) for C(t) and the expression for dCl(t) in [8, p.
604] are inaccurate; however, the inaccuracies do not affect the results there. The
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expressions given above are correct.) By (1.10) and H(A, 2, p)

fo P(t)t[ ezitf.t e-Zis da(s)] dt<= p(t) ett e-slda(s)] dt

e- p(t) ett dtldA(s)[

-<- J0 (s)(s2/2)[dm(s)[ <

for 1 j N; hence, H(C1, 1, p) clearly holds.
Now define

N

(3.6) u(t) u(t)- E flie ’’ (t R+),
/=1

where

(3.7) i =f(zi)/A’(zi) (1 j N).

Then it follows from (3.6), (3.4), (2.1), (3.5), (3.2), H(L 1, p) and Ca V+[p] that

zit zisU * El(I)= u * El(l)- E ie e- dC(s)
i=1

= , B(t)-,.= d(z)- e -’s dC(s) e

(t + 2 (z- Zol (z- e-’S(sl s e
]=1--= {(z)--t e-dCl(S)}et

(t) (tR*).
To see that the result established in part A applies to the equation

(. u . c(tl =(t (t e

note first that by (3.4) and the definition of B(t),
N Z--ZO

k=l Z

for Re z 00, z z, 1 N] N N. It follows from m 1, the definition of , and the
continuity of A’(z) and C(z) that

(.9 d(zl ’(zl(z zol e o

for 1 N ] N N. Thus, (z) has the same zeros (including order) as (z) in Re z > 0o and
has no zeros on Re z 00. Furthermore, except near the points z, N < ] N M, 1 /C(z) is
bounded in Re z 0o.

Now, let the discrete and singular parts of C(t) be h(t) and s(t), respectively.
Then h ha and s sa, for by (3.5)’ C A B can be written as A - J A plus a
linear combination of convolutions of A with the functions S, 1 N ] N N, and it is easy to
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see that these convolutions are absolutely continuous. Hence, (2.5) holds with the
subscripts A and D replaced by 1 (recall D A since n 1).

It remains to show .that fl(t)Ll(R/,o). By (3.7) and (3.9), /3r’l(Zr)
cej(zr-Zo)[(zr), so that the expression for fl(t) simplifies to

(3.10) fl(t)=f(t)+ fli e-’dCl(S)-ar(zr-zo) e-Z’f(s) ds e’.

Since H(C1, 1, p) and H([, 1, p) hold, computations similar to those above establishing
H(C, 1,0) now show that the integral terms in (3.10) belong to La(R+,p). By
assumption,[ La(R +, p) and we may apply Part A of the proof of Theorem 2.1 to (3.8)
to obtain

M

u(t) Y Pr(t) eZ/ +
r=N+l

or, by (3.6),
M

u(t) E Pr(t) e/ + ua(t),
j=l

where pr(t), 1 <= f <- M, is a polynomial of degree at most mr 1 which depends only on A
and f, and Ua LI(R +, p). The proof of part B when m 1 is complete.

Now assume the theorem is true for 1 _-< m _-< n and consider the case m n + 1. For
M, <j <Mn+l N, let Si(t) be defined as in (3.2) and put

B,+(t) (J + SM,,+I) * r (J + Su)(t)
N(3.11)

J(t) + E arSr(t) (t 6 R+);
j=Mn+l

here, as before, J(t) is the unit step function defined in (3.3) and

N Z Z0
ar H (] =M, +1,..., N).

k =Mn+I Z Zk

Finally, put

(3.12) C+a(t) A "B+(t) (t R +).
An argument similar to the one yielding H(Ca, 1, p) shows that H(A, 2m, p)

implies H(C,/I, 2m 1, p) where m n + 1. Moreover, as was the case with (a(z), in
Re z > 0o ,+l(Z) has the same zeros (including order) as (z). On Re z p0 the only
zeros of Cn+l(Z) are the z, 1 <-] <_-N; if 1 <-] <-Mn, then z. is a zero of order m. for
(,+a (z), but if M, < j -<_ N, then zr is a zero of order mr 1 for ’+(z). Furthermore, for
M,<j<-N, one may use (3.12), the expression for B,+(z), the definition of
n mr- 1, and Taylor’s formula with remainder to obtain

.,(n)_(3.13) t,+ (zr)=ai(zr-zo)("+a)(zi)/(n + 1).

Also, Taylor’s formula with remainder yields

(3.14) (z)=fi.("+)(w)(z-zr)"+a/(n + 1)! (Re z ->-Oo)

for some w on the line from zi to z. If at z. 1/(z) has "principal part"

Cn+l,j Cn,r Cl,]-.--+.o. /-(3.15)
(z Z])n+1%- (Z Z])" (Z Z])
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then, by writing 1 fi(z)(1/fi.(z)) and using (3.14) and (3.15), we find upon letting z
tend to zj that

(3.16) Cn+l.j (n + 1)!/(n+l)(zi).

Now define

where

u"+l(t)=u(t)-g(t) (t R+),

Then, by (3.12),

N

g(t) E (c.+l.i/n !)(zi)t" e z’t (t R +).
j=Mn+l

U
n+l Cn+l (t)-- u . Cn+l(t) g * Cn+a(t)

=f . B.+(t)-g . C.+l(t)

fn+l(t) (tR+).
In order to apply the inductive hypothesis to the equation

(3.17) u "+a
* Cn+l(t) fn+l(/) (t R +)

we must show that fn+l(t) L(R +, p) and that H(fn+l, n, p) holds. First, using (3.11) in
the definition of f.+l(t) yields

N

(3.18) f,+x(t)=f(t)+ Y’.
]=Mn+l

where

N

(3.19) g * C.+l(t)= E
j=Mn+I

i(zi Zo){ f(s) e-’ as e zit- g * Cn+l(t),

(Cn+l,ffn!)f(zi) (t-s)"e -z’s dCn+l(S) e z’t.

For M. <j <N, put Bi=c.+l.j/n! and observe from (3.13) and (3.16) that

8(") (z) .;(z Zo)n+l

Thus, by applying the binomial theorem to (t-s)" in (3.19) and rewriting the integral,
we have

N

g*Cn+l(t) E
j=Mn+l

N

]=Mn+l

N

j=Mn+l

i(Zi) o=0(np)tP{-’(n-P)(Z’)--Itt-+ (-s)n-Oe-Z?dfn+l(s)}e zit

a(zi-zo)[(z) e z’’- E flj[(z) (t-s)"e -z’s dcn+l(S) e z’’.
]=Mn+l

Substituting this expression in (3.18) and writing

f(s) e -z’s ds [(zi)- f(s) e -z’s ds
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yield

fn+l(t) =f(t)-- Y’. ai(Zi--Zo) f(s) e -z’s ds e z’t
]=Mn+l

(3.20)
N

+ 2 (z) (t-s)e-’dC,+(s) e.
]=Mn+l

That .(t)L(R+,o) follows easily from (3.20) since (t)L(R+,o), O(t)
satisfies (1.10), and H(, n + 1, O) and H(C+, 2n + 1, O) hold.

Observe next that H(C+, 2n + 1, O) and (1.10) imply

oO(t)t]f (t-s)"e’(t-’dC,+(s)ldt p(t)t se(t-)]dfn+l(S)ldt

(3.21) p(s)s dtldC,+a(s)[

[ P(s)s2"+’dC+’(s)] <.
Similarly, it follows from H(f, n + 1, p) and (1.10) that

f
Jo p(t)t"] f(s) e z’(t-s) ds dt p(s)sn+l]f(S)] ds (.

Using these results in (3.20) and recalling the hypothesis H(f, n + 1, p), we clearly have
that H(f. + 1, n, p) holds.

The inductive hypothesis implies that u"+a(t) has the form

M
+ zitu (t)= E P(t) e +Ul(t) (t6R+),

i=1

where Ul(t)Ll(R +, p) and the p (t) are polynomials of degree at most mi-1 unless
M. < ] N, in which case the degree is at most m -2. Thus,

M

u(t) E p(t) e ’’ + u(t) (t R +),
i=1

where pi(t) p? (t), I f M. and N<fM, and pi(t) p (t) + (C.+a,i/n !)(zi)t" e ’t,
M. < f N. The proof of part B is now complete.

Proofofpart C. The proof of this case is similar to the proof of Theorem 3 of [8]. Let
adj A denote the n x n matrix which is formally the adjoint of A but with convolution
replacing multiplication. Then the equation

(3.22) u . A . adj A(t) f . adj A(t) (t R +)

is equivalent to the n scalar equations

(3.23) uk .D(t)=qbk(t) (l<-k<=n,tR+),

where 4 (1," Dn) --f ,it adj A. (Here u, k 1, should not be confused with the
remainder term U in (2.6).)

Conditions H(4, m, O) and H(D, 2m, O) follow easily from hypotheses H(f, m, O)
and H(A, 2m, p). Also, since A V+[p] and f(t) LI(R +, p), we have d(t) LX(R +,p).
Finally, we recall (see 2) that tYtD(Z) det h’A(z). Thus, part B of the proof of Theorem
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2.! may be applied to each of the scalar equations in (3.23) to obtain

M

uk(t) E Pik(t) e z’t + Ukl(t) (1 =< k <= n),
i=l

where Uk (t) L (R / p) and Pik(t) is a polynomial of degree at most mi 1 which
depends only on A and f. Setting pi(t)=(pil(t), ",pin(t)) (I<-j<-M,tR /) and
ul(t) (ull(t), , uln(t)) (t R /) completes part C of the proof of Theorem 2.1.

4. Proof of Theorem 2.2. The proof that u L1(R /, p) is similar to the proof of
Theorem 4 of [8]. Namely, define G(t) e-(1-t/and convolve both sides of (2.2) with
G(t) to obtain

(4.1) u’ , G(t)+u , G , A(t)=f , G(t) (t6R+).
Here, f, G(t)=f(t-s)G(s) ds for t6R +. Integrating the first term in (4.1) by parts
enables us to rewrite (4.1) as

(4.2) u(t)+u * b(t)=k(t) (t6R+),
where b(t)=-G’(t)+G ,A(t) and k(t)=-f, G(t)+u(O)G(t). Equation (4.2) may be
rewritten as

(4.3) u, B(t) k(t) (t R +),
where B V+[p] is defined by B(t)=J(t)I+ b(s)ds with J(t) as defined in (3.3).
Since H(G, , p) and H(G’, j, p) are satisfied for 1, 2,..., it is easy to check that
H(B, 2m, p) and H(k, m, p) follow from H(A, 2m, p) and H(/, m, p), respectively.
Also, it follows from the definitions of B and b that J(z)=(z)[zI+(z)] for
Re z -->p0. Since (z) (z + 1-po)-aL we see that det/(z) and det[zI+(z)] have
the same zeros with identical multiplicities in Re z => p0. In addition, the discrete and
singular parts of B are hB(t)= J(t)I and sB(t)= 0, respectively. Hence, B(t) satisfies
hypotheses (2.4) and (2.5) of Theorem 2.1. Thus, we may apply Theorem 2.1 to see that
u(t) has the form (2.6) with ul LI(R +, p).

It remains to show that u’ (t) L t
wi(t) where(R +, p), To do this, set w(t) 2j=1

the wi(t)---pi(t) e zjt are the terms appearing in the sum in (2.6). We begin by showing
that for 1 _-< j _-< M,

(4.4) w(t)+ wi(t-s) dA(s)=O.

In order to verify (4.4), we first observe that an examination of the proof of
Theorem 2.1 yields that the polynomials pi(t) are given by

,,j-ly. "’ cr, [/(z) adj J(Z](r-k-1)tk(4.5) pi(t)
k’=0 r=’’+l (r-- k 1)t k

where

2 c,,i(z zi)
r=l

is the principal part of [det/(z)]-1 at z zi. An easy calculation using the binomial
formula on (t- s) k, the formula for the derivatives of (z), (4.5) and interchanges of the
orders of summation yields that the left side of (4.4) is given by

2 2 (Cr,i/l!) tl eZ"S(r, 11,
/=o r=/+l
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where

r-1

S(r, l)= 2 [(r-1- k)!(k-/)!]-I[](Z) adj (Z)]("-’-k)[zI +(Z)](k-’)lz=
k=l

For each r and satisfying + 1 _-< r _-< m., 0 _<- _-< m., Leibnitz’s formula may be used to
rewrite $(r, l) as

[(n 1 1) !]-l[/(z)(adj (z))(zI + z(Z))](r-l-l)Zj

=[(n 1 -/)!]-[k(z) adj ((z) det (zI +(z"’]r--l

where the equality follows from the expression for /(z) and a basic property of
adjoints. Since 0 -<_ r 1 -<_ rnj 1 and zj is a zero of det [zI +A(z)] of order rn., the
last expression is zero for each r and l, and (4.4) holds.

To complete the proof that u’ LI(R /, p), note that (4.4) and linearity yield

(4.6) w’(t)+ w. A(t)= w(t-s) dA(s).

Thus, if we substitute the expression (2.6) into (2.2), rearrange and use (4.6), we find
that

(t)=f(t)-u , A(t)+ w(t-s) dA(s)Ul

a.e. on R /. A calculation similar to that in (3.21) shows that the third term on the right
side of the last equation belongs to L(R/,p). Since f(t) and u, A(t) also are in
La(R / p), and the proof of Theorem 2.2 is complete.p), it follows that u ( L (R +

5. Proofs of Theorems 1.1 and 1,2, In this section Theorems 1.1 and 1.2 are
deduced from the results of 2.

A. Proofof Theorem 1.1. Let J(t) be the unit step function defined in (3,3) and put
A(t)=J(t)I+B(s) ds (tR+). Then (1.1) may be written as

r,A(t)=B(t) (teR+).

This matrix equation is equivalent to the n equations

r,, A(t) B,(t) (i= 1,... ,n, tc=R+),

where ri and Bi denote the ith rows of the matrices r and B, respectively.
Since B(t), t2’B(t)L(R+,p), it follows that t’B(t)La(R +,p) and that

H(A, 2m, o) holds. Moreover, det(z)=det[I+;(z)] for Re z >_-0, and both (2.4)
and (2.5) hold. Thus, by Theorem 2.1, for 1,..., n,

M

ri(t) E p(t) ez + ril(t) (t R +),
i=1

where, for each j, p!(t), (pa (t),... p},(t)) with each pk(t) a polynomial of degree at
most rni 1 which depends only on A and Bi, and the row vector ria(t)L(R +,p).

(t) andTheorem 1.1 follows upon taking P.(t) and ra(t) to be the matrices with ith rows pj

ria(t), respectively.
B. Proof of Theorem 1.2. Equation (1.2) may be written as

(5.1) R’(t)+R, A(t) 0 (R(0) =/, t6R/),
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where A(t)=-J(t)- B(s) ds (tR/) with J(t) defined in (3.3). The matrix equa-
tion (5.1) is equivalent to the n equations

(5.2) RI(t)+R,,A(t)=O (R,(O)=Ii, tR+),

where, for each 1,..., n, Ri and Ii denote the ith rows of the matrices R and/,
respectively.

It follows from t2mB(t)Ll(R+,19) that H(A, 2rn, p) holds. Furthermore,
det [zI +A(z)] det [zI B (z)] for Re z -> 0. Thus, we may apply Theorem 2.2 to
each of the equations (5.2) to find that R (t) satisfies (1.11) with r(t) and rl(t) replaced by
R(t) and Rl(t), respectively, and with Rl(t) and R (t) both in LI(R /,p).
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THE PRODUCT FORMULA AND CONVOLUTION STRUCTURE
FOR THE GENERALIZED CHEBYSHEV POLYNOMIALS*

THOMAS P. LAINE"

Abstract. The generalized Chebyshev polynomials T’’e) (x), a,/3 > -1, are the polynomials orthogonal
on (-1, 1) with respect to the weight function (1 x2)’lxl2+1 and normalized by T’’) (1) 1. We show that
for certain (a,/3) the product formula

T(.’a)(x)T<’e)(y)=| T")(z)drn.,y(z), -l<x,y<l, n=0,1,2,...,
d_

holds, where tzx,y is a real Borel measure which is independent of n, and explicitly determine x,y. We also
completely determine the set of (a,/3) for which the product formula holds with , quasipositive; i.e.,

_-<M, -1 <x, y<l,

whereM does not depend on x and y. For certain (a,/3), tz,y is absolutely continuous and so can be expressed
in terms of a kernel k(x, y,z;a,/3); in this case we further determine for which (a,/3) k(x, y,z;a,/3)
is nonnegative for < x, y, z < 1.

As an application, we show that a positive or quasipositive product formula allows the construction of a
convolution structure for expansions in generalized Chebyshev polynomials.

1. Introduction. The generalized Chebyshev polynomials T(ff’) (x), a,/3 >-1, are
those polynomials normalized by T(ff’) (1)= 1 which are orthogonal on (-1, 1) with
respect to the weight function (1-x2)[x[2+1; that is, they satisfy

T’t) 1213 dx O, n # m.(1.1) T(2’ (x) (x)(1 x2)lx +

The results of this paper concern the product formula

T(2’) (x)T(2") (Y)= I_ T(2’) (z) dlx.,y(z),

(1.2)
-1 < x, y < 1, n=0,1,2,...

where/Xx,y is a real Borel measure (which depends on a,/3, x, y but not on n). If/Xx,y is
absolutely continuous and

dz,(z)- k(x, y, z; ,, )(1- z=)lzl=-I dz,

then (1.2) becomes

(1.3) T(,,’’) (x)r(2") (y)= T(2") (z)k(x, y, z; a, B)(1-z "lz dz.

Notice that if there is an integral representation of the form (1.2) or (1.3), then by virtue
of the completeness of orthogonal polynomial systems on finite intervals, the kernel or
measure is unique (k (x, y,. a, B) to within a.e. equivalence).

We will show that (1.2) holds for certain (a,/) and explicitly determine the
measure/Xx,y. Moreover, we completely determine the set of (a,/3) for which (1.2) holds

* Received by the editors March 7, 1979.
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with the measure quasipositive; i.e.,

(1.4) | Idzx,(z)l<-M, -1 <x, y < 1,
d_

where M is independent of x and y. We also completely determine those (a, fl) for
which (1.3) holds with a positive kernel; i.e.

(1.5) k(x,y,z;a,B)>-_O, -l<x, y, z <1.

Setting n 0 in (1.2) and using To(x)-= 1 shows that positivity implies quasipositivity.
Our main results are given in Theorems 1 and 2 below.
THEOREM 1. Let a, > -1 and -1 < x, y, z < 1, z # O.

(i) If xy # 0 and a >-_ B, a + B > 1 or if xy # O, x 2 + y2 # 1 and a >- B, a > -1/2,
then (1.3) holds with k(x, y, z; a, B) defined by (3.1)-(3.3) below.

(ii) Ifxy =O anda > fl, then (1.3) holdswith k(x, y, z; a, B) denedby (2.3), (2.4),
(2.6) and (2.7) below, while if a B and x 0 or y 0, (1.2) holds with/xo.y or lXx.O the
discrete measure with half-unit masses concentrated at z /1 y2 and z -/1 y2 or
Z x1 x2 and z x1 x z, respectively.

(iii) Formula (1.2) holds with txx,y quasipositive if a >-_ B, c + B > 1 or a B .
(iv) Formula (1.3) holds with k (x, y, z a, B) >- 0 if

or if
a >-- fl >-- -, a# -, xy # O.

(v) Ifa B -, tXx, is the discrete measure such that (1.2) takes the form

(1.6) (cos 0)T, (cos ,t,) 1/2 T, (cos (0 I,)) + 1/2T, (cos (0 + t,)).

These results are the best possible in the sense of
THEOREM 2. Let a, >- 1.

(i) If a < or + <-- -1 and (, ) (-1/2, -1/2), then there does not exist an M
independent of x and y for which (1.2) and (1.4) hold.

(ii) If a< or <- and k(x,y,z;a, fl) is defined by (3.1)-(3.3), then
k (x, y, z; , 13) < 0 ]’or some -1 < x, y, z < 1 with xyz O.

In the concluding section, we show that for those (a,/3) for which (1.4) or (1.5)
hold, formulas (1.2) and (1.3) give a convolution structure for expansions in generalized
Chebyshev polynomials.

These results are related to and rely in part upon Gasper’s [4], [5] results on the
product formula for the Jacobi polynomials P(’/3) (x), by virtue of a connection between
the two sets of polynomials. If

(1.7) =F(-k, k +a +fl +1; a +l;1/2(1-x)),

then the T’/3) (x) are given by

R (fl,t) (2X2 1) if n 2k,(1.8) _,T("’/3) (x)= xR,’(’/3+1) (2x: 1) if n 2k + 1.
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This follows from the orthogonality relation of the Jacobi polynomials,

(1.9) I_ R(")(x)R’)(x)(1-x)’(1 +x) dx =0, n m,

by means of the change of variables x 2z2-1.
If fl =-1/2, we have the additional relation

(1 10) T(n’-1/2) (x)--
C+1/2 (x)_ n!
C+1/2 (1) (2a + 1),

C+1/2 (x),

where Ca, (x), h > -21-, is the Gegenbauer polynomial of degree n. This follows from the
quadratic transformations [7, p. 59]

R2n(") (x) R(’’-/2) (2x -1),

R(O,,o,) (x) xR (’’1/2) (2x 2 1)2n+l

A special case of (1.10) is

(1.11) T(n-1/2’-1/2) (cos 0)-- Tn(cos 0)--cos nO,

where T, (x) is the Chebyshev polynomial of the first kind.
There are some important differences between the T(") (x) and the Jacobi and

Gegenbauer polynomials, despite these relations. Notice from (1.8) that T(;’t) (x) is
even or odd according as n is even or odd, which is true for the Jacobi polynomials only
in the Gegenbauer case a =/3. Also, unlike the classical orthogonal polynomials, the
weight function for T’ (x) has a zero (if fl > ) or a singularity (if/3 < ) within the
interval of orthogonality.

Moreover, Theorems 1 and 2 reflect some unexpected differences from the Jacobi
case. For Gasper [5] has shown that the product formula for Jacobi polynomials holds
with a positive kernel if and only if

a>_-/3_>--1/2 or a+/3>_-O, -1</3<-,

and that quasipositivity holds if and only if a +/3 _>--1, a >/3 >-1, a >-1/2; these
regions are larger than in our case. Furthermore, the singularity or zero of the weight
function for the T(,’) (x) is manifested in a singularity in the kernel when x 0 or y 0.

2. A relation between kernels. Gasper [5] has derived an explicit formula for the
kernel K(x, y, z; a,/) in the product formula

(2.1) Rk’’)(x)R(k’’)(y) R (z)K(x, y,z;a, fl)(1-z)’(l+z dz

and has shown that (2.1) holds, for 1 < x, y, z < 1, if a _-> fl > 1, a +/3> 1 or if
a >=-1/2, a +/3 -1, x # y. Using this result, we shall first show that for a >_-/3 + 1, (1.3)
holds with k (x, y, z; a, fl) given by

(2.2)
k(x, y, z; a,/3)= 2’++1[K(2x2-1, 2y2-1, 2Z2- 1; a,/3)

+ 2xyzK(2x2-1, 2y2-1, 2z2-1; a,/3 + 1)]

if -1 < x, y, z < 1, xyz # 0, and later show that (2.2) can be extended to a larger region in
the (a, fl) plane.
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To prove (2.2), replace x with 2x2-1 and y with 2y2-1 in (2.1), change variables
by z 2t2-1 and use (1.8) to obtain

Tk"a) (x)Tk"a) (y) Rk"’a (2Xa- 1)Rk’a (2y2- 1)

2+0+2 fo Tk’O)(t)K(2x2- 1, 2y2- 1, 2t2- 1; a, )

(1 tz)t20+1 dt

2+0+1

_
T) (t)K(2x2-1, 2y2-1, 2tz- 1; a, fl)

(1 t2)tl2+ dt.

Clearly,

2xy f_ r’) (t)tg(2x2-1, 2y2-1, 2t2-1; a, fl + 1). (1- t)ltl2+a dt=O,

since the integrand is odd. Hence when n is even and a->/3 >-1, (1.3) holds with
k(x, y, z; a, ) defined by (2.2).

Similarly,

,-r,(a,/3) (ka,/3 +1) 2 (ka,/3 + 2--2k+l"’(a’/3) (X)12k+1 (y) xyR (2x 1)R )(2y 1)

2’+0+3xy fo R’’t+l) (2t2-1)K(2x2-1, 2y2-1, 2t2-1; a,/3 + 1)

(1 -t2)ltlz+3 dt

2++ I_ 1+(’) (t)xytK(2x 1, 2y 1, 2t 1", c, B + 1)

(1 t2)ltl+1 dt,

and again by the oddness of the integrand

"’o (t)K(2x 2 2 t[2t+a--2k+ 1, 2y2 1, 2 1; a,/3)(1 tz) o.

Hence (1.3) holds for all n with k (x, y, z; a,/3) given for -1 < x, y, z < 1 and
xyz 0 by (2.2) if a >/3 + 1 >0. In 5 we will show that (2.2) can be analytically
continued so as to hold for other (a,/3).

The restriction xy : 0 in (2.2) is necessary because the case x 0 or y 0 in
k(x, y, z; a, ) corresponds by (2.2) to the case x =-1 or y =-1 respectively in
K(x, y, z; a,/3). However, although this was not mentioned in [5], for a >/3 > 1, (2.1)
holds if for example .x =-1 with

r(a + 1) (-y Z )a-/3-1
(2.3) K(-1, y,z;a, fl)= if-l<z<-y

r(/3 + 1)r(a-/3) (1-y)(1-z)

and

(2.4) K(-1, y, z; a,/3) 0 if -y < z < 1.
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This follows, as in 1, p. 31 ], from

p’--,a/,’) (y)
(1 + Y)a+"p,,-..+.) (_ 1)

P(’)
,13 --n (Z)

(1 + z)
(-1)

which is (3.4) of [2]. Just set/x a- 8, use

(y z)’*-1 dz, tz >0, -l_-<y<l

P(f’") (y)= p(ff.’)(_ 1)R (",a). (-y)

and then replace y with-y to get

(2.5)

R ("’a) (- 1)R "’a) (y)I_. K(-1 y,z)R(’’a)(z)(1-z)"(l+z),.
-l<-y<l, a >/3>-1,

with K(-1, y, z) given by (2.3) and (2.4). The case y 0, of course, can be dealt with by
symmetry.

Hence, by an argument similar to that used to prove (2.2), if xy 0 and -1 < x, y <
1, (1.3) holds with

(2.6) k(O,y,z;a,)=2’+13+1K(-1,2y2-1,2z2-1;a,8), -l<y,z<l,

(2.7) k(x, O, z; a,/3) 2"+13+1K(-1, 2x2-1, 2z2- 1; a,/3), -1 <x, z < 1,

where K(-1, y, z; a,/3) is given by (2.3) and (2.4) and a >/3 > -1.
On the other hand, since T(,’13) (-y) (-1)"T(,’13) (y) and

R("’’) (-!)R ("’") (2y2-1) R("’") (1 2y:),

it follows that if a fl and x 0, then 1.7) holds if 0.y is the discrete measure with
half-uniI masses concentrated at /1 L y and -/1 y Similarly if y 0.

This completes the proof of Theorem 1 (ii). Since the statements about positivity
and quasipositivity in Theorem 1 (iii) and (iv) for the case xy 0 are now obvious from
(2.6), (2.7), (2.3), and (2.4) and the remark above, we will henceforth assume that xy # 0
(as well as,-1 < x, y, z < 1, z # 0).

Because of (1.11), (1.6) is just the identity

cos n& cos n xI, 1/2 cos n (b ) + 1/2 cos n (& +

and so we may also assume that a and fl are not both -1/2.
3. The kernel k (x, y, z; a, fl). Supposing, as we now may, that -1 < x, y, z < 1 and

xyz # O, let 0 < &, xI,,/9 < rr/2 and set cos & Ix[, cos xI, lyl, cos 0 I 1, a sin & sin
b cos & cos , c cos 8,

b2+c2_a2

n--
2bc

Then 0 < a, b, c < 1 and 2x2- 1 cos 2&, 2y=- 1 cos 2xI*, 2z2- 1 cos 20 and Ixyzl
bc. Thus, using the expressions [5, (3.3)-(3.5)] for K(x, y, z; a, fl), it follows from (1.10)



138 THOMAS P. LAINE

that if la b I< c < a + b, then

F(a + 1)a-Z’(1-c:)-’(bc)’-t3-1(1-B2)’-1/2
(x, y, z; ,

2r( +r()
[F(a-, a +fl; a +; (1-B))

+sgn (xyz)F(a--1, a + + 1; a +; (1-B))]
(3.1a)

F(a + 1)a-(1-c)-(bc)--(1-B)-/

(3.1b) [F(+,-; a +; (1-B)) +sgn (xyz)F(+,--; a +; (1-B))]
if c < a b, then

F(a + 1)a- (1 -c)-(a-b-c)--1(1 -B-)-(1/)
k(x, y,z; a,)=

F( )F( +2)

+ 1)F(( +),( + 1); + B-)1;

(a fl 1)
(xyz (a + 2) + 2 B-)sgn F((a + + 1), +

2B
(3.2a)

F(a + 1)a- (1 c) (a b c)--F( )F( + 2)

(3.2b) [( + 1)F(( + 1)’ (B + 2); + 1; B-)

-sgn (xyz)( - 1)F((- +2),(-+3)’ + 2, B-)]2B

and if either c < b a or c > a + b then

(3.3) k(x, y, z; a, ) O.

The kernel is defined to be zero if c [a + b 1.
The two expressions for the kernel in each of (3.1) and (3.2) are related to each

other by means of the transformation ([3, p. 105])

(3.4) F(h, 3’; 6; x)= (1 -x)--’F(6-h, 6-3,; 6).

For certain a,/3, k (x, y, z a,/3) reduces to an elementary function. In particular, if
a-b <c <a +b, then

F(a + 1)a-2(1-c2)-(bc)2"(1-B2)-l/2(B +sgn (xyz))(3.5) k(x, y, z;,- 1)=
2r( + )r(1/2)

F(a + 1)a-Z’(1-cZ)-’(bc)-a(1-B2)’-1/2(1 +sgn (xyz)B)
(3.6) k(x, y, z; a, a)=

2r(a +1/2)r(1/2)
and if c < a b, then

(3.7) k(x, y, z; a,-a 1)

F(a + 1)a-2’(1-c2)-(a2-b2-c2)2’(1-B2)’-1/2(1 +sgn (xyz)B -1)
F(2a + 1)F(-a)

(3.8) k (x, y, z a, a) 0.

Formulas (3.5)-(3.8) follow from (3.1a) and (3.2a) by virtue of F(0, 3’; 6; x)= 1,
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F(-1, y; 8; x)= 1-(y/6)x and

1

F(a -/) F(a -/3 + 1)"

4. Positivity of k(x, y, z; t, fl). In this section we prove that k(x, y, z;a,/) as
given for a -1/2 and xyz 0 by (3.1) to (3.3) is nonnegative if and only if a ->/3 -> -1/2,

We first show that k (x, y, z; a,/3)-> 0 if a ->/3 >_-- 1/2, a -1/2. Since this is clear for
the case a from (3.6), (3.8), and

(4.1) -1<B<1 if[a-b[<c<a+b,
(4.2) B<-I ifc<a-b

which are easily verified, we can assume a >/3. We consider the cases la b I< c < a + b
and c < a b separately.

I. [a b[ < e <a + b. By (4.1) and 0 < a, b, c < 1, the function multiplying the
bracketed hypergeometric functions in (3.1) is positive, provided a >-. So for
a >/ ->- 1/2, k (x, y, z; a,/3) will be nonnegative provided

(4.3) F(a-,a+;a+1/2; W)+sgn(xyz)F(a--l,a++l;a+1/2; W)

is nonnegative for 0 <_- W 1/2(1 B) < 1.
Taking the cases sgn (xyz)- 1 of (4.3) separately, we have

F(a-,a+;a+1/2; W)+F(a--l,a++l;a+; W)
(4.4)

2(1 W)F(a , a + + 1; a + 1/2; W),
F(a-,a+;a+1/2; W)-F(a--l,a++l;a+1/2; W)

(4.5)
2 +__1 WF(a-, a+ +1; a +’, W).
a+1/2

Formula (4.4) follows from [3, 2.8, (37)] and (4.5) may be proved by comparing the
coefficients of powers of W.

Since the nonnegativity of the right-hand sides of (4.4) and (4.5) is obvious for
a > fl >_-- 1/2, 0 <= W < 1, we are done.

II. c< a-b. By (3.2b) and (4.2), k(x, y,z; a,/3) is nonnegative for these x, y, z if

h(w; a,/3)=-(/3 + 1)F(1/2(/3 a + 1), (/3 a +2);/3 + 1; w2)
(4.6)

+-(B-a + 1)wF(1/2(-a +2), 1/2(/3 a +3);/3 +2; w z)
is nonnegative for -1 < w < 1. We divide the region a >/3 >_-- 1/2 into two subsets.

(A) 0 =</3 a + 1 < 1,/3 > -1/2. Notice that the second hypergeometric function on
the right-hand side of (4.6) is positive. Hence for 1 < w < 1 and a and/3 in this region,

h(w; a,/3)->(/3 + 1)F(1/2(/3 a + 1), 1/2(/3 a +2);/3 + 1; W2)
-(fl -a + 1)F((fl -a + 2), 1/2(/3 -a + 3);/3 + 2; w 2)

=1/2(a +/3 + 1)F(( a + 1), (-a +2); +2; w2)
0,

where we have used the contiguous function relation [3, (2.8), (3.5)].
(B) -a + 1 < 0, >-. To show h(w; , )0 in this region, it suffices to
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consider the case 0< w < 1 since /3-c + 1 < 0 and, by (3.4), both hypergeometric
functions in (4.6) are positive. In this case we have to use a different method, which
relies on Bateman’s integral ([3, 2.4, (2)]),

I"(C "[- ]d, fl(4.7) F(a, b, c +Ix; x)
F(c)F(t) Jo yC-l(1-y)g-lF(a, b; c; xy) dy

if z > 0, c > 0, and -1 < x < 1. Also, we need the quadratic transformation

(4.8) F(y, y+1/2;1/2;x2)+2yxF(’y+1/2, 3/+ 1; 23-; x2) (l-x)-2

which follows from [3, 2.11, (3) and 2.3, (4)]. If/3 =-1/2, then by means of (4.8), (4.6)
becomes

h(w; a,-1/2) =1/2(1- W)a-l/2, --1 < W < 1,

so we may assume/3 >- 3.
Setting a (/3 a + 1), b 1/2(/3 a + 2), c -, Ix =/3 + 1/2, and x w2 in (4.7) and

making.the change of variables y z 2 gives

F(1/2(B -a + 1), 1/2(B -a + 2)" B + 1’ w2)= 2F(B + 1)
r( + 1/2)r(1/2)

(4.9)

Io (1-zZ)/3-1/2F(1/2(- + 1), (/3-c +2); ; w2z 2) dz.

Similarly, setting a 1/2(/3 a + 2), b (/3 a + 3), c 23-, /x =/3 + , and x w2 and
making the same change of variables gives

2F(/3 + 2)F(1/2(B oe + 2), 1/2(/3 c + 3);/3 + 2; w 2)
r(fl + 1/2)r()

(4.10)
2)z2(1 zZ)/3-/2F(1/2(8 o + 2), (fl c + 3); ; wZz dz.

Hence, by (4.6), (4.9), and (4.10),

h(w; a,/3)=
2F(/3 + 2) f

F Jo (1 Z2)/3-1/2
r(/ +)()

[F(1/2(/3 -a + 1), 1/2(/3-a + 2); 1/2; wZz 2)
wz F((8 oe + 2), 1/2(fl a + 3); ; wZzZ)] dz+(fl-a + 1) 2

(4.11)
2F(/3 + 2) I^=>
F(B + 1/2)F(1/2) .,o

(1 z 2)/3-1/2

[F(1/2(fl a + 1), 1/2(fl- c + 2); ; wZz z)
+(B-a + 1)wzF(1/2(8-oe +2), 21-(/3 a + 3);-; w2z2)] dz,

since zZ<z for 0<z< 1, fl-a + 1 <0, and, by (3.4), the second hypergeometric
function in the integrand is positive. Then (4.11) and (4.8) with y =1/2(fl-a + 1) give

2F(B + 2) Io 2)/3-1/2h(w; e)_->
r(e

(1-z (1- wz)a-/3- dz>-O

for a >/3 >- 3, as required.
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This completes the proof of Theorem 1(iv). Since we will show in 5 that
quasipositivity, and thus positivity, fails if fl > a or a +/3 < 1, to prove Theorem 2(ii) it
suffices to show that positivity fails for 1 </3 < , a > --, a +/3 => 1. But this is clear
from (4.5).

5. Analytic continuation. Here we show that the integral representation (1.3)
holds with k(x, y,z;a, fl) given by (3.1)-(3.3) for a,/>-I and -1 <x, y,z <1,
xyz # 0 if

or if

a>=B, a +/3 >-1,

a>-B, a>-1/2 and x2+y#--i

and show that it fails on the part of the boundary of these sets excluded above.
If s is fixed and s < 1, then F(A, 3’; u; s)/F(u) is an entire analytic function of 3", A,

and u. It therefore follows from (1.7), (1.8), and (3.1)-(3.3) that, for fixed x, y, z,
T(’ (x) and k(x, y, z; a, ) are analytic functions of the complex parameters a,/3 for
Re (a) > 1. Hence the extension of (1.3) to the desired regions can be accomplished by
an analytic continuation argument. Since the required argument is a simple
modification of the analytic continuation proof of [5], we omit the details.

The integral representation (1.3) fails, however, on the line segment a +/3 1,
-1/2 < a < 0 if x2+ y2= 1. In fact, on this segment,

T(n,-,- (x)T(,-,-i,, (+ x/1 x a

(5.)

I] lzl--r(2’--t (0) T(2"--(z)k(x, el-x, z’, , - 1)(1- z dz.

To prove (5.1), note that if n 2k, (5.1) becomes

R’-- (2x- 1)R(’-- (1 2x)

(’--(2z 1)K(2x 1 1-2x,2z-1" -1)=R’-I(1) Rk

(1 z2)lz]-2- dz

which, after a change of variables, is just [5, (6.4)]. If n 2k + 1, then (5.1) becomes

R’-) (2x2 1)R (’-) (1-2x)

2 R’-) (2z 1)K(2x 1, 1-2x, 2z 1; , -)(1- z=)lzl dz

or, after a change of variables,

(5.) R’-(x)R’- (-x) R (z)K(x, -x, z" , -)(1 z (1 + z) dz

for -< a < 0. Now (5.2) is (2.1) when a + fl 0, which is stated in [5] for a > 0. Since
by [5, (3.3)-(3.5)], the integral on the right-hand side of (5.2) is

F(+l)a- ._
r( + lr(l (c - c,

(5.2) can be analytically continued to >-, completing the verification of (5.2).
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Finally, we note that tZx, is also not absolutely continuous on the half-line a -,
> -1, even if x 2 + y2 1. This follows from [5, (6.13)] which in terms of our definitions

of a, b, and c is

R(n-1/2’t) (2x2-1)R(n-1/2’t) (2y2- 1)

1(b-a)
t+1/2

]2
2 b

R(-1/2’o)(2[b-a -1)

(5.3)

_l(a+b)
t+I/2

+2 b
R (-/’o)(2[a +b]2 1)

a+b

2) -0-3/2 f c-/2(1 +B)-R(-/2"(2c2 1)+ 5(z- ab
ab-a

F(1/2-/3, 1/2+/3; 2; 1/2(l-B)) dc

for -1 </3 <-1/2, X 2 -[" y2> 1 (i.e., b > a). For then by analytic continuation, (5.3) can be
extended to/3 > -1, and so by an argument similar to that used to prove (2.2), we have
that for -1 </3 < -1/2 and x 2 + y2> 1,

T(n-1/2,t) (x)T(-l/2,t) (y)

l(b-a)
t+1/2- b

T(,,-1/2"t) (sgn (xy)[b a])

l(b+a)
t+1/2

+- b
T(,,-/2,t) (sgn (xy)[b + a])

+ 1/4ab-t-3/2 IE ICIO-1/2(1 + [BI)-IT(-I/2’t (c)

{(1/4-/32)F(1/2-/3, +/3; 2; 1/2(1- [BI))
+sgn (xyc)[1/4-(fl + 1)2]F(-1/2-/3, +/3; 2; 1/2(1- IB[))} dc

where E (-a b, a b) (b a, a + b). If fl -1/2, (5.4) reduces of course to (1.6).

6. Estimates for k (x, y, z; a, fl). Here we show that tzx, satisfies (1.4) if and only if
a =/3 =- (which follows from (1.6)) or

(6.1) a_->/3>-l, a +/3>-1.

Except for the exclusion of the line segment a + fl 1, -1/2 < a < 0, (6.1) is the same
region for which quasipositivity holds for the Jacobi polynomials, as in [5]. In view of the
results of [5], /x,,y is absolutely continuous in the region (6.1), with
k(x, y, z; a,/3) as given by (3.1) to (3.3). Hence, to show that/z,.y is quasipositive in the
region (6.1) it is enough to show that

a+b

(6.2) V1 _Jl,-bl Ik(x, y, z; a,/3)1(1 c2)c2+1 dc <-M,

a-b

2)aC2/3+1(6.3) V2-- Ik(x, y, z; a, )[(1-c dc <=M

with z c or -c.
The proof of quasipositivity for much of (6.1) is virtually identical to that in [5] for

Jacobi polynomials. In fact, in (3.1) and (3.2) the functions multiplying the quantities in
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brackets are the same as the functions multiplying F’s in the expressions for the Jacobi
kernel in [5, (3.3) and (3.4)]; the weight function expressed in terms of c is also the same,
i.e., (1-c:Z)’c2/1. Moreover, using (4.1) and (4.2) and the fact that F(X, 3"; v; o) is a
continuous function of o for 0 -< o =< 1 if Re (v A 3’) > 0, it is easy to check that the
quantities in brackets in (3.1) and (3.2) are bounded by a constant independent of a, b
and c for exactly the same or,/3 as the F’s in (3.3) and (3.4) of [5]. Thus as this is the only
property of the F’s that is used there to establish quasipositivity for the regions

(6.4) a +/3> -1, -1/2<c <1/2, -1 </3 < -,
(6.5) cr >+1/2, -1</3 <-,

(6.6)

namely

quasipositivity follows in our case in exactly the same way, and we do not repeat the
proof. Also, the estimate used in [5] to deal with the case

c=, -I<B<-,

F(A, 3";A+3";s) F(A+3")
lim
sol log [1/(1 S)] F(,)F(y)

applies in exactly the same way to our case for the set (6.6).
The remaining subset of (6.1),

(6.7) c _->/3 ->-,

is easily disposed of by virtue of the positivity of k (x, y, z; a,/3) for c,/3 in (6.7). For, as
To’) (z)--- 1, setting n 0 in (1.3) gives

[k (x, y, z; a,/)l(1 z Iz dz 1.

To verify that (1.4) fails outside the region (6.1), we shall consider

(6.8)

(6.9)

-1,

(6.11) a+<-l, -<a<0, >-1,

(6.12) a= -, -I<B<-.
For (6.8) and (6.9), observe that if (1.2) and (1.4) hold, then setting

T(’ < 1}r max{]-- (x)l’--lx=
it follows that r Mr i.e.,

(6.13) r,M.

But from (1.7),

{IR )1r2=max (x "-lxl}

and so, as in [5],

+l),
+

n
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and

r2n > Mn--l/2 B<-a<-
which contradicts (6.13).

In the case (6.10), suppose that (1.4) held. Then, since the integral representation
(1.3) holds in this case if a # b, we would have V1 _-<M for a # b and so, by Fatou’s
lemma, for a b as well. But B c(2a)-1 when a b and so by (6.2) and (3.5)

(6.14) V1 A c_ c
+1 1- dc, a=b.

But the integral in (6.14) obviously diverges, which contradicts V1 _-< M. Therefore (1.4)
fails.

The argument is similar in the case (6.11). From (3.1) we have, much as in [5],

(6.15)

fa+b 2) -1/2VI=A(F(a +))-la-2b-/-1 c+O(l_B

{F(a-, a +fl; a +1/2; 21-(1-B))

Also ([3, 2.8, (50)]),

+F(a-B- 1, a +fl +1; a +1/2,1/2(I-B))} dc.

+ + 1/2)r(1/2)
F(2A, 27; h + y + 1/2; 1/2)

F(A +  )r(v +
if h + y + 1/2 is not a negative integer or zero, so the sum of F’s in (6.15) is bounded away
from zero as c 0. Hence the integral in (6.15) diverges when a b. Since the integral
representation holds for (6.11) if a b, Fatou’s lemma then again shows that (1.4) fails.

Finally, failure of (1.4) in the case (6.12) follows from (5.4), since if B <-,

(b)
B+l/2-a

as b a+.
b

7. Applications. In this section, we show that Theorem 1 gives a convolution
structure for the generalized Chebyshev polynomials. This convolution structure allows
the extension to generalized Chebyshev expansions parts of Fourier analysis which
cannot be extended to orthogonal polynomial expansions in general. As a related
application we also prove the positivity of the generalized translation operator. For
other applications, see [4], [5].

For a, > -1, let L]’) denote the class of measurable functions f(x) on (-1, 1) for
which the norm

[[fill [ [f(x)](X--x2)[x[ae+l dx

is finite The transform f of a function in L’) is defined by

2) 20+1f(n) f(x)T(:" (x)(1-x Ixl dx.

Then f has the expansion

f(x) X t’)f(n)T(:’) (x),
n=O



GENERALIZED CHEBYSHEV POLYNOMIALS 145

where

(2k + a +/3 + 1)Fk + a + fl + 1)F(k + a + 1)
if n 2k,

F(k + + 1)F(k + 1)r( + 1)r(a + 1)

(2k+a++2)F(k+++2)F(k++l)
ifn=2k+l.

r(k + + 2)r(k + 1)r( + 1)r( + 1)

If g , + > -1, we define the convolution f g of two functions f, g e L’ by

(7.1)

Also, let 11 be the sup norm. Then, as in [6] in the Gegenbauer case B -5, we have
the following corollary of Theorem 1 (iii) and (iv)"

COrOllArY 3. Let , + > -1 and , g, h e L’. Then [ * g e L’ and

(iii)

(v) ([ * g) (n [ (n )g (n), n=0,1,2,...;
with M 1 if > -. Moreover, L is a commutative semisimple regular Banach
algebra (with the norm I111 MIIII1) whose maximal ideal space is isomorphic to the space
{0, 1, 2,... } endowed with its discrew topology.

If > and [ eL’, then following [4], we define the generalized translate
[(x, y) of [(x) by

[(x, y)= [(z)(x, y, z; , #)(1-z lz dz, -l <x, y < 1.

(Note that for -1 < y < 1, f(., y) L’o.) Then by Theorem l(iv) we immediately
obtain

COROLLARY 4. Let a >-- >-1/2. Then the operator which takesf L’) into f(x, y)
is a positive operator in the sense that iff(x >- O, -1 < x < 1, then f(x, y) => 0, -1 < x, y <
1.

Note that if a >-/3 >- 1/2, (7.1) takes the form

(f * g)(x) f(x, y)g(y)(1-y lY dy.
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DIMENSIONALITY REDUCTION METHODS FOR EFFICIENT NUMERICAL
SOLUTION, BACKWARD IN TIME, OF PARABOLIC EQUATIONS

WITH VARIABLE COEFFICIENTS*

PAOLO MANSELLIt AND KEITH MILLER:t:

Abstract. We review several general purpose numerical methods for the ill-posed problem of solving a
parabolic equation backward in time. Most of those methods are applicable only to the case of constant
coefficients or else suffer from greatly excessive computational and storage requirements. For the general
problem with variable coefficients we instead propose certain modifications of known least squares methods
and eigenfunction expansion methods. Numerical trials show, as expected, a dramatic reduction in the
number of elements required in our "approximate basis" for the space of initial functions.

1. Some previous methods. We wish to develop efficient methods for the problem
of approximately determining the solution u (x, t) of a linear parabolic equation when
data g for u is given not at the initial time O, but at a later time T > O. That is, let u
be an exact solution of

(a) ut Z aiiUx,,,, + biux, + cu in f [0, c),
ii

(1) (b) u=0 onaf),x[0,

(c) u(x, T)g(x), a given data function.

We assume here that 12 is a bounded domain in R with sufficiently smooth boundary
and that the coefficients aij(x, t), bi(x, t), c(x, t) are uniformly parabolic and fairly
smooth.

This ill-posed problem can be stabilized for times > 0 if it is known that the initial
function u(x, 0) satisfies a prescribed bound. Writing (lab) as an ordinary differential
equation on the Hilbert space L2(f), and the data accuracy and the prescribed bound in
terms of the L2 norm, one has

u’= -L(t)u, for > 0,

with g in L2(f), and e, E given. Let A denote the evolution operator which maps the
unknown initial value f u(0) into the final value u(T)--Af. The conditions (2) can
then be written"

(3) [[A-gll<-e, IIB-011,

where B will denote the identity operator except where otherwise stated. It can be
shown now (for example by log convexity type arguments, see [1] ancl [9]) that the
problem of determining u(t) among all solutions satisfying the constraints (3) is stable.
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That is, as E is fixed and e gets small, then the difference at time > 0 between any two
solutions Ul and u2 satisfying (3) is also guaranteed to be small (in the L2 norm, the
uniform norm, or any other decent norm; the usual type bound is of the H61der form
O(eX(t)E 1-x(t)) with 0 < h (t) < 1).

In practice the parabolic equation (1) will usually be replaced by a finite difference
or finite element approximation on a discretization fh of 1) and A will then denote the
matrix mapping the discrete initial function s u(0) into the discrete final solution
AsC u T).

This problem is susceptible to application of certain general purpose numerical
methods for ill-posed problems devised by the second author and others. The problem
is that most of these methods, without modification, lead to computations of huge
dimensionality. For example, if is the square in two dimensions, and "h is a 60 x 60
discretization of f, then A will be a 3,600 x 3,600 nonsparse matrix.

Let us mention very briefly some of these methods and their difficulties; for a more
extensive discussion see the symposium notes [11 ]. These notes also announce portions
of the present joint work.

Partial eigenfunction expansion. (See Miller [6].) Let 1, 2," be a complete
system of "orthonormal eigenfunctions" which are simultaneously orthogonal with
respect to both A and B (here B is not necessarily the identity operator); that is

(Ai, A) (A)2t;,i,
(4)

(Be,, B.) (Bi)2t;i.
For example, if B is the identity, then the weights (Bi)e will all be l’s and the

functions i and the weights (Ai) will be the orthonormal eigenfunctions and cor-
responding eigenvalues of the compact self-adjoint operator ATA. If

(5) f Z f&, g E g,;Ai,

then (3) can be written

liAr- gll2 (f. g)A4,i E I(f, gi)eil2 -<- e
(6)

[IBf- 0[I Y (f,.- 0)B&i [(f 0)BI= <-- E2.

Assume now that the eigenfunctions b, 2,’" have been so ordered that the
ratios Ai/Bi are nonincreasing with respect to ]. Then truncate our expansion of g at
exactly that order a just previous to where Ai/e becomes < BilE. Let sc= gb
denote that initial function obtained by this crth order eigenfunction expansion of the
data function g. Then it can be shown that"

(7) [IAsc g[[ =< 2e, JIBsc‘ 0ll =< 2E,
and hence sc is a "nearly best possible" approximation to [, in the sense that sc satisfies
nearly the same "fit to the data" and "prescribed bound" as does [ itself.

This is a pretty specialized method, because, except in certain special cases, we just
aren’t usually given the eigenfunctions of A 7"A, and they can be very difficult to obtain.
However, when they’re available, it is a very good method and should be used.

This method is computationally equivalent to the singular value decomposition
method introduced by Golub and Kahan [5] for the solution of ill conditioned matrix
equations Ax b.
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Least squares. These and similar methods seem to have been discovered indepen-
dently by several authors; we mention Morozov [13], Backus [2], Miller [7], and also
Tihonov [14] and Bellman [3]; see [11] for a fuller discussion. See also the paper by
Miller and Viano [10] for an exposition of both expansion and least square methods.

Notice that the unknown initial function f from (3) satisfies:

(8) liAr- gl[2 + (e/E)2llnfll2 <= 2e2.
Thus, let our approximation : be such that

(9) IIA- gll= + (e/E)2IIBI[2

is minimized, i.e., the solution of the least squares equation

(10) (ATA +(e/E)2BTB)se ATg.
Since : will also satisfy the claimed fit to the data and prescribed bounds (3) (except

for a .factor of at most /) this is also,a nearly best possible method. Moreover, one can
compute exactly the best possible error bound for any linear functional of the solution.
The problem is that A, and hence ATA in (10) is horribly nonsparse. In this form,
therefore, the method seems totally impractical for multidimensional parabolic prob-
lems.

Stabilized quasi-reversibility. See Miller [8]. Suppose L in (2) is self adjoint, >=0 and
constant with respect to t. This method involves perturbing the equation (2) a bit,
replacing L in (2) by F(L), where F(A) is A for small A, but is bounded above for large
h. One then solves the perturbed equation backward, to get an approximation v(t) to
u(t):

v -F(L)v,
(11)

v(T)=g.

t<=T,

Then, if desired, solve the unperturbed equation forward with the initial value : v(0)
so obtained to yield a solution w(t). In this way we get some very efficient methods
which yield the best possible error bound Ilu(t)--v(t)ll<--e’/TE-’/T. The advantage of
this method is that F(L) can be taken to be a rational function that factors into its linear
(complex) or quadratic (real) factors above and below; hence each factor had a
sparseness pattern only little worse than that of L itself. The shortcoming of this method
is that it doesn’t extend well to very general L, and definitely not well to L(t).

The backward beam equation approach. See Buzbee-Carasso [4]. Once again, let L
be self-adjoint, constant with respect to t, and let T 1. Then y(t)= e’’u(t), with
a log (E/e), satisfies:

(a) y" (L- a)2y,

(12) (b) Ily(1)-egll<=e e,
(c) [[y (0)- 01l-<- E.

One then lets our approximation be v(t)= e-’w(t), where w(t) is the solution of
the two-point boundary value problem for (12) with w(1) eg and w(0) 0. Because
the norm of any solution of (12) must be convex with respect to t, one gets the best
possible error bound etEl-t once again. The shortcoming here is that we have to
simultaneously solve for all time levels at once; it thus introduces one higher dimension
to the storage and computational difficulties. It does seem, however, that the method
extends readily to variable L(t) (not with best possible stability) and perhaps even to
nonlinear equations.
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We would now like to propose the previously mentioned least squares methods or
eigenfunction expansion methods, but with some modifications, for the general prob-
lem with variable coefficients.

2. Reduced dimensionality tor se. In a typical problem with smooth coefficients,
most highly oscillatory initial functions will damp out drastically by T, so the space
of : we need to deal with should be quite small.

Let bl, , bN be an "approximate basis" for our space L2(f) of initial functions
:; let Pry denote the orthogonal projection onto their linear span; let Orv I-P
denote the projection onto their orthogonal complement, and suppose that

(13) I[AQN[I <= .l(e/E).
Instead of (3), we have

(14)
]laPrf- gll--< IIA (er I)fll / liAr- gll -< 1.1 e,

i.e., the projection Prvf satisfies nearly the same constraints as f itself; its high order part
Qrvf just hardly enters into the "fit to the data" of f. Therefore, we can do the least
squares approach of (8)-(10), but with sc a linear combination of the bl, , &v only,
and with e replaced everywhere by 1.1e. The matrix in (10) is then only N N and
involves only computing the solutions Abl, , Abr and their inner products.

Alternatively, if N is not too large, one can apply the eigenfunction expansion
methods to the operator APzv. This involves computing the eigenvalue and eigenvectors
of the matrix bij (A&e, Abj).

Notice that once we’ve guessed at a good "approximate basis" it is possible to
check computationally whether IIAQII is sufficiently small, since IIAQII= is the spectral
radius of QAT,AQ, which can be computed by the power method. This involves
computing high powers (QAT,AQ)"4), where b is any initial function (say br+x) which
has a nonzero component of the dominant eigenfunction of QA7,AQ. Recall that A 7- is
itself an evolution operator; it carries the initial value u(0)= : into the final value
u(T) A7, for the parabolic equation: u’= -(L(T- t))ru, 0 _-< -< T.

3. Conjecture and eounterexample. Let’s consider several possible choices of the
approximate basis. Suppose, for example that our equation is ut (a(x, t)Ux)x on the
one-dimensional interval [0, 7r], with u(0, t)= u(zr, t)=0 and with a(x, t) uniformly
elliptic (i.e. uniformly bounded above and below by positive constants).

One good choice for b,...,b might then be the Fourier basis
4 sin (lx), 4 sin (2x),..., x/ sin (Nx). If the coefficients a (x, t) (when a and u are
extended periodically across the end points by symmetric and antisymmetric reflection)
are sufficiently smooth (say C), then the kernel function k for the evolution operator
A,

(15) A(x) k(x, y)(y) dy,

is known to be a smooth Cq+ function of y, whose Cq+ norm is bounded in terms of the
Cq norm of the coefficient function; hence integration by parts q + 2 times in (15) yields
that:

(1,6) IIA+lll- o(g-"-2).

The same result would hold for the Fourier basis {2 sin (nx) sin (my)} in the case of the
square [0, zr] x [0, zr] in two space dimensions.
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A better choice might be to let 1,""", N; N+I, be the eigenfunctions of
L(0) (if these are easily available), since u’= L(t)u L(O)u for small t. If u(0) is a high
order eigenfunction b+1 of L(0)then the solution ought to die out exponentially so fast
(initially at an e-cr2’ rate) that it becomes very small before L(t) can change much from
L(0). (We wish to assume here that the coefficients are not necessarily C but merely
C2 or so.) The authors originally had the following loose conjecture" that IIAON+lll--
O(e-cr) at least, instead of merely O(N-q-2). We had a bit of computational
experience with a test program and our intuition appeared to be justified; the solution,
starting out in a high order eigencomponent (with respect to L(0) 02/Ox 2) did not seem
to diffuse very quickly into the low order components.

However, our intuition let us down, and analysis of the results for some anomalous
computer runs led us to the following counterexample.

Let u be the solution of the problem

(17)

(18)

(19)

with"

u,=(a(x,t)Ux)x on0_-<x-<cr, 0-<t-<l,

u(O, t)= u(Tr, t)=O,

u(x, 0)=sin ((N + 1)x)= br+l,

(20) a (x, t) 1 KtN- cos (Nx)

where N-> 1 and q => 1 are integers and 0<K < 1 is a sufficiently small positive
colastant. It will be shown that

Notice that the coefficient a(x, t) has uniformly bounded derivatives of order q,
independently of N, and that the coefficient stays uniformly elliptic.

We treat the nonconstant part of the coefficient as a small perturbation, transfer it
to the right-hand side, and apply the method of successive approximations with the
initial approximant u () being the unperturbed solution e -(/)2’ sin ((N + 1)x), and
with u (+ 1) solving

-uxx cos(Nx)u

on 0<-x <-r, 0 < with boundary conditions (18), (19). Notice that the 1st approximant
u Ca) feeds a substantial increment of itself from the quickly decaying (N + 1)st Fourier
component into the slowly decaying 1st Fourier component. We have u a) satisfying
(18), (19) and the equation

ux) u] fc(t)(sin (1. x) + (2N + 1) sin ((2N + 1)x)),

where fr(t)= Kt(N + 1) e-(+)2t/(2N). The solution is

u(X)(x, t) e -(r+l)t sin ((N + 1)x)

+ fr(r)[e -(-’ sin x + (2N + 1) e -(2/12(-’ sin ((2N + 1)x)] d’,

which has norm Ilu((1)ll_->(-/2)Io (r)e-/’d,=KN-q-(-/2)e-(1-e--N e-r) >__ O(N-q-3).
We now show rigorously that the norm of the true solution u (1) is even larger than

the norm of its 1st order approximant u()(1). For this purpose we transfer to an
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argument in terms of the Fourier coefficients {ui(t)} of u(t). Let X be the Banach space
of functions whose Fourier coefficients satisfy:

IlVllx sup Iv(t)l
[0,1]

Notice that the solution u of (17)-(20) is C so certainly belongs to this space. One sees
easily that the Fourier coefficients of this solution u must satisfy the integral equation

(21) ui(t) -/2toN+l Kj Io; --(=e o + re

Moreover one can show that the integral operator r corresponding to {.} on the
right-hand side of (21) is norm bounded onX by 2KINq-x. Therefore if K < , then this

( (t) of the method ofis a contraction mapping and hence the Fourier coefficients u
successive linear approximation converge to the Fourier coefficients u(t) of the unique
solution u(x, t). On the other hand, the operator r is "positive", i.e. it maps positive
coefficients into positive coefficients. Thus coefficients of approximants are increasing
with v, i.e."

(’ (t) < (v+,. (t) <’’" < ui(t).O<--ui() (t) <=ui(1)(t)<""" <u --ui
()Hence ui has even larger (positive) Fourier coefficients than its first approximant u (t).

Thus as claimed,

IIAN+ 111 u (1)ll >- Ilu((1)ll >= gvrN-q-3(e- e--N g e--N)/2 -->_ O(N-q-3).

This example certainly fails the O(e-cr) behavior conjectured earlier. Incidentally,
notice that this example (with Cq bounded coefficients) nearly attains the O(N-q-2)
upper bound proved in (15), (16).

4. Refinement of the approximate basis. The best choice of our orthonormal basis,
to make IIAO,,II as small as possible for each given dimension N, is the eigenfunctions of
ATA of course. This follows from the Courant minimax principle. With this in mind we
could start with an initial set of functions 01," ", 4,N then do a refinement of them,
rotating span (1, , r) approximately into span (first N eigenfunctions of ArA) by
the block power method, applying powers of the parabolic evolution operator ArA.
Because ArA can be expected to have quickly decaying eigenvalues, and because of the
fast rate of convergence of the block power method in this case, we would hope to see a
big improvement in I[AOII with only a few iterates of the refinement process.

We now describe a computer test program based on the parabolic equation (17),
(18) (but on the interval [0, 1 rather than [0, 7r]). LetA be the evolution operator which
carries the initial function u (., 0) at time 0 into the final function u (., T) at time T. We
approximate A by a finite-difference equation discretization A, with NX equal
subdivisions of the space interval [0, 1] and NT equal subdivisions of the time interval
[0, T]. For the space discretization of L(t) O/Ox(a(x, t)/Ox) we use the usual centered
second difference operator (with the coefficient function of course evaluated at the
subinterval center points). This leaves us with a system of ODE’s for the NX-1
dimensional discrete function a (t)"

(22) ti =/2(t) ti, 0 <_- _-< T.

We discretize this system in time, using the second order diagonally implicit
Runge-Kutta method of Miller [12]. Such stiffly stable methods are absolutely neces-
sary in the present case in order to accurately damp out the high order components of
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(22) as does the true ODE. Our approximant t(t) to the solution t(t) of (22) is given by
5(T) A5(0)= ANt A/./I’’’ A2Al3(0)where A/.+I carries us from time t/. to time
t/.+l t/. + &t by means of the two successive linear tridiagonal implicit equations:

(23)

(24)

/]/’+1/3 /A"/-+" (zt/3)Li+l/3i+/3,

(V/+l/3-

where, of course 7/. denotes t3(t/.), Lj+I/3 denotes L(t/. +At etc.
The exact transpose (fi) T is then computable by a similar finite difference sequence

)T T TI,whosesolution (t)isgivenby I(0)=()Tff(T)=(I (Ai+I) (ANT) (T),
where (fi/.+a)T carries us from time t/.+l to ti by means of the two implicit equations

(25)

(26)

and

(27)

/+3/4 1’/+1 +(At/a)(L.+I)T/.+3/4,
1’’/’+5/12 1/+3/4 -- (At/3)(L+I/3)TIi+5/12,

Wj -Wi+ /12 -W/.+3/4.

We begin with functions 4q, , Ot (which in the beginning stage for us are always the
discrete functions sin(lzrx),... ,sin(MTrx)), where M<=NX. The 1st step is an
orthonormalization of these (repeated twice to correct some serious roundoff
difficulties in later stages when the 4/. for larger/" may all be nearly zero) to yield discrete
functions ql, ", 0t. The 2nd step is to compute A01, ", Aot (the implicit equa-
tions in (23)-(24), and later in (25)-(27), can be solved in block form, of course), and
print out their norms, Ilfiq/.ll. The third step (explanations for this step later) is to
compute the M1 M1 matrix b0 (Aqi, Ap/.), i, f 1, , M1 with M1 <M and
compute its eigenvalues and eigenvectors with a standard computer center routine
(EISeACK). Using the computed eigenvectors we easily rotate the basis elements
ql,’", 0tl within their own span to new elements ,V,’", Xta which are the
eigenvectors (corresponding to A1,... ,Atl) of Ptl(fi)TfiPtl, where Ptl is the
projection onto the span of these elements. This yields a new orthonormal basis
Xa,"’,Xtl, pta+x,"’, qgt and their corresponding A values AX1,’" ,AXM1,
fi-qtl/l,’’" ,fiPt. The 4th step is to compute (fi)TfiXl,’’’, (A)Tqt. These
functions then become the initial functions for the next refinement stage. At the
beginning, before the refinement stages, a check is performed to see if At is sufficiently
small in our time discretization, by printing out 11/.-4,11, i= a,,, ,, M, where
respresents the discretization of A with t replaced by t/2. In the last refinement
stage, to save computer time, only the first and second step are performed.

The resulting sets of orthonormal functions {1,"’, qt} in the zeroth, 1st,
2nd,... refinements stages should converge toward the first M eigenfunctions
/3a,...,/3t of (A)T. The rate of convergence depends in a rather complicated way
upon the ratios of the eigenvalues A/. (these are Ai e-=2/.2T when a (x, t) 1, so large T
should yield larger ratios). Since we expect these ratios to be large for large/" and rather
small for small/’, we suspect that the block power method by itself might be rather slow
to align {p, , ota} one by one with {/31, ,/3ta} even though their spans may be
nearly parallel. Therefore, for the sake of a quicker alignment we have introduced the
3rd step.

Recall that PN denotes the projection onto span {ql, , qN}, withN < M, and ON
the projection onto the orthogonal complement gpan {(49N+1, qgM, qPM+l, qPNX }.
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Therefore"

(28) IIOull => max {ll(pr+lll, ",

Likewise"

(29) II,Q,II +11+ + IIxll.
The sequence I111,""", IIll,""", I1 is usually rapidly decreasing, with the
elements I1+111,""", IIx[i much smaller than I1+11; we merely assume that
the "unseen" values II+ll,""", IIxll, woud also be much smaller than I1+
Therefore the upper bound is (29) is approximately the observable

(In fact, both the upper and lower bounds in (28) and (30) are usually approximately
equal IIN+II; this is especially true in the later refinement stages and sometimes false
in the zeroth refinement stage.)

With this in mind we examine several computer run results; the tables for
Examples 1 through 5 display the norms ofAi for our "approximate basis" elements
after successive refinements of this basis.

TABLE

EXAMPLE 1. a(x,t)=l-.5(1-t/T)cos(15rx). NX=60; M=20; MI=10; T=.04; NT=90.
Initial basis: oi / sin (w/x), 1, , 20. I1,o- 0il[ -< .69 x 10-5.

O-th refinement: Ill,ill, 1,..., 20

.69 .23 .36 X 10-1 .46 X 10-2 .42 X 10-2

.29 X 10-2 .36 X 10-2 .26 10-2 .36 X 10-2 .29 X 10-2

.45 X 10-2 .59X 10-2 .11 X 10-1 .10X 10-1 .27 10-3

.90 X 10-2 .84 X 10-2 .38 X 10-2 .23 10-2 .13 X 10-2

1-st refinement: IIojll, 1,. ., 20

.69 .23 .36 10-1 .27 X 10-2 .11 10-3

.24 X 10-5 .49 10-7 .39 10-11 .13 X 10-11 .50 10-11

.12 X 10-11 .80X 10-12 .73 X 10-12 .11X 10-11 .16 X 10-12

.81 10-12 .10 X 10-12 .25 10-12 .32 10-13 .55 10-12

Consider Example 1" here the coefficients begin with a 1 -.5 cos (15zrx) at 0
and end with a 1 at T .04. We use NX 60 subdivisions on x, which should be
sufficient for our purposes since we consider only M 20 basis elements for our block
power method. We first check that our At TINT .04/90 is sufficiently fine; we see
that A(At)= ft. and A(At/2)= differ at most by .69 10-5 when applied to all our
normalized initial basis functions rp / sin (rjx), ] 1, , 20, which is more than
adequate accuracy for our purposes.

Now notice that even with 19 elements of the initial basis, ql,..., 19""
4 sin (Trx), , 4 sin (19rx), we have 11O911-> II,0=oll 1.3 x 10-3. On the other
hand, with only one refinement step we obtain a refined basis ol, such that only 4
elements are needed for 10-4 accuracy, since I1O11 <-I1011 +"" + 11,6oll I1,o11-
1.1xl0-4. Only 5 elements are needed for 10-5 accuracy since I[AOslt -<_

ll061l /"" / 11060ll lift-q,611- 2.4 x 10-6.
Example 2 is exactly the same but with a larger At TINT .04/20. We see that

our truncation error A(At)-A(At/2) is a bit larger (=<1.4 x 10-4 when applied to the
initial basis), but that the results remain essentially unchanged. Here we have computed
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TABLE 2

EXAMPLE 2. a(x,t)=l-.5(1-t/T)cos(15zrx); NX, M, M1, T as in Example 1; NT=20. Initial
basis: as in Example 1. II,i Aill--<. 14 10-3.

O-renement:llll, i=l,...,20

.6885971517
.461459938510-2

.2894939091 10-2

.3601174424X10-2

.449168836010-2

.1009673234 x l0-1

.9081274800X 10-2

.2335640104 10-2

1-strenement:]lll,/=l,...,20.
.6888836077

.2677930783 10-2

.1880674611 x l0-5

.3078001887 10-12

.353587930610-13

.5230060660 10-13

.6715851716 10-13

.544307215110-13

2-ndfinement:llll,/=l,...,20
.6888836078

.2677930773 10-2

.1880674593 10-5

.2482395905 10-13

.2702875322X 10-13

.2220004413 10-13

.1297460422X 10-13

.1317570645 10-13

.2253621125

.3606328407 10-2

.5908097559 10-2

.8468108222 10-2

.3562653288 10-1

.4167318435 10-2

.2620407039 10-2

.2918928903 10-2

.1112936136 10-1

.2708656351 10-3

.378495514910-2

.1319870876 10-2

.2257455333 .354045642110-1

.9887008367 10-4

.2700461045 10-7 .5046380266 10-12

.1292009366 10-11

.7620555335 x l0-13 .1241809583 10-12

.8213544145 10-13

.6691155044 10-13 .4142766621 10-13

.5571022312 10-13

.2257455330 .3540456408 10-1

.9887008300 10-4

.2700461040 10-7 .3658578281 10-12

.2970692916 10-13

.2771698023 10-13 .2049124567 10-13

.2536235882 10-13

.1647823106 10-13 .1682785794 10-13

.1168381198 10-13

a second refinement step; notice that the corresponding Ilfio/ll differ almost not at all
between the first and second refinements, for / <= 7. This indicates that Ol, , o7, after
only the first refinement step have probably been almost exactly rotated into the
eigenelements ot

Consider Example 3. Here the coefficients begin with a 1 at 0 and end with
a 1 (10/11) cos (7zrx) at T .02. Once again we use 60 subdivisions on x. Notice

TABLE 3

EXAMPLE 3. a(x,t)=l-(1-(1/(l+lOt/T)))cos(7rx); NX, M, M1 as in Example 1; T=.02;
NT 20. Initial basis: as in Example 1. [1,i Aqi[ -<_ .42 10-3, 1,. , 20.

O-th relinement: II,ill, 1,..., 20

.89 .64 .41 .18 .10

.42 10-1 .25 10-2 .24 10-1 .23 10-1 .23 x 10-1

.7310-2 .51X10-2 .2110-2 .3310-3 .11 xl0-2

.13 x 10-2 .11 10-2 .20x 10-3 .23 x 10-3 .14 10-3

1-st refinement: Ill,ill, 1,..., 20.

.89 .65 .44 .51 10-1 .21 10-1

.55 10-2 .11 10-2 .16X 10-3 .18X 10-4 .15 X 10-5

.89 X 10-7 .85 X 10-9 .30 X 10-9 .14 X 10-8 .99 X 10-9

.13 10-9 .58 10-9 .90X 10-9 .24 10-9 .25 10-9
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TABLE 4

EXAMPLE 4. a(x, t)= 1-.2(1-t/T)(cos (87rx) +cos (15zrx))-.2(1- (1 +(1 + lOt cos (3zrx); NX,
M, M1, T as in Example 1" NT 20. Initial basis" as in Example 1. IIA qi[[ -<. 16 x 10-3.

O-th refinement: Ill,ill, 1,..., 20.

.69 .22 .34 X 10-1 .17 X 10-1 .11 10-1

.12 10-2 .11 10-1 .30 10-2 .92 10-2 .561 10-2

.28 10-2 .25 X 10-2 .47 10.-2 .38 10--2 .47 10-3

.37 10-2 .28 10-2 .11 10--2 .42 10-3 .73 10-4

1-st refinement: II,ill, 1,. 20.

.69 .22 .33 10-1 .29 10-2 .67 10-4

.11 10-5 .6310-8 .18 10-8 .4910-9 .1310-8

.73 10-12 .87 10-13 .61 10-12 .82 10-12 .70 10-12

.72 10-12 .21 10-12 .20 10-12 .34 10-12 .27 10-12

that our initial basis qi x/ sin (zrjx) is the basis of eigenelements for the initial
operator L(0) O/Ox(1 O/Ox). Nevertheless, even with 16 elements of the initial basis
we have [[O161[->_ [1q91711 1.1 x 10-3; and even with 19 elements of the initial basis we
have I1Q1911_-> II.q201[ 1.4 x 10-4. Again, after only one refinement step we obtain a
great improvement; only 6 elements of the refined basis are needed for 10-3 accuracy
since IIQ6[I -< II/dq971[ +"" + 11/x(’/9601[ [1711-1.1 x 10-3. Only 7 elements are needed
for 10-4 accuracy since IIOvll <= 118ll /"" / IIq6ol[ 11811-1.6 x 10-4.

Example 4 has a more complicated coefficient structure, but also shows a marked
improvement with only one refinement step. The coefficients begin with a
1-.2. (cos (15zrx)-cos (8zrx)) at t=0 and end with a= 1-(2/11) cos (37rx) at t=
T .04. Notice that at least 19 basis elements are needed for 10-4 accuracy with the
initial basis since [[fi01811_-> [[fiq1911_->4.2 x 10-4; however only 4 elements are needed
for 10-4 accuracy with the refined basis since [[fltQn][ <= [I/dq9511 +’" + [I/dq91oII II  sll-
.67 x 10-4.

Example 5 shows a shorter final time T .01. Hence it is to be expected that the
eigenvalues hi of ArA will decrease less rapidly with j than in the previous cases.

TABLE 5

EXAMPLE 5. a(x,t)= 1--(1--(1/(1+ lOt/T)))cos(12zrx)" NX, M, M1 as in Example 1" T=.01"
NT 20. Initial basis" as in Example 1. IIq ill--< .42 10-3.

O-th refinement: I[11, 1,. 20.

.94 .79 .60 .41 .27

.23 .12 .84 10-1 .60 10-1 .39 10-1

.18 10-1 .21X 10-2 .13 10-1 .19 10-1 .19 10-1

.16 x 10-1 .12 10-1 .71 10-2 .58 10-2 .44 10-2

1-st refinement: [[Ai[[, 1,. 20.

.94 .80 .60 .42 .29

.21 .14 x 10-1 .68 10-2 .26 10-2 .82 10-3

.23 10-3 .56 10-4 .12 10--4 .23 10-5 .39 10-6

.63 10-7 .90 10-8 .25 10-8 .11 10-8 .16 10-8

2-nd refinement: II,ll, 1,. 20.

.94 .80 .60 .42 .29

.21 .14 10-1 .68 10-2 .26 10 -2 .82 10-3

.23 10-3 .56 10-.4 .12 10-4 .23 10-5 .391 10-6

.63 10-7 .99 10-8 .21 10-8 .44 10-1 .48 10-11
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Nevertheless our refinement process shows a fair improvement. One needs at least 20
elements for 10-3 accuracy and 16 elements for 10-2 accuracy with the initial basis; with
the refined basis one needs 9 elements for 10.3 accuracy and 7 elements for 10-2

accuracy.
All of our present dimensionality reduction methods are not really worth the

trouble in one space variable. Consider for instance the Example 3 with 10-4

accuracy. We have reduced from a least square method with a 60 x 60 matrix rfi using
the full 60 dimensional basis, to a 19 x 19 matrix (fiO19)7" (fi-Ol9) using the sinusoidal
initial basis ql," , q19--/ sin (17rx), , / sin (197rx), then finally to a 4 x 4
matrix (Qa)r(fi-O4) using the refined basis ql, , q4. Of course, computing the full
60 x 60 matrix firA would involve solving the parabolic equation with 60 different
initial functions, which would be a bit or work, but the inversion of the 60 x 60 least
squares matrix A rfi. + e could then be easily accomplished.

The true advantages of these methods should arise for problems with several space
variables. Let us concoct a multivariable example (admittedly artificial) in which a great
reduction demonstrably does occur. We construct this example from our one dimen-
sional Example 1, thus avoiding the much larger computing cost of having to apply our
refinement method to examples with two space variables.

Consider the parabolic equation

(31) ut=(a(x,t)u)+(a(y,t)u), 0-<x-<_l, 0-<y<-l, O<=t<-T,

with the conditions:

(32) u 0 on the lateral boundary, u ii(x, y) qi(x)0.(y) at 0,

where a (x, t) is. the coefficient function of Example 1 and the i are the orthonormal
basis functions of Example 1 (either the full basis, the sinusoidal basis or the refined
basis). Now, because of the separability of this problem (i.e., the commutativity of the x
and y differential operators in (28)), we find that the discrete solution at time T is given
by A,tji=Alqi(x)A2q(y) where A1 is the solution operator (with respect to x) of
Example 1 and A2 is the same solution operator (with respect to y) of Example 1.
Notice that the :ii form an orthonormal basis on the square and that:

Now, letting the qi be the sinusoidal basis we see that 10-4 exactly for the 107
index pairs {(1, 1)-(1, 20), (2, 2)-(2, 14), (2, 16)-(2, 18), (3, 3)-(3, 7), (3, 9)-(3, 14),
(3, 16)-(3, 18), (13, 13), (13, 14), (13, 16), (14, 14) and the symmetric pairs} and that
these norm values drop off rapidly for larger values of the indices. Let $107 denote this
set of indices, let Q107 denote the projection onto the space spanned by the comple-
mentary basis elements :ii, i, j S107 and notice that:

I1 o10 11_-> max 10-4.
i,j $1o7

Thus it seems that at least 107 sinusoidal basis elements (and possibly quite a few more)
are needed for 10-4 accuracy.

Letting the. qi be the refined basis of Example 1, however, we see that we can let $17
be the set of 17 index pairs (1, 1)-(1, 5); (2, 1)-(2, 4); (3, 1)-(3, 4), (4, 1)-(4, 3), (5, 1).
With only these 17 refined basis elements we then have at least 10-4 accuracy. In fact,
the numerical evidence from Example 2, where we did a second refinement, indicates
that the first few elements 1, , 7 of our first refined basis are almost exactly equal
to the first few eigenfunctions ill, 7 of /IA and Af/2. Notice, moreover,
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because of the commutativity of ft. and {2, that the eigenfunctions of Tfi. are exactly
of the form Bi(x)Bi(y) tpi(x)qi(y). Hence IIAQ17[I max(i,i)s17 I[1ii1[ -> .7 x 10-4.

Notice that the block power method with 17 elements would eventually give us
exactly the 17 largest eigenelements

{ii(x, y) Bi(x)/i(y), for (i, ]) e S17}.

(Probably for purposes of faster convergence for the block power method we would
carry along a few more basis elements, say M 30, then proceed with an eigenvalue
routine such as ESlPACK ,as we have done before, to pick out the dominant 17 or so
eigenelements from this refined space of dimension 30.)

In this two variable example we have therefore reduced the required dimen-
sionality of our approximate basis from 60 x 60 3,600 for the original full basis, to 17
for a refined basis. Notice that computation of the parabolic solution A for a single
initial function (x, y) is a big job, but easily feasible. So also would be the computation
of the parabolic solutions fi, Tfi.q,..., 2dr/d30 for several steps of our block power
refinement method. Computation of the parabolic solutions Ase, AIo7 for the
sinusoidal approximate basis would be a much larger problem, and so would be the
inversion of the corresponding 3,600 x 3,600 nonsparse least square equations would
capabilities of modern computers. However, computation of the parabolic solutions
Atpl, Atp3,600 for the full basis would require an enormous expenditure of time, and
inversion of the corresponding 3,600 x 3,600 non sparse least square equations would
be beyond the memory and speed limitations of modern computers.

One final point should be called to attention. In some cases (such as when the final
time T is rather large) the eigenvalues of ArA die out so rapidly that it is rather easy
to accurately compute (by a variety of methods) the required first few exact eigenvalues
and eigenfunctions. (As we have said, the numerical evidence in our Example 2 seems
to indicate that we have found almost exactly the first seven eigenvalues and eigen-
functions with only one application of our block power method; W. Kahan has pointed
out to us that a Lanczos type method would probably give even faster convergence.) In
such a case, having evidence that we have found nearly exact eigenvalues and eigen-
functions, it would probably be best to apply the method of partial eigenfunction
expansion (4)-(7) rather then the least squares method (8)-(9).
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CANONICAL FACTORIZATIONS OF
DISCON]UGATE DIFFERENTIAL OPERATORS*

ANTONIO GRANATA"

Abstract. In a previous paper W. F. Trench (1974) proved that it is always possible to factorize a linear
ordinary differential operator L, disconjugate on (a,b), in the form Lu=-pn(pn-l("" (pou)"’")’)’ with

(1/pi)= +oo or b (1/pi)= +oo (i 1,..,, n- 1). Following on from this we consider factorizations with
the conditions (1/pi) < +oo or b (1/pi) < +o(i 1," ., n- 1). All circumstances where it is possible to

obtain factorizations of such two types are characterized, taking into account the behavior at both endpoints.
In doing so two subclasses of disconjugate operators on (a, b) are pointed out: the well-known one consisting
of those operators which are also disconjugate on [a, b and another one with properties opposite, so to say, to
those of the first subclass, as far as the double asymptotic behavior at the two endpoints is concerned. In the
first case some new characterizations are added to the many already known whereas the second subclass is
interesting in itself. Some of the results are especially important if viewed as useful lemmas in studying global
or asymptotic properties of solutions to perturbed disconjugate equations.

1. Introduction. A generic nonempty interval of [ will be denoted by 3-; (a, b),- <= a < b <= +, is an open interval. All functions are real-valued. Loc(3-) denotes
the set of functions which are integrable on every compact subset of 3-; Ck(3-) and
ACk(3-) denote respectively the set of functions with continuous or absolutely
continuous kth derivatives on 3-. Ln (n N) will stand for an nth order linear ordinary
differential operator represented by

(1.1) Lnuu(n)+al(t)u(n-1)+ "+an(t)u, /uACn-I(3-).
When there is no ambiguity we will write L instead of Ln; it is tacitly assumed that

n -> 2. Such an operator will be called type (,) on 3- if it can be represented by (1.1) with
ai Loc(3-), Vi. An operator Ln of type (,) on 3- (or the equation L,u 0) is termed
discon]ugate on 3- if every nontrivial solution of L,u 0 has at most n 1 zeros on 3-,
counting multiplicities. Fundamental papers concerning disconjugate operators are
those by Polya [25], Hartman [6], [7], [8] and Levin [17] whereas important mono-
graphs and textbooks on the subject are those by Karlin [9], Karlin-Studden [10],
Coppel [2], Willett [38].

A fundamental property of an nth order disconjugate operator is that it can be
represented as a symbolic product of n first-order operators. The proof of the following
theorem may be found in Polya [25] and Mammana [21] for particular cases and in
Levin [17, Cor. 2.2, p. 62] and Rosati [26] in its full generality.

THEOREM 1.1. LetL be an operator of type (*) on an open interval 3- (bounded or
not); then the following properties are equivalent"

i) L, is disconjugate on 3-.
ii) Equation Lnu 0 has a fundamental system of solutions, ul, , u, such that

(1.2) W(Ul,’’’,Uk)>O on3-, k=l,...,n,

where W(Ul, Uk) W(u(t), , u.(t)) is the Wronskian determinantoful, u
and W(u) =- u.

iii) L has a factorization of the type

(1.3) Lnu =--P,[P,-a(’’" (pa(pou)’)’’’")’3’, Vu AC"-1(3-),

* Received by the editors June 6, 1978 and in final revised form January 23, 1979.
? Dipartimento di Matematica, Universitg della Calabria, C.P. 9-87030 Roges (Cosenza)-Italy.
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where the pi’s are suitable functions such that

(1.4) pi(t)>O /t, Vi; piAC"-a-i(-), 0<=i=<n-1; p,AC(-).

iv) L, has a factorization of the type

(1.5) L.u =(D +ffa)(D +/2) (D +/.), Vu AC"-a(-),

where Du u’ and the pi’s are suitable functions.
Factorizations of type (1.3) or (1.5) are useful when studying general properties of

disconjugate equations as shown, for example, by Polya [25], Mammana [20], [21],
Zedek [39], Hartman [7], [8], Levin [17]; however in studying global or asymptotic
problems related to perturbed disconjugate equations of the form Lnu=
[(t, u, u’, , u("-)), it sometimes appears that factorization (1.3) is not very useful in
itself. In fact, when the method of "variation of constants" is applied to the equation,
one finds that the possible solutions for the problem at hand (multipoint boundary value
problems, asymptotic behavior of solutions, etc.) satisfy certain integral equations
which can be easily studied only if the coefficients pi of (1.3) are subject to suitable
integrability conditions at one or both endpoints of -. Trench [32] has shown that every
operator L, disconjugate on (a, b), has a factorization (1.3) such that

b

(1.6) I (1/pi) +c, 1,’’’, n 1 or Ia (1/pi) -+-CX3, 1,’’’, n 1.

The usefulness of such factorizations can be clearly seen in Kartsatos [11],
Kusano-Naito [13], Lovelady [18], [19], Trench [33] and also in papers dealing with
functional differential equations viewed as perturbations of a disconjugate equation,
among which we mention only Grammatikopoulos [3], [4] and Philos, Sficas, Staikos,
Stavroulakis [22], [23], [24], [27], [28], [29]. Furthermore the entire asymptotic theory
of Willett [34]-[38] could be simplified by the use of Trench’s results. The following
condition has also been considered

b

(1.7) I (1/pi)< +, i=l,...n-1,

cf. Granata [5], Kusano-Onose [14]-[16], Kartsatos [12]. Such factorizations can
sometimes yield results complementary to those obtained by working with factoriza-
tions of the Trench type, see [5, Thms. 3.1 and 3.3].

Continuing on Trench’s line we shall study the existence of factorizations satisfying
(1.7) at one or both endpoints or satisfying (1.6) at both endpoints. Throughout we shall
only use factorizations of type (1.3). Section 2 contains definitions of and some general
facts about the two types of factorizations, while 3 sets out the main results of the
paper: proofs are to be found in 5. In 4 there are some examples.

2. Two types of canonical factorizations.
DEFINITION 2.1. Let = (a, b), -<_-a <b _<-+; the symbol D,(-)=D,(a, b)

will denote the family of all the operators L, of type (.) disconjugate on -.
DEFINITION 2.2. A factorization of type (1.3) of an operator L D,(a, b) is said to

be a canonicalfactorization (C.F. for short) of type (I) [resp. of type (II)] at the endpoint
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a if the functions pg satisfy not only (1.4) but also the following conditions

(2.1) I, (1/pg)= +oe, 1, , n- 1,

(2.2) [resp. I (1/pg)<+oe, i= 1,..., n-l].
An analogous definition holds at the endpoint b replacing a with I b.
Such factorizations will be also termed "global" on (a, b) since they represent the

operator L on all of (a, b) and the coefficients pi satisfy (1.4) on (a, b). On the other hand
a factorization will be termed "local" at a [resp. at b] if it represents the operator L on
an interval of the form (a, a + r) [resp. (b -r, b], r >0, or if the pg’s satisfy (1.4) on such
an interval only. The term factorization, referred to a given operator L e Dn (a, b), will
always stand for a global factorization on (a, b).

Canonical factorizations of-type (I) are those studied by Trench who proved the
following fundamental result.

THEOREM 2.1 (Trench [32]). Every operator.L Dn(a, b) has a C.F. of type (I) at a
and a similar C.F. at b. Furthermore every C.F. of type (I) at an endpoint is "essentially"
unique in the sense that conditions (2.1) determine po,"’,p, up to multiplicative
constants with product 1.

Where C.F.’s of type (II) are concerned the situation is different: indeed an
operator L D, (a, b) may have no (global) C.F. of type (II) or may have an infinity of
"essentially" different ones. For instance the operator d2/dt2, regarded as an element
of Dz(-c, +o), has no global C.F. of type (II) both at -o and at +. This could be
proved by writing in full the identity u"=- p(pl(pou)’)’ and then using simple devices but
is left to the reader because it is a particular case of a more general result to be proved
below. On the other hand the same operator, regarded as an element of D(T, +m) or
D2(-c, T), where T is any real number, has an infinite number of essentially different
C.F.’s of type (II) at +o [resp. at -c], namely,

U"(t)=(t--c)-l[(t--C)v(U(t)’]
where c is any constant < T [resp. > T].

The following result is a counterpart of Theorem 2.1 and asserts the existence of
local factorizations of type (II).

THEOREM 2.2. Let L D, (a, b ), -c <_ a < b <- +o. Then for every to, a < to < b,
there exists a C.F. ofL in the interval (a, to) which is of type (II) at a and a C.F. in (to, b)
which is of type (II) at b.

3. Statement of the main resultq, Generally speaking it is not true that a g!obal C.F.
of type (I) or (II) at an endpoint is also a C.F. at the other, and, even when it is so, it is not
necessarily of the same type. We shall characterize all the possible situations and the
existence of global factorizations of type (II). In doing so we shall point out the
interdependency between canonical factorizations, hierarchical systems, generalized
disconjugacy and double asymptotic behavior of solutions. Some definitions are
needed.

DEFINITION 3.1. Let LD,(a, b); a C.F. of L is said to be mixed if it is of type (I)
at one endpoint and of type (II) at the other; it is termed double if it is of the same type at
both endpoints.
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DEFINITION 3.2. Let L. be of type (.) on (a, b) and let to [a, b ], possibly to +c.
An ordered n-tuple (Ul, , u.) of solutions of L.u 0 is called a hierarchical system at

to if there exists a deleted neighborhood N of to such that
i) Uk(t) O, e N, k l, n,

ii) lim,_,o Uk(t)/Uk+l(t) O, k 1," , n 1.
Note that the order of (Ul,"’, u,) is vital in Definition 3.2 and that every

hierarchical system at a point to is a fundamental system of solutions on (a, b).
DEFINITION 3.3. An n-tuple (ul, , u,,) is called a double hierarchical system on

(a, b) if it is a hierarchical system at both a and b; it is called a mixed hierarchical system
on (a, b) if (ul," , u,) is hierarchical at a and (u,,. , ul) is hierarchical at b (or vice
versa).

The locution "hierarchical system" is used by Levin whereas Hartman, Willett and
Trench use "principal system". The concept of a mixed hierarchical system is that of a
fundamental principal system as given by Willett [36, Def. 1.5].

Hartman [7, Thm. 7.2, p. 331 and Thm. A, p. 353] and Levin [17, Lemma 2.1, p.
58] showed that every disconjugate equation on (a, b) has a hierarchical system at a and
another one at b; on the other hand the existence of a mixed or double hierarchical
system is only assured for certain subclasses of disconjugate equations. The following
theorem establishes the equivalence between the existence of a global C.F. of type (II),
of a mixed C.F. and of a mixed hierarchical system: it is a completion to Trench’s results
[32, Thm. 2].

THEOREM 3.1. For L D,(a, b) the following are equivalent properties:
1) The C.F. of type (I) at a is a C.F. of type (II) at b;
2) The C.F. of type (I) at b is a C.F. of type (II) at a;
3) L admits of a global C.F. of type (II) at a;
4) L admits of a global C.F. of type (II) at b;
5) Lu 0 has. a mixed hierarchical system on (a, b ).
Extending the concept of "zero" of a function and the consequent notion of

disconjugacy (see Levin [17] and Willett [36], [37]) many other characterizations may
be added to those in Theorem 3.1. By so doing we shall show the equivalence between
Trench’s results reported in Theorem 3.1 and Willett’s disconjugacy criteria for singular
equations [36]. The following Definitions 3.4 and 3.5 may also be found in Willett [36]
to whom we refer the reader for further explanations about locutions and properties to
be used. In such definitions L will be a fixed operator of order n and type (.) on an open
interval (a, b), - <_-a < b <-+m. The concepts to be defined depend vitally on the
choice of L.

DEFINITION 3.4. A solution u of L,u 0 has a zero of order k, 0 <= k <= n 1, at a
point to e [a, b (possibly to +/-c) provided that there exists a hierarchical system at to,
(Ul,’’., u,), and that any one of the following properties (equivalent to each other)
holds:

i) there exists a constant c 0 such that:

u(t) cu._(t)[1 + o(1)], - to,

u(t)/ui(t)[=0, ]=n,n-1,...,n-k+l,
ii) lim

t-*o #0, ]=n-k,

iii) there exist constants cl, , Cn-k such that c._k r 0 and

u(t)=clul(t)+" "+c._u.-(t), a <t<,b.
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DEFINITION 3.5. Denote the number of zeros, counted as prescribed in Definition
3.5, of a solution u in an interval J c[a, b] by ZuJ and let ZJo=-Z[to, to]. Equation
Lnu =0 is disconjugate on J if for any solution u0 we have Z,J<-n-1; it is
disconjugate at a point to if it is disconjugate on some neighborhood of to.

Zeros will be considered throUghout only in the above sense. We may now state"
THEOREM 3.2. IfL is an operator of type (.) on (a, b) the following are equivalent

properties:
1) L is disconjugate on [a, b l;
2) L is disconjugate at any one of the two endpoints, say a, and for every interval

[a, a + r]c [a, b] equation Lu 0 has a mixed hierarchical system on (a, a / r);
3) L is discon]ugate on (a, b) and Lu 0 has a mixed hierarchical system on (a, b)

(hence all properties of Theorem 3.1 hold true);
4) for every interval [a,/]c[a, b] Lu =0 has a mixed hierarchical system on

(,).
Note that Theorems 3.1 and 3.2 are illustrated by the operator dn/dt on any

interval of the form (-oo, T) or (T, +oo), T .
Returning to the C.F.’s two cases must still be examined: the existence of double

C.F.’s of type (I) or (II). Operators with a double C.F. of type (II) on (a, b) are obviously
a subclass of operators disconjugate on [a, b]" we would like to point out that if at least
one of the two endpoints is nonsingular for L in the Willett sense [36] then the existence
of a double C.F. of type (II) is equivalent to the existence of a global C.F. of type (II) at
one (suitable) endpoint. However we prefer to postpone both this minor point and some
complementary results to a further paper. Instead we shall focus our attention on the
existence of double C.F.’s of type (I) which characterize an interesting subclass of
disconjugate operators on (a, b) entirely different from that of the foregoing theorems.
A last definition is needed.

DEFINITION 3.6. Let Ln be of type (.) on (a, b). Two ordered n-tuples of solutions
of Lu-0, (ul,"’, u,) and (Vx,’", v,), are asymptotically equivalent at a point
toe[a, b], possibly to +oo, provided there exist n nonzero constants c1,’’’, c, such
that: Uk(t) CkVk(t)[1 + O(1)], to.

Suppose L D, (a, b); then an immediate consequence of the property of hierarchy
is that any two hierarchical systems at the same endpoint are asymptotically equivalent
at that endpoint. On the other hand two hierarchical systems at an endpoint may not be
asymptotically equivalent at the other endpoint as shown by the following example: let
L=--dn/dt on (0, +oo), then both systems (1; t;... ;tn-l) and (1; t+l; t-1+1)
are hierarchical at +o but are not asymptotically equivalent at to- 0. The following
theorem establishes a connection between double C.F.’s of type (I), double hierarchical
systems and hierarchical systems asymptotically equivalent at both endpoints.

THEOREM 3.3. IfL D, (a, b) the following are equivalent properties:
1) L has a double C.F. of type (I) on (a, b);
2) L has only one (positive constant factors apart) C.F. on (a, b);
3) Lu 0 has a double hierarchical system on (a, b);
4) any hierarchical system ofLu 0 at an endpoint is a double hierarchical system

on (a, b);
5) any two hierarchical systems at the same endpoint are asymptotically equivalent

at both endpoints.

Remarks. 1. This theorem is illustrated by the operator d"/dt on (-oo, + ). 2. A
mixed hierarchical system, if any, is unique positive constant factors apart (see e.g.,
Trench [32, Cor. 2]), whereas all hierarchical systems are double as soon as there is one
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such system. 3. It is the author’s feeling that property 2) might be replaced by the
stronger one: 2a) L has only "one" factorization oftype (1.3)-(1.4) on (a, b). Obviously
2a) => 2) by Theorem 2.1, but for the present we cannot say anything about the converse
with the exception of the second order case, which is elementary: see 4, Example A.

4. Examples.
A. Second order operators. For such operators Theorems 3.1, 3.2, 3.3 cover all

possible cases. As a matter of fact if Lu =- p2(pl(pou)’)’ on (a, b), then the possible cases
are" i) a (l/p1) b

(l/P1) +ee; ii) a (l/p1) < +oe; iii) b (l/p1) < +oe. In the first case
Theorem 3.3 holds; in cases ii) and iii) Theorem 3.1 applies. The same reasoning can be
applied to those operators which admit of a factorization (1.3) such that there exist
positive constants ai, bi and a function p(t) > 0 on - with ap(t) <- pi(t) <-_ bip(t), -,

1,..., n- 1. The author [5], [5a] has already pointed out the special asymptotic
properties (as - +eo) of the solutions of equations of the form Lu + f(t, u) 0, where L
is an operator of such a type on (T, +oo). In the particular case pi =- p Vi, this class of
operators is contained in that studied by eda [30-1, [31].

B. Constant coefficient operators on (-eo, +oo). Let L be the operator with
constant real coefficients defined by

(4.1) Lu =-- U(n) + an-lU
(n-) +" + aou Vu C"(N),

and let

(4.2) r + an-rn-1 +" + air + ao 0

be its characteristic equation. All the properties spoken about previously can be
characterized via the roots of (4.2). We re-collect them in the following theorem whose
elementary proof is left to the reader..

THFORFM 4.1. LetL be the operator (4.1), n 1, and let r, , rn be the n complex
roots of (4.2), each counted according to its multiplicity. Then:

I) L admits, on R, o[the two factorizations" Lu =-l-[i=a ((d/dt)-ri)u, which is of
the type (1.5), and

Lu ernt[e(r"-l-r")’(e("--"-)’( (e(ra-r)t(e-rltu)’) )’)’]’

which is o[ the type (1.3).. Hence L is disconfugate on (-oo, +) iff (4.2) has
only real roots.

II) L is discon]ugate on [-oe, +oo] (see Theorems 3.1-3.2) iff all roots o1 (4.2) are
real and distinct.

III) L has the properties o] Theorem 3.3 iff all roots o[ (4.2) are real and equal.
C. Factorizations of the operator d"ldt". (See also Carlitz 1 ].) Let L =- dn/d on an

interval - and consider the two factorizations

(4.3) Lu =- u) (i.e., p 1, 0, , n),

) .oo)
where a e R is fixed. The identity (4.4) is easily verified by checking that the kernel of the
operator defined by the right-hand side of (4.4) is the same as that of L. First case"

if--- (a, b) bounded. Then (4.3) is a double C.F. of type (II) on if, while (4.4) is a mixed
C.F. on -, of type (I) at a and of type (II) at b. Second case: -= (a, +oo). Both (4.3) and
(4.4) are mixed C.F.’s on 9-: the first one is of type (II) at a and of type (I) at +oo; vice
versa for the second one. A double C.F. of type (II) on (a, +oo) may be obtained from
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(4.4) replacing a with any real number gt < a. Third case: - =- R. Then (4.3) is the "only
one" C.F. of L on " it is of type (I) at both +/-c.

5. Prools. Proofs of Theorems 2.2 and 3.1 are no more than slight remarks on and
alterations of the proof of Trench’s Theorem 1 [32]. Lest we become obscure we must
reproduce a part of Trench’s reasonings. In Lemmas 5.1-5.4 we will use the same
notations as Trench.

LEMMA 5.1 (Trench [32, Lemma 1]). If the operator

ldld..
(5.) L= >0E dt 1 dt o’
is in D2(a, b) with b 1 ( +(}(3 then L can be represented in the form

ldld.
(5.2) L ’Yli > 0,

tie dt 1 dt 1o

where
b b -2 fb(5.3) rlo(t)=,o(t). It :1, /l(t)=’l(/)"

Hence it is 1 -+-C) and ’1 < --[-(2(3, no matter what the behavior of1 at the point a.
According to our terminology this lemma says that if an operator L DE(a, b) has a

global C.F. of type (II) at b then it has a mixed C.F. on (a, b).
LZMMA 5.2. If in the facwrization (5.1) we have +, then in each interval

(to, b), a < to < b, L can be represented in the form (5.2), where

(5.4) no(t) o(t) :1, r/a(t) :l(t)
o

Hence we have o )11 <+ and to
Remarks. 1. Proofs of the foregoing lemmas consist in a straightforward check

that (5.1)-(5.2) define the same operator. 2. In Lemma 5.2 it is permissible to choose
to a only if , 1 < "+-0C). 3. Analogous statements hold when the symbols I, tb, tto are
replaced throughout respectively by L, , [o. The latter also applies to the following two
lemmas.

LEMMA 5.3 (Trench [32, Lemma 2]). If the operator

ldldld.
(5.5) L= /xi>0

Ix3 dt

is in D3(a, b) with b b-+-00 and [.I, 2 < +o, then L can be represented in the form
ldldld.

(5.6) L ,i > O,
P3 dt l/2 dt dt ’o’

where o ui +, 1, 2. Furthermore

(5.7) Ia ui < +oo (i 1, 2) provided Ia txi <+ (i 1, 2).

Note that by Lemma 5 1 it is always possible to suppose Ix1 +o. Property (5.7)
is not explicitly pointed out by Trench; however it is easy to convince oneself that it does
hold by re-reading the original proof and paying due attention to the two possibilities
examined therein.
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LEMMA 5.4. If in the factorization (5.5) we have b tx < +c and b Ix2 +o then
in each interval (to, b), a < to < b, L can be represented in the form (5.6) with b
(i 1, 2).

Note that by Lemma 5.2 it is always possible to suppose j0ix < +co provided we
consider (5.5) only in an interval (a + r, b), r > 0.

ProofofLemma 5.4. It is essentially the proof of Lemma 2 [32] with some obvious
modifications patterned on Lemma 5.2 which we shall sketch briefly: firstly the symbol
tb in [32, p. 323] is replaced throughout by ,’o, where to has been chosen in advance; then
a word-for-word repetition of the argument leads one to prove that L can be represen-
ted in the form (5.6) with b Ul < +o. We still have to show that b v2 < +o. We choose
tl, t2 such that to < tl < tz < b and evaluate [ v2; by similar arguments as in [32, p. 323]
the following relation is easily found

( 1 -1- Ix1 -[" Ixl
0

= 11+I2+13.

Now hold tl fixed and let tz-> b-’Iz, 13 are bounded by assumptions; furthermore the
decreasing character of the function Mz(t)=-(ttoixZ)-1 and formulas (2.10) of [32],
modified as specified above, give

11 =--Mz(t2)" ’1(z) dr <- tl(’r)M2(’r) dr Ix1 --< Ix1 <
0 0 0

Hence b P2 <
Proofof Theorem 2.2. Let us consider faetorizations on an interval (to, b). Lemmas

5.2 and 5.4 establish the theorem for n 2, 3. If n -> 4 one may proceed by induction as
b.

in Trench [32, Thin. 1]" the whole proof remains unchanged when , s replaced
throughout by tto

Before attempting to prove the theorems in . 3 we must reconsider our Definition
3.2. In current literature the inequality in condition i) is found to be systematically
replaced by the stronger one: i’) uk(t) >0.

Due to the linearity of the operator L this replacement is obviously immaterial
when dealing with hierarchical systems at a single point; but when considering, as in
Definition 3.3, the behavior of solutions at both endpoints the ditterenee is substantial.
Our definition is the most suitable one for our purposes: for instance the equation u" 0
has a double hierarchical system on (-c, +c) according to Definition 3.2, but it does
not have any such system on the same interval if condition i’) is used. On the other hand
Theorems 3.1, 3.2 are intimately related to results, concerning mixed hierarchical
systems, due to other authors: our first step will thus be to show that conditions i) and i’)
are equivalent when dealing with mixed hierarchical systems of solutions to diseon-
jugate equations. From now on we put for brevity

u<<v, t->to <: u o v ), t->to,

u’v, t->to : u=v[l+o(1)], t->to.

The following lemma is a slight weakening of the hypotheses concerning the signs
un in Proposition 15, p. 117, of Coppel’s [2].
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LEMMA 5.5. Let L D,(a, b), - <_- a < b <- +oo, and let (Ul, Un) be a

fundamental system of solutions to Lu 0 on (a, b) such that"
i) Uk >0 on a neighborhood orb, k 1,..., n;

ii) Ul<<"" "<< un, tb;
iii) Uk 0 on a neighborhood of a, k 1,..., n;
iv) u, << << U l, a.
It then follows that Uk > 0 on (a, b) ]:or k 1,..., n.

Proof. As well known, see [17, Lemma 2.3, p. 61], the hypothesis LD,(a, b)
implies that L is disconjugate on [a, b) and (a, b]. This and definitions 3.4-3.5 imply
that a nontrivial solution to Lu 0 on (a, b), say v, such that Zb n 1 (as the function
ul in our hypotheses) or Zva n 1 (as the function u,) must have the same strict sign
on all of (a, b). Hence our proposition holds trivially for n 2. Let us proceed by
induction on n. Let n > 2 and suppose Lemma 5.5 has been proved for any operator of
the class D,_l(a,b). Hypotheses i)-ii) imply, by [17, Thin. 2.1, p. 66], that
W(ul, , Uk) >0 on (a, b), k 1, , n. Consider now the equation of order n 1,

Lu-- W(Ul, Un-1, u)/W(Ul, Un)-----0, whichisdisconjugateon (a, b).

It has (ul, , un_a) as a fundamental system. From i), , iv) and the inductive
hypothesis it follows that Uk > 0 on (a, b), k 1, , n 1. But, by iv), u, has n 1
zeros at a and hence it is >0 on (a, b). 71

Proofof Theorem 3.1. For the equivalences 1):> 2) :>5) see both Trench [32, Thm.
2] and Lemma 5.5. We now prove 3)::> 2) the converse being obvious.

Let Lu p(p_(. (pou)" )’)’ with pi > 0 on (a, b) and

(5.8) Ia (1/pi) < +oo, 1, , n 1.

Then if n 2, 3 Lemmas 5.1 and 5.3 prove the existence of a factorization of L on
(a, b) which is of type (I) at b and of type (II) at a. Let n -> 4 and let us construct aglobal
C.F. of L on (a, b) of type (I) at b. When we repeat word for word the inductive
procedure used by Trench [32, Thm. 1, pp. 323-324] the desired factorization is
achieved: what is more, by reviewing the proof, it is easily seen (as pointed out after
Lemma 5.3) that, due to (5.8), the new factorization is, like the old one, of type (II) at a.

The equivalence 4):> 1) is proved similarly to 3):> 2), interchanging the roles of a
and b. ]

Proofof Theorem 3.2. The equivalences 1)2):>4) are a restatement of Willett’s
results [36]: they were originally enunciated for L of type (1.1) with continuous
coefficients, but they also hold for L of type (.) as is explicitly pointed out by Willett.
1 :ff 3): see either Willett 36, Thm. 1.2 or Levin 17, Lemma 4.1, p. 80]. We now show
3) : 1). Let (Ul, , u,) be a fundamental system for Lu 0 on (a, b) such that

(5.9) {u >> uz >> >> u,, a,

Ul << U2 << "<< Un, tb.

Let u be a solution of Lu 0 with at least n zeros on [a, b]; we must show that
u =-0. Let ti be n such zeros, a <- tl <= t2 <=" <= tn <= b, each of them counted as many
times as its multiplicity; three cases will be distinguished. First case" tg a Vi or ti bVi.
It follows that u =-0 since L is disconjugate on [a, b) and on (a, b ]. Second case: there
exists r {1,. , n 1} such that ti a (i 1,. , r) and t b (i r + 1, , n); i.e.,
Zua r and Z,b n r. From (5.9) and Definition 3.4 it follows that there exist suitable
constants c such that the two relations u Cr+l Ur+l "+’" -[- CnUn and u Cl U d-" "b C,rUr
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simultaneously hold. They imply that Ci 0 /i" i.e., u --= 0. If n 2 the proof is complete;
if n => 3 there is a third case to be examined, namely when Zua r, Zub s, Zu(a, b)>-_
n-r-s, where l _<-_ r, s <-_ n 2 and 2 -<- r + s <= n -1.

If u has the representation u ClUl +"" + c,un, then we have:

Z.a r ==)> C C2 Cr O, Zub S Cn Cn-1 Cn-s+l O.

Hence u has a representation of the type

(5.10) u Cr+lUr+l t- + Cn--sUn--s,

in which the right-hand side has n-r-s terms. Observe now that a result quoted in
Coppel [2, Prop. 15, p. 117] implies that (Ul,’’ ", un) is a Cartesian (or Descartes)
system on (a, b)" see definition on page 87 of [2] or on page 67 of [17]. If then u0, it
would follow from (5.10) that u has at most n-r-s-1 zeros on (a, b) while, by
hypothesis, Z, (a, b) _-> n r s" a contradiction. [-1

Remarks. 1. Proposition 15 on p. 117 of Coppel’s [2] is enunciated for L of type
(1.1) with continuous coefficients but it holds for L of type (.) too.

2. By retracing all steps of an argument by Polya [25; proof of Thm. II, p. 317] and
using Polya’s mean value theorem in the generalized version given by Willett [37, Thm.
1.1], it is possible to give a different proof of the third case examined above. But such an
alternative proof, though using the full force of Willett’s advanced result, would
however be confined to operators with continuous coefficients owing to the fact that
Willett’s theorem loses its meaning for operators of type (.).

Proof of Theorem 3.3.1)<=> 2)" an obvious consequence of Theorem 2.1.
1)=),3). Suppose L has the representation (1.3) with.a(1/pi)=Ib(1/pi)=+oO

(i 1,’’’, n--1). Let T be any number, a < T<b, and consider the functions Uk

defined by

IT I; f (k=l ...,n-I).
1 dtl dr2 tk-1 dtk

ul 1/po, uk+l(t)
po(t) l(tl) P2(/2) aT pk(tk)

They form a fundamental system on (a, b) and it can be trivially checked that

(5.11) u << u2 << << u,, both as t - a and as - b.

3)=> 1). By hypothesis Lu =0 has a fundamental system (Ul,’’’, u,) satisfying
(5.11). Now let (1.3) be the C.F. of type (I) at b. We must show that Ia (1/p) +00,

1," , n 1. (A similar proof holds interchanging a and b).
Let Lou =-pou; Lu =-p(L_lU)’(1 <-i <=n). Hence Lu =L,u. By Corollary 3 of

Trench [32] we have LiUk =0 (1Nk -<i) and LUi+l r (=constant #0) (0<_-i _-<n- 1).
It is immaterial whether we assume ri 1 fi. Therefore, T being a fixed point in

(a, b), the functions Uk satisfy the following relations

1 1 1 "+ 1 k

(5.12) /21 1/po, Ug+l(/)
po(t) pl p2 JT Pk i=u

(l<__k <_-n-l),

where the Cki’S are suitable constants. To prove a (1/Pi) +oo we use induction on i. If
i= 1 we have from (5.11)

--1

Ul(t)/u2(t)=(Ir(1/pl)+Cl,1) O(1), t-a.
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Hence f (1/pl) +oo. Suppose now > 1 and that a (1/pi) +o for 1,. ., k.
By (5.11), (5.12) we obtain

(5.13)

0 lim Uk+l(t)/Uk/2(t)
t--)

’1 -11 ’I 1
lim
t-.)a Pl Pl Pk+l

Because of the inductive hypothesis we may apply l’H6pital’s rule k times to the
right-hand limit in (5.13)" this gives rise to lim,-,a (*r(1/pk+l))-1. Since Pk+l >0, such a
limit exists (finite or infinite)" hence it must be =0. This is the same as ir (1/pk+l) +o0.

4)=),3): obvious. 3)=),4). Let (Ul,’", u,) be a double hierarchical system on
(a,b), i.e., satisfying (5.11), and let (Vl,..., v,) be any hierarchical system at an
endpoint, say b. From the elementary properties of hierarchical systems it follows that
there exist constants cij such that: Vk =CklUl +’’" +CkkUk, Ckk SO Vk. This and (5.11)
imply

(5.14) Ok CkkUk, both as a and as b,

i.e., (Vl, , v) is a double hierarchical system.
Relation (5.14) also proves the implication 3)::)> 5). The proof of 5)::), 3) requires an

intermediate step supplied by the following
LEMMA 5.6. IfLeD,(a, b) then Lu =0 has a fundamental system, (ul, , u),

hierarchical at an endpoint, say a, and with the .following property at b: "For each
k {1, , n 1} either Uk << Uk /1, --> b or Uk/1 << Uk, --> b is true".

ProofofLemrna 5.6. Let (Ul, , u,) be any hierarchical system at a. Let us show
how it is possible to construct another system, (vl, ", v,) hierarchical at a and with
the desired property at b. We recall that, [17, Lemma 2.1], for any two nontrivial
solutions u and v, and for any point to e [a, b], one of the following three circumstances
always occurs:

u << v, v << u, u cv, c const. 0 (t --> to).

Now we set Vl Ul; to find /32 we compare u2 with Vl as t- b. If/31 << U2, b, or

u2 << Vl, b, we set/32 U2; while if there exists a constant Cl # 0 such that

(5.15) Vl clu2 + 0 (u2), b,

we set /32-- /31--CLU2. We thus have:

/31 Ul, V2"" y2U2, a (in both cases), Y2 7fi 0,

/)2 O’(U2) O(/31), -’> b (in the second case, because of (5.15)).

To find/)3 we compare//3 with v2" if/32 << U3) --> b, or u3 <</92) --> b, we set v3 u3. II
v2 c2u3 + o(u3), --> b, we set v3 v2- c2u3. As for v2 it follows that

/33 y3U3, a (in both cases), Y3 0,

v3 o(u3) o(v2), t--> b (in the second case).

An iteration of the procedure yields the desired basis. [3
We return to the proof of 5)=)> 3) in Theorem 3.3. Let (ul, , u,) be a system with

the same two properties as in Lemma 5.6" we shall show that property 5) implies that
such a system is a double hierarchical system on (a, b). Consider the new system
(til, , ti,) defined by: ak Ul +" + Uk, k 1, , n. It is obviously hierarchical at a
like the former: hence, by 5), it is asymptotically equivalent to (ul,’’’, u,) both at a
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and b. In particular there exists a constant c2 0 such that 2 =- ux + U2 C2U2 "" O(U2),- b; hence Ul (c2-1)u2 + o (u2), -) b. Because of the property stated in Lemma 5.6
it must follow that c2-1 0: i.e., ul << u2, b. By induction on we will prove that:
ui << ui+l, b, 1, , n 1. Suppose this is true fr 1, , k 1; as above there
exists a constant Ck+l 0 such that

/k+l Ul +" + Uk+l Ck+lUk+l "+" O(Uk+l), b,

i.e..,, ul +. +/’/k (Ck+l 1)Uk+l + O (/,/k+l), t "-) b.
Using the inductive hypothesis we infer that

Uk[1 + 0(1)] (Ck+- 1)Uk+ + O(Uk+), b,

and, by Lemma 5.6, Uk (( Uk+l, tb. This completes the proof of 5):3) and of
Theorem 3.3.
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ON THE ANGULAR VARIATION OF SOLUTIONS OF
SECOND ORDER LINEAR SYSTEMS*

STEVEN D. TALIAFERROf

Abstract. Upper bounds for the angular variation of extremal solutions of the second order linear system

x"+P(t)x =0,

where P(t) is a symmetric n x n matrix, are obtained. The angular variation of a solution of the above equation
is defined to be the length of its radial projection on the n dimensional sphere. Also, if n 2 and x(t) is an
extremal solution, then an upper bound, depending on the angular variation of x(t), is obtained for the
number of zeros of each component of x(t). The proofs are based on variational arguments.

1. Introduction. In this paper we will consider the second order linear system

(la) x"+P(t)x =0,

(lb) x(a)=x(b)=O,

where P(t) is a real, positive definite, symmetric, n n matrix whose elements are
continuous in for a _<- =< b. We assume throughout this paper that if c s (a, b) then (la)
has no nontrivial solution which vanishes at both a and c, and that (la, b) has a
nontrivial solution, (i.e. we assume the interval (a, b) contains no points conjugate to a,
and that b is conjugate to a.) Second order linear systems play an important role in the
calculus of variations where they appear as the Euler-Lagrange equations of the
second variation of the functional J(y) a F(x, y, y’) dx. For references to this material
see [2], [4] and Chap. VII of [5].

In particular we will study the size of the angular variation of solutions, x(t), of
(la, b). If we write x(t) r(t)O(t) where r(t) IIx(t)ll and O(t) x(t)/llx(t)ll then by the
angular variation of x(t) we mean II0’(/)ll dt. Geometrically, and in two dimensions, if
the angular variation of a curve is 00, then there is some sector of angle 00 and vertex at
the origin such that the curve remains in that sector. In n dimensions, the angular
variation of a curve is the length of its radial projection on the (n- 1) dimensional
sphere.

We can write P= OTDO where Q(t) is orthogonal and D(t) is diagonal for
a -< -< b. To motivate the results of this paper, consider the case O(t) is constant, i.e. the
eigenvectors of P are constant. Then by making the change of variable y Ox, (la, b)
becomes y" + D(t)y 0, y(a) y(b) 0. Clearly this problem has a nontrivial solution
which remains on one of the coordinate axes, and corresponding to this solution, (1 a, b)
has a nontrivial solution with angular variation zero. Conversely, it will follow from the
results of this paper that if D is constant, i.e. the eigenvalues of P are constant, then the
angular variation of every solution of (la, b) is less than /nzr2-4 where n is the
dimension of the space.

Some work of a similar nature has been done by Ahmad and Lazer 1 who proved
that if each of the elements of the matrix P are positive on [a, b] then (la, b) has a
solution which remains in S {(Xl, X2, Xn): Xi 0, 1, 2,. , n}.

Also the concept of angular variation has been used by Schwarz [6] to study
disconjugacy of first order systems.

* Received by the editors November 14, 1977, and in final revised form January 15, 1979.

" Department of Mathematics, Texas A & M University, College Station, Texas 77843.
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2. Results. Let the eigenvalues of P(t) be Ai(t), 1, 2,..., n. We can assume
each Ai(t) is continuous on [a, b] and Al(t)AE(t)=>... =>An(t).

THEOREM 1. Let
(a + b 2t)(b t),

/()=
(2t-(a +b))(t-a)

a+b
ifa<t<=

2

a+b
if

2
<--t<-b"

Then the angular variation o[ every solution o] (la, b) is less than or equal to- y(t)(A(t)-A,,(t)) dr.

TEOREM 2. The angular variation o.fevery solution o[ (la, b) is less than or equal to

[(b--a) Ib A(t) dt-4] /2.
Remark. Since xrP(t)x <-xrA(t)I,x r, x R", we have by the results of Morse [4]

that if c is the first zero, larger than a, of a solution of the scalar equation

p"+Ax(t)O =0, p(a) 0,

then c (a, b]. Hence by the well-known Lyapunov inequality for scalar equations we
have

(c-a) A(t) dt-4>0

and this inequality is also valid for c replaced with b. Thus the bound given for the
angular variation in Theorem 2 is a real number, and Theorem 2 can be viewed as a
generalization of Lyapunov’s inequality.

The proof of Theorems 1 and 2 will be postponed until 3. Next we will show how
Theorem 2 can be used to obtain the result mentioned in the Introduction. First we need
the following lemma; the short proof of it given below was pointed out to me by W. T.
Reid.
LNN 1. If c (a, b) then the problem

1
(2a) p" +--(A l(t)+’’. + h,, (t))p 0,

n

(2b) p(a)=p(c)=O

has only the trivial solution, p---O.
Proo[. Since, for the equation (la), (a, c] contains no points conjugate to a we have

by Theorem 2 of [2, p. 120] that

(h’7"h ’- h rPh dt 0

for continuously differentiable n dimensional vector valued functions h with h(a)=
h(c) 0 and h0. Taking h eiu where u is any continuously differentiable scalar
function with u(a)= u(c)=0, u0, and ei is the jth canonical unit vector we have
L (U ’2- piiu 2) dt > 0. Summing over/’ from 1 to n and dividing by n yields
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But if p is a nontrivial solution of (2a, b) then multiplying (2a) by p, integrating by parts,
and using (2b) yields

(4) p,z_( h,)pZ dt=O.
j=l

Using the fact that the trace of a matrix is the sum of its eigenvalues we see that (4)
contradicts (3) and hence the lemma is proved.

COrOLLAr 1. Let $=inf{(1/n)(hx(t)+...+X,(t)):a<=t<=b} and D=
sup{1/2(Al(t)-h,(t))" a <-t<-b}. Then b-a <-_ zr/x/ and the angular variation of all
solutions of (la, b) is less than or equal to (D/S)zr2.

Proof. By the Sturm comparison theorems and Lemma 1, if c (a, b) then the
problem

p"+Sp =0, p(a)=p(c)=O

has only the trivial solution. Hence b a -< zr/x/. So, by Theorem 1, if 0o is the angular
variation of a solution of (la, b) we have

Ia D5 2
6

y(t) 5__< 7rOo<-_D dt=D(b-a)12 S 12

This completes the proof of Corollary 1.
COROLLARY 2. 1[ $ is as in Corollary 1 and M max {h l(t) a <= <= b} then the

angular variation of all solutions o.f (la, b) is less than or equal to ((M/$)r-4)/.
Proof. Since b a -<_ r/-./ Corollary 2 follows from Theorem 2.
Note that if the eigenvalues of P are constant then M/$ -< n; hence, by Corollary 2,

the angular variation of every solution of (la, b) is less than (nzrZ-4)/.
We conclude this section with an application of the angular variation of a solution

(u(t) (p(t) r(t)
v(t)]

of (la, b) when P(t) is the 2 2 matrix
\ r(t) q(t)]

with r(t) O. Since P(t)

is positive definite we have p(t) > O, q(t) > 0, and r(t) < p(t)q(t) for a _-< =< b. Let
ro min,_,_< [r(t)[, po maxto p(t), and qo max,z,z q(t).

THZORM 3. Letm andm be the number ofzeros in (a, b) of u and v respectively.
Then

Oo Oomu =tan-1 (ro/po)
and m-<_tan_ (ro/qo)

where Oo is the angular variation of x(t).
Proof. We establish the bound only for m,; the bound for mo is obtained in a similar

way. Let rn m,. From (la) we obtain

(5) u" + p(t)u + r(t)v O.

If c (a, b) and u"(c)=0 then v(c)O, for otherwise, by (5), we would have
u(c) =0, which contradicts (la, b) is disconjugate on [a, b). Also from (5) we obtain

and hence

p(c)u(c) + r(c)v(c) 0

u(c) r(c)
v(c) p(c)

If d (a, b) and u(d) 0 then v(d) 0 and u(d)/v(d) O.
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Let the zeros of u be a do < dl< dz <" < dm+l b. Choose tl, tz, ,
such that ti (di-1, di) and u’(ti) 0. Choose c2, c3," , c,,+1 such that ci (ti-1, ti) and
u"(c)=O.

For 2, 3,.. , m + 1 we have ci, di-1 (ti-1, ti). Hence, if Ji is the interval with
ff lm+lendpoints ci and di-1 then the intervals isi=2 are pairwise disjoint. Thus

O0 ml Ij> II0’(t)ll dt
i=2

ml] U(i) u(di-a)=> tan- tan-
i=2 U(Ci) /) (di-1)
m+l [r(ci)[ _lr0

tan-1 >m tan
i=2 p(ci) PO

and the proof of Theorem 3 is complete.
For example, if r(t) =- p(t) 1 and q(t) > 1 is continuous, and if b is the first point

past a for which the boundary value problem

u’"’ + (1 + q(t))u"+ (q(t)- 1)u 0,

u(a) u"(a)= u(b)= u"(b)= 0

has a nontrivial solution then u has at most (4/7r)0o zeros in (a, b). Furthermore if m
and M are the minimum and maximum of q(t) on [a, b] then, by Corollary 1,

4 4(M 1)z + 4 5
--0o_<_
zr l+m 3

zr"

3. Proofs.
DEFINITION. A pair of continuous, piecewise continuously differentiable

functions, r: [c, d]--> R and 0: [c, d]--> R" will be called admissible on [c, d] if r(c)=
r(d) O, r is not identically zero on [c, d], and II0(t)ll- 1 for all s [c, d].

LEMMA 2. If C < d, [c, d] is a proper subset of [a, b ], and r and 0 are admissible

functions on [c, d], then

Icd [r’2 + r2(0’7"0 07"PO)] dt(6) ’-

is positive.
Proof. Let x(t)=r(t)O(t). Then x is continuous and piecewise continuously

differentiable on [c, d], x(c) x(d) 0, and x is not identically zero on [c, d]. Also (6)
equals

d

(7) Ic (x’x’- x’Px) dt.

Using the results of Morse [3] and the fact that (a, b) contains no points conjugate to a, it
follows that (c, d] contains no points conjugate to c. Hence by [2, p. 120], (7) is positive.

If x(t) is a nontrivial solution of (la, b), then clearly there exist functions r(t) and
O(t) which are admissible on [a, b] such that x(t) r(t)O(t) and r(t) > 0 for a < < b. The
following lemma shows that in some sense r(t) is convex on [a, b].

LEMMA 3. Ifx(t) r(t)O(t) is a nontrivial solution of (la, b) where r(t) and O(t) are
admissible on [a, b and r(t) > 0 on (a, b) then for each (a, b) the line segmentjoining
(a, O) to (t, r(t)) and the line segmentjoining (t, r(t)) to (b, O) both lie below the graph of r.
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Proof. Clearly r(t) and O(t) are twice continuously differentiable on (a, b). Also, to
prove the lemma it suffices to prove that no tangent line to the graph of r can intersect
the axis in (a, b).

So let t2 (a, b) and suppose the tangent line to r at t2 intersects the axis at tl,
where tl (a, b). We will show this leads to a contradiction if r’(t2) > 0; in a similar way, a
contradiction can be reached if r’(t2)< 0.

Define
r(t), t2<=t<=b,

F(t)
r’(t2)(t- t2) + r(t2), tl =< =< t2.

Then F is continuously differentiable on It1, b], ?" is piecewise continuous on [h, b], and
(t) (b) 0.

Define O(t) to be O(t) for t2 <= <= b and define O(t) to be a solution of

(8) ’%’- e(t), II(t)ll -= a, &(t2) 0(t2)

for tl <t<=t2. The problem (8) has many solutions, For example we could take
(t) F(s) where F(s) is a great circle on the unit sphere parameterized with respect to
arc length, F(0)= 0(t2), and s y(t). Then if y(t) satisfies the equation

(9) v’(t) /Fr(v(t))P(t)F(/(t)), y(t2) 0,

then (t)= F(y(t)) will satisfy (8). Since the right-hand side of (9) is bounded for
tl =< =< t2 and -oo < 3’ < oo, a solution of (9) exists on It1, t2]. Clearly 0,is continuous on
It1, b] and 0’ is piecewise continuous on [h, hi.

Since x(t)= r(t)O(t) satisfies (la) we have

(10) r"O + 2r’O’ + rO" -rPO.

Multiplying (10) on the left with 07" and noting that 07"0 1, 0T0’= 0, and 07"0 --0’T0
we obtain

(11) r" +[OrPO O’TO’]r O.

By virtue of the way ? and 0 are defined, they also satisfy (11) for It1, b]. Therefore
b

[,2 + ?2(t,Tt,_ OTpO)] dt

b

(f, + f,,f) dt f’f =0.
1

This contradicts Lemma 2 and proves Lemma 3.
LEMMA 4. IfA is a symmetric, real, n n matrix with eigenvalues

An >- 0 and if x and y are orthogonal vectors in R n, then

(12) Ix rAyl <= 1/2(- A,)lix

Proof. By virtue of the fact that A can be diagonalized using an orthogonal matrix,
it suffices to prove the lemma in the case A is a diagonal matrix with A 1, A2, ., An on
the diagonal. Clearly is suffices to prove (12) with the absolute value signs removed from
the left side of (12). We can also assume IIx[[-[lyll= 1. Thus proving the lemma is
reduced to showing

(13) hlXlyl+" +hnXnYn <-1/2(1-

for x and y orthogonal unit vectors.
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Note that we can assume Xlyl -->X2Y2 --" >---xnyn, since permuting the coordinates
doesn’t change the fact that x and y are orthogonal unit vectors, but can increase the left
side of (13). Suppose XrYr >----0 and xr+lYr+l 0. By the orthogonality of x, y

and since Ilxll Ilyll 1

hence

., xiYi xiYi + XiYi 0
r+l

Thus

xiy ]xiy, <= IIxlI Ilyll-- ;Xiy + --r

O <= XiYi XiYi <= 1/2.
r+l

A lXlYl +" +AnXnYn <Al(XlYl +" + XrYr) + An(Xr+lYr+l +" + XnYn)

(A1-An)(XlYl +" + XrYr)

Proo[ of Theorem 1. Let x, r, and 0 be as in Lemma 3. Since x(t) satisfies (la) we
have

(14) r"O + 2r’O’ + tO" -rPO.

Multiplying (14) on the left with 2r0’ and noting that o’o 0 and 2o’o’’ (o’o’)’,
and then integrating both sides of the resulting equation from a to we get

(5)

Taking the absolute value of both sides of (15) and using Lemma 4 we get

(16) r4(t)[[O’(t)[[2 N r4(7)(A 1(,1- A. (r))ll0’(rlll dr.

Let I(t) be the right-hand side of (16). Taking the square root of both sides of (16) and
then multiplying both sides by r2(t)(A (t)- A(t)) yields

(17) I’(t) r2(t)(A (t) A (t))(I (t))/2.

Dividing both sides (17) by 2(I(t))/2 and integrating from a to gives

(18) I(t)

where we are letting 1(t)=(1/2)(1(t)-(t)). So by (16) and (18) we have

(19)

By a similar argument we have

(20)
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By virtue of Lemma 3 we have

b-r a+b
b-t" a<--r<--t<--

2r(r)
<_(21)

r(t)-- r-a a +b<_t<=r<=b.
:2

Dividing both sides of (19) by r(t), integrating the resulting inequality from a to
(a + b)/2 and using the first part of (21) gives

i+)/2 i+)/z(22) []0’(t)[] dt <- y(t)h (t) dt.

Doing the same thing with (20) and the second part of (21) yields

(23) Ila’()ll d ,() () e.
a+b)/2 a+b)/2

Inequalities (22) and (23) taken toether prove Theorem 1.
Proofof Theorem 2. Let x, r and 8 be as in Lemma 3. By Lemma 3, no tangent line

to the raph of r can intersect the axis in (a, b).Hence

1 r’() 1
--<< for a <t<b.
b-t r(t) t-a

Therefore, for e > 0,

dt + dt
+ r r a+e +e, \ r !

(24) - +
r / ./ (t-a) ../ (b t)

r’ - 2 4

Since r satisfies (11), r"(a) r"(b) 0. So

r’(a+e) 1 r’(b-e) 1
=-+ o(1), o().

r(a + e e r(b e

Hence, letting e tend to zero in (24) we get

r 4
(25) --dr<-

r b-a"

So by (11), (25) and Schwarz’s inequality we have

1 (] t) , , 4
(26)

b -a II0’11 d II0’11 d (OrPO) dr-

Multiplying the inequality (26) by (b-a), taking the square root of both sides, and
noting OrPO N(t), we obtain Theorem 2.

4. Concluding remarks. As we have seen, if the eigenvalues of P(t) are constant on
[a, b then the angular variation of all solutions of (la, b) is bounded by a quantity which
is independent of P(t) and depends only on the dimension of the space. This is no longer
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true if we don’t require the eigenvalues of P(t) to be constant as can be shown by an
example which is too long to be included.

Acknowledgment. I would like to thank the reviewer for simplifying the proof of
Lemma 4 and pointing out that Theorem 2 generalized Lyapunov’s inequality.
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CONSEQUENCES OF ANALYTICITY IN LINEAR ELASTOSTATICS AND
RELATED SYSTEMS*

BRIAN STRAUGHAN"

Abstract. Recent results of Oleinik and Radkevich are investigated in the context of linear elastostatics, a
mixture of two such solids and a possible model for a fibre reinforced elastic material. The results described
establish Liouville theorems, and theorems for uniqueness, analytic continuation and continuous depen-
dence.

1. Introduction. In this paper we are concerned with applying some recent results
of Oleinik and Radkevich (see Oleinik [21]) to anisotropic linear elastostatics and
related systems of equations. These results provide uniqueness theorems, unique
continuation theorems and interesting bounds for solutions in unbounded domains.
The systems dealt with here are anisotropic, inhomogeneous linear elastostatics, a
mixture of two anisotropic linear elastic solids and a theory of fibre reinforced elastic
materials. In each case the equations are considered only on all of 3., while it is possible
to consider boundary value problems (see Oleinik [21]) this is not done here as the
details would possibly obscure the results which are being described. Indeed, the
potential of Oleinik and Radkevich’s work on elliptic systems has probably not yet been
fully explored in continuum mechanics and new applications are likely to be of interest.

The exposition of Oleinik’s [21] results given here is only for elliptic systems of
order two and for those defined on 3., this in no way covers all the situations embraced
by the general theory given in [21]. However, we should like to point.out that at the
heart of all of her results is the following theorem on Banach space valued functions.
(This theorem is proved with the aid of Baire’s category theorem; see Oleinik and
Radkevich [22]-[24].)

Let be a domain in n+l and let (xl, x) n+l, i.e. (xl, x) (x, x2, xn+). For
q 1, 2,., , n + 1 define the differentiation operator Dxq =-iO/Oxq and D
Dg F)n+l where I1- =/" / On+lXn

THEOREM 1.1 (Oleinik and Radkevich [22]-[24].) Let B(fD be a Banach space
consisting of distributions u D’(fD (D’(fD is the dual space ofC (I))) with the norm
Ilull in which the convergence ofa sequence in the norm onB(fD implies its convergence in
D’(f). Suppose that ]:or a domain G with G c f and ]:or every u B() there exists a
constant e depending on u and a domain

O(G)={Xl, yx, xl(x,x) G,

such that U(X1, X) can be extended into Q(G) as an analytic function u(xl + iyl, x) of
Xx + iyl, with IDul bounded in Q(G) for ]a[ <- k, k >= 1. Then, there exist positive
constants 6 and C such that for any u B (I’D the following estimate is valid:

sup E IDul <- Cllull..
Q(G) lalk

2. Second order elliptic systems and unique continuation theorems. We consider
only t3 and so let (xl, x) denote the point in 3 given by (x, x, x3), i.e. x ---(x, x3). Let

* Received by the editors December 19, 1978, and in revised form March 26, 1979.
f Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland.
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then 12= []2X {[Xll <A} for some constant A. In 12 we consider systems of the form

N

(2.) y. y. a, )vxlvxvi Fk, k 1 N,
/=1

analytic functions of xwhere D Dx2Dx323 and la[ a2 + a3, with a k
System (2.1) is supposed uniformly elliptic (see Agmon, Douglis and Nirenberg 1 ],

Oleinik [21]) and so attached to the system are integers s1,’’ ", &v, q,’", tr, cor-
responding to the equations and unknowns, respectively. The coefficients mkj are such
that mkj <- Sk + ti and in this work we only consider Sk -" ti <- 2.2 If Sk+ti < 0 then mki O,
and the Sk are chosen so that Sk <--0. Moreover, an integer m is defined by rn
1/2 ,= (si + ti). The equations (2.1) form a uniformly elliptic system if there is a constant
h such that

A (111= / I1=) _<-Idet pk(X, :1,
(2.2)

<__x-’(ll=+l)=),
where

(2.3) Pki(X, , )= a1(x)sC]"s,
and where : ::.

For a set Q in Rq the usual norm on Ck (Q) is defined, i.e. if f Ck (Q),

(2.4) Ilfll sup Y. IDYll <.
O I,l_k

The following theorems form the .basis of the remainder of the work. ,We
emphasize, however, that they are only special cases of the general theory developed by
Oleinik and Radkevich.

THEOREM 2.1 (see Oleinik [21]). Let v (vl, , vN) be a solution to system (2.1)
in 12 with Fk =0, k 1,..., N, and suppose v C"/(12). Suppose that Ila;ll,_<-M
for some constantMand a -[" lal =< k, j 1,. ., N.

Let =Wl x{Ix] <A-2}, Wl co. Then, the function vi with all derivatives up to
order ti_ can be extended into the domain Oa (121) {xl, y,, xl(xl, x) e f, [yl[ < }, as an
analytic function of x + iy and for [a[ 1 the following inequality is valid:

(2.5) sup ID:viI <- C sup Irk 1= 1, N,
Oa(fl) k 1

where 6 and C are constants depending on N, m and the constant h in (2.2).
The next result is a similar analytic continuation theorem for solutions to the

inhomogeneous version of (2.1).
THEOREM 2.2 (see Oleinik [21]). Let f, 11 and the bounds on a] be as in

Theorem 2.1. Suppose the functions Fk (xl, x ), k 1,. , N, and their derivatives up to
order 1-s may be extended into a domain Oo(f)= {xx, yl, x[(x, x) 12, lYx[ < 60} as
analytic functions of x + iy 1. Suppose also that vi e C/ (12) is a solution to (2.1) in 12.
Then, vi can be extended into the domain Q(12)= {x, y, xl(x, x)e l21, lyxl <t} with

A function 4,(x) defined on " is said to be analytic at a (real) point Xoe IR" if it is representable by an
absolutely convergent power series in the variables x x in a real neighborhood of Xo. This implies , can be
defined as an analytic function in a complex neighborhood of x0, see John [15, p. 52].

2 This is sufficient to include the examples in 3-5. For some systems in continuum mechanics, e.g.
multipolar elasticity (see Green and Rivlin 11 ]) it may be desirable to remove this restriction.
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derivatives of vi up to order ti- 1 as analytic functions ofx + iyl and for [a[ <- tj-1 and
constants , C depending on m, N and A, we have

N N
1-s(2.6)

k=l m=l

Both of the above theorems are proved using the a priori estimates for elliptic
systems (see Agmon, Douglis and Nirenberg [1]) and the Morrey-Nirenberg [20]
method for establishing analyticity in elliptic systems (see Oleinik [21]). As our main
interest is in the application of these theorems we do not include the rather technical
proofs.

3. Anisotropic linear elasticity. The equations governing the displacement field of
an anisotropic linear elastic body in equilibrium are

(3.1) (apikh (X)Uk,h)d -I- pro 0,

where u are the components of displacement, f is the body force, p the density, apikh are
the elasticities and standard indicial notation is assumed. It is supposed aoikh are real
analytic functions of x (x2, x3) and the equations are here taken to be defined on 3.

A thorough study of uniqueness for various boundary value problems for (3.1) is
given by Knops and Payne [17] and a similar account of existence theory may be found
in the works of Fichera [4], [5]. The above system may be regarded as an elliptic system
in the sense of Agmon, Douglis and Nirenberg and so the results of [1], [25] are
applicable. In this work, however, we are concerned directly only with Oleinik’s results;
these do incidentally have implications for the uniqueness question. Application of the
generalized ellipticity concept of [1], [25] in the context of elasticity theory was
discussed by Hayes and Horgan [26].

To consider (3.1) as an elliptic system in the sense of Agmon, Douglis and
Nirenberg [1], [25] (see 2) we may take Sk O, tk 2, k 1, 2, 3, m 3 and then the
ellipticity condition is

(3.2) Idet apikh(X)hl O,

V 0 (see e.g. Knops and Payne [17, p. 20]). Moreover, the uniform ellipticity
condition (2.2) is

h (lql2 + 112)3 =< [det apikhjh[
(3.3)

for some constant h independent of x(2).
Oleinik’s work [21 essentially selects one direction, taken here as the x direction,

and employs analyticity by extending uo to be an analytic function of the variable
x + iyl, Xl, y . In particular she seeks solutions which for (3.1) may be represented
as

(3.4) uo(x, x)= ei"Uo(x; /x),

where x (x2, x3) and/x =/x + i/z2,/z 1,/z2 .
We shall suppose the elasticities satisfy (3.3) and deal with solutions of the form

(3.4). The following theorems employ estimates (2.5) and (2.6) to obtain results for Uo
and consequently for u. The proofs of these results are given by Oleinik [21] in the
general linear elliptic setting; however, brief details are included for completeness, for
the elastic case.
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The first result concerns the dependence of up on the real part of the complex
amplitude

THZORF.M 3.0. Let f, fl, 00, ool and O(fl) be as defined in 2 and consider a
solution to the homogeneous system for (3.1). From (2.5) wefind that if ap]kh and theirfirst
and second derivatives are uniformly bounded on Ra then

(3.5) sup IUp(x; )1 <-K exp {--tl/./,11 "+" 2l/.t,2l}( sup IUql),
p=l o q=l

]’or a constant K.
The above result is analogous to Oleinik [2 1, Thm. 12]. From this inequality we see

that solutions to (3.1) of the form (3.4) which are bounded in 00 decrease exponentially
in (.O1 with increasing/z 1.

The next application of Theorem 2.1 gives a type of Liouville theorem for solutions
to (3.1) in R3. Another Liouville theorem for elliptic systems is given in Agmon, Douglis
and Nirenberg [1, p. 70]. Although it is well known that Liouville theorems may be
obtained for elliptic equations via Hopf’s maximum principles, I do not know if this
approach is applicable to systems.

THEOREM 3.1. Let up C3() be a solution to (3.1) of the form (3.4) with
Ilap]khllla <--M < oO and with f,, =-0 in the domain f= R3. Suppose there is a constant
81(>0) such that in 00 RE

3(3.6) Y U,(x tz)l<_- exp (811x1}.

Then, if -ll + 21z[ /2/ log C < 0 where 8 and C are given constants,

Proof (cf. Oleinik [21, Thm. 4]). Let on={xeNllxl<R}, for some R>0.
Applying Theorerfi 2.1, (2.5) becomes

sup Upl <-C suplu,, p=1,2,3,

for constants ,C. Set 00 00R+E, 001--00R,’=00R+2{IX11<R4r2} and fix
00g {Ix ll < R}. Hence, we deduce that

,)sup U’I -< exp (log C’- 81/Zll + 21/x2]) sup [Uk
fOR R

where C’ ,C. Now, 8 and C’ do not depend on R, and so we may use a "bootstrap"
argument to extend the above inequality to 00R+2M for M 7/ M> 1, to see that

(3.7) suplU.l<-exp{M(log C’-SI/xlI+2I/z21)} sup IUkl
OR+2M

Finally, let us invoke hypothesis (3.6) on the right hand side to obtain
3

(3.8) Y sup u,.I-<_ exp {M(log C’- 8l/x 11 + 2121 / 281) + 81R}.
OR

The coefficient log C’-81zll+2[lxal+281<0 by hypothesis (taking C’=C in the
statement of the theorem) and so we may let M --> oo in (3.8) to see that U 0 in 00R.

However, R is arbitrary and so U ---0 in 00. The theorem follows.
The next theorem gives a decay result in a neighborhood of infinity.
THZORZM 3.2. Let up C3(fl) be a solution to (3.1) of the form (3.4) with

[[apikhl[2 M < o and with fk " O. Let , 81 and C’ be as in Theorem 3.1, let R be a
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positive constant and suppose (3.6) holds in {Ix[ > R}. Ifthere is a positive constant2 such
that

(3.9) log C’ + 21,21- algal < 0,

then

3(3.10) Y. U,(x; /x)}--- C" exp (-621x1),

for (x2, x3){lx[> g} and some constant C".
Proof (cf. Oleinik [21, Theorem 7]). The proof follows similar lines to that of the

last theorem. However, wn is replaced by S, (q w where o {Ix[> R}, S, open ball in
R2, center x, radius k. With p(x) Ix[- R and pe(X) greatest integer <-p(x), hypothesis
(3.6) leads to

(3.11)

3

E sup

_<-exp [(4 + R)al] exp {(p(x)- 1)(4$1 +

+log C’-a]txx[)-1/2(p(x)- 1--pe(X))

(log C’+ 2[/,2[- a[[)}.
(3.10) follows directly from (3.11) by use of the arbitrariness of x.

We consider next the inhomogeneous problem for (3.1). The result described may
be viewed as a continuous dependence theorem on the values of the body force f..

THEOREM 3.3. Let Uk C3() be a solution to (3.1) with [[ap,hll=<=M <o in
f . Suppose that ]:or any R > 1,

3

2 IIH,II  c, exp (a3g),

]:or some constants C1, a3()0), where wn ={[xl<R}, and pfp e’’XlHp. If there are
positive constants 6, 61, C’ such that

/ 1, 3,

and if in w

then

3

E U (x)l c= exp (allX[),

3

E sup u,.I exp (8sR).
oar

The proof of this theorem is very similar to the proof of Theorems 3.1 and 3.2,
except Theorem 2.2 is used in place of Theorem 2.1 (cf. Oleinik [21, Thm. 8]).

It is worth observing that Theorem 3.1 gives a uniqueness theorem for solutions to
(3.1) which have form (3.4) and which are bounded exponentially as in (3.6). Moreover,
by a modification of the proof of Theorem 3.1 we may rederive a proof of uniqueness in
the dynamic linear elastic problem for negative definite elasticities, a result first proved
by Hayes and Knops [14] (see also Knops and Payne [17, 8.2]). Nevertheless, for the
dynamic problem uniqueness holds without any definiteness as shown by Knops and
Payne 16].
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4. A mixture of two anisotropic linear elastic solids. This section considers
theorems equivalent to those of 3 for a mixture of two elastic solids. The theory we
employ was developed by Green and Steel [12] and explicit forms for the linear theory
were presented by Knops and Steel [18].

Let us consider a mixture of two anisotropic linear elastic solids occupying
Then, employing the notation of [18], the components of displacement of each solid
with respect to a reference configuration are denoted by Op and and in terms of these
components the equations of equilibrium in the mixture are

(4.1)
O’kt,.k , +oF, O,

’7"fkp,k + 7I’p 4r- p2Gp O,

where O’kp and "lT"kp are the partial stresses in each solid, zrp is a diffusive force,/91 and/92
are the densities of each solid, and Fp and G denote the body force per unit mass of
each solid.

The constitutive equations are

(4.2) O’kp akp -F bkp "F AkprstOr, -F Ckprsg’lr,

(4.3) ’7’kp bpk d- OkprstOr, q- Bkprs’rlr,

Pl P2(4.4)
P P

In these equations akp -F bkp and bpk are the respective initial stresses in each solid and
the coefficients Akprs, Bkprs, Ckprs and Okprs are given explicitly in terms of the coefficients
of the free energy for the mixture in equations (3.3) of [18]. We shall assume the
coefficients in (4.2)-(4.4) depend only on x (x2, x3), are real analytic, and together
with their first derivatives are uniformly bounded on

It appears necessary with the approach adopted here to additionally assume that

(4.5) (ap + b), 0, bo. 0.

These conditions are obviously satisfied for an initially unstressed mixture.
To write (4.1) as an elliptic system in the sense of Agmon, Douglis and Nirenberg

[1], set sg 0, t 2, k 1,. , 6, and then m 6. The uniform ellipticity condition
(2.2) is

(4.6) A-l(ISellZ / 1:1)6 => [det I1_-> A (lqlz / 1’)=)6,
for each real (:1, :2, :z) 0 and the 6 x 6 matrix lr is given by

(A11(pr) A12(pr)(4.7) l: \Al(pr) A22(pr)/

where the A’s are the following 3 x 3 matrices

All Akprssk + O-’2 asr -t- b sp,
p

(4.8)

A12 Ckprssk I0"-1 brssp,
p

A21 Dkprssk --O2 (asr q" bsr)sp,
p

A22 Bkprssk + 01 brssp.
p
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For the mixture problem the solution corresponding to (3.4) is sought as

(4.9)
o)p(xl, x)= e’"Xlflp(x Ix),

Op(xl, x) e i’’xl Yo(x tz ).

Adapting the methods outlined in 3, we find the analogue of (3.5) to be

p=l 1 q=l

if and Fk Gk O.
The corresponding Liouville theorem (Theorem 3.1) shows that if a solution to

(4.1) of the form (4.9) in a, with Fk Gk O, is such that in 2

3(4.11) y.
p=l

and -lx11 + 211 +2i + log C < 0, then n 0 in N.
If the solution (4.9) withF G0 is such that (3.9) holds and condition (4.11) is

satisfied for Ix > R, then in {x e N xl > R},
3(4.12)
2 (Inol + gl) exp (-=lx I),

for a positive constant 8.
Finally, there is the result analogous to Theorem 3.3 for the inhomogeneous

problem for (4.1) which shows that if the body lorces may be written as oF
and p2G, e’"p with 2 (llol[+ IIol[) C1 exp (83R), and there is a solution of
the form (4.9) with

such that in o)

then

log C’ + fl=1,3,

3

E (11 + YI) c= exp (llXl),

3

(4 13) E sup (112[ + Ypl) =< C3 exp (t3R),

where the constants t, tl, 83 etc. are as in Theorem 3.3.

5. An inextensible linear elastic material. We shall consider a linear elastic solid in
R3, but one which is inextensible in the x3-direction. In this case (see Hayes and Horgan
13]) there is introduced a C function (x) which is associated with an arbitrary tension

in the x3-direction. For the class of problems to be studied here it is sufficient to consider
the third component of displacement, u3 to be identically zero, see [13]. The relevant
equations are then

(5.1)
(Cojl31Ul3,1),j 0

(C3]BlUB,l),] (C3313sUB,s),3 "t" 1,3 0

where Greek indices take values 1, 2, while Latin indices as before assume the values 1
to 3. The elastic coefficients C,,rs are assumed constant as in [13], although this is not
necessary for the following results to remain valid.
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Equations (5.1) form an elliptic system in the sense of Agmon, Douglis and
Nirenberg [1] in the variables (ul, u2, 4,3), if we choose tl t2 2, sl s2 0, t3 0,
s3 0, and so m 2. The uniform ellipticity condition may be verified to be

(5.2)
(11+1),

or every real g # 0. (Let us observe that (5.1) differs from the elliptic systems of }} 3
and 4 in the selection of the integers tp, sp.)

In a manner analogous to (3.4) solutions to (5.1) are sought of the form

(5.3) ua(xl, x)=eiXlU,(x), b.3(x1, X) eitZxlt(X).

Results analogous to inequality (3.5) and Theorems 3.1 and 3.2 may now be
established. The left hand side of (3.5) is replaced by sup,,11Ux(x)l+sup IU=(x)l+
sup,ol I(x)l, whereas the left hand sides of (3.6) and (3.10) become IU (x)l+lU=(x)l+
I(x)l. Furthermore, we may establish a result analogous to Theorem 3.3 for the
inhomogeneous version of (5.1) for an appropriate body force.

6. Concluding remarks. Implications for uniqueness for the equations of 4 and
5 follow in the same manner as the corresponding ones in 3.

While we have only dealt with the equations for three types of elastic materials, it
should be possible to adapt Oleinik’s work to several other systems. In particular, we
mention the multipolar theories of Green and Rivlin 11 ] and the associated dislocation
theories of Fox [6], the rod, shell and plate theories of Green, Naghdi, Laws and
Wenner, see e.g. [7-10], the micropolar theory of Eringen [3] (see also Knops and
Straughan [19]), higher order mixture theories, see e.g. Atkin and Craine [2], and
thermoelasticity. However, as noted earlier, for some of these theories the case of
second order elliptic systems discussed in 2 is insufficient and the more general theory
given by Oleinik [21 is necessary.

Acknowledgment. I should like to thank a referee for helpful comments regarding
presentation and for bringing references [25] and [26] to my attention.
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INTEGRAL AVERAGES AND THE OSCILLATION OF SECOND ORDER
ORDINARY DIFFERENTIAL EQUATIONS*

G. J. BUTLER

Abstract. Some of the more important and useful tests for the oscillation of the second order scalar linear
differential equation y" + qy 0 are given by the classical Fite-Wintner theorem and its generalizations by
Wintner and by Hartman. These tests involve the behavior of the integral of q or, more generally, the average
behavior of the integral.

Several years ago, Waltman extended the Fite-Wintner theorem to nonlinear equations. We show that
the Wintner and Hartman theorems also extend to a large class of nonlinear equations which includes the
Emden-Fowler equation. Further generalizations of the averaging technique for the linear equation due to
Coles and to Willett are also shown to extend to some degree to nonlinear equations.

1. Introduction. Consider the second ’order scalar linear ordinary differential
equation

(L) y"(t) + q(t)y(t) O, I IT, ).

In the study of this equation from the point of view of disconjugacy on/, many
criteria for oscillation have been found which involve the behavior of the integral of q.
Three of the more important such conditions which guarantee that all solutions of (L)
oscillate on I are the following:

(A1) q(s) ds oo (Fite [9], Wintner [18]).

(A2) lim 11 I,-,.o
q(r) dz ds oo (Wintner [18]).

-oo<limlII--,-,--- q(z) dr ds

(A3)

<limlII-,-,oo
q(z) dr ds <- oo (Hartman [10]).

Several years ago, Coles [7] and Willett [17] extended these criteria by considering
weighted averages of the integral of q of the form

[-4(s)(i-q(r) dr)ds
Aeo(t, T)=" T4)(S) ds

Thus Willett [17] showed that there is a class cI)0 of nonnegative locally integrable, but
not integrable, functions, which contains all such bounded functions, such that if for
some 4 e 0, we have

(A4) -o<limA(t)<lirnA6(t)<=o or limA(t)=c,
teo tcx3 tc

then all solutions of (L) oscillate on L
Willett’s result is actually stronger than that stated, but in this form it is clearly seen

to be an extension of the criteria (A2) and (A3), which together correspond to (A4) with

* Received by the editors June 9, 1978, and in revised form April 16, 1979.
t Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1.
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In this paper we are concerned with the possibility of averaging techniques for
studying the oscillatory behavior of nonlinear equations of the form

(N) y"(t) + q(t)f(y(t)) 0

with a particular interest when f(y) ]y ] sgn y, a > 0, in which case we shall denote the
above equation by (N).

In [16], Waltman showed that the Fite-Wintner condition (A1) is an oscillation
criterion for (N2,+1), n a natural number. Indeed his method of proof extends to the
case of any monotone, nondecreasing, continuously differentiable function f satisfying
if(y) > 0 for y # 0.

Our main result is that for a certain class - of functions f, both the Wintner
condition (A2) and the Hartman condition (A3) serve as oscillation criteria for (N). The
class of such equations handled in this way includes all equations of the form (N). In the
case a > 1, we answer a question raised by Wong in [20], [21]. When 0 < a < 1, we can
obtain a stronger result than the oscillation criteria (A2) and (A3) and hence we are able
to improve a result of Kamenev [11].

As far as applying general averaging conditions of the type (A4) to (N) is
concerned, we have had only limited success; however we are able to obtain refinements
to conditions (A2) and (A3) that enable us to resolve the oscillatory nature of (N) when
q(t) tAp(t), where p is a nonconstant periodic function of mean zero; for all values of
h, when a > 1, and for all h _-> 1, when 0 < a < 1. This answers a question raised in [21 ].

When f’ is bounded away from zero, many of the arguments used for handling (L)
go through for (N) with only minor changes and one can obtain averaging criteria (A4)
for (N) (see also [12]).

Before proceeding to a description of the class and a precise statement of our
main results, we make a few preliminary remarks.

Throughout we make the underlying assumption that q andf are continuous on the
real line and that f is continuously differentiable, except possibly at 0, and satisfies
f’(y) >_- 0, y/(,y) > 0 for y # 0 (which implies that f(0) 0). We shall denote the set of all
such functions f by %.

By a solution of (N) we shall always mean a nontrivial solution defined on some
half-line I- [T, oo). Without a sign restriction on q, there may exist noncontinuable
solutions of (N) [3]; however there will always exist infinitely many continuable
solutions under rather mild additional conditions on q (see [6]). A solution of (N)
oscillates if it has infinitely many zeros on I; the conditions on q and f guarantee that
these zeros can only cluster at 0o. If all solutions of (N) oscillate, (N) is said to be
oscillatory.

We make the following imprecise, but we hope helpful, remark concerning the
study of oscillation of (N); roughly speaking there are, as in the case of (L), two main
conditions under which (N) is oscillatory. The first is that q is, in some sense,
"sufficiently positive’; we refer to [1], [2], [4], [8], [11]-[16], [19]-[21] for results of
this nature as well as condition (A2) of this paper. The second condition is that q is
"sufficiently oscillatory" in its behavior, and this is the idea behind condition (A3) and
its generalization in condition (A4).

2. The class " and statement of results. For f c, we define t)(x)= r(x) on
(-o, 0) 13 (0, ) by

I, du/f(u), x 0,

(D1) (x)
-1I du/f(u), x<O.
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f is monotone decreasing from (0, m) to (a+, b/) and monotone increasing from
(-m, 0) to (a_, b_), where -o _<a < 0 < b+/- <- , and we have

(1) f’(x) -l/f(x), x # O,

(2) n"(x) d’(x)/(x) >= O, x O.

(D2)

(D3)

Define y(x), 6(x)(=yt(x), 6t(x)) on (-, 0)(3 (0, ) by

)1 x>O,

/(x)= - If (u)l /_
L I (u> au,

x (O"(u))/2 du, >0,X

6(x) =," x (O"(u))/ du, x < O.

(Here we interpret y(l) to be lim y(x), which is easily shown to be zero.)
Define F(x)(=Ft(x)) for 0<x[< 1 and (x)(=(x) for x 0, 1 by

r(x) I(x)
(4) V(x og ax’ a(x a(xl/.
Finally, define to be the subset of functions [ of for which

(i) lira O(x)=b+< or lira F(x)>l,
x+0 x+0

(ii) lim (x)=b_< or lim F(x)<-l,
x-0 x-0

(H)
(iii) li__o_m A(x) > O,

xO

(iv) lim A(x) > 0.

The defining conditions for are not very pleasant, but may be shown to hold for
f(y) lyl sgn y, a > 0; any finite linear combination of such functions that is in the set
c; any analytic function in % Indeed membership of is determined by behavior near
y 0 and near ]y] (subject to already being in ); hence functions with the
asymptotic behavior indicated above will also be in , and we can also allow asymptotic
behavior of the type lY [ log 1/y 1 sgn y, a, fl > 0.

Example. 1. f(y)= y{ sgn y, a > 1.

(x)
a-1

asx+O, F(x)
-1

asx+O,

(x)2aal asx+Oandasx+.

Example 2. /(y)=y.

f(x) log 1/x, F(x) c as x - +0,

A(x) - as x -> +0 and as x +.
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Example 3. f(y)= ly sgn y, 0 < a < 1.

1
O(x) as x --> +0, b+<,

A(x)--- 2 ] a
as x +0 and as x +c.

(In each of these examples, there is a corresponding result as x -0 etc.)
We shall also wish to consider the subset -0 of functions f of for which is

twice differentiable on (-, 0)U(0, e) with xf"(x)>=O. o includes the functions
ly] sgn y,a>=l.

THEOREM 1. Letf and letq be continuous. Then either ofthe two conditions (A2)
or (A3) implies that (N) is oscillatory.

COROLLARY 1. Conditions (A2) and (A3) are both oscillatory criteria for
(N,), a > 0.

THEOREM 2. Letf andsuppose that b+/- < c. Then a sufficientcondition for (N) to
be oscillatory is that lim,_ (I/t) rq(z) dr ds does not exist as a finite limit or -c.

COROLLARY 2. The above condition is sufficient for the oscillation of (N) ]:or
0<a<l.

THEOREM 3. Let f o and let q(t) tAp(t), where A > 0 and p is a nonconstant,
continuous periodic function ofperiod to and mean zero, that is o p(t) dt O. Then (N) is
oscillatory.

3. A technical lemma. Our results will be obtained from an analysis of the Riccati
equation associated with (N) and for this, the following lemma will be crucial.

LEMMA 1. Let f such that b/ c. Let l)-1 (= 12-1) be the inverse function from
(a/, o) to (0, c) associated with the restriction of 12 to (0, ), and for x (a/, c) define
F(x) to be [f’(f-a(x))]1/2. Let x(t) be any eventually positive, continuously differentiable
function on IT, c) such that x(t) is in the domain of lq- for all I and such that
x’(t)F(x(t)) is not in L2(1). Then

lim
1

t--,oe -X (x’(’r))2F2(x(7")) dz ds > 1.

An analogous result holds if b_
Proof. By (H)(i), there exists A > 1 such that

(3) li___m F(x) > A.
x-+O

Suppose the lemma is false. Then for _-> t => T, say, we have

(4) II (x’(z))ZFZ(x(z)) dr ds <= h 1/2X(t).

(s)

(6)

Set the left-hand side of (4) equal to u(t). Then

O <- u(t) <- h /2x(t), >__ tl,

u"(t) (x’(t))2F2(x(t)) >- O, >- h.

Since x’(t)F(x(t)) is not square integrable on [T, o), it follows from (6) that
u’(t)-o, u(t)c, as to, and choosing t2>=h so that u’(t)> 0, u(t) > 0 for t<=t2, (5)
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and (6) imply for t _-> t2, that

[ u"(t)] a/2 >x’(t)F(x(t))(7) L u(t) J A1/4xX/2(t)
Noting that the lelt-hand side of (7) is (u"(t)/u’(t))x/2(u’(t)/u(t)) 1/2, we may integrate
the above inequality between t2 and => t2, and use the Schwarz inequality to obtain

( u:(Qa/2( u<t)l/2log
u’(t2)]

log
u(t2)]

’X--1/4 F(z)z -x/2 dz
ax(t2)

(8)
(t)A --1/2

X -1/4 f F(Z)Z -1/2 dz,
aX(t2)

using (5), since the integrand is positive. Making the change of variable l-l(z), we
have

f
u(t,A-1/2 IhhO (/’()1/2 dF(z)z-a/Zdz= \n(e)/ f(s)ax(.t2) (t)

(9)

Ih’, \ (,)
d’,

where we have used (2) and put

h(t) l-l(u(t)A-1/2), ho=f-(x(t2)).
By (D2), the right-hand side of (9) is equal to y(h(t))+c, where c =-y(h0). Since
u(t)o as taz, we have h(t)O as tc, and using (3), (D4), we deduce that for
sufficiently large,

(10)
y(h(t))+c =>h log l(h(t))+c =h log (u(t)A-x/2)+c

(U(t)], 3/4 log
\u(t2)]’

for >- t3 >- t2, say.
From (8), (9) and (10), we find that

(11) u’(t)
> (,u,(t) ’)’

u’(t2) u(t2)]
>= t3,

which we may write as

(12) u’(t)/u (t) >- k u’(t2)/u (t2) > 0.

Since h > 1, (12) leads directly to a contradiction on integrating from t3 to az, and the
lemma is proved.

For the proof of Theorem 3 we shall require a slight modification of the above
lemma. For k _-> 1, definek to be the set of bounded, positive continuous function b for
which supt b(t) -< k inft q5 (t).

LEMM 2. Assume the hypotheses and notation ofLemma 1, except that nowf o.
Then there exists k > 1, depending on , such that if d P and if x(t) is continuously
differentiable on I such that Td(s)x’(s) ds is eventually positive, x(t) dom. [l- ]:or all
t I and x’(t)F(x(t)) L2(I), then

1
,o r g,(s)x’(s) as &(s) (x’(z))2F2(x(’)) dr ds > 1.
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Proof. We proceed along the lines of the proof of Lemma 1. Choose h > 1 such that

(3’) lim F(x) > h.
x+O

Let k be any number such that 1 < k < h. If the lemma is false, there exists 4) (I)k and
x(t) satisfying the hypotheses of the lemma, such that for => tl, say,

(4’) $(s) (x’(r))2FZ(x(r)) dr ds <- h 1/2 4(s)x’(s) ds.

Setting the left-hand side of (4’) equal to u(t), we have

(5) O<- u(t) <-,

(6’) (u’(t)/4(t))’ (x’(t))2F2(x(t)) >-_ O,

As in the proof of Lemma 1, we may find t _-> tl so that u(t) > O, u’(t) > 0 for _-> t and
obtain

(7’)

l (u’(t)/(t))’ u’(t)
(t) (u’(t)/qb(t)) u(t)

/(u’(t)/qb(t))’
u(t)

A -1/4lx’(t)lF(x (t))>= (qb(s)x’(s) ds) 1/2’ >- tz.

Let M suptt b(t), m inftt b(t). For x dom. -1, we have

(F2(x)) =f"(l-l(x))(f-l(x))’= -f"(Iyl(x))f(f-l(x)), by (1),

<-0,

since f -o and f-l(x) > 0. Since F(x) > 0, it follows that F is a decreasing function of x
in its domain of definition.

Now x(t)<-’rlx’(s)l ds / Ix(T)l and so

F(x(t)) >-_F(fr [x’(s)[ ds+ Ix(T)[), t=> t2.

Since ]qb(s)x’(s) ds] 1/2 <M1/2t
jr [x (s)[ ds + Ix (T)[), it follows from integrating (7’)

between t2 and > t2, and using the Schwarz inequality, that

[ [u’(t) b (/9.)] 1/2[ (u(t)] 1/2 It’lx’(s)lF(w(s))dsFFt
-1/2 log \tt) )’(! log

\u(t2)]
>=A-1/4M-1/2 1/2(S)W

w(t)

A-1/4M-1/2 I F(z)z -1/2 dz,
dW(t2)

where

w(t) )x’(s)l ds + Ix(T)].

1/2 XtBy(5’), u(t)-<_h M(Irl (s)lds+lx(T)l),t>t andso

(8’) [log(U’(t)" b(t2) 1/2[log (u(t) 1/2

u’(t2) ’1] \u (t2)/]
u(t)A -1/2M-1

>=A-1/4ml/EM-1/2 f f(z)z -1/2 dz.
dW(t2)
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As in Lemma 1, we may show that the right hand side of (8’) exceeds
A 1/2ml/2M-1/2 log (u(t)/u(t2)), for sufficiently large and deduce that

u’(t) b(t2) ( u(t)
;(t2---) b(t)

>- \u--2)]
h

o-=hmM- >=-> 1.

Thus for sufficiently large t, we have u’(t)>-(m/M)(u(t)/u(t2))% which yields a

contradiction as before.

4. Proofs of the theorems. Suppose that (N) possesses a nontrivial, nonoscillatory
solution y on I [T, ). Without loss of generality, we shall assume that y(t)>0 on I
and put z(t)= y’(t)ff(y(t)) to obtain the Riccati equation

(13) z’(t) -q(t)-f’(y(t))z2(t)
which we may integrate to obtain

(14) z(t) z(T)- q(s) ds- f’(y(s))z(s) ds.

Now z(s) ds --Jy<tfY<T) duff(u)=-2(y (t))+ Co where Co f(y (T)), and so

y(t)=’),-I[cO--ITZ(S ds]
and/’(y (t))= F:(x(t)) where F(x) [f’(fyl(x))]I/2, x(t) Co- z(s) ds. Thus we may
rewrite (14) (after rearranging) as

(15) q(s) ds z(r)- F(x(s))(x’(s))2 ds + x’(t).

Proo[ of Theorem 1. We integrate (15) between T and >= T and then divide
throughout by t, obtaining

(16) --[ q(r) dr ds (1 T/t)z(T)--[ (x’(r))F2(x(r)) dr ds

1
+-(x(t)-x(r)).

There are two cases to consider:
I. x’(t)F(x(t))L2(I). Let tn -> T be chosen so that [,S (x’(t))2F2(x(t))dt]/2<

1/n, n 1, 2, . For => tn, we may use the Schwarz inequality to obtain

-> (x’(s))2F2(x(s)) ds >= (t- tn)-1/2 F(x(s))x’(s) ds
ll tn tn

(17)

where c,, I,(W(x(t.)))l.

II(t- tn)-1/2 [f’(D,-l(x(s)))]l/2x’(s) ds
tn

d-l(X(tn))f’-l(X(t)) dul(t- t.)-/l ([f’(u)]l//f())

(t- t,)-/ [f"(u)]1/2 du by (2)
-l(x(t))

>= (t- t)-/[I,(fY(x(t))) c],. by (D3)
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By (H)(iii) and (iv), there exist A, r >0 such that A(u)_->A whenever [u[ < r or
lul> 1/r, that is

1
(18) I(u)leAla(u))1/, lul<r or

From (17) and (18), it follows that for any t> tn, either r<-_f-l(x(t)) < 1/r or 1/n >-

(t-t.)-I/2[A[x(t)[ 1/2- c.] which we may write as

(19) r<f-l(x(t))<l Ix(t)l 1 [nl=- or <-A2 +cn(t-t.)-/2
r t-t

Since f is continuous on (0, ), there exists B > 0 such that r _-< -l(x (t)) -< 1/r implies
[x(t)[<-B and so (19) implies that for all t> t,

(20)

x(t) <_max[ B
t- t t- tn

Cn(t--tn)-/2’A n

2
A2n 2 if > t is sufficiently large,

and so we must have

x(t)
(21) lim 0.

It follows from the integrability of (x’(t))2F2(x(t)) and from (21) that the right-hand side
of (16) has a finite limit, and so the left-hand side of (16) has a finite limit, as m, which
will contradict each of conditions (A2), (A3).

The second case to consider is
II. x’(t)F(x(t)) L2(I). If b+ < o, then x(t) f(y(t)) is bounded above by C, say.

On the other hand there exist z,o such that Tr(x’(z))ZFZ(x(z))d’ds>nt
whenever z, and so for ,, we see that the right-hand side of (16) is bounded
above by z(T)+(C-x(T))/t-n and it follows that the left-hand side of (16) has the
limit - as , contradicting both (A2) and (A3).

Suppose then that b+ . If x(t) is not eventually positive, choose s, with
x(s,)O and arguing as above we deduce that limt(1/t)rq(z)dzds=-,
contradicting (A2) and (A3). If x(t) > 0 for tl T, say, We may apply Lemma 1 to
obtain

lim (x’(z))F(x(z)) dr ds > 1

and so there exists > 1, T. m such that

x(T)
(x’(z))F(x(r)) dr ds > I

which implies that

T.
(x’(z) (x(r)) dzds-x(T.) - T.

(x’(z))’F’(x(r)) drds- as n, since x’(t)F(x(t))L(I), and using (16) we again find that
limt (l/t)q(r)dr ds =-, contradicting (A2) and (A3).
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This completes the proof of the theorem, and the corollary follows from the
remarks in 2.

Proof of Theorem 2. If we assume that b/ < o and that (N) has a positive
nonoscillatory solution on T, ), then the only possibilities in the preceding argument
that need to be considered are

I. x’(t)F(x(t))L2(I), in which case it was shown that the left-hand side of (16)
must have a finite limit as t-, and

II. x’(t)F(x(t)) L2(I), b/ <, in which case it was shown that the left-hand side
of (16) must tend to - as .

Theorem 2 now follows.
Proof of Theorem 3. Since f 0, we may choose k > 1 in accordance with th’e

conclusion of Lemma 2. We have

I q(s) ds tXP(t) + O(tX-1),

where P is a nonconstant periodic function of period to and mean zero. Define P_(t) to
be

P(t), P(t) <- 0,
0, otherwise,

and for e > 0, define

P(t), P(t) >-_ e
P_ (t)

0, otherwise.

Since P has mean zero we may choose e sufficiently small that

(22)
k + 1 I]’"+)" ffn+l)to2

P+ (t) dt + P_(t) dt >- O, n 1, 2,.

Define b(t) to be a continuous function with

4(t) { k, ifP(t)>-e,
1, ifP(t)<-0

and 1 -< $(t) -< k for all t. Then $ e (I)k.
For Nto -< < (N + 1)to, we have

c(s) q(’) dr ds >- t(s)sP(s) ds + O(t)

&(s)sXP(s) ds + O(t)

(23) >-k (nto)x P(s) ds+ , ((n+l)to) P_(s)ds+O(t)
n--’0 r/-’O

>- (nto) P2 (s) ds + O(NX), by (22)
2 o

Atx+l

for some positive constant A, independent of t, for all sufficiently large t.
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Now we return to (15), multiply throughout by b (t), integrate between T and -> T
and divide throughout by Ir 4(s) ds to obtain

(24)
’T4(S) ds

$(s) q(r) dr ds

1 [I I I ]z(r)-i4(s) ds
4,(s) (x’(-))F(x(-)) d- ds- 4,(s)x’(s) ds

By (23), the left-hand side of (24) tends to + as c. Define w(t) to be [x(T)l+
Ix’(s)l ds. Then x(t) <- w(t), (x’(t))2 (w’(t)). Since f o, F(x) is decreasing in x (see

proof of Lemma 2) and so we have O<-_F(w(t))<-F(x(t)). Now suppose that
x’(t)F(x(t)) L2(I). Then w’(t)F(w(t)) L(1), and following the analysis of case II of
Theorem 1, we may deduce that w(t)/tO as tc. It follows that
(I/t) 4(s)x’(s) ds -0 as c and so the right-hand side of (24) has a finite limit as

o, yielding a contradiction. On the other hand, if x’(t)F(x(t)) L(I), we may use
Lemma 2 to deduce that the right-hand side of (24) has the limit infimum -c as o,
and again we have the contradiction. This completes the proof of the theorem. (We
note that f 0 implies that b+ oo.)

Remarks. If q(t) tap(t) where h is a real number and p is a nonconstant periodic
function of mean zero, then for a > 1, (N,) is oscillatory iff h =>-1. The case h > 0
follows from Theorem 3, the case 0 was proved in [5], and for < 0 is a consequence
of Theorem 2.3 of [4]. For 0 < a < 1, (N,) is oscillatory if h _>- 1 or h 0, the case h >= 1
following from Theorem 2. The case h 0 was proved in [5]. If h < 0 or 0 < h < 1, the
oscillatory character is unknown, but we conjecture oscillation iff h =>-a.

For the case a 1, we refer to [17].
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A FREE BOUNDARY OPTIMIZATION PROBLEM. II*

ANDREW ACKER

Abstract. Given a compact set Q c R2, a function a(p)> 0 continuous on R2, and a sufficiently large
constant A > 0, we determine (under suitable assumptions) the doubly-connected region f R encircling
(but not intersecting) Q which has the least capacitance subject to the constraint that ICI :-- a 2(p) dx dy <-
A.

1. Introduction and main results. Our purpose is to generalize the isoperimetric
inequality [2, Thm. 2 (Case 1)], which involved the capacity of a condensor. We will use
the notation introduced in [2, 1 ]. This investigation is motivated by the following free
boundary optimization problem.

Problem 1. Given a simply-connected, compact set O R 2 (whose boundary cO
has bounded curvature), a function a(p)>0 continuous on R 2, and any constant
A R/ (0, oo), we seek a doubly-connected region l) which has minimum capacity
subject to the constraints that S* (2 (i.e., f encircles O without intersecting it) and
I1 := a2(p) dx dy <-_ A.

In [2], Problem 1 was solved for all A R/ in the special case where O is convex
and a(p)=- 1 on R E. In this paper, we succeed in solving Problem 1 for all sufficiently
large A R/ under considerably more general assumptions concerning (2 and the
function a (p).

We seek a solution f with the property that

(1) S*=O,

i.e., f does not separate away from the geometric constraint (2. It follows by applying
the Poincar6 variation formula for capacity [2, (3)] that a sufficiently regular region f
satisfying (1) can solve Problem 1 only if f satisfies the following conditions:

(2) [VU(p)I=c" a(p) onF

and

(3) [VU(p)[>-_c a(p) onF*=OO

for some value c R/, and

(4) [l) =A.

(For p e F* (.J F, we define IV U(p)I- limq_.p IV U(q)l, q f, when the limit exists.)
For each c R/, (1) and (2) constitute a well posed free boundary problem under

the conditions of the following theorem. (See [1, Lemma 11], [3] and [5].)
THEOREM 1. Assume that Q is starlike relative to some point poe Q, and that

h a(po+h (P-Po)) is (weakly) monotone increasing in h [1, ) for each pOQ.
Then

(a) For each c R+, there exists a unique region f such that S* Q and
IVU(p)I c a(p) on r.

(b) lq,f whenever 0<c_-<c’<o, and Ja/F =RE\Q.
(c) Q f is starlike relative to po for each c R/.

* Received by the editors December 9, 1977 and in revised form May 15, 1978.

" Mathematisches Institut I, Universitit Karlsruhe (TH), 75 Karlsruhe 1, Federal Republic of Germany.
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Under the assumptions of Theorem 1, there is for eachA R/ a unique c R/ such
that 112c] A. Since each region lc, c R/, is the unique solution of (1) and (2) at the
area A If I, it is clear that Problem 1 has no sufficiently regular solution at the area
A Ifl which satisfies (1) unless f satisfies (3), i.e., IVU(p)l>=c a(p) on F* 90.
Thus, it remains to answer two questions.

1. For what values of c R/ does l-It satisfy (3)?
2. Assuming lq satisfies (3), is f a solution of Problem 1 at the area A If  l?,

Both questions are answered (the second affirmatively) by the following theorem, which
is our main result.

THEOREM 2. Assume in Problem 1 that 0 is starlike relative to po 0 and that
A a(po+X (p-po)) is (weakly) monotone increasing in X [1, o) for each p 00. 1]
log (a(p)) is subharmonic in RE\o, then:

(a) There is a value O<-Co<-Oo such that IU(p)l>-c a(p) on 0 only’orthose
cR+ satisfying c<-Co. In ]act IU(p)]>=c a(p) throughout CL(f) /f
c [0, Co]tqR/ (where CL= Closure).

(b) ffc [0, Coil’)R+, then

(5) K _->K
for any region f satisfying S* O and Il Il. Thus, solves Problem 1 at
the area A Ifl.

(c) If Co < c < o, then (5) does not holdfor all admissible lq, and l’lc does not solve
Problem 1 at the area A [12 ].

Remark 1. For the purpose of discussing uniqueness in the context of Theorem 2,
we define C1(0,] as follows" If Q={pR2"IP-Pol--<ro}, then C1=
(1/a log (rl/ro)), where rl fro, ] is the maximum value such that Ip-pol a(p)=
a R/ throughout R(ro, rl) := {p R 2" r0 < IP -P01 < rl}. Otherwise C1 . Notice
that Co c whenever C1 < o. Under the assumptions of Theorem 2, if 0 < c <- C1 < o
or if C1 and c [0, Co] f’)R+, then the proof of (5) in 5 can be extended to show
that actually

(6) K>K
for any region lq 12 satisfying S* Q and I1 I1. Thus l) is the unique solution of
Problem 1 at the areaA [fc ]. Equation (6) does not hold if C1 < c < o. In this case, the
(only) solutions of Problem 1 at the area A [f] are the annuli R(tr, z), where
ro <-tr < r <=rl, r < o, and (r/tr) =exp (A/(27r)).

Remark 2. Assume a(p)>-_8 (1 /lpl)- inR 2 for some 0 < 8 < 1. Then under the
assumptions of Theorem 2, one can show that Co > 0, and therefore that Problem 1 has
a solution satisfying (1) for any sufficiently large A R/. If a(p)-- 1 in R 2, then Co
(i.e., Problem 1 has a solution satisfying (1) for all A R/) if and only if Q is convex, as
was shown in [2, Thm. 2].

Remark 3. Under the assumptions of Theorem 2, the regions fl, c [0, Co] f3 R/,
have the following area-minimizing property equivalent to Theorem 2(b)" f
minimizes I1 in the class of all l-I which are conformally equivalent to 12 and satisfy
S*Q.

Remark 4. Under the assumptions of Theorem 1, it was shown in 1, Thms. 10 and
12] that

(7) K K _-> c 2, (Ifc l-I1)
for any c R/ and lq satisfying S* Q, and that in fact each region fc, c R/, uniquely
minimizes capacitance in the class of all lq satisfying S*= Q and I I--<A := [121. If
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Co R+, one can show using (5) and (7) that (7) holds for any c R+ and any f satisfying
S* = Q and lal--> In ol.

2. The proof oI Theorem 2(a). For each c R+, IVUc(p)l>=c a(p) on 0Q if and
only if the same inequality holds throughout CL(IIc). Indeed, this immediately follows
by applying the maximum principle to the function bc(p) := log (lU(p)l/(c a(p))),
which is continuous on CL(lqc) and superharmonic on f, and which vanishes on Ft.
Thus, to prove Theorem 2(a) we must show that

(8) H [0, Co] fl R+
for some Co [0, oo], where H (c R+: IVUc(p)I >= c a(p) on OQ}. Since H is closed
relative to R/, it suffices to show for each c H that c H for all sufficiently small
8 >0. We will prove this under the further assumption that a(p) is analytic in each
coordinate variable. For each c R/, it follows using Lewy’s theorem [4] (see Lemma 5)
that (U(p)/c) has a harmonic continuation Vc(p) to f U O, where Oc is a neighbor-
hood of Ft. If bc(p) := log (IVV(p)I/a(p)) on t2 U O, then by the strong maximum
principle, either bc(p)0 in tic (only possible when 12c is an annulus) or else bc(p) > 0
in Ilc, implying that Dnb(p)> 0 on Fc (where Dn differentiates in the interior normal
direction). In either case, we conclude easily that 4c (P) <- 0 in Oc\Ilc, where Oc c Oc is a
suitable neighborhood of Ft. Thus, for > 0 sufficiently small (so that 1)-8 U Fc-8 c
tic tc), we have that IVV(p)l<=a(p)=lVV_(p)l on F_. Therefore, if W(p)
Vc-(p)-Vc(p), then D.W(p)>-_a(p)-IVV(p)l>-_O on F_. Since W(p)=
(1/(c-))-(1/c) on 0Q, it follows from the maximum principle that W(p) <-

(1/(c-))-(1/c) in II_8, implying that Iv_(p)l>-_lV(p)l>-a(p) on 00. There-
fore c E, proving (8) in the case where a (p) is analytic in each coordinate variable.

To prove (8) in the general case, we will show that (0, ] cH if t? H. For H
fixed and for each n N, one can define a function an(p) with the properties assumed of
a(p) such that an(p) is analytic in each coordinate variable, an(p)<-a(p) on
OQ, an(p)>-a(p) on Fe, and [an(p)-a(p)l<(1/n) in fe. It suffices to show that
(O,g]cH.:={ceR/’[VU.,(p)l>-c.a(p) on 0Q} for each heN, where [I., is
defined such that Sn*, Q andlVUn,(p)[=c a(p) on Fn,c. Now g eHn for each n
since and therefore [VU.,e(p)l>-_lVUe(p)[>-g’a(p)>-e’a(p) on OQ.
Therefore (0, ?]c Hn for each n, since (8) has already been shown to hold when a(p) is
analytic in each coordinate variable.

3. Preliminary lemmas for the proof of Theorem 2(b). Let F(z) :R x (0, 1) II be
a K-periodic, analytic mapping onto 12. F(z) can be defined to be the analytic
continuation of E-l(-fz) to R x (0, 1), where E(z) U +]V(] x/---i) and V(p) is a
harmonic conjugate of U(p). The mappings/i(z) and i(z) are defined analogously
relative to the regions l’i and li defined in this section.

LEMMA 3. Let Q be starlike relative to po Q, and assume A a (po + A (p po)) is
(weakly) increasing in A [1, oo) ]:or each p OQ. Let lie, R/, and f be regions such
that S’ Q, IvUe(p)l a(p) on re, S* O, andAo := ]Sc\SI Is*\oI. Then for any
> 0 and n Nsatisfying n 6 <-_ Ao, there exists a sequence of regions 1, 0, , n,

with the following properties:
(a) 0
(b) /* c *+1 and g +, 0,..., n 1.
(c) * and * tA are both starlike relative to po ]’or all i.
(dl) For each i, IV/.;r(p)l-c. a(p) on [’i for some constant ci >0.
(d2) /flog (a(p)) is subharmonic in R2\Q, and if <-_ Co, then [XrO(p)} >_-c. a(p)

throughout (1 for each i.
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(e) I(/l \*i S*l I(i\i/)\sI 3, o,..., n- 1. Thus I(*i \O) t S*l
I(Se\$i)\SI for each i.

Proof. For > 0 fixed, we prove the lemma by induction on n. The assertions are
trivial for n O. If o," ,
there exists a unique smallest region n such that :* "*S, ](\)\S] 6, and
[V,(p)[ n a(p) on lb, for a constant 0<, <c,. We define 1,+1 ,(0, h), where
0 < h < 1 is the largest value such that IS* (3 (h, 1)[ 6. (Here 12(d,/3) := {p e 1/" a <
U(p) < fl}, 0 _-< a </3 _-< 1.) That 1’o, , 1’,+1 satisfy (a)-(e) (with (n + 1) substituted
for n) is easily seen from the construction of 1’,+ and the following considerations.
Concerning (c)" Since * is starlike relative to po, Theorem 1(c) implies that S,,+x’*
/n+ := ,* /, is starlike relative to p0. Therefore, assuming Po 0, we have that
[(z)[==_-/2 on R x{0, 1}, where (z):= arg(Dz(z)/[7(z))is harmonic in R x
(0, 1). Therefore ],(z)[_-<zr/2 throughout R[0, 1], implying that S,+I’* :=
12,(h, 1) is star-like relative to p0=0. Concerning (dl) and (d2)" [VO,+x(p)[=
([VO,(p)[/h)=(,/h). a(p)=c,,+l, a(p)on ’n+l :’-" n. Furthermore, if log (a(p))is
subharmonic in R2\Q and [VlQ,,(p)[ >-_ c, a (p) in
c,+1" a(p))=([V(Y,(p)[-n, a(p))>-O in fin+X Cfin by application of Theorem 2(a).

In the proof of Theorem 2(b) in 5, we will make use of the following stronger
assumptions concerning Q and the function a(p)"

(A1) Q is compact and starlike relative to each point p
Bo(po) := {P RE. [P-Po[ <P}, where p >0 is sufficiently small. Also, OQ has bounded
curvature.

(A2) h a(p + h (q-p)) is (weakly) increasing in h [1, c) for each p Bo(po)
and q oQ, where p >0 is sufficiently small. Moreover, log (a(p)) is subharmonic in
R2\Q and a(p)>__a >0 in R2, _a a constant.

(A3) a(p) a(x, y) is a real analytic function of each coordinate variable in R2\Q.
LEMMA 4. Assume in Lemma 3 that Q and the]unction a(p) satisfy (A1) and (A2),

and that <= Co. Then all the estimates given in [2, Lemma 7] (except [2, (19)]) apply to
the regions Oi, 0,. , n [Ao/8 defined in Lemma 3.1 Further, ]:or any a [0, Ao)
we have"

(9)

uniformly over all sufficiently small 6 > 0 and O, , [a/6].
Proof. We omit most of the details, since the proofs already given in [2] (for

convex and a(p) 1) still apply after certain adjustments. The main difference is that*and * (3 l’i, 0,..., n, are no longer convex. Therefore Lemma 3(d2) replaces [2,
Lemma 5(c)] in the proof of [2, (13)]. In order to prove [2, (14)-(18)] by the procedure
in [2], the inequalities" rt =< Iw\SI <= tz d(y*, y) and [2, (20)] must be replaced by similar
estimates based on the fact that * and ,* (3 l’i, 0, , n, are all starlike relative to
Bo(po) (as follows from (A1), (A2), and Lemma 3(c)). As replacement for the first
inequality, we have
a(po, F), a =sup{a(p)’pS*f}, [.[ refers to area weighted by aZ(p), (p):= {p+
h (p q)" q Bo(po), h _-> 0}, and r/= inf {[ f3 (p)[ "p S*}. [2, (20)] can be replaced
by the inequality: e <-(?6g/(pa_2N(a))), where ti and N(a) are defined in [2].
Equation (9) is obtained as in the proof of [2, (18)].

LEMMA 5. In Lemma 3, if Q and the function a(p) satisfy (A1), (A2), and (A3),
and if <- Co, then for any fixed a [0, Ao) there exist constants rt R+ and 0 < tr <- z <
c such that (z)’R (0, 1)1 can be analytically continued to R (-r/, 1), and

Here, [x] denotes the greatest integer function.
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r <= IDzPg(z)l <--- throughout R x (-q, 1/4), both uniformly for all 0,..., [a/8] and all
sufficiently small 8 > O.

Proof. That each function/6i(z) can be analytically continued beyond the boundary
R {0} follows from Lemma 3(dl) and Lewy’s theorem [4]. That the analytic continua-
tions have the asserted uniform properties can be shown essentially by applying the
estimates in Lemma 4 to the proof in [4].

LEMMA 6. Assume in Lemma 3 thatQ and thefunction a (p) satisfy (A1), (A2), and
(A3), and that , <= Co. Then for any fixed a [0, A0), we have:

(10) Ix7t2,(p)l-Ix7t),(q)l I_-<M Ip-ql in i(0, 1/2),

(11) Curvature( <--M
and

(12) Curvature(*i <-M

for some constantM R+, uniformly over all 0, , [a/8] and all sufficiently small
8>0.

Proof. Since log (IDz(z)l) is harmonic in R (-r/, 1), it follows using the estimate
in Lemma 5 that the functions 7 log (IDzP (z )l), are uniformly bounded over R x
(-(r//2), 1/2) for all i=0,... ,[a/8] and all sufficiently small 8>0. Equation (10)
follows from this, since Iv,(p)l. [OzP,(z)l= 1 for any/(z) =p eft,. Equation (11)
follows by a similar argument based on Lemma 5 and the fact that the curvature of at

P i is given by Curv (#g; p) [Dx arg (Dz,(x))l/IDz,(x)l, where p ’i(x), x R.
The more detailed proof of (12) is deferred to the Appendix.

4. Heuristic demonstration of Theorem 2(b). For c sR+ fixed, let
R2\(Q S Se), where s (0, c] is chosen such that Ao := [Se\SI Is*\Ol, Since I l-
If l/ls*\Ol-IsAsI--I l--< la l, we conclude from [1, Thm. 12] that/ > Kc whenever
I fc. Therefore (5) follows if

(13) K>-_K.

For neN large (and for 8 =Ao/n), we define the regions o,"’, n such that
i S IA i and /* S* f3 /* for each i, where 0," ", l’n were defined (relative to fie
and fl) irf Lemma 3. (See [2, Figs. 4 and 5].) Notice that o (=)>/o =/) and
I, il (::>/n =K). To demonstrate the plausibility of (13), we will argue that the
values/o,/1,""",/n are essentially monotone increasing. To the extent that the
Poincar6 variational formula for capacity [2, (3)] is applicable, we have approximately
that

(14)

0," , n 1, where 3//* /* fq Interior (S*) and "}/i i\S. Using Lemma 3(dl and
d2) and [2, Lemma 4], we see that Ivi(p)l<-_lvDi(p)l-ci a(p) on /i, whereas
]Vi(p)l>-_]Vi(p)[>-ci a(p) on 3’/*. Moreover, [i+11-ling[ ]i\gi+x]-[g/+x \/[ =0
for each 0,. , n- 1, by Lemma 3(e). Thus, (14) becomes

(15)
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5. Proof of Theorem 2(b). As was shown in 4, it suffices to prove (13). However,
the argument in 4 leading to (13) is incomplete. In fact the harmonic measure Oi(p) of
]* in li need not exist, since * S* (3 * could contain isolated points. Further, the
error in (14) and (15) has not been examined.

In this section, we will first prove (13) (and hence (5)) in the case where Q and the
function a(p) satisfy (A1), (A2), and (A3), and then extend (5) to the general case.
Under assumptions (A1), (A2), and (A3), the proof of (13) is very similar to the proof
already given in [2, 6] that K _->/. Indeed, if (in [2, 6]) we interpret Ifl, IS*\QI, etc.,
to be areas weighted by a2(p), and if fc, c R/, and 1’i, 0, , n, are understood to
be the regions defined in Theorem 1 and Lemma 3 (instead of [2, Thm. 1 and Lemma
6]), then the proof in [2, 6] that K _->/ is valid up to [2, (27)] after one makes the
following minor correction: Given e > 0 (in [2, (22)]), one must choose a [0, A0) such
that I (3 (P)I _->A0- a for each p , where (p) {p + A (p q)’q Bo(po), A _-> 0}.
One can then show that ,i c for a <- 3 -< Ao just as before (preceding [2, (23)]),
even though * U l’i is only starlike relative to B(po) rather than convex.

In [2, (27)], we have, using Lemma 3(d2), that

.(16) Ivr(p)llvr(p)[c. a(p) inli := fii["i+l i=0,... ,n-1.

By applying Lemmas 3(dl) and 4, we find that

(17) IV(p)l -<_ (1 +M. 3). ci" a(p) on ’i i, i=0,..., [/3/3].

In (17), and throughout thissection, M represents a (fixed, but arbitrary) finite constant
which is independent of sufficiently small 3 > 0. By substituting (16) and (17) into [2,
(27)], we see that [2, (28)] generalizes to

(18)

I..a(p)’Wi(p)" Idp]),
i=0,..’, [/3/3]-1. By substituting the boundary conditions (in [2]) for W/(p) and
taking the limit as A -> 1- 0, we obtain

(19) Ai Ci" (I a(p). (1-(Yi(p))’ldpl-(l+M’8)" I. a(p). [.ri+l(p)" [dpl),
i= 0,’’’, [fl/3]-1, where 3’/* and 3"i are defined preceding [2, (26)]. Therefore, in
order to prove [2, (24)], and hence [2, (22)] and (13), it suffices to show that

(20) J/* := | a(p). (1-i(p)). Idpl>=ci
+1

and

(21) J := | a(p). E+,(p). Idplci/l" 3 +M. 32.

Indeed, one easily sees by substituting (20) and (21) into (19) and utilizing the estimates
in Lemma 4 that

(22) Ai >_--M. 32, 0, , [/3/3]- 1.

We now prove (20). For any p s’/*+, i=0,..., n =(Ao/3), let li(p) be the
(shortest) line segment which connects p to ’/* and is perpendicular to ’/*+x at p, and let
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6ni(p) be the length of li(p). It follows from [2, (17)] and
that er* = (*+ \*) N S* and I_-> s*l a, i=0,..., [fl/a]-1, if
is sufficiently small. Thus, one can show using [2, (17)], (9), (12), and (A3) (which
implies the Lipschitz continuity of a(p) over any bounded set) that

(23) a2(p) an(p). Idpl /M. 62 _-> Io-/* -> 6 > 0, 0,..., [fl/6]- 1.
’/*+

On the other hand, it follows using Lemma 3(d2) that

(24) 1-O,(p)-f IvO/(q)l, Idql>=ci f a(q). Idql>-c, a(p’) L(ri(p))
ari(p) ar

for any 0, , n and p e 3"*/1, where ri(p) is the curve of steepest ascent of from p
to , p’e ri(p), and L(. denotes arc length. One can show using [2, (17)] and (12)
that

(25) L(r,(p))>-an(p)-M a2 on 3"/*+1, i=0,... ,[/3/a]-1.

Furthermore, L(r(p))<-M a on 3"*+1, =0,..., [B/a]- 1, as follows from a(p)>-_a,
(24), and various estimates in Lemma 4. Therefore, after substituting (25) into (24), one
can show using (9), (A3), and [2, (15)] that

(26) 1-Oi(p)>-Cg a(p). an(p)-M, a2 on 3"/*+1, i=0,... ,[//a]-l.

By multiplying (26) by a(p) and integrating over 3"/*/1, we obtain

(27) J*_->c.I a2(p) .an,(p).ldpl-M.62 i=0,... [//a]-I

Now (20) follows by combining (23) and (27) and using [2, (15)]. We omit the quite
similar proof of (21).

This completes the proof of Theorem 2(b) under the additional assumptions (A1),
(A2), and (A3). It remains to show that these further assumptions are superfluous. Let
O and the function a(p) have the properties assumed in Theorem 2, and let c
[0, C0] f’)R/. For each n N, the set (2, := CL(Q U fc(1-1/2n, 1)) is starlike relative
to Bo. (po) for p, > 0 sufficiently small, as follows by applying the strong maximum
principle to the function" arg (DzFc(z)/F(z)), as in the proof of Lemma 3(c). In order to
show that assumptions (A1), (A2), and (A3) are superfluous, it suffices to construct a
sequence of functions {a,(p)} uniformly convergent to a(p) over f LI f, such that for
each n_N, a,(p) satisfies (A2) and (A3) relative to O,,a,(p)<-_a(p) on 0Qn, and
an(p) >- a(p) on F. Indeed, if the functions an(p), n N, exist, and if ton is defined such
that sn O, and IVu.(p)l- c. a,(p) on 3", (where cn el(1 1/2n)), then it follows
that [VUn(p)[>--C, a,(p) on 3",* =OQn. Thus, if {43,} is any sequence of regions con-
vergent to f (in an appropriate sense), such that -*s, Qn and [ta,[n <_-[to, I, for each
n N (where [. 1, denotes area weighted by a2,(p)), then kT, -> k, for each n, since (5)
holds under the additional assumptions. Therefore K K lim,_.o (k, k,) _>- 0 under
the assumptions of Theorem 2 only.

For the construction of the functions an(p), n N, we can assume without loss of
generality that P0 0 and h a (hp) is weakly increasing in h e R/ for each p R 2. Let
g,(p) be a sufficiently smooth function on R2 such that ,(p) < 0 in Q1, g,(p) > 0 outside
Q U fc, O(hp) + log (h) is increasing in h R+ for all p R 2, and 72t(p) --> a > 0 in
B3(0), where u sup {[Pl "P 6 t_J f}. If a(p) is Lipschitz continuous in B3(0), then all
above requirements for the sequence {an(p)}, except that each function a,(p) satisfy
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(A3), are fulfilled by the functions an (p), n N, defined on R 2 as follows.

a,,(p) =max {a(p) exp (p(p)/n), _a .exp (ix" (Ipl2- (2)z)+)},
_a. exp (/x. (Ipl- (2u)z)), Ipl> 3v,

where (x)+=max{x,O},_a=inf{a(p)’pB3,(O)}, and /zR+ is chosen such that
an(p)=_a exp(5/zv2) for Ipl-3v. In general, the functions a,(p),n6N, defined
(using polar coordinates, i.e., p (r, 0 + 2mTr), m 0, +1, +2, .) by

an(r, 0) exp Gn(log (r/r’), 0-0’). log (an(r’, 0’)). (dr’It’) dO’

(r, O)R+xR, satisfy all requirements, where Gn(x, y)=(1/re,).exp(-(x2+
y2)/e,,), en 0 as n oo, and each en > 0 is sutticiently small.

Appendix: The proof of (12). For 6 >0 fixed (in Lemma 3), we define/i(y)
max {IDx arg (Dzi(x +/’y))l’x g}, 0, 1,..., [30/6]. The functions /(y),
O, 1, , [Ao/6]- 1, are defined analogously relative to the i(z). The curvature of
at p * is given by

(A.1) Curv (/*; p)= }Dx arg (DzPi(x +J))l" IV Oi(p)[
[Dx arg (Dz’i(x +j))]"

where/6i( +j)=p =/i(Y +j), , . R. Therefore

(A.2) /,(1) i" /,(1),
where p,,=max{lVO(p)l/IVlQ(p)l’pe[’*=’*}. Further, one can define /+a(z)=
((1- e,)z) on R x[0, 1] (where /)i(p) 1-e on ’*+), implying that

(A.3) i+I(Y) (1 ei)" i((1 ei)y), 0 < y <= 1.

Since Dx arg (Dz.i(z)) is harmonic in R x (0, 1), we have

(A.4) /i(1 Ei) " Ei i(O) + (1 Ei) i(1).
By combining (A.2), (A.3), and (A.4), we obtain

(A.5) /,+(1)-/;(1) <_-(/z,-1) /J,(1) + ei./,(0).

Now, for any fixed a e [0, A0), there exist finite constants M1, M2, and M3 such that if
6>0 is sufficiently small and e{0, 1,. , [a/6]}, then 0-<zi 1 --<M1 6 and 0-<e _-<

M2" t (both due to Lemma 4), and 0-_/i(0) _-<Ma (due to Lemma 5). Equation (A.5)
reduces under these conditions to

(A.6) ((i+(1)-IJ,(1))/6)<=M1 /i(1) +M2. M3, i=0,..., [a/6]- 1.

Now (12) follows directly from (A.6) and the fact (following from (A.1)) that/(1)
(Curvature (00)/_C), _C defined in [2, (12)].
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STRONG SOLUTIONS FOR INFINITE-DIMENSIONAL RICCATI
EQUATIONS ARISING IN TRANSPORT THEORY*

HENDRIK J. KUIPERf AND STEVEN M. SHEWt

Abstract. The main result gives conditions under which the Riccati equation S’(t)=
A(t)S(t)+ S(t)B(t)+ S(t)C(t)S(t)+D(t) with initial condition S(0)= So has a strongly differentiable solu-
tion. In addition, equations of more general form, but with more restrictive initial conditions, are shown to
have solutions which are differentiable with respect to the uniform topology. These results, as well as their
proofs, are discussed in the context of an important problem in transport theory.

1. Introduction. Let o be a separable Hilbert space over the complex field and let
.’() be the Banach algebra of bounded linear operators on . When we wish to
distinguish between the uniform, strong, and weak operator topologies on o.() we do
so by using subscripts: ()u, ()s and ()w. The Riccati initial value problem

(1)
S’ A(t)S + SB(t) + SC(t)S + D(t),

s(o) So e(),

0<t<T,

where S is an ()-valued function (or distribution), arises in certain problems in
transport theory as well as in optimal control theory. In such settings the operators A(t)
and B(t) are often unbounded closed operators rather than bounded operators on .
This complicates questions of existence and uniqueness. Indeed, one must first decide as
to what will constitute a solution. We call $ a distributional solution if (1) is interpreted
as an equation of vector-valued distributions and S’ is the distributional derivative of $.
When the derivative is to be interpreted in the uniform (resp. strong, resp. weak) sense
we call S a uniform (resp. strong, resp. weak) solution. Unless one puts restrictive
conditions on the initial value So (see e.g., [14]) it is pointless to look for uniform
solutions. We note that even the very simple equation S’ AS, S(O) I, does not have a
uniform solution unless A is bounded.

Existence theorems for infinite-dimensional Riccati equations with unbounded
coefficients have been obtained by various authors such as Da Prato, Lions, Lukes,
Russell and others (e.g., [2], [3], [8]). The earliest work seems to be due to Lions [7] who
via a theorem on the existence of an optimal control was led to an existence result for
what essentially are distributional solutions of (1). Tartar 13 extended these results to
more general equations of the form

$’ AS + SB + ($),
()

s(0) So

and also obtained many qualitative results including certain regularity results, such as
strong continuity from the right, and a priori estimates. At about the same time Curtain
and Pritchard 1 obtained existence of weak solutions for (1). In another vein Temam
[14], by restricting himself to the space s of Hilbert-Schmidt operators with its natural
Hilbert space structure, was able to obtain existence of distributional solutions by
employing a constructive approximation procedure. He also obtained regularity results,
for example showing that S’ Loo((O, T), s).

* Received by the editors August 21, 1978 and in revised form January 30, 1979.

" Department of Mathematics, Arizona State University, Tempe, Arizona 85281.
Department of Mathematics, University of Houston, Houston, Texas 77002.
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Our first result will concern uniform solutions of (2) within the subspace ff" c (f)
of compact linear operators, thus extending certain results of Temam. We then proceed
to prove existence of strong solutions for (1). This strengthens the results of Curtain and
Pritchard. Since our method of proof seems to blend very nicely with the physical
aspects of certain problems in transport theory we feel it is important for us to say a few
words about this topic. For more information the reader is referred to [9], [11], [15],
[16].

2. Transport theory. Consider a slab of material which lies perpendicular to the
s-axis and extends from s x to s y > x. Suppose this slab is subjected to an input
(e.g., a flux of radiation) I/(x) on the left and an input I_(y) on the right. This results in
an output I_(x) on the left and an output I/(y) on the right. We assume that L-(x) and
I+/-(y) can be regarded as members of some Hilbert space , and that the transport
properties of the slab can be described by an operator S(x, y)( ):

I/(Y)] =S(x, y)[Z/(x)l--[t(x’ y)
I_(x) i_ I,(y) J r(x, y)

Here t(x, y), r(x, y), 0 (x, y), r(x, y) f(o) and are called, respectively, forward
transmission, backward transmission, forward reflection and backward reflection
operators. One can show that for x < y < z, cascading of S(x, y) and S(y, z) (i.e., putting
two slabs into physical contact at s y) yields:

S(y, z)= S(x, y) S(y, z),

where is a product introduced by Redheffer [10] and is defined by

t O1
*

p2 t2(I Olr2)-ltl 1(I-- r201)-I
rx ’1 r2 72 rx + 7"1r2(I Pl r2)-1 tl Tl (I r2px)- T2

Clearly this product does not always exist. The physical interpretation for this is that the
juxtaposition of two slabs may produce an amount of material in excess of "critical
mass" or "critical length".

Assuming S(x, y) to be differentiable with respect to y in some sense one can
obtain the equation

(3) Sy(x, y)=a(y)S(x, y)+ S(x, y)B(y)+S(x, y)C(y)S(x, y) +D(y),

where S(x, x) L and

A=
0 0’

and

B=
00’ R 0’ 0 0

T(y) ty(x,

O(y) ry(x,

R (y) ry(x, y)lx=,

P(y) py(x, y)lx=.

There are various equivalent ways to linearize this problem, one of which is to
esselly carry out the optimal control theoretic methods (this is intimately related to
the definition of solution in 13]). Another method, which applies in the above problem,
is to transform S(x, y) into a new operator S(x, y) which takes the left input and output
and maps theminto the right input and output. Of course S is not always well defined,
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but when it is its graph is obtained from that of S merely by interchanging second and
fourth entries. We have ([9], [11]), $1 * $2 21, := S, and

Sy(x, y)=
LR(y) O(y)3

Under certain reasonable assumptions $(x, y) is, for fixed x, a strongly continuous
semigroup of linear operators. However, since the transformation --> does not preserve
strong continuity or strong ditferentiability it is of no use in obtaining strong solutions
for (1). We however note that our results can be rephrased to say that S(x, y), for fixed x,
is locally a strongly continuous semigroup of operators with respect to the ,-product.

There is an interesting connection between our method of handling the existence
question and certain physical situations (e.g., a slab geometry for equiflux surfaces in the
transport medium) where the transport operators S(t) can be decomposed,

S Sl -[" S2
0 ’/’1 r 7"2

into their specular, St, and diffuse, $2, parts ([11], [15], [16]). An investigation of the
,-product shows that the specular part of S(x, z) is simply the ordinary composition of
the linear operators Sl(x, y) and Sa(y, z), and that Sl(X, x) is the identity on :
(4)

Letting

Sl(X, Z)-- Sl(X, y)Sl(y, z), Sl(X,x)=L

Ai--
0 0

Bi--
0 bi

where ai(x) limh0 (ti(X, X + h)-I)/h, bi limh0 (zi(X, X + h)-I)/h we may write (3)
as

S’ (A +A2)S + S(B + B2) + SCS + D, S(0) I,

where A2, B2, C and D can be expected to be compact (see e.g., 11 ]). In this situation
one can also show that the diffuse part, $2, satisfies a Riccati initial value problem of the
form

S E(t) + F(t)S2 + SzG(t) + S2CS2, S2(0) 0,

where E=D+A2Sa+SaBz+SlCSl, F=A+SxC, G=B+CS1 with E and C being
compact. Now (4) and physical considerations suggest that the operators A1 and B1
(and hence also A and B) should be generators of strongly continuous semigroups of
contractions on . We note that the hypotheses of our main result, Theorem 8,
are in very close agreement with those dictated by the above physical considerations.
Finally, our main results, Theorems 5 and 8, show that the solution to the above
transport problem, is equal to the sum of a strongly differentiable specular part and a
uniformly differentiable diffuse part provided the hypotheses of Theorem 8 are
satisfied.

3. Preliminary results. We recall that the numerical range of a linear operator L is
defined to be the set

{z CIz <tx, x>, x Ilxll-- 1},

where @ (.) denotes the domain and (.,.) is the inner product on . We shall assume
throughout this section that A and B are two densely defined closed linear operators on
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whose numerical ranges are contained in the wedge

Y. z e C[ [arg(z o)l =>+
where to and 8 are positive constants. We note that the adjoints A* and B* are densely
defined closed linear operators. For each closed subspace g c , r$ will denote the
orthogonal projection onto ’. If it happens that c (A) then, by the closed graph
theorem, Azr is a bounded linear operator on . Similarly if is a closed subspace
contained in (B*) then rrB, the closure of the operator zrB, is equal to (B*zr)*, and
is a bounded linear operator on . On the subspace c() of compact linear
operators, we define the linear operator

with domain

by

o {S rSr[ ’, finite dimensional subspaces of

with g c (A), @(B*)},

A(S) AS + SB.

LEMMA 1. The closure of @o in SY(W),, is 7, and A is closable.
Proof. Suppose g is a finite dimensional subspace with orthonormal basis

k{el, e2,’ , en}. For 1 =<i =<n suppose we have sequences {ei }k=l converging to ei. Let
"/Tk be the orthogonal projection onto the subspace spanned by {e k k k

1, e2,""", en}. Then
rk - r in the uniform topology. Let e > 0 and L be an arbitrary member of ’{. There
exist two projection operators 71"1 and 7r2, with finite dimensional range, such that
IlL-,rZ,rl[<e/3. Since (A) and (B*) are dense in we can find finite dimen-
sional subspaces c (A) and c (B*) such that
Hence we have IlL-zrgt,rll < e. Next we show that A is closable. Suppose {L,} is a
sequence in 90 with lim,_,oo IILII-0 and A(L,) tending to T ffL It suffices to show
T=0. To this end let x be an arbitrary element in (B), then lim,_,oL,,Bx
lim,_.oo L,Bx 0. Since A(L,,) AL, + L,,B we see that lim,_, AL,,x Tx. However
since the sequence {L,,x} tends to zero and A is a closed operator we see that Tx 0 for
an arbitrary x (B) and therefore T 0.

We shall henceforth use the symbol A to denote the closure of the previously
defined operator A. The domain of the closure will be denoted by

Remark. When K but K0 then it is probably not true in general that
A(K)=AK+KB. We can however show that A(K)=AK+KB. Let {K,,} be a
sequence in o such that Kn K and AK,, + K,,B A(K) in ’(),. If x (B), the
domain of B, then AK,,(x) converges to A(K)x-KBx while K,,x converges to Kx.
Therefore, since A is a closed operator, Kx (A) and, AKx A(K)x-KBx. Hence
A(K)x AKx +KBx for all x in the dense subset (B) of , and consequently
A(K) AK + KB. In what follows we shall, for the sake of simplicity of notation, omit
the overlining, thus leaving the proper interpretation to the reader.

We use I to denote the identity operator on and I to denote the identity operator
on () or ’t’. The next lemma shows that 2tol-A is an accretive operator on ff’.
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LEMMA 2. For any $ 7 we have

(i) IlS-aA(S){[>=(1-ehoa)liSll, gh e[0, 1/2oa),

(ii) -IISII, for some constant C > 0 and all complex

a with Re Z >-0.

Proof. Let S UP be the polar decomposition of S where S e @0, P (S’S)/,
and U is a partial isometry. We recall that U*U is the orthogonal projection on the
closure of the range of P. Since S is compact so is P and therefore there exists a vector x
such that Ilxl[- 1 and Px px where p [[PI[. We therefore have Sx pUx and Ilsll p.
Also, since x lies in the range of P, it must be true that U* Ux x. We now have

IIS hAS

I(U*Ux, x)-h(AUx, Ux)-X(x,B*x)Ip
_>- (a-2A,o)llsll.

A similar calculation can be carried out for II(x / 2oa + 1)S A(S)il with Re h => 0. This
quantity is then seen to exceed

(5)

Let

E1 Z ee larg(z-2o)[_---+8
then E + 1 and we deduce from (5) that

II(A / 2,0 / 1)S-,(S)II>-IISlIdist(A, Ex- 2,o 1).

A straightforward calculation shows that, letting g min(8, r/4),

dist(h,

when Re h -> 0. Letting C 1/sin 8 we are done.
DEFINITIOrq. Aa A- (h + 2oa + 1)I.
In order to prove the main result of this section we use some basic analytic

semigroup theory (see e.g., [4], [5], or [17]) and the following well-known theorem ([4,
p. 626]).

HILLE-YOSIDA THEOREM. Let C be a densely defined closed linear operator on a

Banach space. A necessary and sufficient condition for C to be the infinitessimal generator
of a strongly continuous semigroup of contraction operators is that II(xI- c)- ll < 1/x for
all h > O.

This theorem can be stated differently by replacing the condition by:
1/Re h for all h with Re h > 0. This follows directly from the fact that C generates a

strongly continuous semigroup of contraction operators if and only if C + ilzI generates
such a semigroup for any real

LEMMA 3. Whenever Re h >_-0, A exists as a bounded linear transformation on

the space 87 ofcompact linear operators. Moreover I111_-< c(1 / Ix I)- for some constant
C>0.

Proof. Consider the map K AK-oak with domain o. By Lemma 1 we can
form the closure of this operator in ’[. We denote this closed linear operator by AA. Its
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domain is dense in Y{’. Since A (to + A )I is invertible on T for each A > 0, we see that
A I-AA is invertible on Yf and

(A I- AA)-I(L) [(A +to)I-A]-lL,
Using the inequality

we see that

A>0.

I({(A + o.’)I-A}x, x)l >=A (x, x), A>O

[l(h I-AA)-III IIE(; +w)I-A]-lll -<- 1/h

for all h > 0. Applying the Hille-Yosida theorem we conclude that AA generates a
strongly continuous (with respect to the uniform topology on Y{’) semigroup of contrac-
tions. We denote this semigroup by ’A(S). Of course A-wI generates such a
semigroup on . We denote it by -A(S). Consider (S)=[’A(S)(K)]x---A(S)(Kx).
Clearly 4,(0) 0 and

dt/dS {A,A ff’A (S)(K)}x (A toI)(-a (s) x)

(A toI)p(s), s>0.

Since this initial value problem has a unique solution, namely 3-A(S)O(0), we see that
if--=0 and consequently ,.’A(S)(K)=3-A(S)K. Next let us consider map An:K
KB wB from @0 into YL Let 37"n (s) denote the semigroup on ff" generated by An and
-n (s) the semigroup on generated by B wL Let b(s)
[?’n(s)(K)]*x- ’n(s)*K*x. Although the map L-> L* from ()s into itself is not
continuous, it is continuous as a map from()u into itself. In fact d[’n(s)(K)]*/ds
[An ’n(s)(K)]*. By a theorem of Phillips (see e.g., [6], [7]) the adjoint of a strongly
continuous semigroup on a Hilbert space is another strongly continuous semigroup
generated by the adjoint of the infinitessimal generator. This means that
d,n(s)*K*x/ds (B*-toI),-n(s)*K*x. We therefore have

d4ffds [An ’n(s)(K)]*x -(B*-wI)3-n(s)*K*x

[..’n(s)(K)(B wI)]*x -(B* wI)3-n(s)*K*x

(B* toI)6(s), s>O.

Since &(0)= 0 we have & =0, hence &*--0, or more explicitly ’n(s)(K)= K3-n(s).
Next we define

ff’= ff’A O"B"
We note that

’a(s) 7"n (s)(K) -a(s)K/-n (s o’n (s 7"A (S)(K).

This means that ,’(s) is a semigroup of contraction operators on Y{’. We show it is
strongly continuous. The fact that ’A is a strongly continuous semigroup means that
II’A(s)(K)-KI[ tends to zero as s decreases to zero. This says that II-A(S)K --KII tends
to zero as s decreases to zero. Similarly we find that IIg-(s)-gll tends to zero as s
decreases to zero. Suppose that ’(s) is not strongly.continuous, then there must exist a
sequence of positive numbers {Si}i%l with limi_ si 0, and sequences of unit vectors
{x,},% and {yi}i= and an e > 0 such that

((,-A(Si)K-B(Si)--K)xi, Yi) > 3e,
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or writing this differently,

(,-A (Si I)K ’B (Si I)xi,

(6) +((-a(si)-I)Kxi, yi)

+(K(8-B(s,)-I)xi, y,) > 3e,

We may assume without loss of generality that the sequences of unit vectors converge
weakly in : xi---x and yi--y. Therefore KxiKx (strongly) and hence (-A(Si)--
I)Kxi O, so that the middle term.in (6) tends to zero. Also K*yi K*y and (-B (s)*
I)K*y - O, which implies that the last term in (6) tends to zero. We may assume, taking
a subsequence if necessary, that K(-n(si)- I)x converges strongly to some element in
T, so that ((-A(Se)--I)K(-B(Si)--I)x, yi)--0, leading to a contradiction. We have
shown that ’(s) is a strongly continuous semigroup of contractions on fit’. It must have a
densely defined infinitessimal generator. But since we know that the derivative of
’(s)(K) in ()w is equal to (A-2oI)(K) for any K, it follows that this
infinitessimal generator must be A-2o91. Applying Hille-Yosida theorem once again,
but now in the other direction, we find that A-2o91-AI is surjective for any A with
Re A > 0. Also II(A- (209 + x)I)-all < 1/Re A or IIAall < (Re A + 1)-. By Lemma 2 we
get the inequality IIA2I[I_-< C(1 + Ia [)-a.

4. Existence theorems. We shall first investigate the existence of uniform solu-
tions to the generalized Riccati equation

U’=A(t, U(t))U(t)+ U(t)B(t, U(t))+(t, U(t)),
(7)

U(O) So YL
We assume : Y{- Y{ and

(I) For each t[0, t0) and U Y{ with [[U[[_-<r, the linear operators A(t, U) and
B(t, U) are closed linear operators which have their numerical ranges contained in
By Lemma i we therefore have a corresponding closed linear map A(t, U) on a domain
@(t, U) which is dense in YL Letting A(t, U)= A(t, U)-(h +2o9 + 1)I we have by
Lemma 3 that A(t, U)-1 exists as bounded linear transformation on Y{ provided
Re A _-> 0. Moreover we have

(8) IIAa (t, U)-’II =< C(1 + IA
The dependence of A(t, U) and ’(t, U) on and U will be required to conform to the
following conditions:

(II) Forsome r > 0 there exist constants C(r) andr > 0 so thatfor all 0 <- t, 7- <- to and
all gl, g2 77 with Ilglll--< r, ILK211 <- r"

(i) I1(/, ga)-(, g=)ll C(r){lt r /llgx KIIL
(ii) The intersection of the domains of A0(t, K1) and A0(r, K2) is dense in Y{ and

IlEA0(t, g)- Ao(,, g2)]A0(,, g2)-[I _<- C(r){It- 1’ + IIg-
(iii) IliA(t, K)-A(r, K2)][A(0, 0)-(w

+ II[B (0, 0) (o, + )I]-’[B (t, gl) B (7", gz)]ll <-- C(r)[[t r] + IlK1 gzll}.
We note that (ii) and (iii) are satisfied if A(t, U)=A(0, O)+a(t, U) and B(t, U)=
B(O, O)+fl(t, U) where c and fl are members of C([0, to)’’, 8t[) and are locally
Lipschitz, with respect to the uniform topology on 5’/’. Moreover it can be shown that (ii)
and (iii) are still satisfied if we replace the arguments (7", K2) in Ao(7", K2)-1 by (s, K) for
any s e[0, to] and K eY{ with Ilgll<r ([53, [a23).

Letting S U exp-(2o9 + 1)t, (7) becomes

(9) dS/dt ,o(t, S)(S) + )(t, S),
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where (t, s) =- [exp- (2w + 1)t]’(t, [exp (2w + 1)t]$) and o(t, S)=
Ao(t, [exp (2w+ 1)t]S) are operators which also satisfy (I) and (II). We assume a
somewhat more restrictive initial condition than was stated above, namely

(10) s(0)= u(o)=Soe--(o, o)= yc.

LEMMA 4. If (I) and (II) are satisfied we also have"
(III) For each [0, to) andK Y( with [IKII <-- r e -(z+1)t, A,o(t, K) is a closed linear

operator in :7{ with a domain @ which is dense in ?7{and independent of and K. Moreover,
II(,o(/, K)-AI)-II <- C(1 +[AI)-1 for all h with Re h _->0.

Proof. For each fixed and K, Ao satisfies the hypotheses of the previous section
which implies that it is a closed linear operator which satisfies the inequality in the
statement of this lemma. To show that the domain is independent of and K we merely
note that by (II-ii) ,o(t, K1).o(-, K2)-1 is a densely defined bounded linear operator.
Using this and the fact that ,o(t, K1) and ,o(z, Kz) are closed, one easily verifies that
o(’, Kz)c ,o(t, K1). The reverse inclusion follows similarly. We now apply a result
due to Sobolevskii (see [12, 5] or [5, p. 170]) which states that (9)-(10) has a unique
local solution provided (II-i), (II-ii) and (III) hold and IlSoll < r e -(’/a)t. If (II) and (III)
are satisfied for arbitrarily large r > 0 we can obtain the existence of a global solution.
These results are contained in the following theorem.

THEOREM 5. Suppose (I) and (II) are satisfied]or some r > O. Then (7) has a unique
solution U Ca([0, tl), Y{) for some ta >0, provided Soe with IlSoll<re-+’o. If (I)
and (II) are satisfied ]:or all r > O, then for each So there exists a t*, 0 < t* <-_ to, such
that (7) has a unique solution U Ca(J0, t*), yr) with t* to--- or lim supt,t, y(t) ,
where

y(t)=llAo(t, U(t))U(t)+ U(t)Bo(t, u(t))ll,

i.e., [0, t*) is the maximal right open interval on which one has a uniform solution ofclass
C a. (See 13] where stronger regularity is obtained for a similar problem with A(t, U)=
B (t, U)* A, independent of and U).

Proof. The local existence follows from the remarks above. Let [0, t*) be the
largest right open interval on which one has a unique Ca-solution. If t* < to and ,(t)
remains uniformly bounded as increases to t* then the proof of Sobolevskii’s result
shows that the solution can be extended to [0, t*] (see Thm. 16.5, p. 175 of [5]).
However, by the local existence result, one can extend the solution to a somewhat larger
interval [0, t**) with t* < t** < to, contradicting maximality.

Next consider the Riccati equation

(11)
dS/dt Ao(t)(S) + SC(t)S + D(t),

S(O) So e ().

We assume C and D are HSlder continuous"

(IV) C e C([0, to), ()),

D e C ([0, to), {’) for some 0 < tr < 1.

Let Ao(t) A(t)-(w + 1/2)/, Bo(t) B(t)-(to + 1/2)I.

dS/dt Ao(t)S + SBo(t) + SC(t)S + D(t).

By the above theorem (11) has a uniform solution T(t) on [0, t*) corresponding to an
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initial condition T(0)- 0. Let R --S- T, then

dR/dt [A0(t)+ T(t)C(t)]R + R[Bo(t) + C(t)T(t)]

+RC(t)R,

which we write as

dR/dt=Al(t)R +RBI(t)+RC(t)R.

We may assume without loss of generality that A l(t) and Bl(t) have numerical range in
Y.-to -1/2 and hence we can find propagation operators for the infinitessimal generators
A and B* on ([5], [12]) which are strongly ditterentiable in the region _-> s’

--U(t, s)x Al(t)U(t, s)x,
Ot

V(t, s)x B*I (t) V(t, s)x
Ot

and V(s, s) U(s, s) L
LEMMA 6. (O/Ot), V(t, s)*x V(t, s)*B(t)x ]:or every x , and > s.

Proof. When => s and + h => s we have

t+h

V(t + h, s)- V(t, s) ft B* (z) V(z, s) dr

t+h

[ [B’ (r)-B(t)*]B’ (7")-1[B * (7") V(7", S)] dr

t+h

+ f, [B (tlB* (r)-a][B (r) V(r, s)] dr

t+h

Bl(t)* V(7", s) dr + O([h]l+),

where we have used the following facts:

(i) II[BI* (r) B*(t)]B*(r)-lll <- const, x ]t- r] (see II),
(ii) B* (t)B*l (r)- is uniformly bounded (see (i)),
(iii) BI* (t) is a closed operator and hence commutes with integration.

We note that the integrals converge in ()s while O(Ihl+) refers to the magnitude of
the norm. We obtain for each x (Bl(t))

1
V* V* l[Itt+h-[ (t + h, s)- (t, s)]x =- VO’, s) d Bl(t)x + O(Ihl).

Since, for s<-_z<-_t, IIv(t, s)- V(z, s)ll_<-sup__<_<_, IlB(r)v(r,s)ll(t-z)<-const. x (t-
r)(r-s)-1 [5, p. 127], we see that the operators on the left hand side are uniformly
bounded for sufficiently small h. Taking the limit as h 0 we obtain the desired result on
(B(t)) @(Bt(0)). Since V(t, s)*Bx(t) [B* V(t, s)]*, a bounded linear operator, we
obtain the desired result on all of after taking the closure.
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Next we define

P(t) Io V(r, 0)*C(r)U(7", 0) dr,

R (t)= E U(t, O)So[P(t)So]V(t, 0)*,
/’=0

where [P(t)So] is defined to be I for all =>0. We will show that R solves (12) on some
interval [0, tl). First we note that the series converges uniformly (in t) in (), for small
t. This means R is strongly continuous and R (0) So. If we formally differentiate we
obtain

dR/dt= , Al(t)U(t, O)So[P(t)So]V(t, 0)*
j=0

+ E u(t, O)So[e(t)SoYV(t, O)*B(t)
j=0

+ ’. E U(t, O)So[P(t)So]i-iv(t, 0)*
/’=0 i=1

C(t)U(t, O)So[P(t)So]- V(t, 0)*

A1R + RB1 + RCR.

We now make this calculation rigorous. First, since A and B1 are closed operators we
can indeed interchange them with the summations, as we have done above, when
evaluating AR and RB1 (in the strong topology). For > 0 the differentiation can be
carried out term-wise because the series for R and the formal series for dR/dt both
converge uniformly (in t) in ’()s. To justify the product rule for differentiating
individual terms we prove the following little lemma.

LEMMA 7. Let a and [3 be strongly differentiable maps from [0, to) into () and
suppose they are continuous with respect to the uniform topology. Then, for each x we
have

Proof.

d
(ceflx)

dee dfl
dZ

h-lice (t + h)fl(t + h)-ce(t)fl(t)]x

h-[a(t + h)-a(t)]fl(t)x + ce(t)h-[(t + h)-fl(t)]x

+ Ice (t + h)-a(t)]{h-l[(t + h)-(t)]-’(t)}x +[a(t + h)-a(t)]’(t)x.

As h tends to zero the first two terms tend to

(da/dt)flx + a (dilldt)x

while the last term tends to zero. The third term tends to zero because I1 (t)ll is locally
bounded. It should be remarked that this is still true even if we remove the continuity
hypothesis since strong continuity implies local boundedness of the norm (see proof of
Theorem 8).

Since U(t, 0) and V(t, 0) satisfy the hypothesis of this lemma the above differen-
tiations are indeed justified. We therefore have the following.
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THEOREM 8. Suppose hypotheses (I), (II), and (IV) are satisfied. Then, for some
0 < t.* <= to there exists a unique strongly differentiable solution of (1) on the interval [0, t*).
Moreover the solution is in C([0, t*), ’(),).

Proof. Let S R + T where T is the uniform solution of (1) corresponding to a
zero initial condition and R is given by (13). In order to prove uniqueness we must first
show that any strongly differentiable solution S for (1) must be uniformly bounded on
compact sets in [0, t*). Let 0< T < t*, then (S(t)x, y) is obviously bounded on [0, T].
Applying the uniform boundedness theorem to the collection of linear operators on
@ indexed by t[0, T] and defined by x @ y (S(t)x, y), we see that IIS(t)ll is
uniformly bounded on [0, T]. Let $1 and $2 be two solutions for (1). Subtracting the
two equations for $1 and $2 from each other we obtain the following equations for
WSI-S2:

dW/dt (A $2C)W + W(B SIC),

w(o) o.

Let z be an arbitrary element of and let us solve

du/dt=-(B-SxC)u(t), O<t<T,

u(T)=z.

Sobolevskii’s results tell us that we do indeed have a solution. Let q(t) -=- W(t)u(t); then,
since u is ditterentiable, W is strongly differentiable and W(t)ll uniformly bounded, it
follows that q is differentiable and

dq/dt (A S2C)q(t), 0 < < T

with q(0) 0. This means that q =0 or, more specifically, that q(T) W(T)z 0. Since
T and z were arbitrary this means W 0 on [0, t*). Since R is a series whose terms are
in C([0, t*), (T)u), and which converges uniformly on compact subintervals of [0, t*),
it follows that R, and hence $, must also belong to that class.

Returning to the context of the transport problem discussed earlier, we remark that
the decomposition S R + T which occurs in the proof of the above theorem does not
in general coincide with the specular diffuse decomposition. However, Theorem 8 does
tell us that the equation for the specular part has a strong solution. Also, the equation
for the diffuse part is of the type treated by Theorem 5 and therefore the diffuse part is a
uniform solution.

In conclusion we mention that strong solutions are also solutions in the sense
defined by Tartar. Therefore the qualitative results in [14] are applicable here.
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TURA,NIANS AND WRONSKIANS
FOR THE ZEROS OF BESSEL FUNCTIONS*

LEE LORCHf

Abstract. Paul Turfin [On the zeros of the polynomials ofLegendre, (asopis pro P.stovini Mat. a Fys.,
75 (1950), pp. 113-122] proved that the Legendre polynomials satisfy the inequality P,(x)P,+2(x)-
[Pn+l(x)]2 < 0, -1 < x < 1. Here it is shown that the positive zeros of arbitrary real Bessel functions satisfy
similar inequalities, even in a more general form. An analogous result is established for the corresponding
Wronskian. In 8, Remark 3, the monotonicity results established in the course of the proofs here are used to
complement those derived by Sturm methods in [LEE LORCH, Elementary comparison techniques for certain
classes of Sturm-Liouville equations, Proc. Uppsala 1977 Inter. Conf. Diff. Equations, Symposia Univ.
Upsaliensis Annum Quingentesimum Celebrantis 7, Acta Univ. Upsaliensis, Uppsala 1977, pp. 125-133].

1. Background. Paul Turfin established [9], for the Legendre polynomials Pn (x),
the determinantal inequality

P,,(x) Pn+l(x)
(1)

P,,+(x) Pn+2(x)
<0, -1 <x < 1,

n 0, 1, 2, . G. Szeg6 [6; cf. also 7, p. 388, Problem 70] later supplied four different
proofs. S. Karlin and G. Szeg6 [3] studied the oscillatory properties of such deter-
minants (which they named Turfinians) of second and higher order and Wronskians. An
extensive literature, not enumerated here, has arisen from the search for Turfin-type
inequalities for other orthogonal polynomials.

In addition, O. Szsz [5] established an analogue for Bessel functions of the first
kind, namely

J’(x) Jv+l(X)
<0, v>-i-<x<c.(2)

L+l(x) J+z(x)
The corresponding result (in which the sign is reversed) for the modified Bessel

function K,(x) has been established independently by M. E. H. Ismail and M. E.
Muldoon [2] and by H. van Haeringen [10].

Here there will be established corresponding results for the positive zeros of the
general Bessel function ,(x)=AJ,(x)+BY,(x), where the real. numbers A,B are
independent of both x and u. The precise statements are in 2. in 3 the appropriate
Wronskian is defined and the corresponding inequality stated. 4, 5, 6, 7 are devoted
to the proofs.

Finally, 8 incorporates various remarks, including some which relate results
established here (which are basically on the monotonicity of ratios of Bessel function
zeros) with those found in [4].

2. Turinians for the zeros of Bessel functions. Replacing the Bessel functions in
(2) by the positive zeros c,k of the general Bessel function c(x) suggests two analogues
of (2), namely

(3) T1
c,k c,k+ < 0,

Cv,k+l Cv,k+2
and

(4) C ,k

Cv+l,k Cv+2,k

* Received by the editors December 5, 1978. This work was supported in part by the National Research
Council of Canada.
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where v >= 0. The restriction v >= 0 is purely formal. It can be omitted, provided one
adopts the convention suggested by [11, pp. 508-9] so that C,k remains an analytic
function of v. When c,k =,k [y.k], the kth positive zero of J(x) [Y(x)], then the
results are valid for v >-1 (respectively, v >-1/2).

Both (3) and (4) are valid. Indeed, they are special cases of the inequality (proved in
6, 7)

(5) T= Cl,,,k Cv+6,k+h I<0,Cv+e,k+r C v++e,k+h+r

for v>--0; e >--0, 6>--0; h, r=0, 1, 2,. ., e +r>0, h +6>0.
The inequality (3) is the special case e 6 =0, h r 1, (4), the special case

e 6 1, h r 0. Together, (3) and (4) are analogues of the duality between x and n
mentioned in [3, p. 4], with u now in the role of n.

3. The Wronskian for the zeros of Bessel tunctions. Here the notation is arranged
so that "Yv,k Cv, where )’v,k is the kth positive zero of a Bessel function of order v, c,.,
the mth positive zero of a Bessel function of the same order v, not necessarily linearly

(1) Of C,m,independent of the first. The derivative with respect to v of Y,k is written as y .k,
1) In this notation, the Wronskian is defined to beas C u,

(6) W(r,k,c,.,)= 1) ca)
Tv,k Cv,

It will be shown that

(7) W(y.k, c.,,) < O, u >-- O,

so that, in particular, still for u >= O,

(8) W(C,k, C,k+.) < 0, k, m 1, 2,-

4. Preliminary remark to the proofs of (5) and (7). Common to these proofs is the
formula given by G. N. Watson [11, (3), p. 508]

(9) d_f.c 2c Ko(2C sinh t) exp (-2vt) dt,
dv

where c is any positive zero of (x) of fixed rank and Ko(x) is the customary modified
Bessel function of order zero.

that
5. Proof of (7). The result for the Wronskian is now immediate, since (9) implies

1/2W(y,k, c,.,) y,kc,., [K0(2c,., sinh t) K0(2y,k sinh t)] exp(-2vt) dt,

and this is negative because Ko(x) decreases as x increases.

6. Proof of (5). Preliminaries.
LEMMA 1. For v >= 0 and fixed,

(10)
c ,k+, $1
Cv,k

as k increases, rn 1, 2,.

Proofi That the ratio decreases.follows readily from [4, (4.5), p. 130]. To see that
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the limit is one, we note, e.g. [11, p. 517]

C,k+l C,k+l--C,k zr + O(1)
0<--1 O(1), kc,

Cv,k Cv,k Cu,k

and the proof is complete.
LEMMA 2. ff C+r,,. > Y,k, k, r, m fixed, then

(11) Cv+r,m

Proof. Denoting differentiation with respect to u by D, we have

{ c+r,,.I Dc+,,. Dy,k
D. log

2 I0 [Ko(2G+,,, sinh t)- Ko(2y.k sinh t)] exp(-2vt) dt,

and this is negative since Ko(x) decreases as x increases.
Thus, the ratio in (11) decreases as v increases. That the limit is one follows from

the known asymptotics of the zeros of Bessel functions [8], [11, p. 521].
The special cases useful here are

(12) C"+r’m, l
Cv,k

in particular,

as p T o, for Cv+r, " Cv,k,

(13) C’k+h,l
Cu,k

as u’c, h, k 1, 2,.

Moreover, if u, 8 (>_- 0) and r 0, 1, 2, , are fixed, r + > 0, then

(14) C+.k+,,I, 1 as k ’oo.
Cv,k

To prove (14) it suffices to show that

But, from (12),

Cv,k+l Cv+8,k+r+l

Cv,k Cu+8,k+r

Cu,k + C u+8,k+l

Cv,k Cu+&k

with strict inequality if 8 > 0, and from Lemma 1 (10),

C u+8,k+l C u+8,k+r+l

Cu+8,k Cu+8,k+r

with strict inequality if r > O.

7. Proof of (5). Conclusion. The assertion of (5) can be written equivalently as

Cv+B+e,k+h+r Cv+8,k+h

Cu+e,k+r Cv,k
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The left member, by (12), is less than

Cv+8,k+h+r

Cv,k+r

unless e 0, in which case equality occurs,and this in turn, from (14), is less than

Cv+8,k+h

,,k

unless r 0, in which case there is equality. But e + r > 0, so that strict inequality must
occur at least once.

8. Remarks.
1. Inequality (3) can be written

ACv,k A2cv k

In this form, it is clear that the assertion is trivial when , >_- 1/2, for then AEcv,k = 0, as
Sturm pointed out in 1836 [11, p. 517]. However, for 0=< , <1/2, Sturm’s method shows
that A2C,,k 0 and the inequality (3) acquires more substance.

2. The inequality (5) may be contrasted with the discussion of the function q(x)
defined in [3, (33.2), p. 154]. One possible comparison arises on putting h r 0 in T.
The inequality

T3--[ C,,k ,+8,k
<0, 8>0, e >0, k 1,2,...,

C,+e,k Cv+8+e,k

results. It is valid for all k, here corresponding to x in 0 (x), as well as for all , _>- 0, which
here corresponds to n. Another (dual) analogue is obtained by taking e 8 0 in (5), so
that

T4=] c’k Cv’k+hl<o h,k,r=l,2,....
Cv,k+r k+h+r

Here , corresponds to x in q(x), k to n.
As is pointed out in [3, p. 155], the inequality p(x)< 0 need not be valid always.

They cite, i.a., a counterexample due to A. E. Danese [1].
3. In (13), the case h 1 justifies the comments found in [4, p. 130] in the

paragraph following (4.7). It shows, in particular, that inequalities (4.6) and (4.7) of [4]
cannot be improved by making the ranks of the zeros the same throughout those
inequalities. Combining (13) with (4.6) and (4.7) gives, respectively, for k 2, 3,. ,

Cv+e,kCv+e,k+lCu,k+l .__.__, OE <-1, ,_->0,
C,+e,k Cv,k Cv+e,k-1

and

where both right hand inequalities remain valid even if e 0, but become false as e .
For example, the foregoing right hand inequality is false for e 3 when, say, k 2, u 0
and when k 39, u 2.

4. In [4] all proofs are based on Sturm comparison methods, unlike here. It may be
of interest to note that an alternative proof of the Turin-type inequality (3) is contained
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in [4, (4.6), p. 130] on taking e 0.
5. The inequalities here and in [4] can be used to check tables of zeros of Bessel

functions.

Acknowledgment. I am indebted to Professor M. E. Muldoon for Reference 10],
and to Professor W. A. A1-Salam for remarks (i) and (ii):

(i) (2) is implicit in a formula published by E. C. J. von Lommel in 1879 [cf. 11,
p. 135 (11)3;

(ii) The analogue for Hermite polynomials H,(x), -oo< x < oo, of (1) and (2) is an
obvious consequence of a formula observed by Hiiseyin Demir in 1946 (Problem 4215,
Amer. Math. Monthly, 53 (1946), p. 470; Solutions, Ibid., 55 (1948), pp. 34-35, by
several authors).

It appears, however, that explicit statements of such inequalities as (1) were not
made before P. Turin [9].
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ON A CLASS W[k,s; Co] OF POLYNOMIAL SETS: PART I*

I. M. SHEFFER?

Abstract. A class W[k, s; Cii] of polynomial sets is introduced which generalizes type zero sets and sets of
class Sk. These latter sets have been studied in some detail, and have been shown to have interesting
properties; and the new class should be of similar interest. Sets in W[k, s; Ci] are characterized in terms of
their generating functions.

Introduction. A polynomial set [hereafter p.s.] is an infinite sequence {Pn (x)} with
degree Pn (x) n (n 0, 1, .). A class of p.s. of type zero was defined and studied in
[3]. Gian-Carlo Rota [2] has shown that type zero sets (termed Sheffer polynomials) are
important in finite operator calculus. A1-Salam and Verma [1] generalized type zero
sets to the class sk, defined by

, (x) (b 0)"(0.1) J[P(x)]=- Y, .., (x) P-k
i=k

and they obtained the generating function G(x, t) that characterizes sets in sk:
k-1

(0.2) G(x, t)= E Ap(t) exp {xH(toPt)},
p=0

where H(t)= ,1 hJti (hi 0) is the formal inverse of J*(t)"

(0.3) H(J*(t)) J*(H(t)) t,

J*(t) is a kth root of J(t) ,j=k bf, and w exp {2ri/k}. Further properties of Sk sets,
including a characterization of those Sk sets that are orthogonal, are given in [4]; and
other properties in [5].

In the present work we consider the class of p.s. W[k, s; Ci] defined by a system of
s equations

(0.4) J[Ps,+i(x)] Y Ci,mPsn-k+j-m(X) (]=0,1,...,s-1;n=O, 1,2,.’’)
m=0

with constant {ci.,,}, where J is the differential operator

(0.5) J[Y]-= Z biY) (x) ({bi} constants; bk 0).
i=k

We propose to characterize p.s. solutions of (0.4) by means of their generating
functions. Throughout the work we use formal power series; and to, r will always stand
for

(0.6) to exp {2ri/k}, exp {2zri/s}.

1. Preliminary results. One readily proves
LEMMA 1.1. System (0.4) has a p.s. solution {P, (x)} iff

s--1

(1.1) Ci,o O.
/=0

* Received by the editors November 22, 1978.
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And when (1.1) holds, there is a unique p.s. solution ]:or which (i) Pj(x (j 0,. , k- 1)
are preassigned (with Pj of degree ), and (ii) {p.,.} (i=0, ,k-l; n >=k) are pre-
assigned. (Here Pn (x) Y’.i=o P.,ixi.)

Note that if degree P.(x) < i for at least one < k, then {P.(x)} will be a solution of
(0.4) but not a p.s. solution.

Let {Pn (x)} be any p.s., with generating function

(1.2) G(x,t)= 2 P(x)t= , P,x .
n=0 n=0 i=0

Writing this as a formal series in x we have

(1.3) G(x, t)= 2 g.(t)x", g.(ti Y’. pi,.t (p.,,, 0).
=0

It is seen from Lemma 1.1 that we have
LEMMA 1.2. Let (1.1) hold. Them is a unique p.s. satisfying (0.4) for which {g.(t)}

(] 0,..., k- 1) are preassigned. And all p.s. solutions are obtained in this way.
Let {P.} be any p.s., with generating function [hereafter g.f.] (1.2). Let

(1.4) G,(x, t) 2 P,,+(x)t"+ (i O, 1,..., s 1).

We call G the i-th component (mod s) ofG. (In general, a formal series n=0 a,/t"/ is
an i-th component (mod s).)

Let (1.2) define a p.s. solution of (0.4) and let {Gg} be the components (mod s) of G.
Multiply the equations of (0.4) by "/i (/" 0, , s 1) respectively and sum on n. We
obtain the system

(1.5) J[Gi(x, t)] k Y thfi,h(t)Gs-r+i-h(X, t) (j O, 1,..., s 1),
h=0

where k r (mod s), 0 -<_ r < s and

(1.6) Ci,i(t) E Ci,j+nstns (i, j=O,..., s- 1),

and indices on the G’s are to be reduced (mod s) to the range [0, s 1]. E.g., if r 2 then
Gs-r+s-1 Gs-3 if s ->_ 3. Note that each Cii(t) is a 0-component (rood s).

Conversely, given (1.5), on equating coefficients of like powers of we return to
(0.4); so we have

LEMMA 1.3. Systems (0.4), (1.5) are equivalent.
We find it convenient to deal with (1.5).
Suppose s 1. Then (0.4), (1.5) become

I P(i)(1.7) J[P.(x)]--- Y. ..i" (x) , c.,P.-k-,.(x) (bkCo s 0),
k =0

(1.8) JIG(x, t)] tC(t)G(x, t), C(t) E citi.
/=0

Let J*(t), C*(t) be arbitrary but fixed kth roots of J(t)== biti, C(t). Now J* is a
series Y 1,t (j 0) so it has a formal inverse

(1.9) I(t) Y e,t (ea 0): J*(I(t)) I(J*(t))= t.
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THEOREM 1.1. A p.s. {P,(x)} satisfies (1.7) iff its g.f. has the form
k-1

(1.10) G(x, t) E Ap(t) exp {xI(toPtC*(t))},
p=0

where {A,(t)} are arbitrary formal power series" Ap(t) ,o ao.,t such that

k-1

(1.11) E a.,oa"’ rsO (n=O,... ,k-i).
p=O

Proof. If (1.10) is expanded in a series in x the coefficient of x"/n! is (e;co)
k-1 pn(,=0 ap,otO )t + higher powers. So (1.10) will be the g.f. of a p.s. iff (1.11) holds for all

n, hence for all n [0, k 1], since to
g

1.
That (1.10) is a solution of (1.8) is seen by direct substitution, using

E bi[I(toPtC*(t))] J(I(toPtC*(t))) [J*(I(toPtC*(t)))]k

[wtC*(t)]k tkc(t).
There remains to show that if {P,,(x)} is a p.s. solution of (1.7) then its g.f. G(x, t)

has the form (1.10). G is given by (1.2), (1.3). By Lemma 1.2 it suffices to show that
{A(t)} can be chosen so that

k-1

(1.12) n g(t) Y. A(t)H, (t), (H,(t) I(totC*(t))) (n 0,..., k 1).
p=0

The coefficient determinant A(t) is a Vandermond determinant in {H(t)}. One readily
finds that

A(t) D(ec*ot)(k-1)k/2 "t- higher powers,
k-1where D is a nonzero Vandermond determinant in 1, to,. , to

If we solve (1.12) for Ao(t) by Cramer’s rule, the numerator determinant is seen to
have a factor (k-1)k/2, SO each Ap(t) is a power series. Hence the g.f. for the given p.s.
solution has the form (1.10).

The defining equation (0.1) for sets in class Sk is a particular case of (0.4), with s 1
and C(t)= 1 in (1.8). However, a p.s. can be in Sk even if C(t) 1"

THEOREM 1.2. Let the p.s. {P,(x)} satisfy (1.7). If C(t) is a O-component (rood k)
then {P (x )} S k.

Proof. C*(t) is a kth root of C(t), so it also is a 0-component (rood k). Let
H(t)- I(tC*(t)). Then H(tot)= I(wOtC*(t)), so the g.f. G for {P,(x)}, which has the
form (1.10), can be written as (0.2). Hence {P} Sk.

Remark. The converse of Theorem 1.2 is false for k > 1. it is easy to set up an
example.

2. General ease. We now consider system (0.4). Let integers q, r satisfy

(2.1) k =qs+r (0-< r < s).
Multiply the equations of (1.5) by functions (i.e., formal series) Vo(t)," .’, v_(t) and
add:

(2.2) J[G*(x,t)] tk {sa )}vi(t) C.,(t)G_+i_(x
1=0 =0

s-1

(2.3) G*(x, t)= E vi(t)Gi(x, t).
i=O
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We wish to choose {vj} so that the right side of (2.2) is tku(t)G* for a suitably chosen
u(t). This requires that we satisfy the system

s-1

(2.4) ] vj[ti+"C.,i+,,,]* u(t)v_,_,, (m 0,"’, s- 1),
1=0

where the asterisk signifies that wherever ] + m is outside the range [0, s- 1] the
corresponding power of and second index on C are to be reduced (mod s) to that
range. E.g., if r+ m s + n (0_-_n <s) then [ti+’Ci.j+,,]*= tnCj.n. Also the v-index
s-r-m is to be reduced (mod s).

After a suitable permutation of the equations of (2.4) the determinant of the
coefficients of {vi} is

O,s--r- U] [t t,l,s--r+l] G--l,s--r--1]
(2.5) a(t) [ts-r-lfo,s_r_l] [ts-rft,s_r u]. [ts-r-2fs_x,s_r_2]

[ts-r+’Co,s-r+l] [t’-’+ZC1 -,+z]"" [t’-’C,s l,s--r U

where the asterisk has the same meaning as in (2.4).
To have a nontrivial set {vi} we must have

(2.6) a(t) 0.

This equation, which we term the u-equation, is algebraic of degree s in u (t). Its roots
play a central r61e in the theory of system (0.4).

Each root u(t) determines a solution {vi} of (2.4), leading to a G* of (2.3), and we
have

(2.7) J[G*] tku(t)G*.

Now (2.7) is of the form (1.8) with C(t)= u(t), so from the case s 1 we have

k-1

(2.8) G*(x, t) Y. Ap(t) exp {xI(ooPtu*(t))},
10=0

where u*(t) is a kth root of u(t).
Canceling (-1)s, (2.6) we can write as

(2.9) [u(t)] + Dl(t)[u(t)]-1 +... + D(t)[u(t)] O.

LEMMA 2.1. Each Di(t) in (2.9) is an r(s i)-component (reduced (rood s)), so that

(2.10) D,(t) rr-iD,(/) (i 1,’"", s).

Proof. Let the rows and columns of (2.5) be denoted as the 0th, 1st, , (s- 1)th.
Each nondiagonal element (and the part of diagonal elements not including the u) is of
the form tiCij(t). Now each C is a 0-component (mod s); hence each power of in series
tiCii(t) is congruent to/" (mod s). We may therefore ignore the Cii’s.

Let n be given, 0<_-n <s. A typical term in the expansion of A(t) that has u(t) as a
factor exactly n times will have u(t) coming from n diagonal elements, say in the
positions (pl, pl),..., (p,, p,). The remaining factors will come from elements in
positions (qi, r) (i 1,. , s n), where {q}, {ri} independently fill out the complement
of p,...,p, relative to the set 0, 1,..., s-1. The power of in the place (q, r) is
s r q + r, so the above-mentioned typical term has to a power congruent (mod s) to

(2.11) E (s-r-q,+r)=(s-r)(s-n)-Xq+Yr.
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Now
s--1

Z ri+ X Pi= Z 1= Z q,+ Z Pi,
i=1 1=1 m=0 i=1 1=1

so Y qi Y ri. Thus (2.11) has a value-= rn (rood s); so every power of in the series for
Ds_,(t) is-= rn (mod s).

From Lemma 2.1 we derive a useful result:
THEOREM 2.1. If u(t) iS any root of the u-equation then

(2.12) u(t), (ru((t), (2ru((2t), (s-1)rU(S-lt)

are also roots (not necessarily different).
Proof. It suffices to show that v(t) ru(t) is a root. In (2.9) replace by srt and use

(2.10). We obtain the u-equation with u replaced by v.
LEMMA 2.2. Every root of the u-equation is nonzero ]’or O.
Proof. Suppose u(0)= 0 for some root. Taking 0 in (2.5) we obtain 0 A(0)=

s--1 s--1I-I=o c0 where r 0, and 0 A(0) +Cr,o(0)C+,o(0) Cr-,o(O) 1-I--o Co when r #
0. This contradicts (1.1).

Corresponding to a root u(t) we obtained a solution (2.8) of (2.7). If we suppose
that the roots u, , us are distinct there will correspond functions G*, , G* of the
form (2.8), and solutions {Vl}, ", {vs.} of (2.4). If we assume that det Ivi(t)l 0 we can
solve the system obtained from (2.3) for {G(x, t)}, and thus obtain the g.f. for a solution
of (0.4).

s--1It is thus suggested that solutions of (0.4) may be given by g.f.’s G(x, t)= Y’.=o G,
where

(2.13) Gi(x, t)
k-1

Y. Ai,p,,,(t)exp{xI(totu*,,(t))}
m=l p=0

(i =0,’’’, s-1), where {u,,(t)} are the roots of (2.6) and u*,,(t) is a kth root of u,,(t).
We shall see that this is so for the case considered in Part I. For other cases, particularly
when the u-equation has multiple roots, (2.13) requires modification.

3. Case (s, k) = 1. From (2.1) we have (s, r) 1.
LEMMA 3.1. Let (s, k) 1 then the s roo.ts of the u-equation are all different at O,

hence they are distinct.
Proof. Let u(t) be a root. The s roots of (2.12) have the values sriu(0)

(/" 0,. , s 1) at 0. Now u (0) 0 by Lemma 2.2, and {fr} is a complete residue
system (mod s), so no two of {4u(0)} are equal.

LEMMA 3.2. Let (s, k)= 1. If u1,"’, us are the roots of (2.6) taken in the order
(2.12) so that

(3.1) ul(t) u(t), u2(t)= (u((t), us(t)

then

(3.2) sru* (’t) U/g+l (t) *(i= l, s, us+x u’, u’ u*)

Here u’ (t) is a k-th root of u(t), and for > 1, u*i (t) is that k-th root of ui(t) given by

k/s,Proof. We have sr to so

(3.3) (u ((t)= ({k-’)/kto-qU*i+ (t) u/g+l (t).
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Thus

J[Gi(x, t)]= k Ai,p,.,(t)u.,(t) exp {xI(wPtu*(t))}.
m=l p=0

The right side of (1.5) becomes
k-1 s-1

k Y. ’, tdfi,d(t)As-r+i_d.p,m(t) exp {XI(toPtu*m(t))}.
m=l p=0 d=0

So (3.4) will give a solution of (0.4) (hence of (1.5)) itt the set {Ai,,,(t)} satisfies the
system

k-1

(3.5) 2 M,p,,(t)exp{xI(oPtu(t))} =0 (]=0,. .,s-l),
m=l p=O

where

s-1

(3.6) M.,o,.(t) Ai,,.,(t)u(t)- tdCi,a(t)As_r+j_a,o,.(t).
d=0

LEMMA 3.3. Let {r.,(t)}, {Vo,.,(t)} (m= 1,... ,s; p=0,... ,k-l) and I(t)=
1 e.t (el O) be formal power series, and suppose

toPlr.,l(O)=toP-r.,2(O) (O<-pl, pz<k)

holds only when pa p2, m m2. If

(3.7)
k-a

E Vp,.,(t) exp {xI(toOtr.(t))} 0
m=l p=0

then

(3.8) Vp,.,(t)=O (m 1,..., s;p =0,..., k-l).

Proof. Expand (3.7) in powers of x and equate to zero the coefficient of x":

(3.9)
k-1

E Vo,,(t)[I(wPtr,,(t))] 0 (n O, 1,...).
m=l p=O

Let

(3.10) Vp.. (t)
n----O n=O

ON A CLASS OF POLYNOMIAL SETS. I.

We saw earlier that

k=l

(3.4) Gi(x, t) ’. Ai,,.(t) exp {xI(wPtu*(t))} (i=0,...,s-l)
m=l p=0

might give a solution of (0.4) [or equally (1.5)]. To determine when it does, substitute
(3.4) into (1.5). The left side of (1.5) becomes

E Ai,p,.(t) exp {xl(wPtu(t))} J(l(wPtu(t))).
m=l p=0

Now j.k (t)= J(t), J*(I(t))= t, so

j(I(w p *tub(t))) [wPtu* (t)]k tku(t).
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Cancel t" from (3.9) and set t- 0:

k-1

d(3.11) 2 v,.,o ,.,o=0 (n=0,1,...).
m=l p=0

Take n 0, 1, , sk- 1. This gives a homogeneous system of sk equations in the sk
quantities {vp,,,o}, with a non-zero Vandermond determinant in the sk distinct numbers
{dp,,,,o}. Hence vo,,,,0 0 (all p, m).

We can now cancel a factor from each Vo,, in (3.10), and on repeating the above
argument we get v,,,l 0; then v,,,2 0; and so on. So (3.8) holds.

Apply Lemma 3.3 to (3.5), with Vp,,, =Mho,, ( fixed), r,,(t)= u*(t). Suppose
o91u,1 (0)=toO2u,2(0). Raising to the kth power" u,,l(0)= u,2(0). Since (s, k)= 1,
Lemma 3.1 implies m m2; hence also pl p2. Thus the hypotheses of Lemma 3.3
hold, so M.,p,,, (t)= 0 (all , m, p).

We conclude that if (3.4) is a solution of (1.5) then the functions {Ai,o,,,(t)} satisfy
system

s-1

(3.12) u,(t)A,,p,,,(t)= Z tJCid(t)As-r+,-i,p,m(t)
/’=0

(m 1,... ,s; i=0,..., s-1;p =0,..., k- 1).

By convention the first index s r + i-/" is to be reduced (mod s) to the range [0, s 1].
Conversely, if {Gi} is given by (3.4), and if (3.12) holds, we can work back to (3.5) and
hence to (1.5). To sum up so far; {Gi} given by (3.4) is a solution of (1.5) iff (3.12) holds.

However, we have not yet imposed the condition that G be an /-component
(mod s); i.e., that it satisfy

(3.13) Gi(x,(t)=(iGi(x,t).

From (3.4) and (3.2) we get

(3.14) Gi(x, t)=
k-

Y’, Ai,p,,,-l((t) exp {xI(toPtu*(t))}.
m=l p=0

Here mi,p,o(t) Ai,p,s(t).
Putting (3.14) into (3.13) we obtain equations like (3.7). Lemma 3.3 again applies,

to yield conditions

(3 15) A, p m_(srt) iAi,p,.(t) (m 1,. ,s; =0,... ,s-l; p =0,..., k-l).

Conversely, (3.4) and (3.15) imply (3.13); so if {G} is given by (3.4) then (3.13) holds iff
we have (3.15).

Combining results we have
s--1

LEMMA 3.4. Let {G} be given by (3.4), with (3.13) holding. Then G =o G is a
solution of (1.5) iff {Ai,,r(t)} satisfies (3.12) and (3.15).

If in system (3.12) (with p, m fixed) we transfer all terms to the right and arrange the
A’s in the order Ao,p,m, A 1,p,m, As-l,p,m, the determinant of the coefficients is AT (t),
the transpose of A(t) in (2.5); hence AT(t)=0. So (3.12) has a nontrivial solution
{Ai,p,}.
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Let a,, =-urn(0), ci Ci,o. Then

am 0
0

(3.16)
dr

0 Cr+l

0

0 Co 0
0 0 cl

Cs--

am
am

0
0

Cr--1

0

0

am

The elements a,,, form the main diagonal. The other non-zero elements {ci} lie one in
each row and in each column, in the following position: ci(i 0, 1, , s 1) is in the
ith row and (s r + i)th column (reduced (mod s) to the range [0, s 1]).

Let N,,(t) be the minor of At(t) of order s- 1 obtained by omitting the last row
and th column (i 0, 1, .., s 1).

LEMMA 3.5. Let (s, k)= 1. Then

(3.17) N,,(0) 0 (i =0,... ,s-l; m= 1,... ,s);

so N,(t) O.
Proof. Consider 0. From (3.16) we see that in No.,, (0) every column except the

(s r- 1)th and the (s 1)th (counting rows and columns from AT(0)) has two nonzero
elements, namely a,, and a ci. Column (s r- 1) has only the nonzero a,, and column
(s 1) only cr-1. In N0,, (0), row 0 has only the non-zero Co, so if we expand with respect
to this row we get a factor Co. The (s- r)th column contains this Co, so the remaining
factor is an (s 2)-order determinant obtained by deleting row 0 and column s r. This
removes the am from row s-r, leaving only Cs-r in that row.

So we get a factor Cs-r, leaving an (s- 3)-order determinant obtained by deleting
row s r and column 2(s r). This removes a,. from row 2(s r), leaving only C2(s-r) in
that row. And so on. This process continues until we have the factor

(3.18) +/-CoC,-c2-" ci-l-,

where in [0, s-l] is such that i(s-r)--s-1 (mod s). For when we reach the factor
(3.18) then (i 1)(s r) r- 1, so the last term in (3.18) is c_, which is in column s 1.
Now there is no a. in this column, so the process we began stops. If s 1 then (3.18)
is the value of No.. (0). If < s 1, there remains a determinant of order s 1 i, one of
whose columns is the (s-r- 1)th, and s-r-l=-(i+ 1)(s-r). This column contains
only an a,.. Expanding in terms of this column we delete the c__1 from column
(s r- 1) + (s r) -= (i + 2)(s r) (mod s), so we get another factor a.. And so on; so we
have

i--1

(3.19) No..(0)=+/-aS--1" ]-I ci_.
i=0

Hence (3.17) holds for -0. A similar argument applies when 1,. , s- 1.
Since No,,. (t) 0, the last equation of (3.12) is linearly dependent on the others, so

it can be ignored. We can take Ao,...(t) arbitrarily (all p, m) and solve for A.p.,.(t):

A,,p,, (t) (-1)N,,(t)[No,,,(t)]-Ao,p,,,(t)
(3.20)

(m 1,...,s; i=0,... ,s-1;p =0,..., k-l).

System (3.20) is equivalent to (3.12), so {Gi} given by (3.4), (3.13) satisfies (1.5) iff
{A,..m(t)} satisfies (3.15), (3.20).
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Let {Ai,p.,.} satisfy (3.15), (3.20). Substitute (3.20) into (3.15). We get

(3.21)
N,_(Ct)
No,-(Ct) Ao,o,.,-1 (t) ’ N,.,(t)

No,,.(t)
Ao,p,.,(t) (all i, p, m).

From (3.15) with 0:

(3.22) Ao,p,m-1 (t) Ao,p,.(t) (all p, m).

So the set {Ao,p,., (t)} is not completely arbitrary. However, (3.22) will hold if we choose
Ao,p,.,(t) 1 (all p, m), so from (3.21) we get

Ni,m-l(t) iNi,m(t) (all i, m).(3.23)
No,.,-((t) No,.(t)

Since the N,; series are independent of the Ai,p,, series, (3.23) holds no matter how we
choose {Ao,p,.,}.

Remark. Another proof of (3.23) can be given without use of {Ai.p,.,}. We sketch it:
Expand determinant No,.,((t), using ui(t)= sr-rU/l(t) from (3.1), so that

[ts-rci,s_(t)- u.,(t)],_,., (s-r[ts-Ci,_,(t)- Um+l(t)].

The general term d:ah,lah,2’’’ah_l,s-1 is seen to have the factor " to the power
-1 {s r +/’ i}, and this is congruent (mod s) to r + 1 since ]1, L- is a permu-’-

tation of 0, 1,..., s- 2. Hence

(3.24)

By a similar argument we get

(3.25)

No,m(t)= r+lNo,m+l(t).

Ni,m(t)-- r/i+lNi,m+l(t).

(3.23) follows from (3.24), (3.25).
LEMMA 3.6. Let (s, k)= 1. Then (3.20), (3.22) are equivalent to (3.15), (3.20); so

{G} given by (3.4), (3.13) satisfies (1.5) iff {A,o,,} satisfies (3.20), (3.22).
Proof. We know that (3.15), (3.20) imply (3.20), (3.22). Now suppose (3.20), (3.22)

hold. From (3.20) we get an expression for Ai,p,m-x(t) which, using (3.23), (3.22) and
(3.20) leads to (3.15).

Take {Ao,p,o(t)} arbitrarily. From (3.22) we uniquely determine {Ao,o,_(t)=
Ao,p,s-x(t)}, then {Ao,p,-2}, and so on. So choosing {Ao,p,o}, we uniquely determine
{Ao,p,,} (all p, m) to satisfy (3.22); and by means of (3.20) we determine all {Ai,p,,}.

TnEOREM 3.1. Let (s, k) 1. The most general p.s. solution of (1.5) defined by (3.4)
with (3.13) holding is obtained by taking {Ao,,o(t)= Y=o a,o,,t} arbitrarily subject to

the condition

k-1

(3.26) Z w"ap,o,o 0 (n 0, 1,. ., k 1),
p=0

and then uniquely determining the remaining {Ai,o,,,,(t)} by means of (3.22), (3.20).
Proof. All has been established except (3.26). If {G} satisfies (3.4), (3.13) then

O(x, t) -1
=Yi=o Gi(x, t)=o Pn(x) need not define a p.s., since we may have degree

Pn (x) < n for some n. Now
k-1 s-1

(3.27) G(x, t) , A,t,,,,,(t) exp {xI(wPtu (t))}
m=l p=0 i=0
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follows from (3.4). Using (3.20) this becomes

(3.28) G(x, t)
k-1

E R.,(t)Ao.p...(t) exp {xIp,.(t)}
m=l p=0

where

s-1

(3 29) Io,.(t 1(to *.....tu,.(t)), R,.(t) [No..,(t)]-1 E (- 1)Ni,,.(t):
i=0

Expand (3.28) in an x-series; we get

(3.30) n g,, (t)
k-1

Y’. R.,(t)Ao,,.(t)[lp..,(t)]".
m=l p=0

Now [Io,m(t)]" [elwu*(O)]"t" +higher powers, so if

(3.31) R.,(t)= Y. r.,,jtj, Ao.p,.,(t)= Y ap,,at
j=o i=o

then

n’g.(t)= el Y’. r,,,oap,.owO"[u * (0)]" + higher powers
m=l p=0

We are to determine when the brace is non-zero.
Take kth roots in (3.1) and set 0:

(3.32) u*., (0) ((’-I)r/U*(O)w ("-l)q sr’-lu*(0).
By Lemma 2.2, U*m (0) 0, so our condition becomes

(3.33) .. -i

Y’. r.,.oao..,.otOOn((’-l)n 0 (all n).
m=l p=0

From (3.15) with 0 we deduce

(3.34)

and taking 0:

(3.35)

Hence

Ao.p,m(t) Ao,p,o((’t),

So we are to have

ap,m,O ap,o,o.

k -1 k-1
pnY ap,,.,oWn= a,o,otO

p =0 p =o

(3.36) toni k

r,,,,or -lpowPnap.o.o)#0.m=l

Let

(3.37)

so that

(-1)iNi,.,(t)[No,.(t)]-l= E di,,.,iti,
/’=0

s-1

rm,o-- ’. di, m,o.
i--0
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From (3.23)we have

SO

di,,,-1,o di,m,o, di,m,o -midi,s,o,

s-1

(3.38) r,,,,0 di,s,o.
i=0

We are therefore to have

)m(n--i)
k-1

di,s,o to Pnap,o,o O.
i==o o

The sum on m is s if - n (mod s) and 0 otherwise, so we must have

k-1

(3.39) (sdn,s,o) , toPnap,0,0 0.
p=0

(The n in d.,,o is to be reduced (mod s).) Now di,,o 0 by Lemma 3.5, so we obtain
kcondition (3.26), to hold for all n; hence for n [0, k 1], since 1.

In (3.28) replace Ao,p,(t) by its value from (3.34); then use the property Ai,pk,i
Ai,od. We get

G(x, t)
k-1

E R(t)Ao,p,o(t) exp {xIo,(t)};
m=l p=0

SO

1 1 Ni (t)
(3.40) G(x, t) (-1) "" Ao,p,o("t) exp {xI(toP("-Itu*(("-lt))}.

p=0 m=l i=0 No,,,(t)

There remains the question of the existence of p.s. solutions of (0.4) that do not
have a g.f. of the form (3.40). On this point we have

THEOREM 3.2. Let (s, k)= 1. A p.s. {P, (x)} is a solution of (0.4) iff its g.f. is of the
form (3.40), with {A0,p,o(t)} subfect to condition (3.26).

Proof. The necessity is given by Theorem 3.1. Now let the p.s. {P, (x)} satisfy (1.5),
with g.f.

(3.41) G(x, t) E Pn(x)t Y, g(t)x.
o o

Let G(x, t) be given by (3,27). Then (3.28) holds iff (3.20) is satisfied. From (3.28)
we pass to (3.40) by use of (3.34), which is equivalent to (3.22). We now show that
conversely, if (3.28) and (3.40) hold then (3.22) is satisfied.

Define Ep,.(t) by

Ao,p,,,, (t) Ao,p,o(("t) + Eo, (t).

Substitute this into (3.28) and form two double sums. The first one reduces to the right
side of (3.40), so since (3.28) and (3.40) both represent G(x, t), we have

2 R,(t)N,m(t)exp{xI(totu(t))}=O.
m=l p=0

It follows by Lemma 3.3 that

R,(t)Ep,,,(t) 0 (all p, m).
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The work of 2 shows that for each root u (t) (with kth root u*(t)) there is a solution
of form (2.8). Let m be fixed. Then there is a solution of (1.5) of the form

k-1

G(x, t) Y Ap,,(t) exp {xI(wPtu (t))}.
p=0

Hence u* (t) must be present for all m 1, , s in the general solution G(x, t) of (1.5).
Now if Rm(t)=0 for some m, say m b, then from (3.28) we see that the general
solution of form (3.27) does not involve u (t). This contradiction shows that R(t) 0
for all m. So E,(t)= 0, and therefore (3.22) holds.

By Lemma 1.2 it suffices to show that {Ao,p,o(t)} can be chosen in (3.40) so that
when (3.40) is expanded in a series in x, then the coefficient of x" is g.(t).
(n 0, 1, , k 1). The following system must be satisfied:

1s1 Nim(t)
(3.42) n g(t) (-1)i. Ao,p,o((t)[I(wP(-tu*(C-t))]

m=l p=O i=0 No,(t)

(n =0, 1,. , k-l).
Since {Ao,,o((t)} represents a set of sk functions, we need sk equations, which we

obtain by replacing in (3.42) by (t,..., (-t. Using (3.23), this leads to the system

(3.43) ng.((t)=EEE (-1)(igN’(tx,(t)[I(O-tu*(-lt))]". No,(t)

(n=0,’.’,k-1; =0,...,s-1), where we write X,(t) for Ao,,o(t). Define
B,(t), g (t) by

(.44) t,,(t) (w"C-tu*(( t)), *g. (t)= g.(t).

We can cancel t" from both sides of (3.43) to get

(3.45) n("ig (it) E E E (-1)(i’(tB,(t)X,(t)No,(t)

(n =0,..., k-1;=0,..., s- 1).
If the sk-order determinant O(t) of the coefficients of {X,} is 0 we can solve for

the unknowns. We shall show that (0) 0. In (3.45) take the order X0.x, X0,, "",

Xo,; Xx,, , Xx,; X_,x, , X-x,. From (3.23) we derive

,(t) ,_((t)
(.46) CN0,(t No,_((t)"
Also, B,(t) [eaw(-au*(0)]" + higher powers, so the coefficient of X, in (3.45)
has for 0 the value

(-)’ [el"C u (0)].
=o N0,-(0)

This is the general element in 0(0). Now [eu*(0)]" is a nonzero common factor of all
the elements of a row of 0(0). We drop this factor and denote the new determinant by
O*. The general element of O* is R_i""ff"(-), where Ri Ri(0) is given by (3.29).

If we choose the rows of O* in the order (], n) (0, 0), (0, 1),. , (0, k 1); (1, 0),, (1, k 1);. (s 1, 0),. , (s 1, k 1) then the corresponding elements of O*
n e n(s-1)n.in row (], n) are R_i, R_ R_iff"(-l); R_i Ra- -i

e Znts-1) (k 1)n..; R_i(-)",
_

Indices on R’s are to be reduced (mod s).
Determinant O* can be described as follows: Divide the matrix of O* into blocks,



240 I.M. SHEFFER

each of k rows and s columns. Denote the upper left block (in rows 0, 1, , k 1 and
columns 0, 1, , s 1) by [0, 0], the one just below it by [0, 1] and the one just to the
right by [1, 0]; and so on. Then block [p, i] (p =0,..., k- 1; =0,..., s- 1) is

Rs-i+l Rs-i+2 Rs-i+s
(3.47) [p, i]= Rs_i+ltO p Rs_i+2to v Rs_i+ss-Xto p

1(’---’1’ 10) (k- 1)p --)(k- 1)(.0 (k- 1)pRs-i+ Rs-i+:k- Rs-i+s
To show that 19" # 0 we need some lemmas. Let

R1 R2"’" Rs
(3.48) R*= R Rx"’R-x

R2 R3"" R1
Regarding {R} as variables, the following identity is known:

(3.49) R*=
j=0 n=O

LEMMA 3.7. Let (s, k)= 1 and let {R,, R,(0)} be given by (3.29). Then

(3.50) R* # 0.

Proof. From (3.25) we derive

Ni._(it) i(+i+X)Ni.(t),
SO

niRn+ (_1) .,, N, (0)-; (;-")

n=0 n=O m=l No,s(O)

The brace is s if n ] and 0 otherwise, so by Lemma 3.5, R* # 0.
LEMMA 3.8. Regarded as a polynomial in the variables {Ri} the determinant (R)* is

not identically zero.

Proof. Let Ds O* when R 1, R 0 (i # 1). The elements in each row contain sr
to the same power, so we may remove " completely from D,, obtaining a new
determinant D**. In rows 0, 1,..., k-1 all elements in columns other than
0, s, 2s, , (k- 1)s are zero’, so using the Laplace expansion we express D*s as the
product of the nonzero kth order Vandermond V in the quantities 1, , , -1, and
a determinant Ds-1)k of order (s 1)k. Moreover Ds-X)k is like D*sk in permitting a
Laplace expansion, into the product of the same V and a determinant D*(s-E)k of order
(s- 2)k. This latter is likewise expansible, and so on. We finally evaluate D as ’V
(a, b positive integers). So D # 0.

LEMMA 3.9. Let (s, k)= 1 and let R, R,(O) be given by (3.29). Then

(3.51) O* # 0.

Proof. In 19" subtract column 0 from each of columns s, 2s, , (k 1)s; column 1
from each of columns s + 1, 2s + 1, , (k 1)s + 1; and so on. Finally subtract column
s- 1 from each of columns 2s- 1, 3s- 1, , ks- 1. We obtain zero elements in the
part of all columns s, s + 1, , ks- 1 that are in rows 0, k, 2k, , (s- 1)k, so by the
Laplace expansion we express 19" as the product of R* (given by (3.48)) and a
determinant Es(k-1) of order s(k-1) whose columns are in the old columns s, s +
1,... ,ks-1.

Es(k-X) has blocks [p, i] (p 0, , k 2; 0,. , s 1) each with k 1 rows
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and s columns:

(3.5)
Rs-i+ a(k-1)t,+

[P, i] Rs-i+la(k-lp+z
Rs-i+2a(k-1)p+l
Rs_i+z2a(k_lt+z

Rs-i+s(S-la (k-1)p+l

Rs-i+s2(s-1)a (k-t)p+2

Rs-i+la(k-1)p+k-1 Rs-i+2k-la(k-1)p+k-1 Rs-i+s(k-1)(s-1)a(k-1)p+k-1
where the a’s involve to.

Now al to 1, 0 for k > 1. When k 1 we have (R)* +/-R* 0 (by Lemma 3.7),
so we consider k > 1. For later purpose we shall not use the above value of a 1. Rather,
we observe that al, a2, , ak- cannot all be zero since then a column of Es(k-l would
consist of zeros, making E(k-l, hence (R)*, identically zero in {Ri}, contrary to Lemma
3.8. So at least one of al,’", ak-1 is nonzero, and it is no essential restriction to
suppose that al # 0.

From columns s, 2s, , (k- 1)s subtract respectively the following multiples of
column 0: ak/al, aEk-1/al, aak-1/a, etc. Then from columns s+l,2s+
1,..., (k-1)s + 1 subtract the same multiples of column 1; and so on. A Laplace
expansion gives us a product of R* by a power of sr, by a new determinant EE(k-2). This
latter has blocks [p, i] (p 0, , k 3; 0, , s 1) of k 2 rows and s columns.
[p, i] can be obtained from (3.52) as follows: Delete the top row, and in the remaining
rows replace a(k-1)p+" by b(k-1)o+j-1 (]" 2,. , k- 1), where the b’s involve to. Note
that if we assume for example that a2 # 0 instead of a 1, the determinant that we would
get for Es(k-2) would be of the same character as the present Es(k-2), SO it is not a
restriction to take al 0,

Not all of bl, , bk-2 are zero (otherwise 19" 0 in {Ri}); and generality is not lost
in assuming bl 0. We can then continue the process of reducing Es(k-2), and so on. We
finally get

(3.53) 19" R *k E

where E involves to, " and is independent of {Ri}. By Lemma 3.8, E 0; so 19" # 0.
System (3.45) can then be solved by Cramer’s rule, to give a unique solution

{X,, (t)}; and each Xo,, is a power series. If Xp,,(t) is to be identified with Ao,o,o("t) it
should be verified that Xo,,,(t) X,,+l(t). This is done as follows: In (3.45) change to
’t. This effects a permutation of (3.45), with Xo,,,(t) in place of Xp,,/l(t); so by
uniqueness of solution these two functions are equal.

We conclude that the set {Ao,p.o(t)} (p 0,. , k 1) satisfies (3.42), so by Lemma
1.2 the given p.s. solution {Pn (x)} of (0.4) has a g.f. of the form (3.40). Condition (3.26)
holds since {Pn (x)} is a p.s.

Remark. In Part II we shall treat the case (s, k)> 1.
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A STRONGER LOGARITHMIC INEQUALITY SUGGESTED
BY THE ENTROPY INEQUALITY*

KENNETH B. STOLARSKY?

Abstract. Let Pl,’", P,, be n probabilities that sum to 1. The classical entropy inequality asserts
that Ynpi log npi is nonnegative. We show that np can be replaced here by (np) where 0=
+(n- 1)-x- (log n)-. This is a stronger result, and nearly best possible. For n 2 the best possible result

follows from the nonnegativity of the coefficients of a certain class of power series.

1, Introduction. The classical entropy inequality (see, for example, 1, pp. 14-15],
[2, p. 15], or [3, pp. 15-18]) asserts that for pi _->0 and

we have

pi=l
i=1

(1.1) Pi log Pi <= log n.
i=1

If we introduce a new parameter 0, this can be written as

(1.2) S(O) (npi) log npi >-_0
i=1

where 0 1.
THEOREM 1. The inequality (1.2) is true/’or

1 1(1.3)
O=O(n)>__l+

n- 1 log n

Examination of S’(O) shows that the left side of (1.2) is increasing in 0, so the
theorem is stronger than the classical inequality. For n 2 inequality (1.2) is even true
for 0 1/2; this is best possible, and is deduced in 4 from Theorem 2, a result that asserts
the nonnegativity of the coefficients of certain power series. For n -> 3 the optimal 0 is
probably a transcendental number. It is possible (and suggested by what follows) that
for large n and optimal 0, there are cases of equality other than the case p 1/n for all
(the sole case of equality in the classical entropy inequality).

For n large the general form of Theorem 1 cannot be improved too much. To see
this, set

1 /n-1 1 1
(1.4) Pl =--+, pi (2 -< N n),

n n n n/n-1

and

(1.5) 0 1-

Here again

(1.6)

2 log log n

log ,n

0(n)+ 1 as n +c.

* Received by the editors December 12, 1978, and in revised form April 23, 1979.
t Department of Mathematics, University of Illinois, Urbana, Illinois 61801.
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(2.6)

then

(2.7)

Remark. If c > 0 and

x>-_O and Fo(x)=O

then

-(ec)-X<=k(t)<_O,

G(x)<=n.

k(t) log t,

O_-<t_<-l;

A LOGARITHMIC INEQUALITY

However, for n large,

( 1 ’) ( ---)/n1
S(O)=(l+/n-1)log(l+/n-1)+(n-1) 1 log l-x/,_

(1.7)
_--<n (log n)-2 log 4-.54n’ i < o.

For brevity we set

1 1
(1.8) h(x) 1

x-1 logx’

so the expression on the right of (1.3) is h (n). Note that we can remove the singularity of
h (x) at x 1 by letting h (1)= , and that since

(1.9) h’(x) x-(log x)-Z- (x 1)- N 0

the function h (x) increases monotonically to 1 as x m.

2. Reduction to a two variable problem. Let x npi and x (x, , x). For any
n-vector u (u, , u), the inequality u 0 shall mean u 0 for 1 n. We also
define

O(u)= u.
i=1

Theorem 1 now asserts that

(2.1) f(x)=fo(x)= 2 xogxe0
i=1

provided that

(2.2) xO, G(x)=n, and 0=h(n).

Suppose Theorem 1 is false. Then there would be an n-vector u such that

(2.3) uO, G(u)=n, and F(u)<0.

Clearly, for > 1 sufficiently large,

(2.4) F(tu) > O.

Hence by continuity there would be a number t(O)> 1 such that

(2.5) tuO, G(tu)>n, and F(tu)=O.

We conclude that it suffices to show the following.
THeOReM A. Let 0 h(n). If
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in fact, k(t) is monotonically decreasing or increasing depending upon whether or not
t-<_exp (-c-1). Thus the point set M defined by (2.6) is bounded. Aside from the
isolated point 0 (0, 0,. , 0), each point in M has some co-ordinate no less than 1,
and some co-ordinate no greater than 1. In fact, M-{0} is a smooth compact manifold
whose boundary is contained in the boundary of the first octant of n-space.

We shall prove Theorem A by induction on n. For n 1 it is trivial. Assume true for
positive integers less than n. We proceed to establish it for n. First, if xi 0 for some/’,
then

(2.8) F(x) E x log x 0.

Also, by the remark after (1.8),

(2.9) h(n-1)<-O.

Thus, by the induction hypothesis,

(2.10) G(x) x <= n 1 < n.

But since F(1, 1, , 1) 0 and G(1, 1, , 1) n, the maximum value of G(x) must
occur at an interior point. At each such point we have the Lagrange multiplier condition

(2.11)

Thus

(2.12)

Define

(2.13)

Then

(2.14)

VF(x)= txVG(x).

0-1
tx Ox-l log xi + x (1_<- =< n).

f(t) Ot-1 log + -1.

f’(t) t-2[O(O- 1) log + (20-1)].

Hence f’(t) is positive for small, negative for large, and f’(to) 0 for a unique to. Thus
a horizontal line cuts the graph of f(t) at most twice, and by (2.12) the xi can assume at
most two distinct values. Call these values Xo and yo, and their respective multiplicities
n and n2. Thus

(2.15) nl+ n2-- n and G(x) nlxo+ n2Yo.

If n or n2 vanishes (say for example n2 0) then

(2.16) F(x) nx log Xo 0

and Xo 0 or 1. This implies G(x) <- n.If Xo or yo vanishes (say for example yo 0) then
we see similarly that Xo=0 or 1. Since this implies G(x)<=nl <=n, we see that the

difficulty lies in the case where nl, nz, xo and yo are all positive. Set h nl/n, so

1 h n2/n and

(2.17) 0< 1In <- <- 1-(l/n) < 1.

By dividing F(x) and G(x) by n, we see that it suffices to prove the following result.
THEOREM B. lfxo>--_O, yo_-->0, O>-h(n),

(2.18) Ax log Xo+(1-A)y log yo=0,
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and h satisfies (2.17), then

(2.19) hXo+ (1-h)yo -< 1.

Henceforth we shall drop the subscripts from x0 and y0. Thus Theorem B says that
the graph F F(A) of

(2.20) hx 0 log x + (1 h y 0 log y 0

lies in the region bounded by x >-0, y >_-0, and

(2.21) hx + (1 X)y -< 1.

It is important to note that aside from the isolated point (x, y) (0, 0), the graph F lies in
the union of the strips 0 <- y <- 1 <-x and 0 <-x <- 1 <= y, and is, moreover, connected. [To
see the latter, first consider the part of F in y =< 1 -< x. Let y* be the unique value of y,
satisfying 0 < y < 1, such that _y0 log y is maximal, and choose x* so that (x*, y*) F.
Then as y increases continuously and monotonically from 0 to y*, the value of x
(uniquely determined by y) increases continuously and monotonically from 0 to x*. As
y increases from y* to 1, the value of x (again uniquely determined by y) decreases
continuously and monotonically from x* to 1. The same considerations hold for
x -< 1 <- y, and these two parts of F are joined at (1, 1).]

3. The proof. We shall show it suffices to prove the following.
THEOREM C. If x >-O, y>-0, O >=h(n), and

(3.) ax +(-x)y
then (i) for (x, y) # (1, 1), (1, 0), (0, 1), or (0, O) we have the strict inequality

(3.2) F(x, y)= hx log x + (1-h)y log y >0,

and (ii) there is a neighborhood of (1, 1) such that

(3.3) hx + (1-h)y _>- 1

implies

(3.4) F(x, y) hx log x + (1 h)y log y ->_ 0

with equality only for (x, y) (1, 1).
To see this sufficiency, note that if Theorem B were false, then by Theorem C the

graph of F would not be connected. We now prove Theorem C. Part (ii) is easily
established for 0 > 1/2 since the Taylor series expansion of F(x, y) about (1, 1) is

F(x, y)= (hx + (1-h )y- 1)+ (0-){h (x- 1)2+ (1-A )(y- 1)2}
(3.5)

+ O[(x 1)3] + O[(y 1 )3].
For part (i) we can assume, without loss of generality, that

(3.6) 0 < y < 1 < x.

From (3.1) we also see that

(3.7) x < 1/A =< n.

Since

(3.8) A (1- y)/(x- y),
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inequality (3.2) becomes

(3.9) (1- y)x logx + (x- 1)y log y >0

or

(3.10) g(y) < g(x)

where, for all real x, the function g(x) is defined by

(3.11) g(x)
0x log x

Note that x 1 is a removable singularity for g(x). Now
0-1

X
(3.12) g’(x) 2[(x 1)(0 log x + 1)-x log x].

(x-)

If g’(x) 0, then clearly h(x). However, by (3.7) and the remarks following (1.8), we
see that

(3.13) h(x)<h(n)<-_O.

Hence g’(x) does not change sign for 0<=x <n; an examination of small values of x
shows that g’(x) > 0 here. Hence the strict inequality (3.2) is valid, and Theorems 1, A,
B, and C are proved.

4. Some nonnegative power series. We shall show that if x, y > 0 and x + y 2,
then

(4.1) x x/ log x + y /2 log y -> 0,

and that equality holds only for x y 1. This is equivalent to

(4.2) F(z) Fo(z) (1 + z) log (1 + z) + (1 z) log (1 z) => 0
for

(4.3) 0=1/2 and 0<-z-<_l.

By examining the first few terms in the power series expansion of Fo(z), we easily see
that (4.2) is false for 0 < 1/2.

We shall in fact establish the following stronger result.
THEOrEM 2. Every coefficient in the power series expansion ofF1/z(z) about z 0 is

nonnegative.
Before establishing this, we obtain some preliminary results.
DEFINITION. Call the sequence a, where 1, 2, 3, , convolution nonincreasing

if the associated sequence
k-1

(4.4) b aia-i, k 2, 3, 4,.
i=1

is nonincreasing for k => 2.
LEMMA. The sequence of reciprocals 1/i, for 1, 2, 3,. is convolution nonin-

creasing.
Proof. By partial fractions, the inequality bk/l <= bk is in this case equivalent to

(4.5) <- 1+ +
i= k+l-i- i=1 k-i’
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which is in turn equivalent to the obvious fact that

2<1 kl [1 1 ](4.6) ’=" i=1 7+ k L

Next, let to denote the principal value of the ath power, so that (1 + x) is given by
the usual binomial expansion for Ix I< 1. We write p (z) >> 0 to indicate that the power
series expansion of p(z) about z 0 has nonnegative coefficients.

THEOREM 3. Let 0 <--a <-1. Suppose that

(4.7) 0 ci+ " ci <: 1, 1 <= <

For Iz]< 1 define

(4.8) g(z) 1 + , (-1)"c,z"
n=l

and

(4.9) h (z) g(z).

Then all power series coefficients of
(4.10) P(z)=z(l+z)h(z)+(-z)(1-z)h(-z)

are nonnegative.
Proof. We have

(1 z)’h(-z) {(1 z)(1 + cz + czz z +" ")}

(4.11) ={1 +(c- 1)z +(c2-c)z2+ "} {1-p(z)}

(a- 1)1-ap(z)+p2(z) 1-q(z)
2!

where p(z) >>0 and hence q(z) >>0. Thus

(4.12) P(z) z[q(z)-q(-z)]>>O.

To prove Theorem 2 take a and

(4.13) g(z) [z -1 log (1 +

that the ci satisfy (4.7) here follows from the lemma. Thus

(4.14) zh(z) log (1 + z),

so P(z)= F/2(z) and the result follows.
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ON DIRICHLET’S PROBLEM FOR ELLIPTIC EQUATIONS IN
SECTIONALLY SMOOTH n-DIMENSIONAL DOMAINS*

A. AZZAM-

Abstract. This paper is concerned with the first boundary value problem for linear second order elliptic
equations in a domain R"(n -> 2) with edges on its boundary. Conditions sufficient for the solution u to be
in C(Iq), < u < 2, are given. Further statements concern the nature of singularities which the second partial
derivatives of the solution may have at the edges.

For smooth domains, smoothness properties of solutions of general boundary
value problems for linear equations have been thoroughly investigated; cf. [1]. For
domains with piecewise smooth boundary and for general second-order elliptic equa-
tions, however, very little is known about the smoothness (up to the boundary) of the
solution; cf. [2]-[6], [8]. In this paper we consider linear elliptic equations in sectionally
smooth n-dimensional domains (n -> 2), especially near an edge.

Notations. u li denotes Ou/Oxi, and u l0 denotes 02u/Ox Oxj. We also use the
summation convention, that is, we sum over an index that appears twice (e.g.,
aiuli Ei=l ai(Ou/Oxi)). Furthermore, x Xl," ", xn, Ixl= x /... / x.. The distance
between points P and Q will be denoted by PQ.

In this paper we consider the Dirichlet problem for the uniformly elliptic equation

(1) Lu =-aii(x)ul, + ai(x)ul, + a(x)u f(x)

in a domain lq the boundary F of which consists of (n- 1)-dimensional surfaces
F1, F2, , Fk belonging to C2+,,, 0 < a < 1. We assume that the surface Fi intersects
only with F-I and F+I along (n- 2)-dimensional manifolds Si-1 and Si. We study in
detail the case k 2, the behavior of the solution in the neighborhood of other
manifolds may be similarly studied. Let F F11.3 F2, 1-’1 f’) F2 S and P S. Let R and
R2 be the planes which touch F1 and F2 at P making an angle y(P). We transform the
equation

(2) aii(P)ul,, =0

to canonical form. This equation is an equation with constant coefficients since the point
P is fixed. After the transformation, the planes R and R2 will be transformed to other
planes with angle to(P) between them. It is clear that to(P) does not depend upon the
way used to transform (2) to canonical form. From [1] it follows that if the right hand
side and the coefficients of (1) belong to C (f), and if the boundary value of u(x) is
continuous on F and belongs to C2+, (F\S) then u (x) Cz+ (fl\ S) f’) Co(O). We prove
the following

THEOREM 1. If[or any P S, to (P) < r, then there exists a number , 1 < < 2 such
that u (x) Cv(f).

We first prove this theorem in a special setting.
Consider the two hyperplanes Xl x2 tan/3 and xl x2 tan (to +/3), Xl >_- 0 inter-

secting at an (n-2)-dimensional space So with the angle to < zr, where zr/2 <to +
2/3 < zr. By Gro we denote the part of the sphere centered at the origin with radius r0 > 0
which is included between the two hyperplanes. By Fro we denote the part of the
boundary of Gro lying on the hyperplanes. Let Sro So 71 Fro.
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THEOREM 2. Suppose that in Ga(d < 1) the function u(x) satisfies the uniformly
elliptic equation

(3) Lou=-a].(x)ul,,+a(x)ul,+a(x)u f(x),
where

(i) a.(0) 6ij, i, ] 1,. ., n. 6q is the Kronecker delta.
0 a a0(ii) ai, and[belongtoC(a),O<<l.

(iii) ulrd 4o C2+(Fa\$a) Co(Fa).
(iv) Jo vanishes on Sa together with its first derivatives in the directions 0 and

0 =o+/3.
Then there exists a number u, 1 < u < 2, such that u(x) C(Gro), provided that 4ro < d.

To prove this theorem we need two lemmas and we will make use of the following
well known a priori estimate [1].

In the n-dimensional domain l) with boundary I we consider a bounded solution
of the elliptic equation Lu =F(x) (cf. (1)) which coincides on FI with a given
function . Consider a subdomain fl of f with the property that 1 f’)1’ lies in the
interior of F. If the coefficients of L and F(x) belongs to C(I2) and if F C2/ and
(I) C2+t (F) then

lq l) (I) FIlull=/ <-- co[llullo" / IIFIl /

where the constant Co is independent of u.
LEMMA 1. The solution u(x) of (3) satisfies the inequality lu(x)l <-Mr in G2ro, where

1 < u < 2, r2 x +x andM is independent of x.
Proof. Consider the function sr(Ixl) c3 in G4ro, where

C(Ixl) l ifOlxl2ro,
and

ff(Ixl) 0 if 3ro--< Ixl 4ro.

The function W(x) u is defined for Ixl <= 4to, x Ga and satisfies there the elliptic
equation

(4) LoW F--- st/ 2a.srl,ul, o oa iil,ju a ’l,U.

On F4ro, W(x) concides with a function fro satisfying conditions (iii) and (iv) of Theorem
2, with d replaced by 4ro. Consider the function

V -Mr sin A 0,

where r2 x2 + x., 0 arctan X21X1, M> 0 and 1 < u < A rl(w + 2/3) < 2. Then
2

LoV= Vlaa + VI2 + (a-6ii)Vl,j+aVlii +a2Vl2+aV
i,j=l

2

M(X 2 /2)rv-2 sin AO +M Hii(a ii 6ii)r-2 + Mh___rv--1 + Mh___zr v,
i,i=

where H and h are bounded functions of 0, A and u. We put

2

2 IHil+lhxl+lhzl<-m, A>0.
i,j=
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Since a.(x) are continuous functions and a(0) 6ij, for any e > 0 we can find ro > 0
such that for Ix < 4ro we have

lab.(x)- ,] < e/4A, i, 1, 2.

Thus in G4ro we have

LoV _-> M[(A 2 u2) sin Aft e ]r"-2 MAr-1 MAr.
Choosing e < (A 2_ u2)sin Aft and ro sufficiently small, we obtain Lo V-> [F(x)l, hence
Lo(W V) <- 0, in G4ro. We now prove that on the boundary of G4o; W V -> 0 ifM is
chosen sufficiently large. On F4ro we have

W- V fro(X)+Mr sin Aft.
At any point x xl," , x, on F4o we have

’o (x ’ dt,
0,0,x3,-’.,x,,)

where is the direction from (0, 0, x3, , xn) to x and 4 and 0 are the derivatives of
qo in this direction. Since is bounded, say, I4(x)l=<2k, we have ]’o(X)]<=2kr.
Similarly Io(x)l-<-kr2. Thus on F4ro we obtain

W V >- kr2 +Mr sin Aft _>- (M sin A/3 k)r.
We choose M ->_ k/sin X/3. On Ixl 4ro, x Ga we have

W V Mr sin h0 >_- 0.

Thus L(W- V) =< 0 inside G4ro while W- V => 0 on the boundary. If we choose ro
sufficiently small, we may apply the maximum principle for domains with small
diameter [7] in Gnro. Thus W- V >- 0, or W >= -Mr sin A0 >- -Mr in Garo. Taking ro
sufficiently small andM sufficiently large we prove similarly that W <= Mr in G4o. This
proves the lemma since W u in G2ro.

LEMMA 2. At any point x Go, ]Ou/Oxgl<=Mar-, 1, n, where M1 is

independent of x.

Proof. Consider the following domains in G2o:

{ to ro ro i>2}Dp x [, x Gzro <= r <-_- [xi < 2---if,

D Do-1 J Do tO D,+1.

Here r2 x+x2 lying on the2. By F we denote the part of the boundary of D
hyperplanes. Consider the transformation

(5) x xl/2’, 1, 2,..., n.

This transformation transforms D and D, onto Do and D, respectively. In D; the
function V(x’)= u(x’/2’) satisfies the elliptic equation

1 1
(6) b,j(x’) VI, + bi(x’) VI, +db(x V= -dg(x
where b,(x’)= a.(x’/2’) and b, b and g are defined similarly. On F the values of
V(x’), 4(x’) 4,o(X’/2) belong to C2+. Applying the a priori estimates in Do andD
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we get

Do< 1 D, r,](7) IlVll=+= Co Vllo+711gll +1111=/

r, )2As before we can show that I111./_-< k=(/2 Also since IIVIIo -Ilullo<_-ko(/2o)
and since Ilgll<k,, we obtain from (7)Ilvllo=/=<k3(1/2t’). Returning to the x-
coordinates, and noticing that [0 V/oxl <_- Ilvll=/ and that 0 V/xl (1/2P)(Ou/Oxi) we get
Iou/ox, <-Mlr-1.

Remark 1. Similarly we can prove that 102u/Oxi Oxjl <= M2r-2.
Proofo[ Theorem 2. Consider any two points P and Q in Gro with distances rl and r2

from So, where O<-r2<=rl<-ro. If r2<=1/2rl then ff-0>-1/2rl and lu’e-u’Ol/-FO-<-_
-1/(1/2rl)-12M1rl H where u is any of the derivatives Ou/Ox. If r2 > 1/2rl we consider

the domain

rl o }DR= x e Gro,-<=r<=rl, lxi-xi l<=, i= 3, n

2where r2 x 2 + x2 and (x,. , x,) are the coordinates of P. The transformation

2rlx
x=, i=1,2,

ro

xi _xOi =2rl (x x) > 2,
ro

transforms Dp into D, where

D’p= <=r’<=-,lxi xl=<,i>2
r’2= x2 +x2. In D, the new function V(x’) satisfies the elliptic equation

cij(x’)vlii +ci(x vii + c(x’)v h(x
ro \ ro / \ ro /

0 0 0 fOci, ci, c, h and 1 are the transformed functions aii, a, a and fro. Consider

-’if<= <=ro, i-xi[<=,i>2
In D, and D/J we apply the a priori estimate again, finding

where F, is the part of the boundary of D, which lies on the hyperplanes. As before we
can show that

D,Noting that Ilvll<= llvll+, v (2rl/ro)u and that HuD-bl (v’)= (2rl/ro) r-rDl’1-,-1 (u’), we
Dp t)get H_ (u <M or equivalently u(x) C(De).
Now consider the case r2 > rl. In addition to P and 0 we consider the point P

lying on the normal from O to So with distance rl from So. If PP <= 1/2r, then O De
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where u C. If PP1 > 1/2rl, then PQ >= PP1 > 1/2rl and PQ>-PIQ and

u’(e)- u’(O)l < u’(e)- u’(e)l
+
u’(e)- u’(O)l

po_ pp- po-2Mr--<
(1/2rl)-I +Hi=H2

since O Dp,. This proves the theorem.
Remark 2. Similarly we can prove that r’u"e C,o(Gro) where r and Zo satisfy

0<-0=r-2+v< 1.
Proof of Theorem !. It is sufficient to prove that u C(Ge,oo), where Gv.oo is the

intersection of the domain I) with a sphere of radius O0 centered at any point P e S. Let
P (x,..., x) and let the two surfaces intersecting at S have the representations
xa g(xz, , x,) and xz h(x, x3, , x,) in the neighborhood of the point P, where
g and h belong to C2/,. The transformation

y Xl g,

(8) y2=x2-h,
o

yi=xi-xi, i>2,

takes the point P to the new origin. The two surfaces x =g and x2 h will be
transformed to the planes y 0 and y 0. Equation (1) will be transformed to another
elliptic equation. Suppose that the transformation

(9) zi cijy, 1,..., n,
=1

transforms this last equation to the equation

(10) dij(z)ul,, + d(z)ul, + d(z)u t(z),

where dii(O) ii, i, f 1, 2," , n.
This transformation always exists and its Jacobian is different from zero. The two

planes yl 0 and y2 0 will be transformed to others with angle o)= o)(P) between
them, o)< 7r. We finally use a transformation such that the two hyperplanes have the
equations rt2= r/1 tan and r/.= r/1 tan (o9 +fl), where/3>0, and r/2<w +2/3 <
Any subdomain Gp,o, cf will be transformed into G’o.o2 lying between the two
hyperplanes. In Go.a Ga c G’o.o2 the new function u(rt) u(x) will satisfy an elliptic
equation of the type (3), satisfying the conditions (i)-(iii). Let the boundary values of
ul(rt) on the hyperplanes be denoted by b(rt). Consider the function

q(n) 4(0, 0, r/3,’’’, n,)+ (nl cos/3 +n: sin fl)4,o(0, 0, r/3,""", r/,)

1
sin o

sin fl + r/ cos/)[b,,+(0, 0, r/3," ",

-4,(0, O, n3,""", n,,)cos o],

where 4t and b,,+a are the first derivatives of b in the two directions 0 =/3 and
O=w+ normal to S0. The function u2(rt) ul(r/)-q(r/) satisfies in Ga an elliptic
equation of type (3) and coincides on Fa with a function Oo(rt), satisfying all the
conditions of .Theorem 2. Thus u:(rt)C(Gro),ro<d and consequently ux(rt)e
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C,(G,o). Returning to the original x-coordinate we find that in some GP,oo, po < p; u(x)
C,(GP,oo). This pro.ves the theorem.

Remark 3. From Remarks 1 and 2, we can also prove the following
THEOREM 1’. There exist numbers " and ’o, 0< % ’o < 1 such that p(O2u/Ox Oxi)

Co(fl), where p(x) is a differentiable function coinciding near S with the distance from x
toS.
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FREE BOUNDARY PROBLEMS IN SOLIDIFICATION OF ALLOYS*

VASILIOS ALEXIADESS" AND JOHN R. CANNON

Abstract. Multidimensional three-phase free boundary problems for semilinear diffusion equations are
studied as models for the solidification (or melting) of alloys. The intermediate phase represents the "mushy
zone" in which the freezing of the remaining liquid provides a heat generation effect. The conditions on the
two interfaces are of Stefan-type on one of them and of fast-chemical-reaction-type on the other. The
existence, uniqueness and regularity of appropriately defined weak solutions are established when either
the temperature or the heat flux is prescribed on the fixed boundary.

Introduction. Multidimensional three-phase free boundary problems for diffusion
equations of the form

a(u) 0--U-U= div [k(u) grad u]
Ot

are studied as models for the solidification (or melting) of alloys. These problems
(described precisely in 1) differ from the usual Stefan problems in that a Stefan-type
condition [10], [4], [6] is imposed on one of the free boundaries and a fast-chemical-
reaction-type condition [2], [3] is imposed on the other.

Solidification (or melting) of pure substances can be modelled by (two-phase)
Stefan problems, but most actual solidification processes involve alloys rather than pure
metals. Contrary to the isothermal freezing of a pure metal, the liquid alloy freezes
partially and gradually until its temperature drops to a eutectic temperature and then
the remaining liquid freezes isothermally at that temperature [11], [5]. Thus, the
liquid and the solid are separated by a "mushy zone" between two isothermal surfaces
at the liquidus and solidus temperatures respectively. At the solidus temperature, latent
heat is released due to the freezing of the remaining liquid and thus imposes a
Stefan-type condition across the solidus interface. On the other hand, there is no latent
heat being generated at the liquidus temperature which dictates a fast-chemical-
reaction-type condition on the liquidus interface. On the fixed boundary either the
temperature or the heat flux can be prescribed and so we consider two separate
problems: Problem i with Dirichlet boundary conditions and Problem II with Neumann
conditions on the fixed boundary.

The precise mathematical problems are described in 1. As is well known, there
are considerable difficulties in multidimensional free boundary problems, and naturally
we look for weak solutions which are defined in 2. Problem I is studied in 3 by means
of monotonicity methods developed by Brezis 1] (see also Lions [9]). For problem II we
employ the compactness methods of Kamin (Kamenomostkaja) which appear in [7],
[8], [6], [2], [3] to obtain existence and uniqueness in 4. These methods could also be
used to treat Problem I. The regularity results of Ladyzenskaja-Solonnikov-Ural’ceva
[8] are used to show that the weak solution of either problem is actually Holder
continuous in certain subdomains.

The formulation and methods used here generalize naturally to multiphase prob-
lems with any combination of the two kinds of interface conditions considered here.

1. Classical formulation of the problem. Let G be a bounded domain in R with
smooth boundary OG. Set G(t):= G x {t} and OG(t):=OG{t}. For any T, 0< T_-<o, let

* Received by the editors December 27, 1978.
t Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37916.
t Department of Mathematics, University of Texas, Austin, Texas 78712.
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FREE BOUNDARY PROBLEMS 255-- -]T :.._ (..j 0<t<Tand S =---S T:-- .J o<t<TOG(t). 1) is divided into three parts, l)s, 12,,, ’l
(corresponding to the solid, mushy and liquid zones) by the free (unknown) boundaries
Fs: U o,__<TFs(t) and F:= U o<-t<=TFl(t), the solidus and liquidus fronts respectively.
Here Fs(t):={(x, t) G(t)" (x, t)= s}, 1-’t(t):={(x, t) G(t)’dP(x, t)= (I)l} are hyper-
surfaces in G(t) described by a function C1() with V,,(x, t)[rs.r, 0, and, (I)l are
constants. We assume that < in fl, cp << in 12, and I < in 12. The
hypersurfaces Fs(t) and F,(t) divide G(t) into three parts, Gs(t), G,,(t) and Gl(t), so that
12i tO o<t<TGi(t), s, m, l. In particular, F(0) and 1-’l(0) subdivide G(0) into Gs(0),
Gin(0), GI(O) some of which may be empty. Finally, let Si:=l) f’l S, s, m, l, and note
that some of them may be empty.

In the mushy region II,, the relative amount of the solid present at any temperature
is given by a (known) function f(u) called the solid fraction. At the liquidus temperature
0 there is no solid present and so/(0t) 0, whereas for 0> u >0s, it is 0<_-f(u)< 1,
where 0 is the solidus temperature. Thus f(u) is decreasing and its time rate of change
in the mushy region provides a heat generation effect which adds the term a (OffOt) to
the heat condition equation in 12,,. At the solidus front Fs, where the temperature is
the freezing of the remaining liquid 1 -f(Os) provides a latent heat effect and creates an
interface condition of Stefan-type. On the fixed boundary S, either the temperature is
prescribed and this we will call Problem I, or the heat flux is prescribed and this will be
referred to as Problem II. These physical considerations lead to the following problem.

Find u s, u’, u and satisfying the equations

Ous
(1.1) as(u )--=div[k(uS)7xu s] in12s,

(1.1),, a,,,(u )-=div[k,(u’)V,,u’]+o

(1.1)/ l(U l’Oul
) div [kl(U)7u ] in Ol;

the interface conditions (of continuity and heat balance)

Ot

us=um=Os onFs,

u u 0t on FI,

0
(1.3)s [k.,(Os)VxU k(Os)VxuS] Vx a[1 -f(O)]-77 on rs,

[k,,(O)Vxu" kl(Ol)VxUl] VxdP 0(1.3)/

the initial conditions

(1.4)s

(1.4),,

(1.4)/

on F;

u (x, 0) h (x) in Gs (0),

u (x, 0) h,,, (x) in G, (0),

ul(x, O)-" hi(x) in G(0),

where hs < 0 < h, < 0 < hi, and either boundary condition of Dirichlet type

(1.5) u i= gi(x, t) on S, s, m, (Problem I),

where gs < 0 < g,,, < 0 < g, or the boundary conditions of Neumann type

cqu
(1.6) ki(ui)-: gi(x, t) on S, s, m, (Problem II).

on
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Here O/On denotes differentiation in the direction of the outer normal to S, a is a
positive constant (=density latent heat per unit mass) and

(1.7)
ai(U), ki(u), s, m, 1, are continuous functions satisfying O< 3,0_-< ai(u) <= 3,1,

O< 3,0_-< ki(u) _-< 3,1, s, m, l, and f(u) is a differentiable decreasing function
satisfying O<-_f(u) <- 1, O<--f’(u) <-_ 3’2,

for some positive constants 3’0, 3"1, 3"2. We also assume that

(1.8) G is bounded and OG C2+ (h >0).

The function is not uniquely determined; it is only one possible parametrization of the
surfaces Fs, Fl. The interface conditions of continuity (1.2) help in describing Fs, Fl as
level surfaces of the solution {u s, u’, ul}.

By a classical solution of Problem I [of Problem II] we mean a solution
{u s, u’, u t, O} of (1.1)-(1.5) [of (1.1)-(1.4), (1.6)] such that U . C(fii) Vxui C(fii\S
[u i, V,u C(i)] and D2xu i, Dtu C(fi), s, m, I.

2. Generalized formulations ot Problems I and II. We introduce the quantities

As(u) := as() dsc + a,, () d,

A’(u) := a’() d, Al(U) ’"- Ogl() d;

I IOOlKs(u) := ks() d+ k’() d,

K’(u) := k’() d, Kt(u) := k(:)

u s, in lIs, {hs, in Gs(0), {gs,u= u’, in ts, h= h,,, inG’(0), g= g’, inS.,,
u in l)l, h, in G/(0), gl, in Sl,

and write the problems in the form

0
--As(u)=div[VxKs(u)] in
ot

0
A-[ .,(u) + af(u)] div [V,K.,(u)]

(2.1)/
0
--Al(u)=div[V,Kl(U)] in
Ot

(2.2) u 0s on Fs, u Ol on F,

[V,,Ks(u) V,K.,(u)] Vx all f(Os)]
O

on Fs,
Ot

(2.3)/

(2.4)

(2.5)

[VxK(u)-VxK.,(u)]. VxO=0 on El;

u=h inG(0);

u g on S (for Problem I);
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a
(2.6) Ki(u) gi(x, t) on Si, s, m, (for Problem II).

On

Let 0 be a smooth test function in Rn/l such that q(x, T) 0 and ols 0 for Problem I,
whereas Oo/On]s =0 for Problem II. Write (2.1)s equivalently as (O/Ot)[As(u)+]=
div [VxKs(u)], multiply by q and integrate over ls; thanks to (2.2), (2.4) and (2.5) [resp.
(2.6)] we obtain

IIn qt[As(u)+a] dx dt+ Io q(X, O)[As(h)+a].dx+ Iv [as(0s)+c]’lVOl-1 dFs
(0)

(2.7) IIn Ir OKs(U)
dFs+O [resp’+Ys qgsdS]VKs(u)" Vxq dx dt + q On----f-

Next, multiply (2.1)" and (2.1) by and integrate to obtain similarly (note that
Am(Ol) Al(Ol) 0, f(Ol) O)

and

II ’[A.,(u)+cef(u)]dxdt+I
o

go(x, O)[A.,(h)+cef(h)]dx
.,(0)

Ir q[A.,(Os) + cef(Os)],lV1-1 dFs

OK., (u)
dF+ q:,, dFt+0VK.,(u) Vq dx dt o

Onx On

[In ptml(U) dxdt+Io qg(x,O)Al(h)dx
t(O)

ffl IF ogl(lg)dFlq--OVxKl(U)" Vq9 dx dt- q

Now we introduce the quantities

[resp. + Ist qgl dS].
-As(u)-c, I-Ks(u) for u < Os,

(2.8) a(u) := -Am(u)-af(u), and k(u) := -K.,(u) for 0s < u < 0,

-A(u) [-Kt(u) for Ot <- u,

let us note that they are increasing and continuous except that a(u) has a jump at
Os, so it could be considered as being multivalued there. We add relations (2.7)
together and observing that As(Os)=A.,(Os), that (O/Onx)Ks(u)-(O/Onx)K.,(u)=
[VxKs(u)-VxK.,(u)]. (Vx llv l)= rl-f(Os)J( ,llv l)on Fs by (2.3)s, and that
(O/On)K.,(u)-(O/Onx)K(u) 0 on Fl by (2.3), we find

(2.9)
IInqgt(u) dxdt+IG q(x, O)a(h) dx= IIrVxk(u) Vccdxdt+O

(o)

[resp.-Isogds],
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(the integral r q{a[1-f(Os)]}dOtlV]-a dFs cancels out since it appears on both sides).
For a classical solution u, the jump of a (u) at u 0s does not affect the integral

since u G on an (n 1)-dimensional surface Fs which has measure zero. However, if
we do not want to postulate a priori that even a weak solution must take the value G on a
set of measure zero, then the meaning of the first integral in (2.9) is ambiguous. We
handle this difficulty in two different ways for the two problems.

Consider a(. as a multivated mapping by defining a(Os):=[a(Os-0), a(G +0)]=-
[-0 a,, () d a, 0 a,, () d cf(G)]. Then, a(. being continuous and increasing
has a continuous, increasing and single-valued inverse a-a( ). Set A(. ):= k(a-l( )),
which is also continuous (in fact Lipschitz), increasing and single-valued, and introduce
the new unknown

(2.10) v a(u), i.e., u a-l(v)

so that k(u)=A(v). Expression. (2.10) means v(x, t)=a(u(x, t)) if u(x, t)# G and
v(x, t) a(G) [a(G-0), a(G +0)] if u(x, t)= G, and thus v(x, t) is a function (single-
valued). This leads to the following

DEFINITION (Weak solution for Problem I). A function u (x, t) is a weak solution of
Problem I (i.e. of (1.1)-(1.5)) if u L2(0, T; Ha(G)), u =g on S and u a-l(v) for
some function v L2(0, T; Ha(G)) satisfying

T t’T

(2.11) | (v, ot)d,-| (VxA(v), V,q)dt+(a(h), q(x, 0))=0
J0 J0

for any smooth q(x, t) such that q(x, T)=0, qls 0. Here (and below) (.,.) is the
LZ(G) inner product and Ha(G) denotes the usual Sobolev space. The weak
free boundaries F and 17’1 are the sets where {u =Os}={a(G-O)<=v <-a(G +0)} and
{u Ot}---{v a(O) =0}.

For Problem II we proceed differently. Since k(. is continuous and strictly
increasing, so is its inverse k-a( ). Consider the multivalued mapping

a(k-a(p)), if p # k(G)=: K,
(2.12) b(p)

[a(G-0), a(G +0)], if p k(G)=: K,

and introduce the new unknown

(2.13) v k(u), i.e., u k-l(v).
Let B(v) denote any ]:unction such that B(v) b(v) in the sense of graphs, in other
words, B(v(x,t))=b(v(x,t))=a(k-a(v(x,t))) if v(x,t): and B(v(x,t))b(:)=
[a(G-0), a(G +0)] if v(x, t)= ( k(G)).

DEFINn’ION (Weak solution for Problem II). By a weak solution of Problem II (i.e.
of (1.1)-(1.4) and (1.6)) we mean a bounded measurable function u(x, t) such that the
bounded measurable function v k(u) satisfies

(2.14) IIn{B(v)qot+vAqg} dxdt+ fo B(k(h))q(x, O) dX + fsgqdS=O
(0)

for some function B(v) as above, and for any smooth q(x, t) such that 0(x, T)-=0,
OqffOn[s 0. The weak versions of F and 1-’l are the sets where {u G} {v k(G)} and
{U Ot}{U k(Ol) "-0}. Note that since h G a.e.,B(k(h)) a(h) for any B as above.

We summarize the discussion up to now in the following
THEORZM 1. A classical solution ofProblem ! [Problem HI is also a weak solution.
Conversely one can easily show (similarly to [6, p. 54], [2, p. 435]).
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THEOREM 2. A sufficiently regular weak solution is a classical solution.
In closing this section we collect some easily obtainable (from (1.7)) properties of

a(. ), k(. ), A(. and b(. ), which will be needed later.
LEMMA. (i) a (r) is strictly increasing, and continuous except at r Os where it has a

ump of magnitude J:=[1-f(Os)]; for any r> in , yo(r-)<-a(r)-a() <
y3(r ) +J with y3 := yl + ay2; (ii) k(r) is strictly increasing and continuous; for any r >
in , yo(r- ) <-_ k(r)- k() <- y3(r- ); (iii) the derivatives a’(r), k’(r) are (in general)
discontinuous at r=Os, r=Ol and O<yo<-a’(r)<-y3, O<yo<=k’(r)<-y3; (iv)
A(p) := k(a-l(p)) is increasing, Lipschitz continuous: Ia(o)-a()l <-- -//volo -t], and
there exist constants A1 and 2, > O, such that A -p + 2 <- A(p ), p <= O, Ap + 2 <-
A(p), p >0; (v) b(p) of (2.12) is strictly increasing, continuous, multivalued at p
K := k (0) and ]:or any p >

(2.15) v(o -#) <- b(o)- b(#) <= v(o #) +.
)’3 Yo

3. Existence, uniqueness and regularity tor Problem I. We shall cast the problem
in a form for which the abstract existence result of Brezis [1, p. 31] is applicable. The
following will be required of the data:

(3.1) h EL2(G), h # 0 a.e.,

(3.2) g E H1/2(S), g # 0 a.e.,

where H (S) stands for the space W(S) of [8, p. 70]. Then g admits an extension to a
function

(3.3) H(I)) such that g= onS and ff#0 a.e.

We set

(3.4) z:=a(g)HX(lq), z2:=k(g)H(l),

(note that a(,(x, t)) is single-valued a.e.), and define

(3.5) A(p):=A(p+Zl)-Zz

which has the same properties as A(p) (see Lemma, 2).
We seek vLz(O,T;H(G)) satisfying v=a(g)=zl[s on $ and (2.11).

Equivalently, this can be expressed briefly by saying that we seek the solution of

-AA(v) 0 in lq,
Ot

(3.6) v(O) a(h) in G(0),

VI$=ZI[S onS,

in the sense of the dual of the space ff,l.l(f):={qE L2(0, T;H(G))’q(T)=O,
Oq/Ot6L2(O,T;L2(G))}, where A:H(G)L2(G) denotes the weak Laplacian.
Letting

(3.7) v w + Z
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we see that w s L2(0, T;H (G)) must satisfy

Ow AA(w) F in f, F :-- ----Zl AZ2,
ot at

(3.8) w(0)= Wo:=a(h)-zl(O),

/i(w)ls =0,
in the sense of the dual of l/Vl’l(f). Next, using the bounded, linear, monotone and
self-adjoint operator E" L2(G) -->H (G) c L2(G) defined as E := (-A)-1 with zero
boundary conditions, one can easily put (3.8) in the form of Brezis [1, p. 31], namely

T
0

T

(3.9)-f0 (w’Ep) dt+Io
T

((w), 0) dt= fo (EF, 0) dt+(E1/2wo, E1/2o(O)),

for all q 1,1(,)). The hypotheses of Theorem 2 1, p. 31 are satisfied with the choices
V=H=L2(O, T;L2(G)) because our operator " V V is monotone, hemicon-
tinuous (in fact Lipschitz continuous), bounded and coercive as one easily checks using
the lemma at the end of 2. Therefore there exists w V L2(f) solution of (3.9). This
is a very weak solution, but it can be shown by the method of [1, p. 35] that
(w)L2(O, T;Hlo(G)), so that wL2(O, T;Ho(G)) is a solution of (3.8), and
v := w + Zl L2(0, T; Hi(G)) is a solution of (3.6). If vt and v2 are two solutions then
(3.6) immediately implies A(Vl)=A(v2) and, since k is strictly increasing, also
a-l(Vl) a-l(v2). Then u := a-l(v)L2(O, T; Hi(G)) is the unique weak solution of
Problem I as defined in 2.

The weak solution u possesses additional smoothness. Indeed, by an energy
estimate one can show that w L(0, T; E2(G)) (in fact tllw(t)ll( is continuous),
which means that w is an element of the space l’2(f) of i-8, p. 6]. Then the method of [8,
p. 156-9] can be employed to show that the function t- w(., t) is continuous in L2(G),
so that w(x, t), hence also v(x, t) and u(x, t), belong to C(0, T; L2(G)) (to the space
V’ (f) in the terminology of [8]).

We summarize the above results in the following"
TI-IEOREM 3. (Existence and uniqueness for Problem I). Under the assumptions

(1.7), (1.8) and (3.1), (3.2), Problem I has unique weak solution u
L2(0, T; Hi(G))f-I C(0, T; L2(G)).

Now we appeal to the regularity results of [8] to prove
THEOREM 4 (Regularity for Problem I). Under the assumptions (1.7), (1.8) and

(3.10) h e L(G), h Os a.e.,

(3.11) gH1/2(S)L(S), gOs a.e.,

the weak solution u of Problem I is bounded and H61der continuous on every compact
subdomain f’ of lI in which u < Os or u > Os a.e., i.e., u L(f’) fq ./2 (II’) for some
0 < tx < 1. Here, as before, H1/2 denotes the fractional order Sobolev space WI/2 of [8, p.
70], while ./2 stands/:or the space H’/2 of [8, p. 8].

Proof. We have already seen that any solution u(x, t) of (3.6) belongs to the space
V1,02 (f) of [8, p. 6]. With the help of the lemma of 2, one easily checks that the
hypotheses of Theorems 2.1 and 1.1 [8, pp. 425 and 419] are satisfied for any domain
[1’ c f not intersecting the interface F. Hence v e a’,tx’/2 (,-,) for some Ix’ > 0. Then
u a-l(v) e ,,/2 (12’) with/x min {ix’, 1}. Q.E.D.
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4. Existence, uniqueness and regularity for Problem II. We begin by establishing
uniqueness with the method of [7] which has also been used in [8], [6], [2], [3]. We
outline the method here referring for more details to [2].

THEOREM 5 (Uniqueness for Problem II). Under the assumptions (1.7), (1.8),
Problem II has at most one weak solution.

Proof. Let u l, u2 be two weak solutions. By definition, they are bounded measur-
able functions such that vi k(ui), 1, 2, which satisfy (2.14) for some functions
BI(Vl) and B(v2) respectively. Since h # 0 a.e. in G, a(h) is single-valued and
therefore B(k(h))=B2(k(h))=a(h). Subtracting (2.14) for v2 from (2.14) for v we
find

(4.1) I I. {[B.(v.)- B2(2)], +[ ] A} dxdt=O.

The aim is to prove

(4.2) II [Bx(vx)- B2(v2)]P dx dt 0

which implies B(v)=B2(v2), hence v v a.e. in l-l, and therefore also u u2
a.e. in

To prove (4.2), consider the bounded nonnegative measurable function (see the
lemma, 2)

v,(x, t)-v(x, t)
(4.3) e(x, t) :-- B(v(x, t))-B(v2(x, t))’

Vl(X, t) v=(x, t),

O, v(x, t)= v2(x, t),

and set (x, t):=Bl(Vl(X, t))-B(v2(x, t)), noting that I/3(x, t)l_-< Co const, by (2.15)
and the boundedness of vi, 1, 2. Now (4.1) can be written in the form

(4.4) IIafl(x, t){o,+e(x, t)Aqg} dxdt=O.

By appropriate mollifications one can construct a sequence g,,, e C(I=I) such that
0 _-< ,, (x, t) <_- supfi e Y3/’)/0 --: C1 in fl, and lie., ellL=(a) ----< 1 / m, rn 1, 2,. .. Now set
e,,, :=m + 1/m and for any ,eC (l-l) fixed, let 0,,(x, t) be the solution of the
(well-posed) problem

Ot

(4.5) o,, (x, T) 0 in G(T),

rp. 0 on S.

The functions q. are acceptable test functions in (4.4) which for rp rp. implies

IIa (x, t)bdx dt= IIa (x, t)[e.-e]Arp.,dx dt, re=l, 2,....(4.6)

One can show (see [2]) that there exist constants C2=C2(T; maxa It/’[), C3, Ca
independent of rn such that max Iql < C, le,,, A0,]l<n)= C3 and Ile/ell=<.)--< C4.
These, together with the boundedness of/3 (x, t), allow one to prove that the right hand
side of (4.6) tends to zero as m --> o, which establishes (4.2). Q.E.D.
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Existence of the solution will be proved first for the case where the data satisfy

(4.7) h HI(G) L(G), h Os a.e.,

Og
(4.8) gL(S) and mL (S), g0s a.e.

Ot

After a stability (with respect to data) result has been obtained (Theorem 7), these
assumptions will be weakened (see Theorem 8).

THEOREM 6. Under the assumptions (1.7), (1.8) and (4.7), (4.8), Problem Hadmits
a weak solution in H1([2).

Proof. We approximate b(p) of (2.12) uniformly on compact subsets of R not
containing : k(O), by smooth functions b,(p) which can be chosen to satisfy
a(Os-O)<-b.()<=a(O +0) and

(4.9) O< y< b’,(p)<--3"5(m)<oo,

for some constants "}/4 (independent of m) and 3’5 3"5(m)--> oo with m. Set v: k(h)
HI(G)f’qL(G), and approximate it by v,,sC() such that maxalVml<_-
ess suplvl-<. ess suplhl--: c and v, --> v in Hi(G). Finally we introduce a
sequence {g,,,(x, t)} of smooth functions defined on S and satisfying sups lg.i -<

esssupslg[-:C6, g.(x, O)-(O/on)v(x)[oo, g-g in LI(s), (O/Ot)g,,->(O/at)g in
LI(S).

Consider the approximating problems

a
--b.(v.)= Av. infl,
at

(4.10) v,,(x, O)= v,,(x) in G(0),

0
Vm g, on S.anx

Existence and uniqueness of v,, is established by writing the equation in the form
(a/Ot)v,,- [b(v,,)]-1Av,, 0, reducing (4.10) to a problem with homogeneous initial
condition using the transformation w, v, v and then applying Theorem 7.4 [8, p.
491] for each m 1, 2,....

Now, one easily checks that the hypotheses of Theorem 2.3 [8, p. 16] are satisfied
by choosing/Zl 1/3"4, a0 0, 8 1 and b0 1. Thus the maximum principle [8, p. 17]
yields

(4.11) max I/Am[ :< C7, m 1, 2,...,

where the constant C7 depends on C5, C6 but not on m.
Next, the fundamental m-independent bound

(4.12) [l)rl[IHl(l’) <---- Ca, m 1, 2,...

can be established as follows" Multiply the equation in (4.10) by (a/at)v, and integrate
over G(t) to get o(t) b’,.(v,)lav,/otl dx +1/2 IG(t) (a/ot)lVxVml dx Ioa(,) g(av/at) dm
Integrating this over [0, t] and using (4.9) and (4.11) yields T4 Io I(,)[Ov/Ot] dx dr +
Io(,) [V,v[ dx N Io(o) [V,v[ dx +C6C7 meas (OG)+ f7ll(O/Ot)gmllL’(S). Since v

and (O/Ot)g converge in H(G) and L(S) respectively, the sequences IIxvl[=(o) and
II(o/Ot)gllL(S) are bounded. It follows that r4TllOv/Ot", (.)+llvll=(.)=< TC9
which, together with (4.11), proves (4.12).
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The boundedness of {v,,} in Hl(f) allows us to extract a subsequence (in what
follows no distinction will be made in the notation between sequences and
subsequences) which converges weakly in Hl(f) and strongly in L2() (Rellich’s
lemma) to some v Hl(lq). In particular, v,, --, v in measure, so a subsequence can be
chosen to converge to v a.e. in f. By (4.11), v can be taken to be bounded by C7 in f.
The functions v,, being classical solutions of (4.10) are also weak solutions, that is

(4.13) ff {bm(vm)qpt + vm Aqg} dx dt + f b,(v)q(x, O)dx+ f g,,p dS O.
(o) as

Since the sequence {b,(v,,(x, t))} is a bounded sequence of measurable functions it has a
subsequence which converges weakly in LZ(f) to some/(x, t). We claim that/(x, t) is a
function of the type B(v(x, t)), i.e., B(x, t)s b(v(x, t)) a.e. in f (see 2), so that by
taking m oo, (4.13) yields (2.14) which proves that u := k-l(v)HX(12) is a weak
solution. Indeed, v,, v a.e. in f implies that for almost all points (x, t) for which
v(x, t) k(O), b,,(v,(x, t)) b(v(x, t)) a(k-l(v(x, t))) because of the uniform
convergence of b,, to b, hence (x, t) b(v(x, t)) at such points. On the other hand, for
a.a. points where v(.x, t)= u, we have a(Os-O)<=lirn b,(v,(x, t))_-<lim b,(v,(x, t)) <
a(Os+O), hence B(x,t)s[a(O-O), a(Os+O)]=b(u), and this completes the
proof. Q.E.D.

THEOREM 7. If U and uz are weak solutions of Problem II corresponding to data
hi, g and h2, gz which satisfy (4.7), (4.8), then

]]Ux U2I[L2(D) Cx0{llhx h21IL2(G) + [[gx g2l[Ll(S)}

Proof. Let v k(u), i--1, 2, let B(v), i= 1, 2 be the functions used in the
definition of weak solution (2.14), and set/3(x, t):= Bl(Vl(X, t))-B2(vz(x, t)). Next let
e C (f/) and let o,, be the solution of (4.5) which is an acceptable test function. Using

(4.5), (4.3) and (2.14) we have IIa 8(x, t)6 dx dt fla /(x, t){(O/Ot)o,, + e zo,} dx dt
+ Im J’o(0) [B1 (k (h 1)) B2(k (h2))]qm dx IS [gl g2]cPm dS + Ira, where
I,, := Ia fl (x, t)[e,, e Aq, dx dt. It can be shown [2, p. 490-1] that I,, 0 as m oo
and that maxa <-- C2(T; max I l), Hence

(4.14)

because hi # Os a.e. IBl(k(hl))-B2(k(h2))l [a(hl)- a(h:)l <= 3,3[h- hal. Now the
bounded measurable function /3(x, t) can be approximated in L2(f) by a sequence
6i C (f) such that all the 4’i are bounded in f by the bound on/3 (x, t). This bound is
estimated by (2.15) and (4.11)in terms of only 3’0, 3’3, T, ess supo Ih,[, ess sups Ig, I, i= 1,
2. Thus (4.14) holds for each 6i (C2 will depend on the quantities just mentioned).
Letting j oo we obtain Ja [/(x, t)l 2 dx dt <- Cl1{[1hl- h2llL=(O /llg- g211L(S} whence
the result follows because of [/(x, t)l >= ro/rlv-v[ >- r,/rlu- ul. Q.E.D.

This result enables us to obtain the existence of a weak solution when h L(G),
g L(S). Indeed, given such data let hi, gi be approximations satisfying (4.7), (4.8). For
each/" 1, 2,..., Theorem 6 yields the existence of a weak solution ui such that
vi k(ui) satisfies (2.14) with data hi, gi. The sequences {hi}, {gi} are Cauchy, so by
Theorem 7, {ui} (and {vi}) is Cauchy in L2(f) and therefore it has a bounded limit
u L2(f) such that v k(u) satisfies (2.14) because vi, Bi(k(hi)) a(hi) and gi converge
to v, a (h) and g in L2(f), L2(G) andL1(S) respectively, and (as in the proof of Theorem
6) Bi(vi) converges weakly in L2() to a function of type B(v). Thus we have the more
general
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THEOREM 8 (Existence and uniqueness for Problem II)./f (1.7), (1.8) hold and if
h(x) and g(x, t) are bounded measurable functions in G and on S respectively, then
Problem II has unique weak solution u L2(’),).

Remark. Similarly one can show that the stability result of Theorem 7 still holds
under the weaker hypotheses of Theorem 8.

We mention that the following monotone dependence result can be shown by the
method of [6, p. 64], [2, p. 448]:

THEOREM 9. Under the assumptions of Theorem 8, if h >= h a.e. in G, g >- , a.e. on S,
then the solutions u and corresponding to data h, g and t, , respectively satisfy u >-_ a.e.
in

Finally, the H61der estimates of [8] can be employed as in [8, p. 501-2] to show"
THEOREM 10 (Regularity for Problem II). Under the assumptions of Theorem 8, the

weak solution u ofProblem II is Hb’lder continuous in every compact subdomain fl’ of fl
where u < O or u > 0.

Remark. The methods of 4 can also be applied to Problem I and then a stability
result like Theorem 7 as well as a monotone dependence result like Theorem 9 can also
be obtained for that problem.
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BOUNDS FOR SOLUTIONS TO A CLASS OF INTEGRODIFFERENTIAL
EQUATIONS ASSOCIATED WITH A THEORY OF RIGID

NONCONDUCTING MATERIAL DIELECTRICS*

FREDERICK BLOOM’

Abstract. Let H, H/ be real Hilbert spaces with H/
_
H algebraically and topologically and H/ dense in

H. Let H_ be the dual of H+ via the inner product of H and denote by Ls(H+, H_) the space of symmetric
bounded linear operators from H+ into H_. We prove that the evolution of the electric displacement field in a
simple class of holohedral isotropic dielectrics can be modeled by an abstract initial-value problem of the form

ioIltt-aut-LIl+ M(t-r)u(r) dr=fl(t)Uo, O<-t<= T,

ll(0) Ilo, lit(0) Ill (Ii0, Ill H+),

whereL s(H+, H_), M(t) s L2([0, T); Ls(H+, H_)), (t) CI([0, T)), and a is an arbitrary (nonzero) real
number. By employing a logarithmic convexity argument we derive growth estimates for solutions of the
above system which lie in uniformly bounded classes of the form

A; {u s C:([0, T); H+)I sup Ilull+ N}
[0, T)

for some N> 0; our results are derived under a variety of assumptions concerning a,/ (t), and the initial data
(without making any definiteness assumptions on the operators L or M(t), 0 5- < T) and are used to obtain
growth estimates for the electric displacement field D(x, t) in rigid dielectrics which satisfy constitutive
relations of the form

D(x,t)=aoE(x,t)+ (t-r)E(x, r) dr,

H(x, t)= boB(x, t)+ Io 4,(t- r)B(x, r) dr,

where E, H, B are the usual electromagnetic field variables, (x, t) e f x [0, T),
_
R is bounded region with

smooth boundary 0f, ao and bo are positive constants, and , 0 are nonnegative monotonically decreasing
functions of t.

1. Introduction. In recent work [1]-[4] this author has derived stability and
growth estimates for specific classes of solutions to initial-value problems associated
with abstract integrodifferential equations of the form

(1.1) utt-Su+ K(t- 7)u(r) dT" 0, O<=t<T.

In this equation u ca(j0, T); H+) with ut C1([0, T); H+), and utt C([0, T); H_),
where H/, H_ are Hilbert spaces which are defined as follows: LetH be any real Hilbert
space with inner-product (., and let H+

_
H (algebraically and topologically) with H+

dense in H; denote the inner-product on H+ by (., )+. Then H_ is the completion of H
under the norm

I<v, w)l
(1.2) Ilwll-- sup

If we let (H/, H_) denote the space of bounded linear operators from H/ into H_ then

* Received by the editors December 1, 1978 and in revised form May 9, 1979.

" Department of Mathematics and Computer Science, University of South Carolina, Columbia, South
Carolina 29208. This research was supported in part by the Air Force Office of Scientific Research under
AFOSR Grant 77-3396.
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in (1.1) we only require that
(i) N e (H+, H_) be symmetric; and

(ii) K(t), Kt(/) 6 L2((-c, c); 5(H+, H_));
where Kt denotes the strong operator derivative of K; no definiteness assumptions are
placed on N and thus the initial-value problem obtained by appending to (1.1) the initial
data

(1.3a) u(0) f, u,(0) g, f, g H+
and the prescription of the past history which is given by

(1.3b) u(r) U(z), -c < z < 0,

is, in general, not well posed. If we restrict our attention to classes of bounded solutions
to (1.1)-(1.3) of the formW= {v C2([0, T); H+)[supt0.r)llv(t)ll+ ----<N2} then it is possible
to derive both stability and growth estimates for solutions u sW under the assumption
that K(0) satisfies

(1.4a) -(v, K(0)v>  llvll , vv H+,

where

(1.4b) K wT sup IlK,(t)l[.(m,z_)
[0,T)

with w the embedding constant for the injection i" H H+.
The technique used in [1]-[3] is based on a logarithmic convexity argument first

employed by Knops and Payne 1-5] for the abstract wave equation obtained from (1.1)
by setting K(t)-=0; a different logarithmic convexity argument was employed by this
author in [4] to derive continuous data dependence theorems for the system (1.1),
(1.3a), (1.3b). The results obtained in [2]-[4] are applied in those papers to obtain
growth, stability, and continuous data dependence theorems for solutions to initial-
value problems associated with the equations of motion for linear isothermal visco-
elastic materials; the spaces H, H+, and H_, as well as the operators N and K(t), are
constructed and no definiteness assumptions are made on the initial value of the
relaxation tensor. In the case of a one-dimensional homogeneous (isothermal) linear
viscoelastic body, it is shown in I-3] that the conditions (1.4a), (1.4b) are equivalent to
the requirements that

(1.5) q’(0)_-<-K with >wT(sup [;(t)]),
[0,T)

where (t) is the relaxation function of the material.
More recently we have turned our attention to the way in which integrodifferential

equations arise in the theory of polarized nonconducting material dielectrics, i.e., in [6]
we have considered the following problem: Let E, B, P, and D denote, respectively, the
electric field vector, the magnetic flux density, the polarization vector, and the electric
,displacement in a nonconducting medium; the polarization and electric displacement
vectors are related via

(1.6) D eoE + P, eo const.

If (x i, t), 1, 2, 3, denotes a Lorentz reference frame, with the (x i) rectangular
Cartesian coordinates and the time parameter, then Maxwell’s equations have the
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local form

(1.7) +curl E 0, div B 0,
at

(1.8) curl H-aD= 0, div D 0

whenever the density of free current IF 0, the magnetization M 0, and the density of
free charge QF 0; in (1.7b), H represents the magnetic intensity and is related to the

1 -:2magnetic flux density via It =/x B where eo/Xo-c c being the speed of light in a
vacuum. A determinate system of equations for the fields appearing in Maxwell’s
equations is obtained by specifying a set of constitutive relations. For example, in a
vacuum P 0 so

(1.9) D eoE, H =/x B,

while in a rigid, linear, stationary nonconducting dielectric

(1.10) D= e. E, B=lx" H,

where e and are constant second order tensors; the constitutive equations (1.10) were
given by Maxwell in 1873 [7]. In [6] we considered the set of equations which define the
dielectric as being a Maxwell-Hopkinson material, i.e., (1.102) and

(1.11) D(t) eE(t) + (t- r)E(r) dr,

where e >0 and $(t) is a continuous monotonically decreasing function for t0;
following a suggestion of Maxwell, Hopkinson [8] employed the constitutive equations
(1.102), (1.11) in connection with his studies on the residual charge of the Leyden jar. it
was demonstrated in [6] that (1.11) in conjunction with the local Maxwell equations
(1.7), (1.8), yield certain integrodifferential equations for the evolution of the electric
field and the electric displacement field, respectively, in a nonconducting material
dielectric of Maxwell-Hopkinson type.

By introducing suitable Hilbert spaces H, H+, H_ and operators N s (H+, H_)
and K(t)sL2((-, ); (H+, H_)) we were able in [6] to treat the initial-boundary
value problem for D, as a special case of the abstract initial-value problem (1.1), (1.2)
(in [6] we assumed that D(r) 0, -< < 0). From the stability and growth estimates
derived for the electric displacement field D, corresponding estimates were then
derived from the electric field E by employing the relation

-1 -1 fOt(1.12) E(t)= e D(t)+e (t-r)D(r) dr

which is obtaining by inverting the Maxwell-Hopkinson relation (1.11) via the usual
technique of successive approximation.

The constitutive relations associated with the Maxwell-Hopkinson theory, i.e.,
(1.10) and (1.11), embody three basic simplifying assumptions" They are linear, they
effect an a priori separation of electric and magnetic effects, and they do not allow for
magnetic memory effects. As early as 1912 Volterra [9] proposed extending the

For an excellent discussion of the qualitative behavior of electromagnetic fields and dielectric constants
in dielectrics of Maxwell-Hopkinson type (especially in the presence of an applied time periodic electric field)
we refer the reader to the monograph of H. Fr6hlich, Theory of Dielectrics, Oxford University Press, 1949.
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Maxwell-Hopkinson theory to treat the case where the dielectric is anisotropic,
nonlinear, and magnetized; his constitutive relations were of the form

(1.13a) D(x, t)-e. E(x, t) +t_o (E(x, z)),

(1.13b) B(x, t)= . H(x, t)+ t_(H(x, z))

and it can be shown that (1.13a) reduces to (1.11) if the functional is linear and
isotropic and the body satisfies various restrictions which follow from considerations of
material symmetry. Of course, (1.13a), (1.13b) still effect an a priori separation of
electric and magnetic effects and, as pointed out by Toupin and Rivlin [10], such a
separation is inadequate with respect to predicting such a phenomena as the Faraday
effect in dielectrics. In [10] Toupin and Rivlin postulated constitutive equations of the
form

(1.14a)

(1.14b)

D(t)= a,,. E(V)(t)+ cv. B()(t)
=0 =0

+ $l(t, r)" E(r) dr + $2(t, r)" B(r) dr,

H(t)= d,," E(V)(t)+ b,," B()(t)
=0 r,=O

+ Iltl(t, r)" n(z) dr + O2(t, 7"). E(r) dr,

where E()(t) dVE(t)/dt and a, , d are constant tensors; the kernels 1, , ltll2
are taken to be continuous tensor functions of and z which satisfy growth conditions of
the form

d(t, r)<c/(t-r)+, p>0.

Toupin and Rivlin [10] also assumed that the dielectric does not exhibit aging and as a
consequence it follows that D(t) and H(t) are periodic functions whenever E(t) and B(t)
are; this latter result, when combined with the hypothesized growth estimates on the
kernel functions, and early results of Volterra on the theory of functionals [9], yields the
conclusion that tb," ’’, Oz depend on and - only through the difference t-r (the
converse of this result is also true). Toupin and Rivlin [10] then prove that if the
dielectric exhibits holohedral isotropy, i.e., if it admits as its group of material symmetry
transformations the full orthogonal group, then E(t) may be eliminated from (1.14b)
and B(t) may be eliminated from (1.14a); for a holohedral isotropic dielectric the
constitutive equations (1.14a), (1.14b) reduce to

(1.15a) D(t) a,E(")(t)+ b(t-’)E(z) dr,
,-----0

(1.15b) H(t) b,B(")(t) + (t- ’)B(’) dr,
,-----0

where b bx, O 1 and where (due to the assumption of holohedral isotropy) a,
tbl and 1 are all proportional to the identity tensor and thus appear as scalars in
(1.15a), (1.15b).
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In this paper we examine the special case of (1.15a), (1.15b) which corresponds to
the assumptions a 0, by 0, , -> 1 and E(r) 0, B(r) 0, -oo < r < 0, i.e.

(1.16a) D(t) =a0E(t).+ b(t-r)E(r) dr,

(1.16b) lt(t) boB(t)+ 0(t- r)B(r) dr.

This special case of a holohedral isotropic nonconducting material dielectric still
embodies a separation of electric and magnetic effects in the constitutive theory but
generalizes the Maxwell-Hopkinson theory in that magnetic memory effects are taken
into account through the presence of the kernal function p (t). In the next section we will
formulate an initial-boundary value problem for the electric displacement field D(t) in a
holohedral isotropic dielectric; provided 0(0) 0, D(t) will be shown to satisfy a
(nonhomogeneous) integroditterential equation. By introducing suitable Hilbert spaces
and operators, the initial-boundary value problem for D(t) is easily demonstrated to be
equivalent to an initial value problem for an abstract integroditterential equation and
growth estimates for specific classes of solutions to this abstract problem are then
obtained by employing a suitable logarithmic convexity argument.

2. Initial-boundary value problems for holohedral isotropic dielectrics. Let (x , t)
be a fixed Lorentz reference frame; the local forms of Maxwell’s equations are then
given by (1.7), (1.8). Let f

__
R 3 be a bounded region, with boundary 0f and assume that

c912 is sufficienily smooth so that the divergence theorem may be applied. Finally,
assume that f is filled with a holohedral isotropic nonconducting dielectric material
which is nondeformable and which satisfies the hypotheses of 1 so that, in 1), the
electromagnetic field satisfies constitutive relations of. the form (1.16a), (1.16b) where
we assume that a0>0, bo>0 and b(t), 0(t) are monotonically decreasing functions
which are (at least) twice continuously differentiable on [0, oo) with 0(3)(t) a bounded
integrable function on [0, oo). The basic result of this section is

THEOREM 2.1. The evolution of the electric displacement field D(x, t) in any
holohedral isotropic nonconducting material dielectric (which conforms to the constitutive
hypotheses (1.1 6a), (1.16b)) is governed by the system of equations

02Di ODi [ O2Dk
Di]Ot

+ (0)---- b0(0) Cotijtjl
OXj OX’----l

(2.1)

Ox OXl ]

where Co 1/(ao(O)), o(t)=(t)/ao and

(t)= 2 (-1)"qb"(t),
n=l

(2.2) bn(t) 491(t-r)4)n-l(r) dr, n >-2,

qb1(t) a-d14)(t)

with an analogous definition for (t) in terms of O(t).
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Proof. By using successive approximations we may invert the constitutive relations
(1.16a) and (1.16b) to obtain, respectively,

(2.3a) E(t)
1
D(t) +-- (t r)(r) dr,

ao ao

1 1 o(2.3b) B(t)=H(t)+ *(t-z)H(r) dz

with (t) and (t)defined in terms of (t) and, (t) respectively, as indicated in (2.2).
From (2.3a) and the second Maxwell relation in (1.8) div E(t)= 0 so

(2.4) E(t) =-curl curl E(t).

From (2.3b), however, and the first Maxwell relation in (1.7)

(2.5) curl E(t)=-B N-(0)N(t)- (t-r)N(r) dr.

Therefore,

-curl curl E(t)

1
(curl H) + (0)(curl N(t)) + (t-r) (curl N(r)) dr

Dt, ++(0)Dt +Iot+t(t-z)Dt(z)dz,
where the second relation in (2.6) follows from the first Maxwell equation in (1.7).
Combining (2.6) with (2.4) and employing (2.3a) we obtain

(2.7) +(0) + bo (t r),(r) dr b &(t) +-- (t r) &(r) d.
ao ao

However,

fo Io(2.8) ,(t-r),(,) dr=(0)(t)-(t)(0)+ ,,(t-r)(,) d.

Substituting (2.8) into (2.7) we have on x [0, m):

(2.9)
Dr, + (0)Dt + boX(0)(I CoA)D(t)

+ bo (gr(t-z)l-o(t-r)Z)D(,) dr bo(t)D(0),

where Co 1/(aoX(0)) and o(t)=(t)/ao. Q.E.D.
In conjunction with the integrodifferential equation (2.9) we consider initial and

boundary data of the form

(2.10a) D(x, 0) Do(x), Dr(x, 0) DI(X), x ,
(2.10b) D(x, t) 0, (x, t) 6 [0, c),

where Do, D1 are continuous on fl. At this point it is convenient to recast the
initial-boundary value problem (2.9), (2.10a), (2.10b) as an initial-value problem for an
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integrodifferential equation in Hilbert space.2 As in [6] we let C’ (D,) denote the set of
three dimensional vector fields with compact support in D, whose components are in
C (I’). We take H Lz(D.), i.e., the completion of C (I)) under the norm induced by
the inner product

(2.11) (v, W)L ------ Jfl l’)iWi dx

while the Hilbert space H+ is taken to be Ho (fl) the completion of C (fl) under the
norm induced by the inner product

(2.12) (v, w)no I, Or__/_ Ov___2 dx.
3xi

Finally, H_ n-l(), the Hilbert space obtained by completing C (D,) under the
norm

3x 3x

It is known that H(f) L2() (both topologically and algebraically) and that H is
dense in L2. We denote by to the embedding constant for the inclusion map i" Ho (f) -->

Lz(fl).
Operators L (Ho, H-x) and M(t)LZ((-c, o); (H, H-a)) are now defined

as follows:

(2.14a) (L)i =-- bo+(0)[Co ik ,, t921)k ijl)]], V H
1 3X 3

[ oxj2f Vk q
(2.14b) (M(t)v)i =- bo (t) 6iiv -do(t) 6ik Jl"’k

OXtI’ v H (f), (-o, c),

where the derivatives are taken in the distribution sense. It follows directly from these
definitions and the smoothness assumptions on b(t) and O(t) that

(i) L s(H, H-a), M(t) 6 Ls(H, H-a), (-c, c);
(ii) M,(. L2((-cG ); (Ho, H-l));

where s(Ho, H-a) denotes the space of all symmetric bounded linear operators from
H into H-1 and lIt is the strong operator derivative of M(. ). Thus the system (2.1),
(2.10a), (2.10b) is equivalent to

(2.15) D +(0)D LD+ M(t z)D(r) dr bo(t)Do,

(2.16) D(0) Do, D,(0) D,

where Do, D1 Ho and De C2([0, oo); H). Actually, we shall be interested in solu-
tions of (2.15), (2.16) on finite time intervals of the form [0, T) where T, 0 < T < c, is an
arbitrary real number; this suggests that we examine the following abstract initial-value
problem: Let H, H+ be Hilbert spaces with inner products (., and (., )+, respec-
tively, and assume that H+ H (algebraically and topologically) with H+ dense in H;

We specify, below, three spaces H, H/, and H_ which are taken to be certain Sobolev spaces in the
application and which satisfy certain mild requirements in the general development.
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define H_ as in (1.2). We consider solutions u C2([0, T); H+) of the system

Io(2.17) Iltt--aut--Lll+ M(t-r)u(r)dr=(t)Uo, O<-t<T,

(2.18) u(0)= u0, ut(0) ul (u0, ul H+),

where a : 0 is an arbitrary real constant,/3(t) is any real-valued function such that/(t)
exists a.e. on [0, T), L s(H+, H_) and M(. ), Mr(" L2([0, T); s(H+, H_)). We
assume that ut C1([0, T); H+) and u, s C([0, T); H_).

In 3 we derive some growth estimates for solutions u(t) of the system (2.17),
(2.18), which lie in the set. Our estimates will be obtained under various combinations
of the following hypotheses:

{>0, {=0, {=0, 0<t<T,
a Uo and /3 (t)

<0,’ 0,’ 0, on [0, T).

In 4 we apply our results to the system consisting of (2.1), (2.10a), and (2.10b); at no
point in this work do we make any definiteness assumptions on the operators L or M(t),
t[0, T).

3. Some growth estimates. Let Y{(t) 1/2]lutll2 denote the kinetic energy associated
with solutions u of the system (2.17), (2.18) and (t) -1/2(u, Nu) the potential energy;
then (t) Y{(t)+ (t) is the total energy. Let 3’ and to be arbitrary nonnegative real
numbers and define

(3.1) F(t; y, to)llu(t)ll2+y(t+to)2, O<=t<T.

The growth estimates in this section all follow from the following basic lemma..
LEMMA. Let uV" be any solution of (2.17), (2.18). Suppose that

(3.2a) -(v, M(0)v) < < [Ivl[ 2+, Vv 6 H+
with

(3.2b) K >= TT sup
[0,T)

Then there exists Ix > 0 such that for all t, 0 <= < T

FF"-F’Z-2F(2(O)+)+FF’-2F(T(t+to)+4 f(r) d

(3.3)

+2F(2 (r)(u, Uo> Uo> +4f(o)lluoll=.

Proof. From the definition of F(t; 3’, to), i.e., (3.1), we compute

(3.4) F’(t; y, to) 2(u, u,) + y(t + to)

(3.5)
F"(t; % to)= 21lu,II= + 2c <u, u,)+ 2(u, Lu)

-2 u, n(t-r)u(r) d +2/3(t)(u, Uo)+2%

where we have made use of (2.17) in (3.5). Using the definitions of Y{’(t), ’(t), we may
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rewrite (3.5) in the form

(3.6)

F"(t; y, to) 2c(u, ut)+2/3(t)(u, Uo)-2(u, f, M(t-’r)u(.r)dr)
+4(2Y{(t)+ y)-2(2(O)+ y)-4((t)- (0)).

However, for any r, 0 _<- r <_-- < T,

(3.7) ’(7-) (u, u..) (u, Lu) a ]lu.l]:z +/3 (’r)(u, Uo) u,

Therefore,

(3.8)

"(’) 2c{’(’)+/3(’)(u,, Uo)---r u(’), M(’-o’)u(o’) d

+ u(-r), M,(’r- o’)u(cr) do" + (u(’r), M(Olu(’r)).

Integrating this last result from zero to and substituting for g(t)-(0) in (3.6) we
obtain

F"(t; y, to)=2a(u, ut)+2(t)(U, Uo)+2(u, M(t- r)u(’) d

(3.9) +4(2Y{(t)+y)-2(2(O)+y)-8a Y{(’) d’-4 /3 (’)(u,, Uo) dr

-4 u(’r), M-(-r o’)u(cr) d dr 4 (u(’), M(O)u(’r)) d’r.

Therefore,

+2F(/3(t)(u, Uo)-2 I(i/3(-)(u, no)d-)+ 2F(u, I: M(t--)u(-)d-1
+4Fir (u(-), Io M(’-r)u(o’) dr) d’-4FIo’(U(’),M(O)u(’) d.

However, from (3.1), (3.4), the definition of Yg(t), and the Schwarz inequality it follows
that

G(t; y, to)=4F(t; y, to)(2Y{(t)+y)-F’2(t; y, to)>-O
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and, therefore, (3.10) yields the inequality

FF"-F’>=-2F(2(O)+’y)+aF(-tl[tt[[2-8 Y[(r) d

+2F(2 / (r)(u, Uo)dr-e(t)(u, Uo)) + 4F/3 (0)]lUo[[
(3.12)

+2F(u, If M(t--)u(-)dr)-gFIf (u(r), I M,(--o-)u(o-)do-)dr
-4F {(z), n(0)(r)} dr.

If we make note of the fact that

d
t-d
llul[z=F’(t; ’ to)-2T(t + to),

then we can rewrite (3.12) in the form

FF"-F’>-_-2F(2(O)+T)+oFF’-2oF(T(t + to)+4 2((r) d
o

+2F(2 /(r)<u, Uo> Uo> +4f/3(0)lluoll
(3.13)

Io; M(t--r)u(r) r> fo;< S+2Fu, d -4F d dr

-4F ((r), N(0)(r))

In order to complete the proof of the lemma we now use the hypotheses (3.2a), (3.2b)
and the fact that u to bound, from below, the sum of the last three terms in (3.13),
i.e.,

f(3.14a) llu(t)[I Jo [IM(t-.)u(,)l[ dr llu(t)l[+ (llM(t-,)ll(m.._))llu(,)ll+

r sup ilull+ sup lIM(t)ll(m,_wx2r sup
[0,T) [0,T) [0,T)

and thus, as F(t; T, to) O, 0 < T,

(.X4b) 2Fxu, M(t-)u() -2N=T sup IIM(t)II<+,_)F(t; to).
[0,T)

Also,

(3.15)
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by virtue of (3.2a) and (3.2b). Finally

I,’ (u(r), Io M(’-o’)u(o") do’) d"<- Io’l (u(7"), Io M(’-o’)u(o’)do-)l d’r

(3.16a)

from which we easily deduce that

-<- Io’ ][u(r)[](Io" ([]M (r o’)[[e<u+.m))[lu(o-)l[+ do’) dr

=.<w sup ]lM,[l(u+,._) [lu(-rll[+ Ilu(o-)[l+ d dr
[O,T)

<- sup IIM,II,H+,_)( [lu(’)l}+ d
[0,T)

<wT= sup IlM.ll(.+.m) Ilu(,)ll =+ d
[O,T)

-4FIot/u(-), Io M(--o-)u(o-) do-)dr
(3.16b)

_->-4o,T sup IIMll(m,_)f Ilu(r)[l+ d-,
[0,T)

Combining (3.13) with the estimates (3.14b), (3.15z) and (3.16b) we obtain the estimate
(3.3) with

(3.17) Ix =-- , + ,oNTo.T)llM(t)ll.m+,m. Q.E.D.

With the preceding lemma as a starting point we now begin our study of the growth
behavior of solutions to (2.17), (2.18) which lie in the class W; in each of the cases
examined below we assume that M(0) satisfies (3.2a) for some K > 0 which satisfies
(3.2b).

Case I. Uo 0 and ce < 0. In this case g’(0) 1/2llUll[2 and the second expression on the
right-hand side of (3.3) is nonnegative; thus

(3.18) FF"-F’= >-_-2F(llllz / )-I,lFF

for all t, 0 -<_ < T, where Ix is given by (3.17). However, for y, to arbitrary nonnegative
real numbers,

(3.19) AytZo AlJu(t)ll2+AT(t+to)2 AF(/; y; to)

for any A _>--O. If, in particular, we choose

(3.20) A A (3’; to) 2(llull + ix)/yt2o

then for all t, 0 _<- < T, and all y, to->-0

(3.21) 2(lluxI[= +/x)---A (y; to)F(t; y, to)

and (3.18) may be replaced by the estimate

(3.22) FF"-F’2 ->_ -X (3’; to)Fz- laIFF’.
The differential inequality (3.22) now forms the basis for the following growth estimate:

THEOREM 3.1. Let uedg" be any solution of (2.17), (2.18) with Uo=0 and a <0.
Assume that M(O) satisfies (3.2a), (3.2b) and that T > 1/[a I. Then there exists a constant
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M> 0 such that

(3.23) II(t)ll= <=Ml-ge-(Z/ll)’, 0 <= < T,

where 6 is given by (3.27).
Proof. From (3.22) and Jensen’s inequality we obtain the estimate,

(3.24) F(t; % to)<-e-(X/ll)t[F(tl;y, to) e(X/ll)q][F(t2; % to) e(X/ll)t2]
(valid for 0 _-< tl < -< t2 < T) where

(3.25) 6(t) (e -I’1’ e-I’lt2)/(e -I=lq

The interval [tl, t2] [0, T) is any closed interval such that F(t; y, to)>0, tl -< =< t2.
However, it is a simple consequence of (3.24) and the definition of F(t; y, to) that
F(t; %to)=-O on [0, T) if F(I; y, to)=0 for any -[0, T). Thus, without loss of
generality, we may assume that F(t; y, t0) > 0, 0_-<t < T. Taking tl =0, t2-- T in (3.14)
we obtain

V(t; % to)<= e-(/ll)[ytZo]g[F(T; y, to)(3.26)

where

(3.27) g(t) (e -I1 e-IlT)/(1 e-1lT").
We now choose 3/= 1/tz0 and then take the limit in (3.26) as to +c. Clearly, as

(3.28)
( o)2F(t; yl/to, to)-Ilu(t)ll2/ /1

lim F(t; 1/to, to)--l[n(t)ll=+ 1
to

for all [0, T). Also, as u A"

(3.29) lim F(T; 1 / t(2), to) lim u(T)ll2 + 1 -<_ w + 1,
to +oo to

(3.30) lim A (1 / t2o to) lim 2(llull + 1/t2o +) 2(llul] +) A-,
to-- +CX tO-- +00

where t2 mN2T sUp[o,T)[[M(t)I[(H+,H_). Thus, with 3’ 1 / to and to +c in (3.26), we
obtain the estimate

(3.31) ]lu(t)ll= < e-(/l’l)t[(a2m2 + 1) e (Z/II)T]I- 0 <-- < T

and the result, which shows that Illll]2 is bounded above by an exponentially decreasing
function of for all [0, T), follows by choosing M> 0 so large that wZN2+ 1 <
M exp

In contrast to the result contained in the statement of Theorem 3.1, we have the
following theorem concerning lower bounds for solutions u V of (2.17), (2.18).

THEOREM 3.2. Let ubeany solution of (2.17), (2.18) with Uo 0 and < 0 and
assume that M(0) satisfies (3.2a), (3.2b). If [ < 1 then there exists T > 0 such that [lull2 is
bounded below by a monotonically increasing exponential ]:unction of t, 0 <- < T.

Proof. We begin by integrating the differential inequality (3.22) according to the
"tangent property" of convex functionsassuming that F(t; % to) > O, 0 <- < T, where
T> 0 is an arbitrary real number; by the "tangent property" for convex functions we
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refer to the fact that the graph of a convex function3 on [0, T) lies above the tangent line
to the curve at any point / [0, T). Thus, we obtain directly from (3.22) the estimate

(3.32) F(t’, y, to)=> F(0", y; to)exp [ {F’(0; y, to)+laIF(0;(A/laI)F(0;y,to)
y’ to)} (1-e

However, F(0; y, to) 3,to and F’(0; % to) 2yto. Therefore, if we set y= 1/to in (3.40)
we obtain

(3.33)

where

Ilu (t)ll +[t/to + 112--> exp IX(t; to)], O<_t<T,

1 [( A(1/t2o;to)) -Is ](3.34) X(t; to)=-- + iS] (1-e I’)-X(1/t2o; to)t

and

1 2N2 )(3.35) a (1 / to2 to) 2 III11112 q-- t- + w T sup [IMI[e(H+,H_)
[0, T)

We note, in passing, that X(0; to)= 0. For the sake of convenience we now set

e(to)
2 a (1/to to)

Then

(3.36) X’(t; to) e(to) e-I"lt-A (1/to2 to).

From (3.36) it follows immediately that X’(t; to)> 0 for

0<t<ln 1(1/t;to
provided e(to)> (1/t; to). We now take the limit in (3.33)as to+ and obtain

(3.37) I1(1 + 1 e exp [ lim (t; to)I, 0 N < T.
to +

But

(3.38)

lim X(t; to)
1 [ lim e(to)(1-e-Ilt) lim A(1/tg; to)]to-+ +oo ’ to-+ +(x:) to+oo

A
=112(1-e

where A is given by (3.30). Also

(3.39) lim X’(t" to)=
d (e

-tl’

)to + -,(t) ]a
-1

and, therefore,

(3.40) ,’(t) > O, 0 --<_ < In

The inequality (3.22) and the assumption that F(t" /, to) > 0 on [0, T) imply that In (F(o-; /, to) e-/)
is a convex function of r e -I’*1’ on [0, T).
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if la[< 1. The statement of the theorem now follows with T (1/[a 1) In (1/[a I), i.e.,

1
(3.41) [lu(t)ll + 1 _>- exp (2 (t)), 0<_-t<ln
where 2(t), as determined by (3.38), is nonnegative and monotonically increasing on
[0, (1/[a 1) In (1/[a I)). Q.E.D.

Case II. Uo=0 and a>0. In this case the expression H(t; 3’; to)=-
-2aF(3"(t + to) + 4 K(r) dr) can not be dropped from the differential inequality (3.3).
As < T and a > 0, (3.3) with Uo 0 implies that

(3.42) FF"-F’Z>=-2F(IIulIIz+Iz)+aFF’-2aF(,(T+to)+2 Ilu.,.llzd

In order to proceed further we shall need the following lemma.
LEMMA. Let ube any solution of (2.17), (2.18) with Uo=0. Then there exists a

real-valued continuous function ha(t), defined for 0 <-<_ < T, such that

Ilu,II= dr IlUlll= + h,, (T), 0 <_- < T.(3.43)
2t

Proof. From the identity

and (2.17), we obtain

f io, lo(3.44) + c u+ Lu(r) dr- M(r- o’)u(o.) do" dr.Ilt Ill
3o

Thus,

(3.45) sup
[0,T)

sup IIM(r)[l(n+,n_)sup Ilu()ll/
[0,T) [0,r)

<_--Ilull+ p(t) sup Ilu(r)ll+,
[o,r)

where

(3.46)
2

p(t) cto + tllLIle(m,r_ +- sup IIM(t)lle(m,m.
[o,r)

Clearly p,,(t)<p(T), for all t[0, T) and, as

[lull[ Ilull +Np(3.47) O<----t <T.
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Therefore,

(3.48) Ilu.II= dr<-2t([lUlll2+gp2(r)),

and the lemma follows with

(3.49) h (t) N2p (t)

if we combine (3.42) with (3.43) we obtain

(3.50) FF" F’2 >= -2f(llUlll2 +/i)+ aFf’,

where 12 > 0 is defined by

(3.51)

Choosing

=/z +a[3"(T+ to) +4T(IInII + h, (T))].

O<=t<T

Were we to follow the arguments previously employed we would, at this point, take the
limit in (3.58) as to +m. This procedure, however, does not lead to a viable lower
bound for ]lullz in this case. It is worthwhile, however, to examine the function

[A*(3’; to) 2 ) ,) A*(3";/o),
(3.59) J(t; % to)=" \ a z to] (1-e +

a

Clearly, J(0; % to) 0 for arbitrary nonnegative constalats 3", to. Also

(3.60) J’(t, 3", to) ( A*(3";to)),, A*(3";to)
e

(3.57) F(t; % to)>-3"t exp 23"to (A*/a)3"t e-a3"tg (1- )+--a
which, with 3" 1 / to2, A * A * (1 / toz to), reduces to

(3o58) I1(011 + o 1 _-> exp ---o (1 e) +--

(3.52) ,* ,*(3’; to)
2(llull2 + t2)

3"t2o
we have

(3.53) FF"-Fn>--A*(3"; to)FZ+aFF’, 0-<t < T.

If we apply Jensen’s inequality to (3.53) we obtain
_A*t/ar .2 0-t < T,(3.54) F(t; % to)<-_e t3"to]*[F(T; % to) eX*/)T]1-*

where

(3.55) 6*(t)=(e’-eT)/(1-eT), O<-t<T.

Taking 3"-- 1/toE in (3.54), ,extracting the limit as to- +, and then choosing > 0 so
(A /a)Tlarge that wZN2+ 1 <= e we obtain the estimate

(3.56) I1(/)11= -* ex*/’)’, 0 <__-- < T.

To close out our study of the case u0 0, a > 0 we now integrate the differential
inequality (3.53) according to the "tangent property" of convex functions and we obtain
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from which, by the definition of A*, it follows that

(3.61) ()J’(t; 3,, to)= (kl+ k23,)(1- et) + a3,to,

where

(3.62a)

(3.62b)

Thus, if we choose

k Ilull=( + 4aT) +/2 + 4aTh (T),

k2= l+aT.

(kl+ k23,)(3.63) to to.v =- (e aT 1), 3, > 0,

then J’(t; 3,, to.v)>0 for all t, 0-< t_-< T, and each real 3’ >0, and we can state the
following result.

THEOREM 3.3. Let u Nbe any solution of (2.17), (2.18) with Uo 0 and a > 0 and
assume that M(0) satisfies (3.2a), (3.2b). Then for any T > 0 there exists > 0 such that
Ilull= satisfies (3.56) and, or each real 3" > 0, Ilull= aZso satisfies

2(3.64) I[u(t)ll= + 3"(t + to,v)2 _--> 3"to.v exp [J(t; % to,v)], 0 -<_ < T,

where to,v is defined by (3.61a), (3.62b), and (3.63) and J(t; % to,v), defined by (3.59)
with to to.v, is nonnegative and strictly monotonically increasing on [0, T).

The results obtained in Cases I and II did not involve any hypotheses concerning
the sign of the initial energy (0); as we assumed Uo 0 in both cases, (0) 1/2[lul[= > 0 if
Ul 7 0. In the cases considered below we remove the restriction that Uo 0.

Case III. Uo 0, a < 0, and/3 (t) 0, 0 -<_ < T. In this case (provided we use the
fact that a < 0 to delete the term H(t; 3", to)) inequality (3.3) reduces to

(3.65) FF"-F’2 >= -2F(llUlll2 -(no, Luo) + Ix)-la IFF’
with/x given by (3.17). We now assume that the initial data Uo, Ul satisfies

(3.66) [lUlI]2-- (U0, Luo) < -/2,

where /2 =wN2T sup[o,T)]lM(t)[]zen+,n_). Taking 3"=0 in (3.65) we obtain (F(t)=
Ilu(t)[la),
(3.67) F(t)F"(t)-[F’(t)]2>=-lalF(t)F’(t), O<-t < T,

Jensen’s inequality then yields the upper bound

(3.68a) Ilu(t)ll -<_ Iluolffllu(T)ll=1-), 0 _-<t < T.

We note that the hypothesis that u N, and (3.68), imply that there exists R > 0 such
that

(3.68b) Ilu(t)ll=_-< R --Iluoll -, 0 _-< < T.

However, as (3.66) can not be valid for Iluoll sufficiently small, (3.68b) represents only an
upper bound on Ilu(t)ll in terms of [luoll and not a stability estimate. A better result is
found by integrating (3.67) according to the "tangent property" of convex functions; in
fact, directly from (3.32) with A 0 and F(t; % to) replaced by F(t) =-[lu(t)l[2 we obtain

2(111, Uo) I1,)], 0 t<T.(3.69) Ilu(t)lla--> Ilul12 exp L - --- (l-e-
Icl IlUoll 3

--<
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From the estimate (3.69) it is obvious that if either (Uo, ul)=0 or Ul=0 (and
(Uo, Luo) >/2) then Ilu(t)[I2 -> IlUoll2 for all 6 [0, T). On the other hand, if (Ul, Uo) > 0, then
on [0, T), Ilu(t)]l1 is bounded below by a monotonically increasing exponential function
of t. Finally if (Uo, ul)< 0 then Ilu(t)ll2 can not decay any faster than a monotonically
decreasing exponential function of t. Our results are summarized as:

THEOREM 3.4. Let uaV’be any solution of (2.17), (2.18) with Uo0, a <0, and
(t)--O on [0, T). Assume that M(O) satisfies (3.2a) and (3.2b). Then

(A) If the initial data satisfy (3.66), Ilu(t)l[ is bounded above by [lUo][ according to
(3.68b), 0 -<_ < T.

(B) If the initial data satisfy (3.66) then there exists K(a) such that for all t,
0_-<t<T,

(3.70) Ilu(t)[I= Iluoll= exp [K(a)(1 e-Ilt)],

where for each real a, K(a) is real-valued and
(i) K(a) 0 if either ua 0 or (Uo, Ill)
(ii) K(a) > 0 if (Uo, Ux) > 0;
(iii) K(a) < 0 if (Uo, Ul) < 0;

and
(iv) IK (a)l 0 as la o.
Remark. The case Uo # 0, a > 0, and/3 (t) 0 can be treated in the same manner as

Case III; in fact, from (3.50) (which was derived under the assumption that no 0 with
a > 0) we can write down immediately the differential inequality

FF"-F’1 >- -2F(llu,II2- <Uo, Luo)+)+aFF’

for the case where no # 0, a >0, but/3(t)-- 0; in (3.71)/2 is defined by (3.51). Suppose
we set 3’ 0; then if the initial data satisfy

(1 / 4cz)llUlll-(o, Luo) =<-( +4aTh(T)),

the above differential inequality reduces to

(3.72) F(t)F"(t)- IF’(/)]1 _-> aF(t)F’(t), 0 <= < T,

where F(t) [lu(t)[[1. We leave the integration of (3.72) and the analysis of the resulting
estimates on Ilu(t)lf to the reader and turn, instead, to consider a case where both Uo # 0
and/3(t) 0.

Case IV. Uo # 0, /3 (t) 0, a <0 and/3(0)>0. In this case (3.3) is easily seen to
imply that

FF"-F’2 >- -2F(2 (0) + tz) -la

+2F(2 Iot/ (’)(u, Uo)dr-/3 (t)(u, Uo)) + 4F/3 (0)llUoll-
(3.73)

-2F(2 (0) 2/3 (0)lluo[I2 +)-I [FF’

+ 2F(2 Io/(’r)(u, Uo)d-r-/3(t)(u, Uo)).
In order to proceed further we must bound from below the third expression on the
right-hand side of the differential inequality (3.731); this is accomplished by the
following lemma.
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LEMMA. Suppose that l(t) is bounded on [0, T) for each fixed T, 0< T < oo. Then
them exists a constant C > 0 such that

(3.74) 2 0-), o d-()<, uo>e-Clluoll,

Proof. We set 0 supo,r I (t)l < oo. Then

(3.75)

SO

(3.76)

Also

(3.77)

O<__t<T.

/ (r)(u, no) dr >--poNTl}uoll,

I/3 (t)(u, uo>l I (t)l" l(u, Uo)l

0<t< T.

SO

(3.78) -/3 (t)(u, Uo) => -wN(pT +/ (o))lluoll,

Combining (3.76) and (3.78) we obtain (3,74) with

(3.79) C oN(3pT +/3(0)) > 0.

0<t<T.

We now return to (3.732); in view of the last lemma this latter inequality implies that

(3.80) FF"-F’E>-_-2F(IlualI2+ (Uo) +/x) ]a IFF’,
where Y’.: H+ -R+ is defined by

(3.81) E (w) 2/3 (0)llwll 2fi (0)- Ilwll -<w, Lw>, w H+.

If we set y 0 then (3.80) reduces to

(3.82) F(t)F"(t)-[F’(t)]2>=-2F(t)(lluall2+E (Uo) +/2)- la [F(t)

with F(t) Ilu(t)llz and 12 wN2
sUpro,T)IlM(t)lle<H+._) and we have the following result.

THEOREM 3.5. Let uoV be any solution of (2.17), (2.18) where Uo#0,/3(t)0,
a <0, and/3(0)>0. Assume that M(O)satisfies (3.2a), (3.2b)and that l(t) is bounded
for 0 <= < T. Then if the initial data satisfy

(3.83)

where E is defined by (3.81), Ilu(t)ll satisfies the estimates (3.68) and (3.69). In particular,
i]’ ul 0 and E (Uo) -< -t2 then [lu(t)ll2-> I[oll ]’or all t, 0 <=t < T.
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Remark. We leave for the reader the consideration of the other cases possible
when Uo0 and/3(t)0, e.g., c <0 and/3(0)<_-0; the stability and growth estimates
which apply in these situations may easily be derived by suitably modifying the last
lemma and making use of the basic differential inequalities derived for the previous
cases.

4. Applications to bounds for electric displacement fields. In order to apply the
results of the previous section to solutions of the initial-boundary value problem (2.1),
(2.10a), (2.10b) (associated with the constitutive relations (1.16a), (1.16b)) we must
delineate the form assumed by the basic hypothesis (3.2a), (3.2b). In other words, for
the operator M(t), which is defined by (2.14b), we wish to examine the implications of
the requirement that

(4.1) -(v, M(O)v> Ilvll, v HA (),

with K =>toT supto,r)IIM,lle<.-). From (2.14b) and (2.11) we easily compute

(v, M(0)V)L2 --in (M(0)v)iti dx

02Vk
(4.2) -bt(O) I iiDiD’ dx+

bo ((0) I ik fl /3i dx
ao

bo In 021)k-b0,(0)llvll2= /-- (o) ik (fl )i dx
ao Oxj OXl

for any v Ho. But if v sH then

(4.3)
dx

where we have used integration by parts together with the fact that v vanishes on 0fl4.
Thus

(4.4)

-<v, M(0)V>L= -bo<(0)llvll=- <(0)llvll
ao

(2 1 )>--b0 to I(o)1 +-- (o) Ilvll=m.
a0

Therefore, (4.1a) will be satisfied if

(4.5) -bo(to2lat(0), + aot(O)) => t

with u => toT sUpto,T)IIM,II(Z,-). For the sake of convenience we now set Y(t) t(t).
From (2.14b) again we have,

(4.6) (Mtv)i bo f(t) aijV
dp(t)

ik ]l v H,
ao cgx Ox

4 This follows from the definition of Ho and a standard trace theorem.
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SO

(4.7)

I<v, M,v>  l [M,v3ivi

--]bo@(t)llvll-b(t) fa ,v =v------- dx
ao x Oxt

1b01Nc(t)llvll2= /--+(t)llvll
a0

( 1 )-<bo o=l@(t)l/--[,(t)l Ilvll.ao

It now follows that for each t, 0 <_- < T,

(4.8) IlM,IIe<.-, sup
I(v, M,v>l _-< bo a,=l@(t)l +--[b(t)l,-, Ilvll ao

Thus, (4.1b) will be satisfied if

( 1 l)(4.9) t >= wTbo w sup I(t)1-4--- sup lob(t)
[0,T) ao [0,T)

Combining (4.5) and (4.9) we find that a condition which insures the validity of (4.1) is

1
(4.10) to21Y(0)]+ (I)(0) >=wT to sup ]J(’(t)l+--sup [(b(t)]

[0,T) ao [0,T)

It is clear, from (4.10), that this inequality can be satisfied only if (0)<0 with
II,(0)[ > aoo 21Y(0)I. It is worthwhile, at this point, to recall the following result which has
been proven in [6]:

LEMMA. Let 49(t) C1[0, T) and assume that the series defining (t) as well as the
derived series, which is obtained by term by term differentiation, are uniformly convergent
on every interval [0, T-e], 0<e < T. If sup[0,T)]qb(t)[<ao/Tthen

(4.11) (i) sup I(t)l-< o(T);
[0,T)

(4.12) (ii) sup I+(t)l
T

1 + T
0,T supl-0,T 16(t)l

where

(4.13) @(T) sup ]4)(t)l(ao- T sup Ib(t)l).
[0,T) \ [0,T) /

Remark. Similar results hold for sup[0,T)lair(t)] and sup[0,T)[Xr(t)], of course, under
analogous assumptions on if(t) and the series defining (t), e.g., we require that
sUp[o,T) Ib(t)[ < bo/T; the constant @(T) appearing in (4.11), (4.12) would, in this case,
be replaced by

(4.14) (r) sup ]4(t)](bo- r sup
[0,T) \ [0,T) /

In recalling the above.lemma we have been motivated by a desire to replace the
sufficient condition represented by (4.10) by a condition which involves only the basic
memory functions 4(t), O(t) specified in the constitutive relations (1.16a), (1.16b). To
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this end we note that the equations defining (t) in terms of b(t) and (t) in terms of
O(t) imply, respectively, that

1 1 Iot(4.15a) (t)+--c(t) (t-r)(r) dr,
ao ao

1 --ol Iot(4.15b) (t)+ob(t) O(t-z)(z) dz.

From (4.15a) and (4.15b) we immediately obtain

1
(4.16) (0) lb(0)’ao (01 o4(0)

and thus (4.10) can only be satisfied if b (0) > 0. Directly from (4.15b) we now compute
that

1 1 1
(4.17a) (t) +oqJ(t)=-oO(O)(t)-o Jo Ot(t-z)qt(z) dr,

1
(4.17b) (t)+-od)(t)

1 16(0)(t) 1 I0--0 6(0)(t)-- 0 0 0.(t-- )()

Therefore,

1
(4.18) qt(0) =_ Y(0) -o (f(0) + 4(0)(0) + q)(0)(0)).

However, from (4.16) and (4.17a),

1 1 1 1/2 4,2(0).(4.19) (0) (0)-(0)*(0) -(0)+
Combining (4.162) and (4.192) with (4.18) we have, finally,

(4.20) Y(0) -- 3(0)--(0)(0)+ (0)

The left-hand side of (4.10) now assumes the form

1
(4.21) (0)- 3(0)- 0(0)(0)+(0)

ao gg g
We now turn our attention to the right-hand side of (4.10). Directly from (4.17b) we
obtain

(4.22) (t) - 0()(t) + 0(0)Y(t) + (0)(t) + (0)(t) + O,t(t- z)(z) d

Also,

(4.23)
sup IY(t)[ < sup [;(t)l + I@(0)[ sup [(t)[
[0, T) O0 T)[0, [0,T)

+ (1)(0) + T sup ](t)[)sup [(t)]]
[0,T) [0,T)
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while, by (4.22),

1[sup ["(t)l < sup [@(3)(t)] + qt(0) sup [Y(t)[
[0, T) 0 L [0, T) [0, T)

(4.24)
+q(0)sup [*(t)l + (1(0)1 + T sup 1ff(3’(/)l)sup

[0,T) [0,T) [0,T)

if we substitute for sUPto.T) IY(t)l in (4.24) from (4.23) we obtain an estimate of the form

(4.25) sup I(/)l sup I(t) + sup I(t) + ,
[0,T) [0,T) [0,T)

where, the constants , , are given by

M T sup l<3)(t)l + I(o)l + }(0)l I(o)l + T sup }(=)(t)l
[O,T) bo [O,T)

1 [ 02(0)]

1[ 4(3) 1 ]c-o ro,-)sup[ (t)l +o Ig,(o)l to,-)sup [4,(z)(t)[

As a result of the estimate (4.25), the right-hand side of the inequality (4.10) is bounded
above by the expression

(4.26) w ’ sup Iq(t)l / sup I(t)l / / sup
[0,T) [0,T) ao [0,T)

which, in view of the preceding lemma, is itself bounded above by

(4.27)
[ 2C(T) (1 + T, Su,pt,’,!,,I(t,),[ ]to3Z 3(T)+ T- sUpto.T) I(t)l/+

a(T) ( sUpto,T)+ I+T
ao

provided supo.7-)Ib(t)l <ao/T and supto.7-)Iq,(t)l < bolT.
From (4.27), the definitions of the constants 1, , , (4.13), and (4.14), it is clear

that

(4.28) @ (o, T, ao, bo, II//(/)(0)[, sup [b(i)(t)[, sup [(k)(t)l
\ [0,T) [0,T) /

with =0, 1, 2, =0, 1, and k =0, 1, 2, 3. Thus, is computable once f, T>0,
and the constitutive relations (1.16a), (1.16b) are specified. Thus (4.1) will be satisfied
provided

(4.29) a--ob(0)-o o4,3(0)-o0(0))(0)+(0) ->.

We offer below an example of the. kind of considerations which are involved in
verifying that (4.29) is satisfied.

Example. In the constitutive equations (1.16a), (1.16b) we take

(4.30) q(t) e

where K > 0 is arbitrary; for the sake of convenience we set T 1. The region lq

_
Yt 3
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(and hence the embedding constant w) are left arbitrary at this point as are the constants
ao, bo. From (4.30) we have

(4.31) 4,(0) sup ]4,(t)l 1, sup I(t)l K
[0,1) [0,1)

and

(4.32a) sup 10(k)(t)l 1, k 0, 1, 2, 3,
[0,1)

(4.32b) (0) J(0)= 1, 4)(0) -1.

Therefore, the constants M, , c in (4.25) are given by

(4.33) M=o 1+ =c=o 1

Also, if ao> 1, bo> 1, then from (4.13) and (4.14)

1 1
(4.34) -(1) (1)

ao-l’ bo-l"

then (4.35) becomes

(4.37)

But

(4.38)

5(ao, w:) > o’(bo, w:).

lim o’(bo, w) 0 (for any w > 0)
bo--,+oo

and thus it is clear that for an arbitrary ao> 1 and w cote defined by (4.36), the
inequality (4.35) will be satisfied if bo is chosen sufficiently large. We summarize our
results in the following lemma.

LEMMA. Consider the holohedral isotropic dielectric material which is defined by the
constitutive relations

(4.39a) D(x, t)= aoE(, t)+ e-:(-’)E(, r) dr,

(4.39b) H(x, t)= boB(x, t)+ e-(t-’)B(x, 7") dr,

Combining our results it follows that (4.29) will be satisfied if ao, bo, and w are chosen so
as to satisfy

(4.35)
1 a(l+K)> a3 (bo-1). --_---b+3 __w2(2o 2)++1ao ao(ao--1) b2o bo-1

+
bo o

As bo must be restricted to satisfy bo > 1, the right-hand side of (4.35), which we denote
as cr(bo, w), is clearly positive. Thus, in order for (4.35) to be satisfied for an arbitrary
ao > 1, w must satisfy

(4.36) <
1 +K

<
1 + K"

If we now choose so that (4.36) is satisfied and define

1 (1 +K)
ao ao(ao-1)
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where K>0 and a0> 1 are arbitrary and (x, t) fx[0, 1) with ’_.t3 chosen so that
the bedding constant o, defined by the inclusion map ofH into L2, satisfies (4.36). If
D(x, t)= 0, (x, t) 0f [0, 1), then there exists a constant F> 1 such that the operator
M(t), defined by (2.14b), satisfies the basic hypotheses (4.1) whenever b0->F.

5. Relation to previous estimates for holohedral isotropic dielectrics. In the
present paper we have considered a special case of nonconducting holohedral isotropic
dielectric response under the assumption of zero past history, i.e., E(r)= 0, B(r)= 0,
-oo<r<0; our constitutive relations were, therefore, of the form (1.16a), (1.16b);
using a logarithmic convexity argument we then derived growth estimates for the time
evolution of the components of the electric displacement field in a dielectric which
conforms to these constitute hypotheses. In a recent work [11] we have derived
different estimates for a closely related problem. Namely, we consider in [11] a
holohedral isotropic material dielectric of the type (1.15a), (1.15b) with a 0, b 0,
v > 1 but with past history of the form

(5.1)

E(x, t)=
(0,
Eh(x, t),

B(x, t)= 0,
Bh(X, t),

-oo < < th,

--th <=t<O,

--00 < .< th,

--th <=t <0,

where th > 0 is a given positive constant and Eh, Bh satisfy appropriate smoothness
assumptions on fix (--th, 0). The constitutive hypotheses in [11] then take the form

(5.2)

D(x, t)= a0E(x, t)+ &(t- r)E(x, r) dr,
th

H(x, t)= b0B(x, t)+ g,(t- r)B(x, r) dr
th

on f (--th, T), and, in place of the evolution equations (2.1) considered in the present
work, we obtain, under the additional assumption that Dh (X, --th) 0, uniformly on f,
the evolution equations

(5.3)

a2Di ODi [ c92Dl "]
c9t2 + q)’(0)--- + ar(0)_Di-0 aik a]lox OXl]

+ ((t-,)Di(,)-b*(t-,) aik ]102Dk(’) d, 0

for i= 1, 2, 3 with o bo/a0(0). The same Hilbert space formalism used in the
present work when leads in [11] to consideration of abstract initial-history value
problems of the form (2.17), (2.18) but with B(t)0 and with the integral operator
defined on [--th, T) instead of [0, T). The basic differences, however, between 11 and
the present work are as follows" In [11] we consider initial-history value problems
corresponding to varying initial displacement fields and varying past histories, i.e.,

.+F-N + N(t r)u () dr , 0 N < T,

(5.4) (0) o, (0) o,

u(r) u(), --th _--< ," < O,
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and

u+Fu-Nut + K(t ’)u (r) dr 0,
th

u (0) uo, u,(0) vo, 3 > 0,

O<-t<T,

u (-) g(t)u(-), --th < " < 0,

where g is monotonically increasing on [0, ). The basic aim of the work in 11] is not to
derive growth estimates for the time evolution of [lu(t)ll but rather to derive lower
bounds for sup<_,,)llull/ (sup<_,.,)llull/) in terms of c(/3) and the data of the
problem: the conditions (3.2a), (3.2b) in the present work are weakened in [11] to
simply

(5.6) -(v, K(0)v) => 0, Vv 6 H+

and the a priori condition that uW (a class of bounded perturbations of the kind
prescribed in 1) is dropped in [11] as logarithmic convexity is not employed to derive
the desired estimates. Additional assumptions are made, however, in 11 relative to the
data and the integral operator; namely,

o

(5.7) I_ IIU(*)ll/ dr <;
th

(Uo, Vo) > 0, (Uo, Nuo) > 0 and
o

(.oI_
th

For the initial-history value problem (5.4) we then have the following result in [11]" Let
u be a strong solution to (5.4) with

2
(5.8) Iluoll <_- <uo, vo>, 1 ( _2(Uo: _Vo) )T >? In

\2(Uo, Vo)- Flluoll2

Then for each a > Ilvol[/<o, Nuo)1/2,

(5.9)
[--th,T)SUp II/,/ I1+ [ I(llO’ Oth K(--T)U(T)O)_T dT)l ] 1/24,

where

(5.10) Zr IINII(/,-_) + IIK(’)ll.(.+,g_) d + T [IK()lles(n+,._) d..

A similar result follows for the problem (5.5), with varying past history, under
analogous assumptions. The basic idea behind the proof of the estimate (5.9) is as
follows: Assume that (5.9) is false for some parameter value ff > Ilvoll/<o, No>/2 and
show that F(t)= I]ua (t)ll satisfies the differential inequality

(5.11) FaF-(ff + I)F’ >=-FFaF, O<=t < T,

which, in turn, implies that
--l-’t(5.2) V(t)>-F(O)[-(a-e )=(O)/FF(O)]-.
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The bracketed expression in (5.12) vanishes at

(5.13)
1 / 2(Uo, Vo) ’to------ In 2<uoo)luollU

and too< T by virtue of the hypothesis (5.8). Thus sup(-,,T)IlUall + and via the
embedding of H/ into H this implies that sup_,.,Tllull /o contradicting the
assumption that

sup

and, thus, establishing (5.9). Estimates of the type (5.9) can be very useful in terms of
deriving estimates for physical parameters which enter the definition of the integral
operator; in this vein we refer to a recent work 12] on Maxwell-Hopkinson dielectrics
where estimates of the type (5.9) have been shown to lead to bounds for constitutive
parameters appearing in the memory functions of such materials.

In a more recent work [13] initial-history boundary value problems associated
with (5.3) have been reconsidered with a view toward deriving asymptotic lower
bounds on the norms of the electric displacement vector when the operators in
the equivalent initial-history value problem do not satisfy the requisite coercive-
ness conditions that imply asymptotic stability [14]. in fact, it is shown, in [13],
that solutions u* ot the present abstract initial-history value problem
(dV’* {v E C([--th, cX3); noX)[ sup(-t,,)Ilvll, _-<N} for some N> 0) satisfy the differential
inequality

(5.14) FF" ( fl + 1 )F,2 :z

\2 + 1
> FEE’ f -Ilu(t)ll

for any /3 > 0, 0 <_- <, provided (0) llv0l- (Uo, Uo)< 0 with 1(0)1 >
3 2N [l[ff[[x[o,)+ IJRill[o,)] where we assume that (5.6) holds, and in addition, that

(5.15)
ffr(t) IIK(t)lle,(.-) satisfies t{’(. x[0, o),

f[(t) =-- f IlK,II,(o.-)d satisfies f{(. ) LPx[0, ) with f/’(O) O.

The differential inequality (5.14) then yields the estimate

{ 2( o,(5.16) ,[i+m Ilu(/)ll==>lluol[= exp \ F }

so that limr_,+oo lim,,,/oo Ilu(t)ll--> ]lUoll. In fact, the sharper estimate

[ (2(1- A)(Uo, Vo)e _Ft)]
1/(l-A)

= ----- (1-e

is shown to obtain in [14] for all > 0 and any X, 1/2 < X < 1. Thus the L2 norm of u is
bounded from below as t- +o0 even as the damping becomes arbitrarily large.
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CONTINUOUS DEPENDENCE AND INSTABILITY
IN LINEAR THERMOELASTICITY*

N. S. WILKESS.

Abstract. We consider the linear theory of thermoelasticity. By means of a modification of the method of
logarithmic convexity, certain results are proved concerning the continuous dependence and instability of the
system in the case where the elasticity tensor is not positive definite.

1. Introduction. This paper is concerned with the theory of small disturbances
superposed upon an initially stressed equilibrium state of a thermoelastic solid, that is a
linear theory of thermoelasticity. Such a theory was considered first by Green [4] who
formulated the equations of motion, and these can be written in the following form, cf.
Knops and Wilkes [7],

(1.1) (dijklUk,l),j -t-(fijO), pii,

(1.2) 0 cfiiai,j (aijO,j),i

where ui is the displacement from the equilibrium state and 0 is the temperature
disturbance from the constant equilibrium temperature.

The physical quantities in equations (1.1), (1.2) are the elasticities dijkl, the
conductivity tensor aih the stress temperature tensor fii, the density p and the prescribed
constant c. The elasticities and the conductivity tensor are assumed to satisfy the
symmetry conditions dikl dkli and ai ai. Here we shall be concerned with various
aspects of stability of these equations.

We consider equations (1.1) and (1.2) in an open, bounded, connected region of
3, which is assumed to have a regular boundary and we postulate homogeneous
boundary conditions of the form

(1.3) ui=O ontr

(1.4) nidiiklUk, + nifiiO 0 on 0Y3 o"

(1.5) 0=0 one
(1.6) niaiiO, 0 on OY3 E

where n is the outward unit normal to 0, and where eitherO o- orO 5; is assumed
to be empty. We further assume that u,/ and 0 are prescribed in at time O.

In the study of the stability of the system, a fundamental result is the energy
conservation law. It is easy to show that the quantity J(t) defined below is conserved, i.e.

J(t) =-- 02 dV + 2 aiiO,i(z)O,i(z) dVdz + c pllilfli dV + c diiklUi,iUk, dV
(1.7)

(0).

Using this result, together with the assumed positivity of c and aij, Knops and Wilkes [7]

* Received by the editors March 28, 1979.
5" Department of Mathematics, Heriot-Watt University, Riccarton, Currie, Edinburgh. Currently at

Engineering Sciences Division, A.E.R.E. Harwell, Oxfordshire, OX11 0RA, England.
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prove a simple stability theorem in the case where diikt is positive definite in the sense
that

(1.8) I diiklijkl dV >= do I iiii dV

for all :ii and for some do> 0. They show that if J(0) is initially small, then puiui dV
and 02 dV remain small for all time. In this case, the asymptotic stability of the
system has also been demonstrated by Dafermos [2], [3] and Slemrod and Infante [10].
Results on stability have also been obtained by Brun [1] and Levine [8].

In this paper, we shall consider the case in which diikl is not positive definite in the
sense of (1.8). This case has been considered previously by Knops and Wilkes [7] and
also by Knops and Payne [5]. Knops and Wilkes showed that in the case where diikl was
actually negative definite in the sense that

(1.9) I diiktiikl dV <=-d I ,iiij dV

for all :ii and some d > 0; and when fii satisfied a bound of the form

(1.10) fijfii

with d > cM, the solution had quadratic growth, provided the initial value of J(O) was
negative. Knops and Payne, while not requiring and negative-definiteness of dik, also
needed a bound on the derivative of f of the form

(1.11) ],]Ak.k M
in order to prove a theorem on continuous dependence. We shall describe their result
more fully later.

Here it is our intention to prove, without requiring dilkl to be negative-definite, that
for certain prescribed initial conditions the solution to the system (1.1), (1.2), has
exponential growth. Further continuous dependence results will also be proved which
complement those of Knops and Payne.

The method of proof will be a modification of the logarithmic convexity technique,
which has been used, for example, in the linear theory of nonthermal elasticity by
Knops and Payne [6]. (As a general reference on the logarithmic convexity technique,
see also the expository article of Payne [9].)

2. The logarithmic convexity inequality. From this point on, we shall assume that
the conductivity tensor ai is positive definite, in the sense that

(2.1) aiiii aoii
for some a0 > 0. We shall also assume that c > 0, which is analogous to the restriction
that the specific heat be positive. We consider the measure F(t; b, to) defined on the
solutions to the system (1.1), (1.2) by

F(t; b, to) puiui dV+- ai O,(s) ds + h,
(.)

x ( O,(s) ds + ddV + b(t + to)

for positive b and to, where h is to be determined later from the initial data. We shall
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show that this measure satisfies an inequality similar to a logarithmic convexity
inequality.

We first of all proceed to compute the first and second time derivatives of
F(t; b, to). Thus

P(t; b, to) 2 puitJi dV+- aq O,i(s) ds + h,
c

(2.3)

Io( O,(s) ds + h, dV+2b(t + to),

(2.4) F(t; b, to) 2 0dV+ 2 Oua dV+- O,a O,(s) ds + h, dV + 2b.
c

Substituting for P/i from (.1.1) and integrating by parts we can rewrite this as

P(t; b, to) 2 Ipft,a, dV-2 fdiklU,,iUk.t dV-2 I u,.ifiiO dV

We can also substitute from the energy balance law (1.7) to obtain

iO(t; b, to)= 4 pa,fi dV-2j(O)+- 0 dV+- a,O,i(r)O,,(r) dVdr
c

(2.6t
-2 fUi.if,iO dV-2 O(aii(Io’ O’i(s)ds+h,,)),i dV+ 2b.

Integrating equation (1.2) with respect to time, we obtain that

(2.7) O-ciuu O(O)-cfquu(O)+\( aiO,i(s) ,.

Hence if we define h to be a solution of

(2.8) (ai,.h,,),i 0(0)- cfiuia(O)

subject to the same boundary conditions as the temperature, that is

(2.9) h 0 on E,

(2.10) naih,i 0 on 0

then h exists provided has positive measure with respect to 0, and

I 4 I Io’ 2j(O)(2.11) P(t; b, to)=4 pftiftidV+- a#O.i(r)O,(r)drdV- +2b.
c c

We note that

l Iaij(IotO’i(s) ds+h")(Io’O’i(s) dV-1I
(2.12)

=2 Ie Iot O’i(’)aii(Io O’i(s) ds+h")
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It then follows by Schwarz’s inequality that

F(t; b’ t)ff’(t; b’ t) (l+(t’ b’ t)
l

aijh,jh,idV) 2

(2.13)
--> -(c2-j(O)+ 2b)F(t; b, to).

We note that in the special case in whiCh the initial conditions satisfy

(2.14) 0(0) cfiu,.i(O) 0

so that h 0, then the inequality (2.13) reduces to the form of logarithmic convexity
found in classical elasticity. (See Knops and Payne.)

In the next two sections, we will use inequality (2.13) to obtain results concerning
the continuous dependence and instability of solutions to the system (1.1) and (1.2).

3. Continuous dependence. Let F(t) be defined by

(3.1) F(t) F(t; O, 0).

F(t) then satisfies the inequality

(3.2) F(t)(t)-((t)-l-c f a#h"h’idV) 2-2J(O)F(t)’c
We will consider continuous dependence only on a finite time interval [0, T]. We will
consider two cases: first we shall discuss continuous dependence for solutions with
J(0) <= 0 and then we shall discuss solutions with J(0)> 0.

Firstly, when J(0)=<0, define Hi(t) by

(3.3) H(t) lg F(t) +T"- I a’h"h’

It follows from (3.2) and (2.11) that

(3.4) /:jr1 (t) => 0.

Hence, by Jensen’s inequality

T- I { r V}
1-tIT

(3.5) F(t) +----- aijh,h,idV <-_ F(O) +- aih,ih,d F(T)/.
c

Thus solutions within a class for which F(T) is bounded are H61der continuously
dependent upon the initial data on compact subintervals of [0, T).

Secondly, when J(0)>0, define H2(t) by

(3.6) HE(t) log F(t) + a.h,ih,dV + J(O) + 2.

Then, again from (3.2) and (2.11), it follows that

(3.7) /-2(t)
_
0

and by Jensen’s inequality

T-t! 1
F(t) + aoh,h,idV +-J(0)c c

(3.8)

!q+T 1 }l-t/T{<= etr-’) F(O) aiih,ih,idV +-J(0) F(T) + l-j(0)
c
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Thus, again, solutions within a class for which F(T) is bounded are H61der
continuously dependent upon the initial data on compact subintervals of [0, T).

We note, however, that the continuous dependence described by (3.8) is weaker
than that of (3.5) as J(0) must also be small.

In their investigation into the continuous dependence upon the initial data of the
system (1.1), (1.2), Knops and Payne [5] further assumed that the tensor fij and its
derivative satisfied bounds of the form (1.10) and (1.11). By considering the logarithmic
convexity of a function F*(t) defined by

(3.9) F*(t) pui(z)ui(z) dVd-+(T-t) pui(O)ui(O) dV+ y

for some nonnegative constant 3’, they deduced that for solutions within a class defined
by the inequality

T

(3.10) IO I pui(T)ui(T) dVdz<-N2

the following inequality was satisfied:

Iopui(z)ui(z) dVdz<-_KxNa Ka pui(O)ui(O) dV+K3 ptii(0)tJi(0) dV

(3.11)
+ K4 dijui,(O)u,(O) dV +Ks 0(0)a d

for computable constants Ki and where 6 is given by

(3.12) 6
1 exp (-Kot)
1 exp (-KoT)"

It can be seen that in some ways this result is stronger than the present result in that
the temperature does not need to satisfy any bound at time T and also the quantity

aqh,ih, dV need not be small. We include the results (3.5) and (3.8) to complement
the results of Knops and Payne, and for the sake of completeness of the analysis.

4. Instability. We study instability directly from inequality (2.13). Suppose J(0)<
0 and let the arbitrary constant b satisfy

J(o)
(4.1) b -.

C

It follows that

(4.2)

and by writing

(4.3)

(4.4)

(F(t; b, t0)P(t; b, to)- P(t; b, to)--1 a,h,h,id 0

a,h,ih,idV
C

F(t; b, to)(t; bo, to)-/(t; b, to)2-> -L(t; b, to).

As F(t; b, to) never vanishes this is equivalent to

d {/(t; b, to)I> L(t; b, to)
(4.5) d-- ff; b, to) ---F(t; b, to)2’
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and this inequality can be immediately integrated to give

(4.6)
P(t’, b, to)-L

>_
P(O’, b, to)-L

F(t; b, to) F(0;b, to)

By choosin the arbitrary positive constant to to be large enough, we can satisfy

(4.7) /(0; b, to) > L,

and then (4.6) can itself be integrated to give

F(0; b, to)/(0; b, to)1/(0; b, to)-L) F(0; b, to)L
(4.8) F(t; b, to) => P(0; b, to)-L

exp / F(0; b, to) } t-p(0; b, to)-L"

We have thus established that F(t)=F(t; 0, 0) grows exponentially for large time,
providing J(0) can be chosen to be negative.

Now F(t) is given by

(4.9) F(t) puiui dV +- ai Oq(s) ds + h, O,i(s) ds + h,i dz dV
c

and it is of interest to examine the growth of the two components of F(t). We first
consider two methods for investigating the growth of the norm Ipuiui dV of the
displacements.

Firstly, let us consider the function G(t) defined by

(4.10) G(t) fpuuidV lI/ot (Io" i)(Io" )a O,i(s) ds + h, O,i(s) ds + h,i dr dV + at.

for some positive constant a.

As before we can compute the first and second derivatives of G as follows:

(4.11) t(t) 2 f pu ft dV 1I (Iot i) ( fo’ i)aii O,i(s ds + h, O,i(s) ds + h, dV + a,
c

(4.12) O(t)=2 ptJilJidW+2 puiigdV -2 O, iaii 0,i(s ds+h,i dV.
c

Substituting from the equations of motion (1.1), (1.2) and also for h from (2.8), we
obtain that

(4.13) t(t) 2 pfiifii dV- 2 diiklUi,iUk, dV-4 fiiuidO dV+- dV.
c

Hence, in the special case in which the elasticities are negative definite, in the sense of
(1.9), and the tensor hi is subject to the restrictions (1.10), (1.11), it follows that

(4.14) t(t)----> 0.

On integrating twice, we find

(4.15) G(t)>-G(O)+(O)t
and by choosing a appropriately, we may choose t(0)> 0. It is then clear, by adding
F(t) and G(t), that in this case puiui dV exhibits exponential growth for large time.
We note that this is precisely the case in which Knops and Wilkes i-5] were able to show
quadratic growth.
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Secondly, let us additionally assume that fij is subject to bounds of the form (1.10)
and (1.11). From the equations of motion (1.2) and also (2.8), it is easy to derive the
following relation"

f (IoO(s) ds + h)2dV+ 2 IIoaij(fo O,(s) ds + h,)
(4.16) ( O,i(s) ds + h, dr dV

(Io2c fiiui,i O(s) ds + h dV+ h2 dV

=-2c I IotUi[fii(I’o O(S) ds + h)],jdV+ I h2 dV.

By using Schwarz inequality and Poincar6 inequality (provided Y_, is nonempty), we can
then obtain an inequality of the form

(4.17)
I (fotO(s) ds + h) 2

dV + f Io’ai(IoO,i(s) ds + h,i)(IoO,(s) ds + h,) d’r dV

Iofo<-- h 2 dV +K puiu dr dV

for some positive computable constant K. (A similar inequality was used by Knops and
Payne 15, equation (3.9b)] in their investigation into continuous dependence).

It follows from (4.17) that in this case

L !olo(4.18) F(t)<-_ puudV+K pUi(7")Ui(’l’) drdV+ h2 dV,

and hence it is easy to show that i0 pu(r)ui(r) dr dV must grow exponentially for
large time.

From this it can further be shown that there exists a sequence {t,} o for which
tn pui(t,)ui(t,) dV is exponentially large and we thus have instability with respect to
the weighted L2-norm of the displacements.

We next proceed to investigate the growth of the norm of the temperature, that is

f fo’ai(foO,,(s) ds + h,,)(fo" O,(s) ds +h,) drdV.

Clearly, in general, it will not be possible to show that it has exponential growth,
because in the special case in which fi--0, equation (1.2) reduces to the classical heat
equation which is known to have bounded solutions.

When fi is not identically zero, it remains an open question whether the tempera-
ture norm grows exponentially or not. However in certain one dimensional examples,
equations (1.1) and (1.2) can be solved explicitly and the temperature norm does indeed
grow exponentially.
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ASYMPTOTIC EXPANSIONS OF INTEGRALS WITH OSCILLATORY
KERNELS AND LOGARITHMIC SINGULARITIES*

JUDITH A. ARMSTRONGt AND NORMAN BLEISTEIN"

Abstract. This paper is a follow-up to an earlier paper by Bleistein which derived asymptotic expansions
of integral tranforms of functions with logarithmic singularities. That result dealt with exponentially decaying
kernels. In this paper the results are expanded to include the case of general oscillatory kernels---e.g., Fourier
or Hankel transforms. The results also include kernels such as Airy functions of negative argument and
oscillatory Weber functions.

1. Introduction. We shall develop the asymptotic expansion of a class of integrals
of the form

T

(1.1) I(h)= J0 h(ht)f(t) dt, h

For this class we shall assume that h(t) is an "oscillatory" kernel; that is,
oo N(m)

(1.2) h(t)’exp{itoy} E E a,,nt--rm(logt) n, t.

Here, Re r and N(m) is finite for each m, and v real, 0. We assume that h
and [ are infinitely differentiable on (0, T). Furthermore, f(t) is assued to vanish "C
smoothly" at T < 1.

Thus the integral I(h) is one which might arise from a more general integral by
applying the appropriate van der Corput (1948) "neutralizer" to isolate the critical
point at the origin. The class of integrals is further distinguished by the nature of [(t)
near the origin, namely

(1.3) (t) E E c.t(log t)-", t0+.
m=0 n=0

Here, Rea, N(m) is finite for each m, and the fl,’s are any complex numbers.
Furthermore, we assume that the asymptotic expansion of any derivative of [ is
obtained by differentiating (1.3).

This work is a continuation of an earlier paper by one of the authors, Bleistein
(1977), in which h(t) was instead an "exponential" kernel-iw in (1.2) replaced by a
negative real number. Unfortunately, the method of proof of that paper does not suce
here. The relevant literature for both classes of integrals is cited in that earlier paper and
will not be repeated here. We do remark, however, that, in comparison to the earlier
literature, the distinguishing feature in both classes of integrals is that the coecients
fl, may be something other than nonnegative integers.

In the interim between these two papers, Wong (1977) and Wong and Lin (1978)
have derived results for the Fourier transform and the Hankel transform. These are
special cases of the results given here. In these two papers the nature of the particular
kernel is exploited and factors of the form occuring in f(t) are viewed as multipliers
of the kernel in order to derive the asymptotic result. The method of proof here is more
general and allows statement of the asymptotic result for arbitrary oscillatory kernels.

* Received by the editors July 20, 1977, and in final revised form May 29, 1979.

" Department of Mathematics, University of Denver, Denver, Colorado 80208. This research was
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The reader unfamiliar with asymptotic techniques will find these results useful when
dealing with such common kernels as Weber functions or Airy functions of negative
argument.

To carry out the analysis below, we shall further assume that h(t) is locally
integrable on (0, oo) and

(1.4) h(t) O(t-a), 0/, a <Re ro, Re ao-a >-1.

2. Technique of integration. We shall calculate the asymptotic expansion of I(h)
by the Mellin transform technique. (See Bleistein and Handelsman (1975), Chaps. 4-7.)
To do so we define

(2.1) M[h(t); z]= t-ah(t) dr, z x + iy,

(2.2) M[f(t); 1 z] t-f(t) dt, z x + iy

and use the Mellin-Parseval theorem to write

1 fc+ic A-ZM[h; z]M[f; 1 z] dz.I(1) -i
We shall now quote results about this integral. They are proven in the above cited

references and in the papers by Handelsman and Lew listed in the references.
(i) M[h; z] exists and is analytic for a < x < Re r0.
(ii) M[h z may be analytically continued as a holomorphic, function to the right

half plane Re ro < x, however,

(2.4) M[h; z]- O(lYl(-Rr)’-1/2), lyl. cx3, x fixed;

that is, its rate of growth on vertical lines increase with x.

(iii) M[[; 1- z] is analytic for x < Re a0 + 1
(iv) For the Bromwich contour in (2.3)

(2.5) a < c < Re ao + 1.

The asymptotic expansion of I(h) is generated by replacing the Bromwich contour

by a sum of loop integrals around singularities of the analytic continuation of M[f; 1-
z plus a vertical contour further to the right. The asymptotic expansion arises from the
loop integrals while the integral on the vertical contour is explicitly of lower order in h
than the original integral. To allow for the deformation of contour, we must impose
conditions on f(t) which will insure sufficient decay of its Mellin transform, thereby
compensating for the growth of M[h; z].

We now state Theorem 1 which concerns M[[; 1- z].
THEOREM 1. Suppose f(t) locally integrable on (0, 1) with an expansion

N(m)

f(t) , , C,nt%" (log t)"", 0,
m=0 n=0

where Re a,,To and N(m) is finite for each m.

In Bleistein and Handelsman (1975), the result with "greatest integer less than" (x -ro)/v is proven in

Chapter 4 and (2.4) is outlined in the exercises in Chapter 7 as a straightforward application of the method of
steepest descents.
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Then

(2.6)

(i) M[f; 1 z] is analytic for x < Re ao + 1.
(ii) The analytic continuation ofM[f; 1 z to the right takes the form

M[f; l-z]= E
Re (am-ao)<:k

N(m) i’rrl3, c..e F(B’, + 1)
.=o (a.,+l-z)

+ E" c""(c"+l-z)-
0...=-I (1-1)!

log (z ce" !)} + Mk(z).

Here, in Y.,*, we exclude the terms with 3", a negative integer, while, in ", we include only
terms with ’, a negative integer. The function Mk (z) is analytic for x < Re ao + k + 1
and the result is correct for any k.

(iii) M[f; 1-z]= O(y-k), any k, as y--)oo.
The form of (2.6) exhibits the singularities of M[f; 1- z] in x < Re ao + k + 1 but

suggests growth of M on vertical lines. In fact Mk(z) compensates for this growth to
make (iii) true but Mk (z) has no singularities in x < Re ao + k + 1.

Results (i) and (ii) were proved in Bleistein (1977). The proof of (iii) is given in the
Appendix.

From Theorem 1, we see negative integer powers of /3",, lead to logarithmic
branch points, nonnegative integer powers lead to poles, and all other/3,,, lead to
algebraic branch points.

The principal part in the expansion of M[f; 1 z about such singularities takes the
following form:

Case 1:/3.,, =>0.

1t" (log t)’" --)- + 1.
(z-a,,- 1)

Case 2:/3.,, < 0.

t’.. (log t)o... __)
(z-a.,- 1)1-1

(/- 1)!
log (z -a.,- 1).

Case 3:/3.,. not an integer.

t"" (log t)’’" --)
ei"t3"" [’(m. + 1)
(a., + 1- z)t’"+l"

3. Main result. We can now state the main result about the asymptotic expansion
of I(X).

THEOREM 2. LetI(h), given by (1.1) be an absolutely convergent integral with fand
h locally integrable on (0, o)and h satisfying (1.2) and (1.4) with Re ao-a >-1, then
with f neutralized about 0 and f =- 0 for >-_ T, !(h has the expansion

(3.1)

N(m)

I(h E E* c,,,F(B,,, + llJ(a,,, fl,,, ,
Re (cm-(xo)<k n=O

N(m)

+ E .’ c.,-------- l, A) + O(l-a-l-k+e), any e > O.
Re(,,,.-,,o)<k =0 l 1):

Here, for each choice of n, * indicates those mn’s for which/3.,, is not a negative
integer, while Z’ includes exactly those mn’s for which/3.,, =-l, a negative integer.
Also, the functions J and K are defined respectively by (3.2) and (3.6).
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As we shall see, the functions J and K are related to an ordered asymptotic
sequence with increasing Re a,,. Their definition is fairly complicated but their asymp-
totic expansions are more straightforward.

Recall I(h) is given by (2.3) repeated here:

A-ZM[h; z]M[f; l-z] dz.

Also recall the earlier comment on M[h; z] stated after (2.3).
We need to consider I(X) with M[f; 1 zl taking the form (2.6) with the estimate

(iii) below that equation.
Thus, we may deform the Bromwich contour to the right an arbitrary but finite

distance, so long as we include loop contours around the singularities of (2.6).
To study the contributions from the singularities in E*, we define

(3.2)
e ir3

)-t-IJ(a,,h)= (a +l-z h-ZM[h;z]dz,

where the contour is taken around the singularity at z---a + 1. Here we envision
retaining only the relevant principal part of M[f; 1 z with respect to a given singular
point, or each such point in E* in (2.6). We must look at two separate cases.

Case 1:/ l, a nonnegative integer. In this case, J(a, l, A) is given as a residue of
the integrand at a + 1. So

{A -ZM[h z ]}[z +,.

(3.4)

with

Case 2:/ l. The result is

Cj e ia (log A )a-J

M(j)[h ce + 1
(3,.5) c;

This is derived by Watson’s lemma for loop integrals (see Bleistein and Handelsman,
(1975), p. 162) with large parameter log h.

We must also deal with integrands arising from the second sum in (3.1). We define

(3.6) g(a,l,h)=- h-z(a+l-z)-llog(z-a-1)M[h;z]dz.

The result is

(3.7) K(o, [, ) ""/--a--1 C/.
y

(log )-l-J,
j=0

with Cj determined by

C] zj+l_(3.8) z-lM[h;z + a + 1]= Y.

This is derived in the same manner as (3.5). For explicit details on the above contour
integrals we refer the reader to the earlier paper by the second author.
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Now, by referring back to (3.1), let us comment on the nature of the asymptotic
sequence. As the contour is "moved" to the right, the singularities am + 1 are encoun-
tered beginning with ao + 1, continuing with increasing m. Consider the possibilities for
the contributions from ao + 1. If flon is a nonnegative integer for all n, then we obtain a
finite expansion in powers of log A for each flon from (3.3). We would then proceed to
a + 1. However, if/o, is other than a nonnegative integer, for some n, we obtain from
(3.4) an infinite expansion in powers of log A at ao + 1, and that/3o,. In this case, it makes
no sense to proceed to a + 1, since it is already of lower algebraic order in h and hence,
asymptotically zero with respect to the sequence

{A -’-(log A )-eo,-}.
If tim, are all nonnegative integers, we have the case

(3.9) nY.o Cmn { -ZM[h z
Re (tm--co)<k

Only in this very special case does one obtain contributions from each sin,gularity as the
contour moves to the right. If one/,, is not a nonnegative integer, the loop integral
around am + 1 has an infinite expansion in powers of log A of the form J or K.

We shall close this section with examples. We consider the integral

(3.10) I(A) | h(t)lln t] 3/2 dt.
Jo

Here f(t) is a single term of the form (1.3) with

(3 11) ao 1, Boo 23- 3i/2
Coo e

the last being chosen so that

(3.12) Coo(In t)3/2-" Iln t] 3/2

is real and positive for 0 < < 1.
Our asymptotic expansion will be of the form (3.1) with only terms of the form

J(ao, floo, ) since fl00 . We have

(3.13) I(A) cooF(floo + 1)J(ao,/300, A ).

A two-term expansion of I will be

(3.14) I(A )----iF() [ Co
with

-/(log h)3/2 -/(log h)1/2]

M(i)[h ao + 1]
(3.15) C.

In (3.14) a two-term expansion is used in order to see the imaginary part. Note also that
the relative error is O{(log A)-2}. For

(3.16) h(t) e ’, ao 1,

we obtain

(3.17) Co= -1, C1 -(1-y)-i(zr/2)

where y =.57721, the Euler-Mascheroni constant (see Erd61yi (1954)). This agrees
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with the result which would be obtained by Wong and Lin (1978). For

(3.18) h(t)=J(t), ao=l,

we obtainz

(3.19) Co
2F(2 + V)2

which would agree with Wong. Using (3.14), we can also derive the result for

(3.20) h(t) Ai (-t),

where3

(3.21)
l d[3((2z/3)-(7/6))r( )r(Z+l)sin(ZrzC1

7’/" 3 + z=2

and for

(3.22) h(t) D(ei(=/4)t),

-iv/2((3+)/2) ( 1-v’3-V’-l)(3.23) Co F
2 2F(3 v)

and

(3.24)
-i d .4-r(z)2(z+l-v)]2 (F z+l l+v z+l-/x

-1C1-2 dz F(Z+-v) 2 2 2

We return to the case with h(t) given by (3.16). Inserting Co and Ca into (3.14)
gives the result

(3.25) I(A )---
(logA)3/2 3

+(.42279 + 1.57079i)
(log h)/

h 2 h 2

A numerical integration of (3.10) was carried out using Simpson’s rule. In Table 1 we
tabulate I(A) for A 10, 50, 100 and compare it with the results for the real and
imaginary parts of I() obtained by numerical integration. We tabulate log A as well,
because it is the "large" parameter in the asymptotic result. Note that the results are
surprisingly good for log as small as 3.912. We also include (log )-2 to give an
indication of percentage error to be expected from a two term expansion with leading
order (log A)3/2 and error term O{(log h)-l/2},

ZSee Erd61yi (1954).
See Appendix in Bleistein and Handelsman (1975).
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TABLE

10 50

log h
(log h )-2
ASYMPTOTIC RESULT
Real Part
Imaginary Part

VIA SIMPSON’S RULE
Real Part
imaginary Part

RELATIVE ERRORS
Real Part
Imaginary Part

2.3025
.189

-.0252
.03575

-.01647
.03199

34%
10.5%

3.9120
.O65

-.002593
.OO186

-.002497
.00183

3.7%
1.6%

lOO

4.6051
.047

-.OOO85216
.00050562

-.000825
.000496

3.1%
1.9%

Appendix. Here, a proof of Theorem 1 (iii), as provided by the referee, will be
presented.

Define

N(m)

(A.1) Sk(t) E Y’. c,,,,t’"(log t)t’"(1 t’)L
Re (am-co)<k n=0

for 0<t < 1, and Sk(t)----O for _-> 1. Set

f(t) =f(t)-S(t).

Then, or any sufficiently small e > 0, we have

(A.2) f(t)=O(t%+-) as t0+.

in (A. 1) we choose L to be so large that

(A.3)
dt

(log t)o""(1- tk) 0
t=l

for all/.n in Sk(t) and] 0, 1, , k 1. The factor (1 k) is introduced to assure that
f(t) and Sk(t) have the same asymptotic expansion to order Re ao + k-e; see (A.2).
From (A.2)we have

(A.4) M[fk; l--z]= O([y[-k)

for all x < 1 + Re ao + k e. This follows from Lemma 2 in [Handelsman and Bleistein
(1973)]. Here we have used the assumption on the differentiability of the expansion
(1.3).

Now we consider M[S.; 1- z]. A typical term in the sum takes the form

(A.5) I(z) | (log t) (1 tg) dt.
Jo
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Integrating by parts k times gives

(A.6) i(z)= I-i (a-z+n) -+ {(logt)O(1-t)Z}dt.

All the boundary terms vanish in view ot[ (A.3).
The representation in (A.6) is an analytic continuation of I(z) from x < Re ce + 1 to

x < Re a + k + 1. From (A.6) it follows that, for x < Re a + k + 1 and

(A.7) I(z) O(]yl)-.
Since there are only a finite number of terms of the form I(z) in M[S 1 z], we also
have

(A.8) M[Sk; 1 z]

for x < Re ao + k + 1 and lYl co. Coupling the results (A.4) and (A.8), we have

M[f; 1--z]=M[$k; 1--z]+M[fk; 1--z]=O(lyl-)
for x < Re ao + k + 1 and lyl-

Note that the "k" in the proof is not the same as given in (2.6), and that it can be
taken sufficient large to compensate the growth of M[h; z].
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SYNTHESIS OF POLYNOMIC SYSTEMS*

WILLIAM A. PORTER’

Abstract. With H a Hilbert space and {(xi, yi): 1, , m}cH xH a basic problem is to determine
the existence and uniqueness of causal functions, f, on H satisfying y fxi 1, , m. The present paper
considers classes of polynomic functions which minimize an operator norm. The results include explicit
necessary and sufficient conditions and an explicit synthesis procedure for realizing the resultant polynomic
functions.

1. Introduction. The identification and/or representation of a ’black-box’
phenomena from external measurements is a mathematical problem of contemporary
interest. Several lines of development have a rich associated literature. Automatic
control theorists, for example, have been pursuing the identification problem for linear
dynamic systems (see the survey [1]).

In the nonlinear setting the representation of a black-box by polynomic or
multilinear models has had a recent resurgence of interest (see the survey [2]). Such an
approach is essential where the input-output behavior is nonlinear even for small
signals. A recent article by Palm and Poggio i3] has underscored the importance of
polynomic modeling, i.e., Volterra-Wiener expansions, in the biological system
domain.

The problem treated here can be construed as an identification problem. We start
with a collection of observed input-output pairs {(ui, yi): 1,..., m}. From these a
polynomic map, , is constructed such that

(1) Yi (I)(ui), 1," m.

If the pairs are derived from experimental observation then the map is obviously a
representation of the black-box, valid over existing data. However, because the
procedure is constructive and is valid independent of the source of the pairs, it is also a
synthesis tool for polynomic maps.

For perspective and to sharpen this introduction we turn first to a review of relevant
existing results.

2. Recent results. In reviewing the results of [4], [5], [61 it is convenient to focus
specifically on the Hilbert space La(u) over the finite or infinite interval, v, and equipped
with the usual inner product. We shall need also the orthoprojector family {pt. u}
given by

(2) (P’x)( I
x (13 )’ -<_t,
0, /3>t.

A function f" L2(v) L2(v) is causal provided ptf ptfpt, all v.

The set {(ui, yi): 1,..., m} is said to be linearly well posed if it satisfies the
condition

(3) E i(ptui) 0 E i(ptyi) O, all v.
i=l i=1

In [4] it is shown that linearly well-posed sets admit a causal linear map, , satisfying (1).

* Received by the editors March 20, 1978, and in final revised form June 25, 1979. This work was

supported in part by the Air Force Office for Scientific Research under Grant 78-3500.

" Department of Electrical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803.
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In addition one such map is explicitly constructed. In [5] the linear solution is shown to
have a state realization embodied in a family of tn linear differential equations.

When the set {(ui, yi)" 1,. , m} is not linearly well-posed then [4] provides a
causal polynomic map satisfying the input-output constraints. This polynomic map is of
order tn- 1 (we shall clarify ’order’ later) and is by no means unique.

A related development, [6], considers the polynomic approximation of continuous
functions on LE(p). In particular if K c L2(/,’) is an arbitrary compact set and if, J’, is a
continuous causal function on L2(,) then [6] shows the existence of a causal polynomic
map, ]e, on L2(p) such that

sup f u f u )ll <
ug

holds for arbitrary e > 0. Moreover [ has a state variable realization which is linear in
state behavior and polynomic in its state to output map.

In the present paper we supplement the results cited above in the following fashion.
First a norm is specified on the class of polynomic operators. This norm is minimized
with respect to the constraints of (1). As in the earlier studies an explicit test for
existence of minimal and subsequent explicit synthesis procedures result.

3. Polynomie functions. In this study we consider first operators, , on L2(p) of
the form

(u)(t) =,b0(t)+ _[ bl(t, al) -- _f_[ b2(t, al, a2)U(Cgl)U(2)-[-

(4)

where the differentials da 1, , dan have been suppressed for simplicity. Without loss
of generality the kernels 4j(t, ’) are assumed symmetric in the al variables. The map
Pj computed by

(Piu)(.)= I’"t, I i(’’l""" /)U(al)"""

is said to be a ] power map. The map b of (4) is said to be polynomic of order n. We note
that is not causal and will make suitable modifications later.

We shall assume that each kernel satisfies a Hilbert-Schmidt type condition
namely that

and compute a norm on by

(6) I111=-- IIe=ll=.
j=O

In our study we shall keep n finite. The limiting case as n oo requires a modified
We note that such modifications have been extensively studied by Dwyer [7], and others
under the heading of Fock spaces.

During review, the recent work of L. Zyla and R. J. P. DeFigueredo were brought to the author’s
attention [8]. In [8] interpolating spline theory is exploited in a Fock space setting to study noncausal analytic
interpolations. Having available the present manuscript, reference [8] has been extended to include causality
properties [9].
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To solve the constrained minimization problems the Lagrange multiplier method
will be utilized. In short the functional

(7) J() II[I2 + E (a,, y,-(u)>
i=1

where (.,.) denote the L2(v) inner product, is formed. The kernels used to form
are varied independently. The first variation condition, 6J 0, is examined. Since a
clear pattern will emerge from these steps it is sufficient to consider the case n 2 in
detail.

For n 2 we have

and

where dai have been suppressed and all integrals are over v. Using elementary
manipulations it follows that

(8)
6llllz---21 {Co(t)o(t)+ I

c,/3) a2(t, a,/3)} dt.

By similar computation we have

(9)

6(a,, yi-(u,))=-I a(t)[6&o(t)+ I u,(a) 6qb(t, a)

+ I.[ u,()u,(t)a4,(t, a, t)] at.

In view of (7), (8) the condition 6J 0 then yields the equations

2&o(t)- E hi(t) O,
i=1

(lO) 2(t, c)- E ai(t)ui(a) O,
i=1

2z(t, a,/3)-
i=1

The original constraint set remains,

(11) y(t)=o(t)+
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Substituting (9) into (10) in the obvious fashion produces

2yi(t) Ai(t) + 2 u(ot)ui(a)Ai(t)
]’=1 I=1

(12)

+2._ u(a)u()ui(a)ui()(t), = 1,’’’, m.

To simplify notation we introduce the definition

(13) (m, 2)= 1 +(u, u)+(u, u)

and form the rn x m symmetric matrix

(14) V(m, 2)= [x0.(m, 2)].

Letting y(t)=col (y(t), , ym (t)) and I (t)=col ((t),..., (t)) the vector form ot
(11) is apparently

(15) 2y(t) V(m, 2)h (t).

Assuming invertibility for the moment we have an explicit solution for h (t).
Returning now to (.9) let us define the m-tuplets rri by

ro row (1, 1,. ., 1),

(16) T/’I(O) =row (Ul(O), u2(o), um(og)),

ra(a,/3) =row (u(c)u([3), u,()u,([3)).

In view of (9) and (14) we have

qbo(t) 7ro V(m, 2)-y(t),

(17) &(t, a) = Try(a) V(m, 2)-y(t),
&2(t, a, )= T/’2(t;X, ) V(m, 2)-y(t),

as the explicit construction of .
Several observations are available which refine and sharpen our result. With regard

to the functions/xi(m, 2) of (12) we note that one term 1 (u, u) is directly attribut-
able to the assumption of a o # 0 in (4); similarly the terms (u, ui) and (u, ui)2 follow
from the assumptions &l # 0 and t2 # 0 respectively.

To generalize then we consider the class of all power maps Pi satisfying (5) for finite
]. Let be any finite subset of the integers. Let by any map of the form

It is easily shown that the variational method utilized above needs only trivial adjust-
ments. One adjustment is that the definition of/zii(m, 2) is replaced by

tx,i(m, )= X (u,, ui).
The matrix V(m, ) replaces V(m, 2) with the result that (14) remain valid. The

tuplets ri(a,..., ai) ]>2 are defined as the obvious extension of the pattern
evidenced in (15). The kernels i=rV(m, )-ay for ]e are well defined and
meaningful in the context of synthesizing the requisite .

Example 1. For the linear case we take = {1}. it is apparent that V(m, {1}) is the
Grammian matrix of the set {u, ,, u,,}. Hence V is invertible if and only if this set is
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linearily independent. The linear map constructed, namely

Plu y(t)*V(m, {1})-1 f 7r(a)u(a)ba,

is easily seen to have the requisite input-output properties; moreover null space
(P1) span {ul," , u,}+/-. We noted earlier that (5) was a Hilbert-Schmidt assumption
and hence it is not surprising that our solution has, in the above sense, a maximum null
space.

Example 2. The ane solution is also easily reviewed and for this we take
{0, 1}. The matrix V(m, {0, 1}) is the Grammian of {u,. , u} with 1 added to each

entry. For example with m 2 it is easily verified that

det V(m, {0, 1})= Ilul- uz[I +]luli[[ul[-[(Ul, u>l.
Clearly then the condition U u, rather than linear independence, suces for a
solution. In general an ane solution will exist provided rank {u,..., u}m-1.

To summarize our results we present the following theorem.
THEOREM 1. A minimal map forJ(. exists gand only gy(t) Range V(m, )

a.e. . If V(m, ) is nonsingular the solution is unique and given by

0 Z i(’, ", ")V(m, )-ly(.).

Proof. It suces to note that if y(t) Range V(m, ) a.e. then any left inverse of
V(m, ) solves (14) for . Using (9) this suces to construct the solution kernels.

4. Causality. In the preceding sections the maps in question were not causal.
Many applications., however, require a synthesis procedure which guarantees a causal
solution. The causality requirement, which was incorporated in [4], [5], [6], can be
added to the present development without great diculty.

The simplest change in the development of 3 is to add the assumption

i(t,l,’’’,aj)=O, anya>t, j=l,...,n.

We shall also assume that variations 8i are taken only over kernels with the same
property.

The variational method of 3 proceeds to (7), (8) without diculty. Envoking the
causality requirement we have

J()=Idt{(2o(t)-Aj(t))o(t)W [2l(t,)-Ai(t)uj()]l(t,)d

+ [a(t, ,-2a(tlu(lu(l] (t, , +....

Using obvious arguments the condition M() 0 now yields the modified equation set

o(t- 2 a(tl 0,

(10’) 26(t, )- E A,(t)(ptu)() =0,
i=1

2(t, a, )- Z x,(t)(e’u)(a)(P’u)(B)=0,
i=1

where pt is defined as in (2).
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The original development proceeds as before with the substitutions Ptui for

ui, 1,. , m. To summarize we have the modified definition

(18) tzii(m, , t) E (Ui, ptui), i, j i, ", m,
ke

which yields the m x m matrix

(19) V(m, , t)= [txii(m, , t)].

The m-tuples zri take the modified form

7to row (1, 1,. , 1),

(20) zrl(t, a)= row ((Ptui)(ce),..., (P’um)(a)),

7r2(t, Ce, fl)--row ((ptui)(a)(ptui)(),..., (Ptum)(a)(Ptum)(fl))

and finally when V is invertible

Oo(t) zro V(m, , t)-ly(t),

(21) &a(t, a) zrl(t, a) V(m, , t)-ly(t),

q2(t, a,/3) 7r2(t, ce, [3) V(m, , t)-ay(t),

We note that the kernels &i inherit the causal property &i(t, al, , aj)= 0 any ai >
from the zri.

Our development leads to the following modification of Theorem 1.
THEOREM 2. A minimal causal map exists for J(.) if and only if y(t)

Range V(m, , t) for a.e. u. When V(m, , t) is nonsingular,--- , 7ri(t, ., .,. V(m, , t)-ly(t).

The causal solution developed above raises at least two interesting questions not
inherent in the noncausal case. The first issue stems from the fact that (uiptui) 0 as- 0. This implies

lim V(m, , t) O.
t--O

In some cases the singular behavior is called for by the problem formulation. For
instance if yi(0)0 and ui continuous and finite as t0 then satisfying (ui)= yi

requires a singular behavior at 0.
In the case where the (u, y) pairs are measurements from a physical, low pass

system it is to be expected that y(0) 0 even if ui(0) 0. In some such cases the singular
behavior is not necessarily present in the kernels. Other aspects of the singularity
question are considered in some detail in [4] and we will not dwell further on this here.. The rank o V(m, , t). In Theorem 2 we see that the range of the matrix
V(m, , t) as varies is of obvious interest. To explore this situation note that the
dimension of the parameterized manifold span {PtUl,’’’, Ptum} is nondecreasing for
increasing t. Thus-the Grammian matrix of this set has nondecreasing rank with
increasing t. This Grammian matrix is V(m, {1}, t), as indicated in Example 1. The
results of 4 in fact include the results of [4] as the case {1}.

Consider now the discrete scale of Hilbert spaces

H()=@L2(u)().
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For example with = {0, 1, 3, 4}, H() consists of tuplets

_x (Xo, xl(t), x3(t, a, 3), x4(t, a, t, "y)),

where each entry is square integrable with respect to the appropriate product measure.
We equip H() with the natural inner product namely

(_x, y) E (x,

where (.,.). is the inner product on L2(v)i.
Now for each x L2(v) we associate the tuplet H() by

; -(1, x(), x()x(2), x()x()x(3)," .),

where we leave out components of ; not indexed by . The tuplet P’[2] is taken to be
[Ptx]^. It is then a matter of. direct inspection to verify

PROPOSITION 1. V(m, , t) is the Grammian matrix of {Ptt11,...,
Several other results now come into view. First w’e note that a set {_x, _y,. , _z}

H() is linearly dependent if and only if each component {_xi, _y,..., _zi}c L(v) is
linearily dependent (and with at least one set of common scalars). Thus rank
V(m, (1}, t)_---rank V(m, , t) whenever 1 e . For example (1, t, + 1} has linear span
dimension 2 whereas the tuplets (here {0, 1}), {(1, 1), (1, t), (1, + 1)} are linearly
independent in R (R) L2. More generally the following is true.

PROPOSITION 2.
(a) If ’ then rank V(m, ’, t)<-_ rank V(m, , t).
(b) If t’ <= then rank V(m, , t’) <= rank V(m, , t).

Part (b) follows from the nesting property range: (Pt) -<__ range (pt) all ---/3, of the
projection family.

Following [4]we shall say that a set {(xl, y), (x2, yz),’’’, (x,,, y,)} . L(v)L(v)
(.G, ,... (.,, )} is linearly wellis well posed over if and only if the set {(., y), Y2) Ym

posed (see (3)) in H() L2(u). An easy modification of the results of [4] leads to
PROPOSITION 3. y(t) range V(m, , t) for a.e. if and only if

{(xl, yl), (x2, Y2), ", (x,,, y,,)} is well posed over .
We have indicated earlier that it is relatively difficult for a set {,. ., ,,} to be

linearily dependent. As a further example consider scalars k l, k2," ", k,, and the
functions x kXo, i= 1,..., m. When ={0, 1,’.’, l} where l>-m -1 it can be
shown easily that the set {1, ’, ,,} is linearly dependent if and only if the scalars
are not all distinct.

6. Summary. The earlier results [4] on polynomic synthesis provided a causal
polynomic map, of order m 1 satisfying b(x) y, 1,.. , m. The present study
provides necessary and sufficient conditions for synthesis of entire classes of causal
polynomic maps {()" I} satisfying the same input-output constraints. Moreover,
the present synthesis procedure results in maps which minimize an operator norm.
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A QUALITATIVE STUDY OF THE STEADY-STATE SOLUTIONS FOR
A CONTINUOUS FLOW STIRRED TANK CHEMICAL REACTOR*

M. GOLUBITSKY" AND B. L. KEYFITZ

Abstract. An approach to the bifurcation of steady-state equilibria using singularity theory is applied to
the problem of multiple equilibria in a continuous flow stirred tank chemical reactor where the flow rate is the
bifurcation parameter. Under the assumption of a single first-order exothermic chemical reaction, all the
qualitatively different bifurcation diagrams which occur locally are found. They form the universal unfolding
of the singular bifurcation problem x + A 0.

Introduction. It is well-known to chemical engineers that a complex reacting
system can exhibit multiple equilibria which may differ dramatically from each other as
to the extent of the reaction, the equilibrium temperature, and other phenomena.
Analysis of this sort of problem is complicated by the fact that the equations are highly
nonlinear, and contain many parameters, or control variables, which affect the
configuration of the equilibria. This paper is an attempt to bring a new method to bear
on such problems by the application of singularity theory to a chemical reactor problem.
Singularity theory is a nonlinear theory which provides a framework for a qualitative
analysis of many-parameter problems via the notions of contact equivalence, in terms of
which "qualitatively similar" behavior can be precisely defined, and a universal
unfolding, by means of which essential parameters can be identified. When a particular
universal unfolding can be found for a complex problem, it may then be regarded as a
perturbation of a simpler problem with the parameters varied about a particular choice.
We feel that this technique, of building up a complete description of the solution from
the behavior near this particular choice, or "organizing center" of the problem, may be
widely applicable in those chemical engineering and combustion problems where a
diversity of multiple steady-state phenomena makes any global analysis very difficult.
The possibility of providing such a description was suggested by some work of Uppal,
Ray and Poore [6], [7], on a continuous flow stirred tank reactor model in which an
analysis of the steady-state behavior is a prerequisite for an understanding of the
dynamic behavior of the model. Uppal, Ray and Poore were unable to prove that their
analysis was complete, but provided some partial results supplemented by numerical
experiments. Using singularity theory, we have been able to show that they did indeed
identify all the qualitatively different types of equilibrium behavior of the system, and
that the same classification also applies to a generalized system in which the standard
temperature dependence of the reaction is replaced by a function with similar proper-
ties. To be precise, Uppal, Ray and Poore consider a single-step chemical reaction with
Arrhenius-type kinetics, that is a reaction rate term of the form exp (-E/RT). For a
class of reaction rate terms which includes a C3-open neighborhood of the Arrhenius
terms, we show that the structure of solutions is the same. In 1, we describe the model
used by Uppal, Ray and Poore and its generalization.

For physical reasons it is often convenient to analyze the steady states of a system
by examining the dependence of these states on a distinguished parameter which is
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varied "quasi-statically"--i.e., the system is supposed always to remain in equilibrium.
Of particular interest are the parameter values where the number of equilibria changes
(bifurcation of equilibria)--hence the term "bifurcation parameter" which will be used
to describe this variable throughout the paper. Although the approach to the reactor
and similar systems as bifurcation problems is natural, classical bifurcation theory (for
example [3]) has generally not considered such problems because there is no "trivial
solution" about which to look for bifurcation points. Instead, we have the familiar
S-curves of combustion theory. The recent approach of Golubitsky and Schaeffer [4] to
bifurcation problems via singularity theory extends and specializes the theorems and
techniques of singularity theory to steady-state bifurcation problems, and it is this
theory that we apply to the reactor problem. Specifically the theorems of singularity
theory are adapted to include the bifurcation parameter indicated above as a dis-
tinguished control variable. A brief description of the theory and an analysis of the
singularities that appear in this problem are given in 2. The "organizing center" for
the problem turns out to be a singularity we have named the winged cusp: it corresponds
to a particular, physically reasonable, choice of control variables. This singularity is of
codimension three" that is, three independent controls must be varied in the neighbor-
hood of the organizing center to yield all the qualitatively different types of bifurcation
diagrams. These perturbed bifurcation diagrams are also listed in 2. In 3 we verify
that the winged cusp singularity is presen’t in this problem, and that the physical
parameters do indeed provide a complete set of perturbations (or "unfolding
parameters") not only near the organizing center but everywhere in control space.

We are grateful to Rutherford Aris for pointing out this problem to us, and would
like to thank David Schaeffer for many helpful conversations. Articles by Ray [5] and
Aris [1], where an attempt was made to adapt the catastrophe theory cusp, by the
addition of a wing, to explain the results of Uppal, Ray and Poore, served as a guide for
our intuition. Elementary catastrophe theory now seems an inappropriate theory for
the analysis of this model, although the type of mathematics ultimately used is identical
in spirit to that of elementary catastrophe theory. Needless to say, our name for the
organizing center of this problem, the winged cusp, was motivated by the papers of Ray
and Aris.

1. A mathematical model for a continuous flow stirred tank chemical reactor. In
this section we derive an equation to describe the steady-state temperature and
concentration for a first-order, single-step, exothermic, irreversible, volume-preserving
chemical reaction which takes place in a continuously stirred tank with in- and out-flow,
and heat loss to the surroundings. If a reactant, , is converted to a product, , in the
reaction, the assumption that the tank is stirred permits the concentration of , c, and
the temperature inside the tank, T, to be described as functions of time, t’, alone, while
the heat-loss rate is modeled by a term of the form -hS(T- To), where To is the ambient
temperature and h is a heat-transfer coefficient which depends on the thermal conduc-
tivity of the mixture and of the walls, and $ is the heat-transfer area (surface area of the
container). In the reaction, is converted to at a rate k(T)c, where k(T) is the
temperature-dependent reaction rate. For chemical reactor problems, in which radia-
tion is usually ignored, k(T) is assumed to have a temperature dependence of the
Arrhenius form,

(1.1) k T) Z e-(E/RT),
where Z is a frequency factor and E is called the activation energy of the reaction. The
constant R is the Boltzmann constant, The heat release of such a reaction is
(-AH)k(T), where AH, the heat of reaction, is negative for an exothermic reaction.
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Finally, if reactant with concentration cf and temperature Tf are fed into the tank at
a flow rate F, and the mixture of reactant and product removed at the same rate, the
equations governing the time-evolution of T and c are

(1.2)

vdC=F(c-c) Vk(T)c,
dt’

dT
VpCo dt---7 pCoF(T- T) + V(-AH)k(T)c hS(T- To),

where V is the volume of the container and p and Co are the density and specific heat of
the mixture (assumed constant). This standard system is discussed in [6], [1].

The following scalings are also conventionally used to develop nondimensionalized
equations. Concentration and temperature are scaled by feeder concentration and
temperature so that

C/-- C(1.3) x
cf

measures the extent of conversion of Y to , and

T- T(1.4) Y= T
is the rise above entrance temperature. Note that y > 1. Time is conveniently scaled by
the heat-transfer rate,

hS
(1.5) t’.

vG
Then (1.2) is replaced by

(1.6)
=-ex +D(1-x)A(y)=fl(X, y),
dt

dt
-(1 + e)Y +BD(1 -x)A(y)+ r/=h(x, y),

where now the essential parameters appearing are

FG=!(.7) e
hS

which can be identified as a flow-rate based on the time-scale (1.5) (its reciprocal, 0, is
called the residence time, and is often in the literature taken as the fundamental
flow-rate parameter),

k Tf VpCo
(1.8) D

hS

a Damk6hler number relating the chemical heat-gain rate at T to the heat-loss rate,

(.9) B (-aH)Ce
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which is proportional to the exothermicity, and also measures the "adiabatic tempera-
ture rise" which would occur if the reaction proceeded to completion in the absence of
heat-loss or flow in the reactor, and

(1.10)

the ambient temperature scaled by (1.4).
The function

(1.11) A(y)
k Tfy + T)

k(T)
is the temperature-dependent reaction rate, scaled by the rate at Tf. For an Arrhenius
temperature dependence,

(1.12) A(y)= exp (i:Yy)
where

E
(1.13) ?=--
is a scaled activation energy. For a truly temperature-dependent reaction, 3, cannot be
too small, and, in fact, in many applications to ignition problems, y is further scaled by
)7 3,y and the approximation 3’ oo is used. Alternatively, A(y) is often approximated
by a low-degree polynomial for the range of y known to occur in some particular
problem. These approximations are introduced to make computations simpler, and
will, in general, change the qualitative properties of solutions of (1.6) outside the range
in which they are valid. In the present paper, we will not insist that A(y) be an Arrhenius
term, but we will, in 3, impose on A(y) a set of conditions, satisfied by all Arrhenius
terms with 3" > 8!3, which will guarantee a certain qualitative behavior for steady-state
solutions of (1.6).

The system (1.6) has the property that multiple steady states, that is solutions to
jel je2 0, can exist for certain values of the parameters e, D, B and r/. In this paper, we
shall classify these steady states by means of the bif.urcation diagrams which occur when
D, B and r/are regarded as fixed control parameters, and e is varied quasi-statically as a
bifurcation parameter. This was the approach of Uppal, Ray and Poore in [7]. While it is
possible to regard any of the parameters as a bifurcation variable, in any experiment it is
clear that e can be varied independently by adjusting the flow rate, while it would be
difficult to design an experiment in which changing a single physical variable changed
only one other dimensionless variable.

Thus, in what follows, a "bifurcation diagram" is defined as the graph of the
steady-state solutions of (1.6) versus e. The description is simplified somewhat in this
problem because x or y can be eliminated from the equations fl =f2 0 and the
equilibrium is determined by a single state variable, temperature or concentration,
alone. Since (1.6) is linear in x, it is convenient to eliminate x by

(1.14) x
DA(y) rl-(l+e)y+BDA(y)

e +DA(y) BDA(y)

Introducing the notation 8 1/D and M(y) 1/(A(y)), we find the equilibrium
temperature satisfies G 0, where

(1.15) G(y, e, B, 8, n) n -(1 + e)y +
1 + e,4(y)"
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All the qualitative analysis of the bifurcation diagrams is based on an analysis of the C
function G.

2. The theory. In this section we shall state the theorems of [4] specialized to one
state variable and discuss in detail the "winged cusp" singularity which we claim is the
organizing center for the bifurcation problem associated to the stirred tank reactor
described in 1.

Let gx,x be the space of Coo germs of mappings from R2--> R at 0 depending on the
variables x and A. A bifurcation problem is the solution of

(a.) G(x, x)=0,

where G(0, 0)=0 for G in g’x,x. Two bifurcation problems G and H are contact
equivalent if

(2.2) G(x, A) T(x, A )H(X(x, a), a(a)),

where T(0, 0) 0, (OX/Ox)(O) > 0, (OA/0a)(0) > 0, and X(0) A(0) 0. We shall use
contact equivalence as our formalization of the term "qualitatively similar" for bifur-
cation problems as discussed in the Introduction.

There are two problems about contact equivalence which need to be investigated in
order to analyze the stirred tank reactor. Although these problems have similar
statements their resolution requires different methods. First, when is a bifurcation
problem G contact equivalent to a (simple) polynomial and if it is how does one find this
normal form? Second, we ask this question for a k-parameter family of given bifur-
cation problems. As we shall see the theoretical answer to both questions is the same
although the mathematical sophistication needed to prove the second is of a much
higher order.

Let

(2.3) TG G,

be the ideal in gx,a generated by G and OG/Ox; that is, all function germs of the form

OG
a(x, a)G(x, a)+ b(x, a) (x, a),

where a, b e
DEFINITION 2.4. G has finite codimension if there exists a finite dimensional

vector space V c g.x such that G@ V
Theorem 2.8 of [4] states that if G has finite codimension then G is contact

equivalent to a polynomial. More interesting is the question of how one finds this
normal form. The main step is given by the following proposition whose proof is
elementary, requiring only the standard existence theorem for ordinary differential
equations, and is a special case of the discussion after Lemma 3.8 of [4].

PROPOSlTO 2.5. Let H G +P and define Gt to be G + tP. Then H is contact
equivalent to G g TG, TG for 0 1.

The following is useful for checking the hypothesis of Proposition 2.5. Let
(x, a be the maximal ideal generated by x and a.
LEMMA 2.6 (Nakayama’s lemma). Let =(p,... ,Pk) be the

generated by Pl,’’’,Pk and suppose that ql,’’’,qk are in . Then
(pl + q, , Pk + qk).
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Note..tt denotes the product of the ideals //and and is the ideal generated by
the products of the generators of :b/and .

Proof. See, for example, Lemma 3.10 of [4].
Before discussing the second problem we analyze two bifurcation problems which

both occur in the stirred tank problem and serve as examples of the general theory.
PROPOSITION 2.7. Let H(x, A) satisfy one of the following set of conditibns"

(2.8a) H=Hx=H =Hxx=Hx =0 and HxxxH, >0,

(2.8b) /- =/-}, =/-x det (d:rH) 0 and Ixxd3H(v, v, v) > O,

where the bar indicates evaluation at x A 0 and v # 0 satisfies (d2H)(v) O. Then (i)
TH is computed to be

(2.9a) (Z 2, x + 2(/-)xx//xxx)xZ)

or

(2.9b) A 3, x +--- A +

and (ii) H is contact equivalent to

(2.10a)

H,,,H,,xx’ 2

H 2IYI3x. ]

3 2x +A

or

(2.10b) x2/A 3

respectively.
Note. We call the bifurcation problem G(x, A) x3 + A 2 a winged cusp.
Proof. The main part of the proof is the computation of TH. We show first how (ii)

follows from this computation along with Proposition 2.5. The assumption (2.8a)
implies

(2.1 la) H(x, A) aA 2
/ bx 3 + cx2A / dxA 2 / eA 3

/ O(x, A ),

where Q(x, A) begins with terms of order four and ab > 0. Observe that by a change in
coordinates of the form x 2+BA we can assume that 2c =Hxx 0. After this

p.reliminary change of coordinates the computation of TH given by (2.9a) shows that
TH (A 2, x2). Let P dxA 2 + eA 3 + Q(x, A and apply Proposition 2.5 to see that H is
contact equivalent to bx3+ aA2. Since multiplication by -1 and scaling are contact
equivalences (2.10a) is proved. As case (b)of Proposition 2.7 is similar we just point out
briefly that assumption (2.8b) implies

(2.11b) H(x,A)=ax2+bxA +cA2+dx3+ex2A +fxA2+gA3+Q(x,A),
where Q is as above and a # 0. The computation of 7H given in (2.9b) shows that if we
can make preliminary changes of coordinates so that b -f 0 then (2.10b) will follow
from Proposition 2.5. The assumption that det (d2H)- 0 implies

(2.12) ax2 + bxA + cA 2 a x +a A

Letting 2 x +(b/2a)A puts H in the fo,rm (2.11b)with b c 0. A short calculation
shows that letting 2 ff+BA2 will now put H in the form (2.11b) with f 0 also.
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To compute (2.9a) and (2.9b) we will make repeated use of Nakayama’s lemma
along with the following simple observation. Let P, A, B, be in gx.x. Then

(2.13) (A,P)=(B,P) ifA=B+fP.

First we compute (2.9a). From (2.11a) we see that

(2.14) TH , + C, x +-27-, xl + C’

where C and C’ begin with terms of order three. Observe that

l c , x+- xa

so that Nakayama’s lemma implies

(2.15) TH A 2
X2..[.G XA

As c Hxx,/2 and b H,,x,/6 (2.9a) is proved.
To compute (2.9b) observe that (2.11b), (2.12), and (2.13) imply

(2.16) 7H (dx 3 + ex2h +fxA 2 + gA 3 + O,, 2ax + bh + 3dx2 + 2exh +fh 2 + C),

where C =cubic+... and Q’ quartic+. . Note that x +(b/2a)A =-
quadratic+.. mod 7H; thus (,x +(b/2a)A)2 =-quartic+... mod iH. Hence the cubic
terms in the first generator of TH in (2.16) are the same as the cubic terms of H as in
(2.11b). Next observe that x -(b/2a)A +... mod f’H; thus (2.16) implies

(2.17) 7H (KA 3 + O"(d, A.), + C’(d, X)),

where K (d-)(v, v, v) 0 and 2ax + b, + 2ex, + 3dx 2 +f& 2. To see that K is as
claimed one needs the following observation"

(2.18) 6(dS)(v, v, v)=- +3Hxxk
which is obtained from the fact that v may be taken to be (-Hx/Hx, 1).

Since a 0, is a legitimate change of coordinates. One may use Nakayama’s
lemma in the , h coordinates to obtain

( bh+fh2)(2.19) TH (h 3, ) h 3, x +2a + 3dx + 2eh
so 3c H. Next compute

bh +fh :z b
h + ( f be) 2 3bd 3)(2.20)

2a + 3dx + 2eh 2a -a f-fa : h -a2 xh (mod :t/

Therefore using (2.13) we have

( b (f be 3bZcl )(2.21) TH= A3, x+-aA+ -a 2a 2 + 8a3]A
Using the fact that a Hx,,/2, b =Hx, d H,x/6, e =Hxx/2, and f=H,,xx/2 the
proposition is proved.
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We now turn to the second problem; polynomial normal forms for k-parameter
families of bifurcation problems. This is formalized through the notion of unfoldings
and solved through the notion of universal unfoldings.

DEVINITION 2.22. (i) F’ (R x R x Rk, 0) R is a k-parameter unfolding of G in
if F(x, A, O) G(x, ).

(ii) Let H(x, ,/3) be an m-parameter unfolding of G. Then Hfactors through F if

(2.23) H(x, A, fl) F(X(x, A, fl), A(A, fl), ce (fl)),

where all mappings are smooth and a (0)= 0.
(iii) Two unfoldings H and F are equivalent if H factors through F and the map

a/(a) in (2.23) is an invertible change in coordinates (so rn l).
(iv) F is a universal unfolding of G if every unfolding H factors through F.
Note (a). The number of parameters in H need not be the same as the num-

ber in F.
Note (b). Equation (2.23) means that for every fl, H(.,., fl) is contact equivalent

to F(.,., a) for some a. Thus, if H factors through F then every bifurcation problem
included in the unfoldingH is already included in the unfolding F, at least up to contact
equivalence.

In what follows we shall show why it is relatively easy to put a universal unfolding
into a polynomial normal form.

PROPOSITION 2.24. Let F and H be universal unfoldings of G depending on the
same number ofparameters. Then Fand H are equivalent.

Proof. Proposition 2.5 of [4].
THEOREM 2.25. Let F(x, A, ) be an l-parameter unfolding of G(x, h and assume

that G has finite codimension. Then F is a universal unfolding if

00 =0 OOlk =0

Proof. Theorem 2.4 of [4].
We see from (2.26) that G has a universal unfolding precisely when G has finite

codimension. The following remarks should make this clear.
Note. Equation (2.26) may be restated as follows: for every germ p(x, A) there

exist function germs a(x,h), b(x,A), and c(A)--not c(x,A)and real numbers
&,’’’, rk such that

OG OG OF OF
(x, A, 0).(2.27) P(X’A)=a(x’A)G+g(x’A)-x +C(A)-+rl(X’A’OCel O)+" "+rko----

This condition may look difficult to check but, in reality, it is not. Consider:
Example 2.28. Let G(x, A) x3 + A 2. Then F(x, A, c, a2, ce3) X

3 + (aEA + Ce3)X +
O +, 2 is a universal unfolding of G. Moreover codim G 3.

DEFINITION 2.29. The codimension of G is the minimum number of parameters
necessary for a universal unfolding of G.

Proof. From (2.9a), 7G (x2, A 2). Hence (2.27) becomes

(2.30) p(x,A)=a(x,A)x+b(x,A)AE+c(A)A +rl+rEAx +rax.

It is easy to check that (2.30) holds for all p by Taylor’s theorem.

In the literature the term "universal" is reserved for the unfolding in (iv) with the minimum number of
parameters, and "versal" for what we have defined. We shall not make this distinction.
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All of the germs G that will be considered in this paper have the property that
A (OG/A) is contained in TG. As a result (2.26) may be reduced to a question of linear
algebra.

CortOLLAR 2.31. Assume (G/A is in TG, and let ql(x, ), , qs(X, be a
basis for a complementary subspace to ’G in x.a. Let F(x, , a) be an l-parameter
unfolding of G(x, X ).
Let

(x, A, O) c,xq +. + ci,sqs d- ti

and

(X, A Cl+l,lql +" + Cl+l,sqs + tt+l,

where ti is in TG for 1 <- <-_ + 1. Then F is a universal unfolding if rank C s where
C (ci/) is the (l + 1) s matrix described above.

Note. Example 2.28 is now a triviality as a complementary space to (x 2, A 2) 7G
is spanned by 1, x, A, xA.

Examples of the application of Theorem 2.25 and its Corollary 2.31 in identifying
universal unfoldings can be found in [4]. We provide the specific results for the new
singularities--the winged cusp (x 3 + A z) and x2 + A 3--which arise in the present appli-
cation in the next proposition.

PROPOSITION 2.32. LetF(x, A, ax, O2, a3) be an unfolding of G(x, A ). Assume that
(i) G satisfies (2.8a) and suppose that rank C 4 where C is the matrix

0

evaluated at x A 0, or
(ii) G satisfies (2.8b) and suppose that rank C 2 where C is the matrix

evaluated at x A O. Then F is a universal unfolding of G.
Note. One may apply Proposition 2.24 to see that if F is a universal unfolding as in

(i) then F is contact equivalent as a parameterized family to x 3 + (a2 + c3A)x + al + A 2,
thus solving our second problem for the winged cusp.
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Proof. The heart of the proof has already been completed by the computation of
in (2.9a) and (2.9b). Given a germ O(x, h) in x.x we may write--where t(x, h)

(2.33a)

or

(2.33b)

Q(x,h)=Q+Qxx +Qxh + (xx-txxx (xx xh +t(x,h)

Q(x,h)=O+(O.a-AOx)h +K(Q)A2+t(x,A),
where A Gx/Gxx and

(2.34) K(Q)=1/2[OA2-20xA-20B + (a
and

B
2Gx -+Gxx 2Gx-3

Incase (i) the proposition follows from Corollary 2.31 directly along with the
observation that (2.8a) implies that Gx Gx 0.

In case (ii) Corollary 2.31 implies that F is a universal unfolding of G if

Fx-AF,, K(F,)\
F,2 F,2,-AF,,, K(Fo:)|rank
F, Fo, AF K(F)]

3.

Gx Gxx AGx K Gx )/

One computesusing (2.18)that K(Gx) (d3G)(G v, v) 0 by (2.8b). Also by (2.8b)
x =0 and ax-Ax =det (daG)/xx =0. So the proposition is proved.

We are now ready to discuss the problem of classifyingup to contact
equivalencethe types of bifurcations which occur in the universal, unfolding of a given
problem. Suppose one has a bifurcation problem G(x, A) and an/-parameter universal
unfolding F(x, A, a), how does one classify in a qualitative way the types of bifurcation
diagrams F(.,., a)= 0 for various a? A good start at the answer is given by the
following theorem. First observe that if G has a universal unfolding then it is contact
equivalent to a polynomial and if G is a polynomial then F may also be assumed to be a
polynomial. (This is Corollary 2.9 of [4].) Next define

(@) {a It[:lx, with F Fx Fx 0 at (x, , a)},

() {a [[:lx, h with F Fx Fx 0 at (x, , a)},

(..) {O R/I](X1,/ 1) and (X2, /2) with F F 0

at both (Xl,/ 1, O and (x2, A 2, O )}.
These are called the bifurcation, hysteresis, and double limit varieties, respectively.

THEOREM 2.35. Let , () U (Yg) U ()c Rl. (Note that X is a codimension one
algebraic variety in Rl.) Then there exist open neighborhoods ell of 0 in and of0 in
l such that if and ce2 are in the same connected component of-, then F( a 1)
and F(., ., a2) are contact equivalent on

Proof. This is Corollary 2.16 of [4].
Using this theorem we analyze the local nature of bifurcation diagrams near the

winged cusp.
PROPOSITION 2.36. LetF(x, A, a) x3 +(a2+a3h)x +al +h 2. Then

() {, +,, =o; _-< o}, (e)
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and () is parameterized by the equations
’2 2 2

O 2x 3 ce 3x o 3x
ce2 --3x:+.

4 2

Proof. A short computation.
To visualize how the varieties () and () intertwine it is perhaps easiest to graph

(:) and () for a3 fixed. The results are given in Fig. 2.1. The numbered regions
correspond to connected components of the complement of 5;. The lettered regions
correspond to various branches of the variety E. The bifurcation diagrams are given in
Fig. 2.2. (Note that the diagrams associated with Y_, are obtained by continuity as one
crosses Y_,.) Also observe that () is just the "Whitney Umbrella" while () is a cylinder
over a cusp curve. They are pictured in Fig. 2.3.

In the Introduction we stated that the winged cusp is an "organizing center" for
bifurcation diagrams associated with the stirred tank reactor described in 1. We are
now in a position to make that statement more precise.

PROPOSITION 2.37. Let G(x, A) be defined on f in 2. Assume that the following
sets of equations are never satisfied in f

(i) Gxx 0;
(ii) G Gx Gxx Gxxx 0; and
(iii) G=Gx =Gx =det (d:G)=dSG(v, v, v)=0;

where (d:G)(v, v) O. Then at any point (Xo, h0) in f for which G(Xo, A0) 0, the local
nature of the bifurcation diagram {G 0} is described by one of the eight singularities in
Table 2.1. Moreover each of these local situations occurs in the universal unfolding of the
winged cusp.

Proof. A simple check shows that conditions (1)-(8) of Table 2.1 yield an
exhaustive list for the possibilities for G satisfying (i)-(iii). The normal forms for the
singularities (1)-(4) and (6)-(7) are given by Proposition 4.1 of [4]. Singularities (5) and
(8) were given in Proposition 2.7.

TABLE 2.1

Defining conditions at (x ho)

(1) G=0, G, 0
(2) O=Gx =0, Gxx" Gx 0
(3) O=O,, =Gx =0, G,,," detd2G0

index dEG
4) G=Gx=Gx =0, Gx. det (d-G)0

index dEG 0, 2
(5) G G Gx det (d G) 0

Gxx (d3G)(v, v, v) 0
(6) G=Gx=Gx=O
G=.GO

(7) G=G=Gx=Gx=O
G,=.GO

(8) G=Gx=Gx =Gx Gx,=0
Gx,x Gxx 0

Normal form

X

x2-t- A
X --A

X3+/-AX

Bifurcation
diagram Codimension

We shall use the following specialized result in our analysis for the stirred tank
reactor in the next section.

PROPOSITION 2.38. LetF(x, A, O1, a2, Ce3) eel +F(x, A, Ce2, Ce3) be an unfolding of
G(x, A) as in Proposition 2.37. Then F is a universal unfolding of G if---in each of the
eight cases listed in Table 2.1---the following conditions are satisfied.
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TABLE 2.2

Case Condition

(1)-(4)

(5)

(6)

(7)

(8)

Always

F,3,,F,2 F,2,,F3x 0

rank (F,z F,x G,,,)

Gxxx
rank Fx F,,,x-Fx-- i=2

Gxxx

G
rank F3

axxx

=3

Proof. Cases (5) and (8) are easy consequences of Proposition 2.32. The remaining
cases are proved in a fashion similar to that proposition.

NUMBERS REFER TO OPEN REGIONS
LETTERS REFER TO COMPONENTS OF THE (B) U (H) VARIETY

FIG. 2.1

3. The local nature of the bifurcation diagrams. In I we showed that the steady
state solutions to our model chemical reactor are described by the equation:

n
(3.1) G(y,e,B, 6, r/) rt-(1 +e)y + =0,

1 + e6sC(y)

where y is a nondimensionalized temperature, e is a nondimensionalized flow rate, B, 6
and rt are parameters, and is a reaction rate term which is usually assumed to have the



(winged cusp point)

THE OPEN REGIONS

FIG. 2.2a

OPEN REGIONS ON BIFURCATION VARIETY

]PIG. 2.2b



OPEN REGIONS ON HYSTERESIS VARIETY

SELF-INTERSECTION OF HYSTERESIS VARIETY

FIG. 2.2c

NON-IMMERSION POINTS ON BIFURCATION VARIETY

TRANSVERSE INTERSECTION OF BIFURCATION AND HYSTERESIS VARIETIES

TANGENCY OF BIFURCATION AND HYSTERESIS VARIETIES

FIG. 2.2d
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THE HYSTERESIS VARIETY

THE BIFURCATION VARIETY

FIG. 2.3

form

(3.2) M(y) exp ( l+y)"
When M has the form (3.2) we call M an Arrhenius term with activation energy y > 0.

The problem we address in this section is the global classification of the local
bifurcation problems which appear in this model. We shall prove that for each member
of a class of reaction terms which are both open and include the Arrhenius terms when
y > 8/3, there is a unique winged cusp point and that globally the only local bifurcation
problems which occur are those found in the universal unfolding for the winged cusp.
Moreover, the physically motivated parameters B, & and turn out to be universal
unfolding parameters; it is indeed a curious fact that these parametersgiven phys-
icallyare the minimum number necessary to determine the qualitative classification.
This fact suggests strongly that the winged cusp should be considered as the "organizing
center" for this model.

The region in space which we consider is

(3.3) l {B >0, 8>0, r/>-1, y >-1, e >0}.

The main assumptions about M are

(A) M(y) >0, y>-l,

(3.4)
(B) M’(y) < O, y>-l,

(C) d"(y) > O, y > -,
2M,M,,,- 3(M,,)-(D) {y, M} < 0 y > 1(,)

The expression {y, M} is called the Schwarzian derivative of M and has been useful in
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projective geometry. (See E. Cartan [2].) We mention one fact; namely {y, g} 0 if g is a
fractional linear transformation; that is, g(y) (ay + b)/(cy + d).

A calculation shows that for (3.2) with y >-1

(a) >0,- (y) < 0,(b) ’(y)
( +y)

v + 2 +)2y. (y) >(c) M"(y) 0,
(l+y

2

(d) {y, M} -Y
(l+y)4<0"

So the assumptions (A-D) are indeed satisfied for the usual Arrhenius terms.
Remark 3.5. Equation (d) shows that {y, M}= _(M,/M)2. We claim that this

differential equation along with the boundary conditions M(0)= 1 and M(-1)= +o
uniquely define the Arrhenius terms up to % For assume M e then a computation
yields {y, M} _(g,)2 + {y, g}. As M’/M g’ we see that {y, g} 0. As noted above this
implies that g is fractional linear; the boundary conditions yield the claim.

Before stating our main results we need two lemmas.
LEMMA 3.6. Let satisfy (B), (C), and (D). Then there exists a unique point y0 > 0

such that v y"+M’= 0.
Proof. Observe that solutions to v 0 are obtained as intersections of the two

functions f(y) -y and g(y) y + 2M’/M". Assumption (D) shows that g is monotone
increasing while f is clearly monotone decreasing to -oo. As /(0)=0 and g(0)=
2sg(O)/M"(O) < 0 the result is proved.

Remark 3.7. For (3.2) y0=x/ +(y2/4)-(T/2).
LEMMA 3.8. Let M satisfy (A-D). Then there is at most one point yz such that

(-)" 0.
Proof. Let =2(’)2-’’, then (-1),, o/3 and we need only find points

where o 0. Consider the following identity:

(3.9)

and observe that if @-> 0, then ’ < 0. This proves the lemma.
Note. If > 0 for all y, let yz +oo and if < 0 for all y, let yz 1.
Remark. For (3.2), yz (3,/2)- 1.
The following list of derivatives of (3.1) will be needed for subsequent compu-

tations.
LEMMA 3.10. Let A 1 + eM(y). Then

(i)

(ii)

(iii)

(iv)

(v)

(vi)

G=n-(l+e)y+A,
G -y +B/A2;

(y --(1 + B)-BE2t6’/A2;
G, -2B6M/A3;

Gy -1 2Be&,rd’/A3

Gyy.= Be2tQ/A3 where Q 2e(M’)2- AM";
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and

(vii) Gyyylo=o Be 28(3eSsC’s’’- A’")/A3.
PROr’OSITION 3.11. There exists at most one point (yo, co, Bo, 80, rio) II where the

bifurcation problem G(y, e, Bo, 80, r/o)= 0 is contact equivalent to the winged cusp on a
neighborhood of (yo, co).

Moreover ifthefollowing assumptions are made on then such a point actually exists
in 1).

(E) (In )"(yo) > 0,

(F) yz > yo, i.e., (yo) > 0 (Lemma 3.8),

(G) yoz + yo + (yo)/.-’(yo) < 0.

In fact, these points may be computed as follows:
(i) yo as in Lemma 3.6,

(ii) sO+ 2ys’

(iii) no -yo(1 + co),

(iv) 60 (d + 2ys’)eo Y=Yo

(v) Bo yoao.
RZMAnK 3.12. Assumptions (E) and (G) are satisfied for all Arrhenius terms while

(F) is satisfied when y > 8/3. As one is really interested in 3’ large--say of the order of
10--this is a reasonable hypothesis.

Proof. Proposition 2.7 states that to prove this proposition one must show that
there is a unique choice of/3o, 80, r/o yielding a unique solution (yo, co) to the equation
(2.8a) with G, y, e replacing H, x, A. Observe that the equations Gyy Gy 0 imply
that

(3.13a) w (2(M’)2- SM") 6’",

(3.13b) w(+ 2ys’) -1,

where w eS. (Here one substitutes B yA2 into Gy.) Thus sg"(b)+ (a) implies

(3.14) 2wM’(M’ + ysg") O.

As wM’ # 0 in fl we have that yo is given by Lemma 3.6. Next solve (3.13a) for

(3.15) w sg"/(2(sg’)z- sCs")= "/F.
Hence Wo eoSo > 0 by (C) and (F). Next substitute B y Az into Gy 0 to obtain

(3 16) eo =-1/(1 + yowoM’(yo))=
M + 2yeg’[M+yM’ =o

The last equality is obtained by solving (3.13b) for Wo. Recall that at yo, " =-’/yo.
Thus (E) implies that sC(yo)+yo’(yo)>0 and (F) (or (3.13b)) implies (yo)+
2yoC’(yo)<0. So co>0 and 80>0. Now Bo=YoA2o>0 where Ao= 1 + Wo’(yo) and
from G 0

(3.17) no (1 + eo)Yo-Boeo/Ao -(1 + eo)Yo.
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The last equality is obtained as follows: from Gy 0 derive A --2ysg’ and from
derive A 2(e + 1)/e. Now use (3.17) and (3.16) to obtain

(3.18) r/o sg + ysg’ =o
So r/o >- 1 is equivalent to assumption (G).

To complete the proof of the proposition one shows that G < 0 and Gyy < 0 at
(yo, eo, B0, 80, r/o). In fact G, < 0 on 12 by (A) and Lemma 3.10 (iv) and Gryr < 0 on
f 71 {Gyy 0}. To obtain this last fact, note that Lemma 3.10 (vi) and (vii) imply that
sign (G) on {Gy 0} is just sign (3eSsC’sg"-Asg’"). Now

(3.19) 3eM’M" As"’-- {y, 6}< 0 on Oyy 0

as zX 2eB(sg’)2/sg on Gy =0.
For the following we need one more assumption.

(H)
(2yag’" + 3s") [ 1 +,/1 + 8y/s 2s’]+, + >0 on[yo, yz].

3 y

We shall show in the appendix that this inequality is satisfied for Arrhenius terms with
y > 2. Note that at y0, v 0 and the first term of (H) is positive by the Schwarzian
condition.

PROPOSITION 3.20. Under the assumptions (A)-(H) the only local bifurcation
problems which occur in fl are those which appear in the universal unfolding for the
winged cusp.

Proof. Proposition 2.37 states that Proposition 3.20 is true if none of the following
systems of equations is ever satisfied in

(3.21) O =0,

(3.22) G Oy Gyy Gyyy 0,

(3.23) G Gy G det (d2O) d3G(v, v, v) O,

where v # 0 and (d2G)(v, v)= O.
At the end of the proof of Proposition 3.11 we showed that (3.21) and (3.22) are

never satisfied in 12. To analyze (3.23) we need a preliminary result.
AsG is never zero we may solve implicitly G (y, e) 0 uniquely for e e (y). Let

f(y) G(y, e(y)).
LEMMA 3.24. The equations (3.23) are equivalent to the following system of

equations:

(3.25) f =f’=f"=f"’.=O.
Pro@ Observe that

(3.26a) /’(y) Oy(y, e (y)),

(3.26b)

(3.26c)

f’ Gye’ + Gyy,

f’"= Gy (e’)2 + 2Gyye’ + Gyyy + Gye".

By (a) we have that f=f’ =0 if G Gy G =0. Next differentiate the defining
equation G 0 to obtain

(3.27) e’ -Gy/G.
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Thus " 0 if det dZG 0. Differentiating G 0 a second time yields

(3.28) e" --(Gyye + 2G,e’+ G(e’)2)/G.
Substituting (3.28) and (3.27) into (3.26c) yields

(3.29) f’"= (d3G)(v, v, v)

by application of (2.18). This proves the lemma.
Of course one may use Lemma 3.10 (ii) to solve for e (y) explicitly, obtaining

(3.30) e(y)

Thus we may take

(3.31) f(y)=s4G(y,e(y))=(,1-y)sg+(’,/-}-B):/6,
where/3 x/. Since s4 is never zero on 12 we still maintain the equivalence of (3.25)
with (3.23).

To complete the proof of Proposition 3.20 we must show that (3.25) is never
satisfied on 1. A computation shows that

(3.32a) f’(y)= (rt y)s4’-s4 +(x/-;-B)/Sx/-,
(3.32b) f"(y)=(rl-y)xg"-2.s’+/(28y3/Z),
(3.32c) f"’(y) (rt y)"’- 3s4"- 3B/(46y5/2).

We use the following notation:

(3.33) u s’ + y", r 3s4" + 2ys4’", 5 2s4’s’"- 3(s4")2;
and make the following observations at a solution to (3.25):

(3.34a) r/- y < 0,

(3.34b) r/-y 6u/r,

(3.34c) B/8 4yS/Z/ r,

(3.34d) " < 0,

(3.34e) u > 0,

(3.34f) _1 sg 6,sg’/.r + 4y/r.

It is clear from (3.31) that to solve f 0 implies (3.34a). Equations (3.34b) and (3.34c)
are obtained from (3.32b) and (3.32c). So (3.34d) follows from (3.34c) as /8 > 0 and
O< 0. Now (3.34e) follows from (3.34b). Finally (3.34f) is obtained from (3.32a).

Substitution of this data into (3.31) yields

(3.35) s4.r 6 u + 4y 2 6,sg + y .rsC 6 ,s4 :Z O

which is an equation in y alone. Letting

(3.36) w "r/6,

we obtain from (3.35), noting that yoW s4’--3s4"u,

(3.37) w + +- w + -)-- O.
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As w < 0 (by (3.34a) and (3.34b)), M’/M < 0 by (A) and (B) and u > 0 (by (3.34e)) we
have

(3.38)

Hence

w =-(1 +41 + 8y./M)/2y d’/d.

(1
+ O.

+/1 + 8yv/M)
(3.39) z/3 + v

y M_I

Let y be a solution to (3.39) satisfying (3.34). In particular v(y)> 0 implies by
Lemma 3.6 that y > y0. For y to generate a solution to (3.2:5) in f it must also satisfy

(3.40) 0 < e(yf).

We claim that (3.40) implies that yr < yz thus proving the proposition. In particular
(3.30) and (3.40) together imply that/3 > /. Using (3.34c) and (3.34f) one obtains

"rM 6vM’
(3.41) 1+ _.2 <1,

45ry

which holds only if

(3.42) zM-6vM’>O

as 5< 0. Upon expanding r we obtain

(3.43) 2--yz < 2vM’/M.

Substituting this inequality in (3.39) implies

M+ 4yM’
(3.44) 41 +8yv/<

If (M + 4yM’)ly is positive then y does not correspond to a solution to (3.35) in f.
So assume that it is negative and square (3.44) to obtain

(3.45) 2(M’)2- MM"Iy, (y)> 0.

As (y) < 0 for y >= yz by Lemma 3.8 we have that y0 < y < y.
Then by (H) the proposition is proved.
We now state and prove the main result of this section. In particular this result is

satisfied for Arrhenius terms when , > 8/3.
THEOREM 3.46. Let

G(y, e, B, 6, rt) r/-(1 + e)y +Be
where A 1 + e6M and M satisfies the conditions (A)-(H). Then them exists a unique
winged cusp point in f and for every (y’, s’,B’, 8’, q’) the bifurcation problem
G(y, e, B’, ’, q’)= 0 is contact equivalent to a bifurcation problem contained in the
universal unfoMing of the winged cusp point. Moreover B, 6, and q form universal
unfolding parameters for any such bifurcation problem.

Proof. The first two statements are the results of Propositions 3.11 and 3.20. The
proof of the last statement uses Proposition 2.27. In fact, it is sufficient to show that

(a) GG GG
(b) rank
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(c)

Gny Gnrr Gn, G-t
Gyyy

rankGay Gayy-Ga, =2;

Gyyy

at points where Gy Gyy 0 and

(d) det Gy
at the winged cusp point.

One calculates:

(3.47)

(i) GBy

(ii) GB 1/A2;
(iii) Gay BezM’(eSM 1)/A3;
(iv) Ga -2BeM/A3.

Thus

(3.48) GayGn GnyGa -Be2s’/A4 > O.

So (a) is satisfied. Since Gny > 0 on f by (ii) (b) is also satisfied.
To show that (d) holds observe that if a function f(e, 8) has the form g(eS) then

ef, =- 8fa so that f/fa 8/e. Observe--using Lemma 3.10m that this is the case for G,
Gy, and Q. Also note that Gyy/Gyya Q/Qa when Q 0. Thus (d) holds if

(3.49) Gay det

Recall from (3.13) that

Gyy
G \

G Gy-M+ yM’
(3.50) eSM- 1 -2 2/eo> 0

M+2yM’

at the winged cusp point. Now note that Gyy =0 when Q =0 and that GyyB
e28Q/A3= O. So we need only evaluate

(3.51) det (Gn"G Gy (a,,)2)GeYe2 B6 (2M’
OyGyy/Gyyy $3- \

+ > 0

since M’< 0 by (B) and Oy < 0 by (3.19).
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To complete the proof of the Theorem we must verify (c). Now note that (c) holds if

(3.52) det
Gn Gs,

Or O, Gry

This is a sufficient though not necessary condition. Recall that Gyy BeZtQ/A3 and that
Q 0 iff Gyy 0. Hence GyyB 0 when Gyy 0. Now using the same observation as in
the proof of (d) that O and Ge" are functions of e6 we see that the rank of

Thus we need only compute

(3.53) det

is 1.

Gy 0 Gyys).
Note that Gne" 1/A2 7 0 SO this computation reduced to showing

(354) D=det ( Gyaye, ayye’]
7 O.

Now

(355) D
BE2t ( Gy e)=’"A3 det

Gye 8

where 2(’)z-". Observe that Q e&-" so that o% # 0 when Q 0. The
problem is reduced to computing

(3.56) 6Gy, eGye" e + Be26Sg’/A2 --1.

This last equality is obtained from Gy 0.

Appendix A. We now sketch a proof of:
PROPOSITION A. 1. Condition (H) is satisfied for the Arrhenius terms for all y > 2.
To prove this proposition we need to show that (3.39) has no solutions on [yo, yz ].

From the derivation of (3.39) this is equivalent to showing that (3.37) has no solutions
on [yo, yz] when r < 0. This is our approach.

Note that if e g then

(A.2) -_ (g,)2 + g,, and (g,)3 + 3g’g"+ g"’.

For the Arrhenius terms g(y) =-yy/(1 + y). Thus

(A.3) - -Y)2, 3’ [2y + y+2],,, (1 + y (l+y)4

4"__’ -y)6 [6y2 + (12 + 6y)y +6 +6y + y2]"
(l+y
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Recall that z 3"+ 2y--’", so

(A.4)
"r 63"

)6 [y3 + (1 +.3")y2 +(_)3,’-1 y- +1
4 (l+y

Since u M’+ y’"> 0 on [yo, yz] we may compute (3.37) in the form

(A.5) +-" y +-’- + -2

Compute

(A.6) 3’ (y2 + 3"Y 1)
(1 +y)4

Then (A.5) is given by

(A.7)

2

(l+y)l2 +1 -t3" +23"+2)y __(_3"3_[_ +-3"-l)y

2

+-6---4 y _[_ (_,]/ 3 3" +-3"+l)y -t3’-23"+2)y+ -1

Letting y (K/3") we now show:
LEMMA A.8. Expression (A.7) < 0 for all K > 1.2.
LEMMA A.9. " > 0 for all K <- 1.2 when 3" >= 2.
These two lemmas together prove Proposition A. 1. Substituting for y in (A.7) and

grouping terms by powers of 3" yields"

C3 C4 C5 C6 C7 C8(A. 10) c13" + c2 + +--+ +-+--3 +---g,

where

(A.11)

c1= \ 9 3 12

C2 -(K 1)2,

(K4K35K2- K)c=- +6 2
+2

C4 -(K4- K2),

c5 =--({ g5 +-g4-4K3),

c6 -(2K5- K4),

C8 -K6.
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We make the following observations:

Cl < 0 for K > 1.2,

c2<0 for allK,

c3<0 forK>l.2,

c4<0 forK>l,
(A. 12)

c5<0 forK>l.2,

c6<0 forK>l/2,

c7<0 forK>0,

cs<0 for allK.

This proves Lemma A.8.
Next we compute -(K/y)--grouped in powers of K--obtaining

K3 (13 3)K2 (:_ 1 )(A.13)
3’ --+ 1 K+ +1

Note that for any positive 3" (A. 13) has at most one positive root by Descartes’ rule of
signs. Since r(0) > 0 and r < 0 for large K, (A. 13) has exactly one positive root. So if we
evaluate (A.13) at K 1.2 and obtain a positive number then Lemma A.9 is proved.
This evaluation yields,

(A.14) -(.1 +2.23"3 96 -1.443"-1.728).

Again by Descartes’ rule of signs (A. 14) has one positive root. Since (A. 14)evaluated at
y 0 is <0 and at 3" 2 is 10.752, Lemma A.9 is proved and Proposition A.1 follows.
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POROUS MEDIA PROBLEMS*

WAYNE T. FORDi-, MARIA C. FUENTE AND MARGARET C. WAID

Abstract. Laminar isothermal fluid flow of two immiscible compressible fluid phases in a porous medium
is formulated in terms of four unknown functions 01, 0z, $1 and Sz in a pair of partial differential equations

OS[(X t)SiPi]:-X t(X, t)lTi(Si) [(I)i(0i)]

and a pair of auxiliary relations

S1 1-’l(pl, p2) and S2 S1.

The first boundary value problem is reformulated for this system as a fixedpoint problem involving a mapping
II wherein $1 implies S2, the differential equations are used to find 01 and 02, and II(S1) is set equal to

F1(01,02). The mapping 11 is shown to map a subset of H2/’1+/2() into H+’I+/2(fI) under
appropriate conditions on the coefficients and equations.

1. Introduction. Source-free laminar isothermal flow of two immiscible compres-
sible fluid phases in a linear horizontal porous medium can be described [9], [11], [14],
[40] as a mathematical problem (to be physically motivated in 2) involving four
unknown functions pl,/92, S1, and $2 in two partial differential equations

(1.1) O[4)(x, t)Sio,] tc,(x, t)oi(Si) [Oi(oi)]

and two auxiliary relations

(1.2) S=Fi(pl, pZ).

We adopt the convention, illustrated above, that every usage of the subscript is
assumed to apply to both values, 1 and 2. Moreover, the subscript will.
be suppressed in discussions which apply equally to both subscripts. For example,
will be defined (in 2) as a monotone increasing map of E (-oo, oo) onto itself. Also,
o- will be defined as a map from (0, 1) into E+ (0, oo), and F will be given as a map from
Ez to (0, 1).

The coefficients, O and , will be given maps of into E+, where f (0, 1) x (0, T),
and we consider (1.1) and (1.2) in terms of the first boundary problem wherein solutions
are sought for (x, t) in f subject to appropriate initial and boundary conditions on
(0, 1) x {0} and {0, 1} x [0, T], respectively. We let

(1.3) I)B (0, 1)x{0}U{0, 1}x[0, T]

to choose combined initial-boundary conditions in the form

(1.4) p(x, t) O(x, t), (x, t) e aB.
We consider (1.1) through (1.4) in terms of solutions in the Banach space

H2+’1+/2 (), for some 0 e (0, 1), with its norm, [. In, written without the superscript,
(0). Since precise definitions are available in the literature [28, p. 7], it suffices here to
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remark that u e H2+’1+/2 () implies that Uxx and ut are H61der continuous on with
exponent 0 in x and exponent 0/2 in t. Also, we define I" ]0 as the supremum of the
magnitude of its argument over its domain. For example, Itr[0 is the supremum of Io’(S)[
over (0, 1), while [K[0 and [tro S[0 both represent suprema over ft.

ASSUM’TION 1.1. Each q belongs to H2+’1+/2 (), i.e., q can be extended to a
function that does so belong. Also, gq and g2 substituted for pl and p2, satisfy (1.1) and
(1.2) at the lower corners (0, O) and (1, 0), of f.

Although (1.2) can be used to formally eliminate $1 and $2 from (1.1), our plan of
study of (1.1) through (1.4) does not permit this. Specifically, we will consider
formulation of (1.1) through (1.4) in terms of a fixed point of a mapping wherein (1.2) is
used to produce improved $1 and $2 from solutions, pl and/92, of (1.1) and (1.4) based
on estimates of S and $2. It is convenient to rewrite (1.1) in the form

(1.5)

where

(1.6)

a {N [(p)]}-(Mo) -x Ox

M(x, t)= &(x, t)S(x, t) and N(x, t)= K(x, t)tr[S(x, t)].

If only one phase were involved, (1.5) would describe the flow of that phase with
$-= o’(S)-- 1. Thus, (1.5) can be thought of as a porous medium equation (PME), while
(1.1) and (1.2) constitute a porous medium system (PMS). The fixed point approach
allows consideration of the PMS in relation to its PME parts.

We reformulate the PME in several ways (in 3) for completeness and for use in
our discussion. One of these formulations can be used to show (in 4) that (1.5) maps
(S-p)H2+’+/2 () into itself with S substituted in (1.6), p g on fB satisfying
Assumption 1.1, and appropriate assumptions of b, , tr and ( 2). This leads to a
fixed point formulation of the PMS wherein (1.1) and (1.4) produce the pair (pl, p2)
from a given pair ($1, $2) so that (1.2) can then produce an improved pair ($1, $2) from
this (pl, p2) pair. We show that the fixed point formulation is well-defined (in 4).

We show that a solution of a PME satisfies a heat equation with low order terms.
Thus, initial-boundary > 0 implies that the corresponding PME density is positive on
f, and an a priori upper bound can be given ( 3).

Even though (1.1) through (1.4) involve only two phases, the mathematical
problem has not been studied in detail in so far as we know. Analysis is rather limited for
complicated generalizations [9], [17], [18], which are often treated in a pragmatic
numerical sense [26], [34], [40]. Equations rather like those in the PMS appear in fields
other than petroleum engineering [7], [24], [26], [36], and singular and special cases
have been studied [4], [5], [143, [163, [21], [27], [33].

Our bibliography is restricted to works consulted in the preparation of this paper.
Certain authors are represented by a recent work only [4], [5], [6], [8], [14], [40], some
of the entries are collections of papers [1], [13] by various .authors, and some entries
contain very substantial bibliographies [6], [20], [24], [36], [38].

2. Physical motivation. If (1.1) is rewritten in engineering terminology, the result
is [6], [11]

(2.1)
0 --1

at
(cksp) -x o’otx

where each symbol represents a definite physical concept. For example, P represents
the pressure in the individual phase, and the saturation S is the volume occupied by that
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phase as a fraction of the total local available fluid volume, required to be fluid-filled by
the equation

(2.2) Sa + $2 1.

Darcy’s work (reprinted in [25]) dealt with a single phase incompressible fluid. His
concepts of porosity & and permeability K have been extended to more general cases. We
take both & and K to be given positive functions of (x, t) throughout f, independent of
the fluids occupying the pore spaces of the medium. However, availability of flow
channels to a particular fluid in a multiphase flow is taken to depend on the saturation in
that phase so that each relative permeability cr is taken to be a known nondecreasing
function of its own S.

Each density p and each (dynamic) viscosity Ix is given as a function of its individual
phase pressure P. The expression of p in terms of P is known as an equation of state,
which we take to be invertible so that we can define an additional quantity, , by the
equations

(2.3) ddi)= to dP
and r(p)--/x[p(p)].

do ’(p) dp

Thus, definition of the symbols in (2.1) is complete so that it can be identified with (1.1);
while specification of the functions in (1.2) requires one final physical concept.

Immiscibility implies 11, p. 201 the existence of a capillary pressure Pc, presumed
to be a known function of one saturation, say Sl, SO that

(2.4) P1 P2 Pc (Sl).

If this Pc maps (0, 1) onto E in a one-to-one fashion, it can be used to write

(2.5) Sl P-a (P1 -P2).

This relation is then used to define F1 in (1.2) by

(2.6a) F1 (pa, p2) P- [Pa (pl) Pz(p2)],

and (2.2) is used in defining 1-’2 by

(2.6b) 1-’2(pa, p2)- 1- rl(pl, p2).

Although (I)’ could be given on E, we presume its accuracy to apply only on some
closed interval J c E+. Specifically, we take (I)’ to be given in C3(j) so that it can be
extended to E as an even function in C3(E) such that

(2.7) 0 < (P’(p) <_-IcI)’10 for p e E, lim (I)’(p)
p--)

(I)" is nonnegative for large values of p, and (I), the integral of (I)’, is zero for zero p. Since
we want (2.3) to apply on E with P’ dP/dp being positive, compatible extensions will
be assumed so that P’ and sr are even and odd, respectively.

We summarize the above discussion in the following specific mathematical
assumptions:

ASSUMPTION 2.1 (Flows). & and belong to H2+0’1+0/2 () with values in E+.
r E C3[(0, 1)] with values in E+.

ASSUMPTION 2.2 (States). (P’ E C3(E) with values in E/. It is even, (P" is nonnegative

for large values of its argument, and (2.7) applies.
ASSUMPTION 2.3 (Interaction). F1 is defined on E2 with values in (0, 1). lf Ul and u2

belong to H2+’1+/z (), then v(x, t)=Fl[U(X, t), u2(x, t)] defines a function v in
Hz+’1+/2 (). Note that (2.6b) shows that F2 has the properties given above for F1.
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3. Reformulations. Since parabolic partial differential equations are often formu-
lated in terms of solutions of the equations for the time derivatives of the dependent
variables [9], [20], [28], [31], [32], [35], [41], [42], we present several transformations
of (1.5) into such form for later discussion. It is convenient to introduce the definitions

(3.1a)
and

(3.1b)

a(x, t)= N(x, t)/M(x, t), fl(x, t)= In M(x, t),

V(x, t)= ax(x, t)+ a(x, t)flx(X, t)= Nx(x, t)/M(x, t).

We use subscript differentiation and suppression of arguments to formally
manipulate (1.5) in

(Mp), MO, +Mtp

(3.2) (N’p),
(M. M-aN’p)
M(M-aNrb’p,,), +MM-N’p,

to obtain the divergence form

(3.3)

which can be related to existing theory [31]. Similarly, the calculation,

(3.4)
(’o +,&),

displays a special case for which an initial-boundary problem of the third kind has been
studied [9].

Since a fully differentiated form is used in the literature [20], [28], [35], [41], [42],
we rewrite (3.3) in the form

(3.5)

The latter form, which will be used below (in 4), motivates the definitions

(3.6a) C(x,t,u)=a(x,t)’(u)

and

(3.6b) a(x, t, u, v)=-a(x, t)"(u)vZ-y(x, t)dP’(u)v +3t(x, t)u.

Additional forms, which can be used for understanding and for a priori estimates,
can be obtained from the result below.

THEOREM 3.1. Suppose p satisfies (1.5) with both M and N being positive and
continuously differentiable on f. Then, a differentiable invertible coordinate trans-
formation, (x, t) ((x, t), r(t)), exists such that the (x, t) rectangle lq and the equation in
(1.5) transform, respectively, to a (, r) rectangle, (0, 1) (0, z(T)), and the partial
differential equation, with u(, z)= p(x, t),

oTOU 02 _. OU_.[_(3.7) az[(u)] a(:, r) [(u)]+ b((, r)-o c(sc, r)u.

Proof. Consider the change of independent variables given by the definitions

(3.8a) (x, t)-- [M(x, t)/N(x, t)]1/z dx,

(3.8b) "r [A (1, t)]-2 dt,
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and

(3.8c) A (x, t)/A (1, t).

The hypotheses on M and N imply that (3.8) defines a differentiable invertible
coordinate transformation such that depends on both x and t, r depends only on t,
f (0, 1) x (0, r(T)), and

(3.9) M(x, t) dr/dt N(x, t)(O/Ox)2.
It follows that (1.5) transforms to (3.7), and the proof is complete.

COROLLARY 3.1. Suppose p satisfies (1.5) with both M and N being positive and
continuously differentiable on D, and suppose that ’(p) is always positive. Then, (3.8)
can be modified to define an invertible transformation so that (3.7) becomes, with
u (, ) t (x, t),

OU 02U OU
(3.10)

Or 02= b(, z)--r+c(:, r)u.

Proof. Write N(x, t)dP’[p(x, t)] for N(x, t) in (3.8a). []
Oleinik [32] reported study [33] of the initial value problem for the partial

differential equation (3.7), with a =-b---c 0, based on physical motivation given by
Barenblat [5]. If (I)(u) and ’(u)= ddp/du are zero when uis zero, her equation has
mathematically interesting properties [4], [27], [32] including finite speed of prop-
agation of effects of initial data. Although Theorem 3.1 shows that PME densities
satisfy equations with the same principal part as in Oleinik’s work [32], we recall that
our present interest lies in problems where ’(u) is always positive.

Although Corollary 3.1 shows that PME densities satisfy the heat equation, with
respect to (, z), plus terms of lower order, it should be noted that this is not an
uncommon fact. Specifically, if v is sufficiently differentiable on some domain g in the
(, r) plane, then positivity of v on A’ is a sufficient condition that v satisfy the equation

(3 11a) 01")020[ 01") 021) ]/}o-=o--+{ (, ,1--(, ) v(, 1 v

of the form shown in (3.10). For example, we have

(3.11b)
0- 0c2

+ (" sc2 1)v if v(, -) exp [(2 + .2)/2]"

Nevertheless, certain maximum principles apply.
T[-IEOREM 3.2. Suppose p satisfies (1.5) on f with p 4 > 0 on fB; and suppose

that both M and N are positive and continuously differentiable on f and that dp’(p) is
always positive. If e > [tl0, then

(3.12) 0 < p(x, t) <= eTlqlo, (x, t) .
Proof. Substitute p(x, t) in ’ and " to write (3.3) in the form

(3.13) p, (Apx)x + Bp, fl,p Apex + (A +B)p

and let p u exp (et) to obtain

(3.14) ut Aux + (A +B)u ([t --t- ,

Since Uxx has a positive coefficient and u has a negative coefficient in (3.14), standard
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methods [35] yield

(3.15) 0< u(x, t)le-ettlo <-Ilo, (x, t),

(3.12) follows, and the proof is complete.
Observe that the development of (3.3) can be simultaneously applied to each

equation in (1.1) to produce a simplified PMS wherein each equation has been solved
for its own Op/Ot. Note that Theorem 3.1 and its corollary are quite different from the
development of (3.3) in that, if suppressed subscripts were written into (3.7) or (3.10),
would appear on every variable and function therein. Specifically, sci and r would
actually be written for and r, respectively.

4. Fixed point tormulation. Solution of the PMS can be studied in terms of a
functional fixed point problem involving a mapping 11 to be defined below. It is
convenient to define the classes of functions

(4.1a) Ri (u H+’+/ (fi)" ula
and

(4.1b) Og {v e g2+’+/a (fi)" v(fi) c (0, 1), v[aB Fi(O,

The mapping 11 is then formally defined as follows:
a) Choose $1 Q1;
b) Use (2.2) to define S 1- $1 on f;
c) Solve (1.5), separately once for each i, for 01 and pa subject to the conditions in

(1.4);
d) Define the mapping II by the equation

(4.2) II(S1)(x, t)= 1-’l[pl(x, t), p2(x, t)] (x, t)6 D,.

It is clear that a solution of the PMS can be sought in terms of the fixed point formulation

(4.3) Sl rI(Sl).

LEMMA 4.1. AdoptAssumptions 1.1 and 2.1 through 2.3, choose i or 2, and
let S Qi. If S is used in (1.6), then there is a unique solution, u, of (1.5) in Rg.

Proof. We will verify the application of Theorem 5.2 of Ladyzenskaja, Solonnikov,
and Uralceva [28, p. 564] in terms of their Remark 5.2 [28, p. 565] based on our (3.5)
and (3.6). Four hypotheses must be checked.

First, C(x, t, u)=al(X, t, u, v)=a11(x, t, u, 0)=a(x, t)’(u)>0 for (x, t, u)e
xE, and

(4.4) -a(x, t, u, O) -fl,(x, t)u

where continuity of derivatives of a and/3 permits the definition

(4.5) K max {la 10,

and classical solutions of (1.5) satisfy the estimate [28]

(4.6) lulo<g .

Second, note that y >_-0 implies that

(4.7) max {1 + y, (1 + y)Z, y2, Y, 1}= (1 + y)2,
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and calculate, noting that OC/Ov is zero,

lotion[(1 / [ 1)2 / 10C/Ox 1(1 / I 1)/

_-<K(1 + [v 1)=(21 "1 / 21 ’1 / [ul)-< q(lu I)(1 / Ivl)2,
where q, monotone increasing on the interval [0, K1], is defined by

(4.9) q(z) K max (2l."(y)l + 2l*’(y)[ + y).
0yz

Of course, C is differentiable, bounded with a positive lower bound, and a is continuous
for lul0 as in (4.6).

Third, for lUlo as in (4.6), C and a are H61der continuous in with exponent 0/2 and
in x, u, and v with exponent 0.

Finally, Assumption 1.1 places the appropriate conditions on so that Theorem
5.2 [28, p. 564] applies, and the proof is complete.

THEOREM 4.1. YI is a well-defined map of Ol H2+’1+/2 () into itself.
Proof. Our formal definition of II places Sa e Q1 and implies $2 e Q2. Then, Lemma

4.1 shows that pieR1 and pER2, Assumption 2.3 implies that 1-I(Sl) Q1, and the
proof is complete.
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A SINGULAR PARABOLIC INITIAL-BOUNDARY VALUE PROBLEM
IN A NONCYLINDRICAL DOMAIN*

VASILIOS ALEXIADES"

Abstract. The well-posedness of the first Fourier problem for a class of singular parabolic equations
in noncylindrical domain is established in an appropriate weighted Hilbert-Sobolev space. The Green’s
function is also constructed by means of potentials, and it is shown that the generalized and classical solutions
coincide when the data permit the latter to exist.

Introduction. We study the first initial-boundary value problem for the class of
singular parabolic operators depending on a real parameter k => 1"

Lk[U]+ CU lg Uxx -[---U + CU,
X

in the noncylindrical domain

D=-D 7" {(x, t)" 0< < T, 0<x < X(t)},

where the curve F: x X(t) satisfies

(.) X6c1[0, T], O<Xo<-X(t)<-X1, I)(t)l_<-X’<oo for 0-<_ /-<_ T.

The operators Lk arise in axially symmetric problems and in probability theory (see
[2]). The Cauchy problem for Lk has been investigated very extensively in many
directions, e.g., Arena [4], Brezis-Rosenkrantz-Singer and Lax [6], Colton [8], Chole-
winski-Haimo [7], Bragg [5]. In I-2] the theory of potentials for Lk was developed and
the main Fourier problems were studied classically. In this paper we concentrate on the
first Fourier problem

Lk[U]+CU=f inD,

(IBVP) u Io u (x, 0) go in f0,

ulr=gl in(0, T),

where fo:= {(x, 0)" 0<x <X(0)}, k -> 1 fixed, and c(x, t), f(x, t), go(x), g(t) are given.
Note that no data are prescribed along the singular axis x 0. In appropriate weighted
Hilbert-Sobolev spaces (which are studied in 1) we define the concept of generalized
(variational) solution ( 2) and establish the well-posedness of the problem ( 3) under
the assumptions" cL(D), xk/ZfLz(O), xk/ZgoL2(’).o) glHX[0, T]. For the
remainder of the paper we restrict ourselves to the case c ---constant and construct the
Green’s function ( 4) by means of potentials of first kind (the theory of which was
developed in [2]). The representation of the classical solution in terms of the Green’s
function allows us to show that when f, go, dg/dt are continuous on D, 0, [0, T]
respectively, and f(x, t) is locally H61der in x (uniformly in t) inside D, then the
generalized and the classical solutions coincide.

1. Spaces. From [2, 10] we know that the classical solution u of the problem for
Lk satisfies xkux 0 as x 0. Let q(x, t) be any smooth function vanishing on F and on
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fT (i.e., for T); an integration by parts yields

ff ffxv .x,.+ f_ o)

Observe that (1.1) makes sense for u’s possessing only an x-derivative and q’s an x- and
a t-derivative. This leads us to consider appropriate spaces in which to formulate the
problem in weak form.

We define the following Hilbert spaces (of equivalent classes of measurable
functions as usual)"

..2("o,k):--- v(x): yfxtv(x)2 dx <cx3},

whose inner products will be denoted respectively by (.,.)no, and (-,.),;

WI’(D, k):--{u(x, t)" u, Ux .f’2(D, k)},

WI’a(D, k):= {q(x, t): 0, qg, q, e ’2(D, k)},

with inner products given respectively by (u, v)a.o;/:,., := (u, v)o. + (u, v)o, and
(o, 0)x,.;D, := (q, 0)D, + (q, G)D, + (qt, O,)D,. The notation for norms will be similar.
The derivatives are weak derivatives, in the following sense: Let u e o(D, k)
Lo(D); a function w elo(D, k) is the weak x-derivative of u over D, w u, if
JJr, (a/ax)[x((x, t)]u(x, t) dx dt --JD X((x, t)W(X, t) dx dt ’" o(D). Similarly for
the t-derivative. By the standard method of mollification and partition of unity
arguments [1], [9] one can see that the spaces W above can equivalently be defined as
closures of spaces of smooth functions; for example, W’(D, k) is the closure with
respect to the I[" [la,O;D,-norm of {u ((D)" IlUlII,O;D,k < 00}. Let us remark that the
above definition as well as Theorems 1.1 and 1.2 below are valid for any k 6 Rt (our
interest however is only for k => 1).

Let X > 0 be fixed and set R := (0, X) x (0, T), F := {X} x (0, T), ? := (X/x(t))x for
each [0, T]. The (global) change of coordinates x - , is a l-transformation
(by (.)) with nonvanishing Jacobian, which transforms the domain D into the rectangle
R by mapping F onto ’. Then, if u (x, t) is defined on D, the function

u(X(t)~ t)(1.2) a(d, t):= _.\---X-X, u (x, t)

is defined on R. The derivatives (both classical and weak) are related by t(:, t)=
(X(t)/X)u,(x, t) and t(,f, t) (,f(t)/X(t))xu,(x, t) + u,(x, t). Over the rectangle R we
define the spaces W’(R, k) and WI’I(R, k) exactly as we did over D. Various
properties of the elements of the W spaces over D will be deduced from properties of
elements of the corresponding spaces over R. The main reason for the transformation
however is that it is needed in the uniqueness proof ( 3). Clearly

(1.3) u Wa(D, k) if[ t Wd(R, k), j O, 1,

and the identification u t7 is an isomorphism between the spaces in (1.3). We establish
the existence of a trace on F"

THEOREM 1.1. If U WI’(D, k), then the trace yu of u along F exists in L:(F)
LZ(O, T) and u yu in L:(O, T) as (x, t) (X(t), t) F.
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Proof. Let 0<X.<X be fixed and set R,:=(X,,X) (O, T). Now, u
Wl"(D,k)l, 2(R,)(’,t), (.,t)L2(X,,X) for a.a. t(0, T). Hence
([13, p. 28]) t(, t)= t(X,, t) +, t9(37, t) d)7 for a.a. (0, T), which implies that the
trace 33t(t):= lim_x- t(, t)- t(X,, t)+xX, t79(17, t) d)7 exists and t(, t) converges
to it a.e. as +X. Clearly the value of 33t is independent of X,. We claim
that 3;t7(" )L2(0, T); indeed, g(,t)2dt<oo for a.a. (X,,X)Yo(X,,X)
such that (t(Yo, t) dt<eo" then l/(t)[2 dt=[(Yo, t)+ (, t) d[2 dt <

2 jro (Yo, t)2 dt+2(X-o) jro j, (tg(, t)2 ddt<oo. Finally, for X,<<X,
[t(,t)-’t(t)]2 dt<-(X-), t79(37, t)2 ddt+O as X. The assertions for u
follow by defining yu(t):= /(t). Q.E.D.

Let us note that

(1.4) yu(t) := 3;a(t)= tT(r, t)+ t79(17, t) d37

holds for a.a. (0, T), a.a. r (X., X), any fixed X, (0, X), from which one easily
obtains

WTHEOREM 1.2. The trace y "(D, k) L2(0, T) is a continuous linear operator
on WI’(D, k) with range dense in L2(0, T).

These results allow us to define the space

(1.5) I/l’(D, k):= {u e WI’(D, k)" yu 0}kernel of y in WI’(D, k).

It follows that Rg(y)= W’(D, k)/Iil"(D, k), in other words we have
COROLLARY 1. The space of boundary values (traces) along F of elements of

Wa’(D, k) is the quotient Wx’(D, k)/IiVx’(D, k) which is a dense subset of L2(F)
L2(0, T).

Next we show that for functions continuous up to F the trace coincides in some
sense with the restriction of the function on F. Namely we prove

THEOREM 1.3. Let u WI’(D, k) f’l qff(D F). Then yu Oc:u]v O.
Proof. Equivalently, if the transformed function t (see (1.2)) belongs to

WI’(R, k) (’l g(R U ’) we show that 3t 0:t[r=- t(X, t) 0. Assume 33t 0. From
(1.4) we have

t’X

(1.6) a (, t) J fi (f, t)

for a.a. (0, T), a.a. . (X,, X), any fixed 0 <X, <X. Let (X, to) P, 0 < to < T. We
want a(X, to) 0. Let B := (to- e, to + e), e > 0, and for h > 0 let Sh := (X- h, X) x B c

R. Then cg(Sh) and (1.6) implies (by careful estimation of the constant)

(1.7) I Is kff(’ t)2 d dt <
Xh I Is a (, t)2 d dt.--k+l

On the other hand, by the mean value theorem there is o (X-h, X) such that the
left-hand side of (1.7) equals h IB 2o(2o, t)2 dt. Thus, as h- 0 (and o-X) we find

xkIB tT(X, t)2 dt =0 by continuity of 7 on h, whence t(X, to)=0. Conversely, if
t[ r--- 7(X, t) 0 then we can write ff(, t) as in (1.6) for any 0 < < X, any 0 < < T, and
(1.4) implies 3a 0. Q.E.D.

The elements of WI’(D, k) clearly have the same trace properties along F since
W1’1 c W1’. Moreover, they also possess traces on 0 and T as one can easily see
by proceeding as in the proof of Theorem 1.1. We state the result
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THEOREM 1.4. I]: 0 E WI’X(D, k) then the traces 3’, 3’0 and "YT Of 0 along F, 120, ’T
exist respectively in LZ(O, T), 2(12o, k), 2(12T, k). The linear operators y, 3’0, 77- are
continuous on WI"I(D, k) with dense ranges.

This allows us to define the closed subspace of W1’1(D, k)

(1.8) l/d1’1(D, k) := {0 E W1’1 (D, k)" yq 0, YTq 0},

which will be used as the space of test functions. Clearly rl’lc I/"1", so that the
properties of l/V1" are also valid for I/1’1.

From (1.4) by repeated use of the Cauchy-Schwarz inequality one obtains
THEOREM 1.5 (Poincar6 inequality). For any u WI’(D, k) and any e > 0

u dx dt < Ilrull = == L2(0,T) + -1 x u dx dt
k-l+e

As immediate consequences we have a Friedrichs inequality (take e 2 in (1.9)),
which will be used repeatedly later, and also some results about the growth of functions
in Wl"(D, k) as x --> 0.

COROLLARY 1 (Friedrichs inequality). For u E IiVl"(D, k),

(1.10) I{ llo, cIl  llo, .
COROLLARY 2. Let u E Wl’(D,k). For any s >0 the function u(x,t):=

x’/u(x, t), u (k 1)/2 =>0, satisfies:
(i) / lau/Oxl dx dt <= C(k; D; Iluxllo, };
(ii) for a.a. (0, T), u (x, t) is absolutely continuous in x [0, X(t)];
(iii) lim,,_,o+ u (x, t)= 0 for a.a. (0, T).

Consequently, for a.a. (0, T)

lim xk-lu (X, t) 0 if k > 1,
xO

lim xu(x, t) O re>0 if k=l.
x-0

2. Generalized formulation of the problem. Given c E L(D), f 2(D, k), go
o’2(10, k) and gl L2(0, T) we consider problem (IBVP) (see Introduction). Led by
(1.1), we consider solutions in the space WI’(D, k) and test functions in the space
I/1’1(D, k). Clearly this is the largest possible space of test functions one could choose
within 2(D, k); there is a gain in doing so, as we shall see in the uniqueness proof, and
certainly there is no loss since one could use any dense subspace whenever preferable.
We define a bilinear form a(u, ) on WI’(D, k) WI’I(D, k) by

(2.1) a u o I Io x k {u q UO + cuq} dx dt,

a linear form Aq on I/VI’I(D, k) by

(2.2)

(we have written q(x, 0) or the trace yoq on 1o) and we make (1.1) the basis o
definition o a generalized solution.

DEVIYITIOY. A unction u (x, t) defined in D will be called a generalized solution
o problem (IBVP) if: (i) u e WI"(D,k), (ii) yu =gl in L2(0, T), (iii) a(u,o)=
A0 Vq:, E l/’l’t(D, k).
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Remark. This concept of generalized solution for problem (IBVP) is wider than
"weak solution in Hilbert space" of the Fichera and Oleinik theory (cf. [14, p. 28]).

3. Existence aad uniqueness results. First we consider the case gl-=0. Let
(IBVP)o denote problem (IBVP) with boundary condition ulr 0. Then u is a general-
ized solution of (IBVP) if u 6 I/I’(D, k) and (iii) of the definition in 2 is satisfied.

THEOREM 3.1. If (i) cL(D), (ii) f62(D,k), (iii) g0o.2(,o,k), then a
generalized solution of (IBVP)o exists and satisfies

(3.1)

Pro@ We use the Lions "variant of the projection theorem" [12, p. 37] with the
following choices of spaces F, and norms: Let F := I/’I’(D, k) with Ilul[ :-Ilu llo. ; by
(1.10), II’llv and II’lla.0;o. are equivalent norms on the Hilbert space F. Let
(I :-- /1’1(D, k) with I[qll, :=llqx 2 kqIIo. / & x (x, 0)2 dx (the trace q (x, 0):= y0q
2(12o, k) exists by Theorem 1.4) and note that is not complete in this norm. Clearly
cF and I1011-<1111 v. The form a(u,q) is defined on F by (2.1) and
satisfies:

for each q , [a(u,)l<-C()llull VuF.

Next, noting that without loss we can assume c -> 0 a.e. in D (if necessary, change u to
u e -ct with Co := ess supo Ic(x, t)l which has the effect of replacing c by Co + c ->_ 0 a.e. in
D) we find by an integration by parts a(q,,)>--Ilqll vq,. Finally, the linear
functional A is defined on by (2.2) and thanks to (1.10) it satisfies IAI_-<
{C(k, r)ll llo, / IIg011.o. }. I1 011. Thus the Lions theorem yields the existence of a
u F such that a (u, q) Aq Vq and Ilullv -< Ilmll, where the operator norm [IAII of A is
bounded by the.constant in the just mentioned estimate for IA01. Q.E.D.

Remark. (3.1) is not an a priori bound, so uniqueness has not been proved.
THZORZM 3.2. If (i), (ii), (iii) of Theorem 3.1 hold and i (iv): g L2(0, T) is the

trace on F of some g Wx’a(D, k) (in particular, if g HI(O, T)) then a generalized
solution of (IB VP) exists and satisfies

Proof. The proof of Theorem 3.1 applies with the same F, q), a (.,.) but with A
replaced by X where q := Ao-a(g, q) and yields the existence of a v I/’(D, k)
satisfying a(v, p) [k(p Vq IJC’a(D, k). Then u := v + g is a generalized solution of
(IBVP). In particular, if ga H1(0, T) then, for example, take g(x, t):= gl(t), (x, t)D
which clearly is in Wx’I(D, k), Q.E.D.

THEOREM 3.3 (Uniqueness). If c L(D) then problem (IBVP) has at most one
generalized solution.

Proof. By linearity and employing the coordinate transformation introduced in 1
(see (1.2)) we have to show that

(3.3) t I/’’(R, k) and (a, qS)=3 Yq IJ/I’(R, k)

with 1=0, 0=0, imply t7 =0; here if, :, etc. denote the transformed quantities
referring to the rectangle R (0, X) (0, T). We shall prove that this is indeed the case
for some appropriate choice of R, i.e., of X > 0:

LEMMA 3.1. If u e I/’a’(D,k) and a(u, o) Aq Ye lJdx’X(D,k) with f
’2(D, k), go2(12o, k) (and c eL(D)), then there exist X>0 and TI (0, T] such
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that the transformed solution defined in R :- (0, X) (0, T) satisfies

Io(3.4) .2k(2, t)2 d2 dt <- C Ilf’l}2R..k + 2k0(2)2 d2

0<= T <-- T1, where the constant C C(k; F; X; r) is a continuous and increasingfunction
of r, and R (0, X) x (0, r).

Uniqueness is obtained from this lemma as follows" f 0 go ::>f 0 0, so the
lemma implies t7 0 for a.a. (Y, t) e R /T e [0, T1]. Hence, if T T then t/= 0 a.e. in
R if T1 < T, we repeat the argument over IT1, 2T], etc. until T is reached, to show that
t 0 a.e. in R 7- R and therefore also u 0 a.e. in D. Thus, it only remains to prove
the lemma.

Proof of the lemma. Let X > 0 be fixed (to be chosen later) and set as before
R := (0, X) (0, r), with R := R T. By transforming from D to R, the hypotheses of the
lemma are equivalent to (3.3). The basic idea of the method we shall use is due to
Ladyzenskaya 11, p. 127]. All quantities below refer to R but the will be omitted for
simplicity in the notation. Let T e (0, T] be fixed (to be chosen) and set

(3.5) O(x, t) := tj, u(x,
r

ds for 0_-< t_-< r,

for r_-< t-<_ T.

Then p e l/g’a(R, k) is an acceptable test function in (3.3) and at the same time u
Ux =-Ot. Thus (3.3) gives

2 .(xx(t)-O2)dxdt+ .xkx(t)k+lo2t dxdt

(3.6)
(k- 1)X2 II X2 ,x (t)t’-2,(t)z dx dt + xk+lX(t)kf((t)txd/tdx dt

+ I I.xx(t)+lcqttdx dt + I I.xkx(t)+ifqt dx dt

x
+ J0 xx(O)+ag(x)p(x’ O) dx.

We integrate the first term on the left and estimate each term on the right using (.),
Cauchy-Schwarz, an arithmetic-geometric mean inequality and (1.10). The result is

X2X(0)k-1 [ X(0)2 ]fo
X" IIR2

1-e
2(k + 1 xg(x’ O)z dx +A xkx(t)k+I dx dt

(3.7)
(positive const.) [[ x dx dt +FI(), Ve > O, 0 T,

where A := 1- (e/2)(l/2 +[[c[[), and

e vk+l X(0)k+l {X(3.8) Fl(r) :=a Ilfll-,+ xgo(x)2 dx.

Now, the parameters X > 0 and e > 0 can be chosen so that the coefficients in (3.7) are
all positive. Then, dividing through by the first coefficient we can write (3.7) in the form

(3.9) Xgk(X,O)Edx+A x dxdtB x dxdt+F(7),
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where A, B are positive constants depending only on k, ]]C][L and (the parameters of) F,
and F(r) (similar to F1 (z) in (3.8)) is a continuous and increasing function of r, 0 -< z _-< T.

Next, the arbitrariness of z is utilized as follows" Let st(x, t):=0 u(x,s)ds for
0 -< <= -. Because of (3.5) we have p(x, t) ’(x, -) st(x, t), hence

(3.10) I1,11 =-.--< 21)’,11. / 2r x (x, r)2 dx, 0 < r < T.

Substituting in terms of sr in (3.9) and using (3.10) we obtain
x

(3.11) (1-2Br) _I xk(x(X’ "r)2 dx +A[ 2

X

<-2B fo (Yo Xkx(X’ t)2 dx) dt+F(r), O<-z<- T.

Letting T1 := rain {1 / (4B), T}, we have 1 2Br 1/2 for 0 -< r =< T. We apply the Gron-
wall inequality [16, p. 14] to (3.11) and disregarding unneeded terms, we find

A .Xk(,(x,t)2 dxdt<-F(r)+4Be4B" F(s) ds<-[l+4Be4. r]F(-),

0<=7-<- T1.

This is the assertion of the lemma (recall that sr, u, (3.8), and that we have been
deleting over x, u, f, go). Q.E.D.

4. Green’s function. From now on we restrict our attention to the case c(x, t)-
constant, i.e. (after changing u to ue-") to the equation

(4.1) Lk[u] =- u,- ux, +--u, f,
X

and (IBVP)* will refer to (IBVP) with the equation replaced by (4.1).
We shall employ the ingenious method of Pogorzelski 15] to construct the Green’s

function by means of a potential of first kind (instead of the second kind potential
usually needed). The theory of potentials for the operator Lk was developed in [2], and
the classical solution of (IBVP)* was represented there in terms of potentials. The
representation of the classical solution via Green’s function, which we shall obtain here,
allows us to prove that the generalized and the classical solution coincide when the data
permit.

We begin with the construction of the Green’s function G(x, t; y,s) for the
operator L in the domain D. It is a function defined and continuous for (x, t)e D,
(y, s) D fo, 0 _-< s < -< T and of the form

(4.2) G(x, t; y, s)=-E(x, t; y, s)-Z(x, t; y, s),

where yE(x, t; y, s) is the fundamental solution ofL (see [2]) and Z has the following
properties: For each (y, s) D t.J fo

(Zl)

(Z2)

(z3)

(Z4)

Z(’,’;y,s)6C(/s), whereDs={(x,t)" s<t<T,O<x<x(t)},

L[Z](x, t) 0 for (x, t) D, 0 <-- s < <= T,

Z(x,s; y, s):= lim Z(x, t; y, s) 0, O<=x<=x(s),
tSs

Z(x,t; y,s)[(x,t>v=E(x,t; y,s)l(x,t)r, O<--s<t<-T.



INITIAL-BOUNDARY VALUE PROBLEM 355

We recall that

2(t-s)I 2(t-s) exp 4(LS)j, t>s, xy 0,

and E 0 for <-s, x # y, whereas for > s, xy 0, E takes the asymptotic form
[2kF(u+ 1)]-x(t s)-+1) exp{-(x2+y2)/(4(t--s))}; here u (k -1)/2 >- O, I is the
modified Bessel function of order u and F(.) is the gamma function. Note that by
(uniqueness) Theorem 2 of [2, 6], properties (Z1)-(Z4) determine Z uniquely for
each (y, s) D o. Now, Z can be found in the form of a second kind potential by
solving a problem of type (I)k (see [2, 9]). Pogorzelski’s method however deter-
mines Z in the form of a first kind potential which is always smoother. The method was
devised for uniformly parabolic operators [15] and is also described in [10]. Fix
(y, s) D LI fo and define Z as the potential of first kind ([2, 4]):

(4.3) Z(x,t; y,s): Y{(x,t; -)o)(-; y,s) d’, x>0, s<t<T,

where

(4.4) 27{(x, t; r):=X(-)kE(x, t; X(r),

and o (.; y, s) is the unique continuous solution of the Volterra integral equation

(4.5) 1/2w(t; y, s)+Ex(x(t), t; y, s)= ?7{x(X(t), t; o’)w(o’; y, s) do’,

s < -< T (see [2, 9] for the solvability of (4.5)). Thanks to the properties of potentials
of first kind established in ]-2, 4], the function Z(x, t; y, s) is continuous for x =>0,
s <_- <_- T and satisfies (Z1)-(Z4) above, for each (y, s) D LI fo. Then (4.2) determines
G. Using the strong (Nirenberg) maximum principle as in the proof of Theorem 2 of [2,
6] one can show that for each (y, s) D t.J fo, G(x, t; y, s) > 0 for (x, t) Ds (see [3,

Chap. 4] for details).
As one would expect the Green’s function is no more singular than the fundamen-

tal solution itself. Indeed, G satisfies estimates identical with those of E [2, 1 ], namely
we have

THEOREM 4.1. For (x, t) 6 D, (y, s) 6 D LJ fo, O <- s < <= T,

(4.6) IG(x, t; t, s)l <- C1" (xy)-k/2(t- S)-1/2 exp {--(x y)2/(32(t- s))},

(4.7) IG(x,t; y,s)l<=fz (xy)-k/2(t--s)-aexp{--(x--y)2/(32(t--s))};
the constants CI, C2 depend only on k and (the parameters of) F.

These follow from the corresponding estimates on/3 [2, 1] and Lemma 4.2
below:

LEMMA4 1. [w(t’y,s)l<C’[x(t)y]-k/2(t--s)-lexpl--[’(t)--Y]21 t>s.
t J16(t-s)

LEMMA 4.2. Z and Zx satisfy the estimates of Theorem 4.1.
Proofo[Lemrna 4.1. E and Ex admit the bounds (4.6) and (4.7) respectively (with

8 in place of 32, see [2, 1 ]) and then the same is true for Yd" and Y{’x by (4.4); let us refer to
these estimates as (4.6)s, (4.6)x, etc. Apply the Gronwall inequality [16, p. 14] to (4.5)
to get

(4.8) (t, y, s)l < lE] + ]Ex(x(o’), o’, y, s)l [Yx(X(t) t" o’)l eC’/ do-,
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s <- <= T. Use (4.7)E, (4.7)x and on the resulting exponential the estimate (recall that
is Lipschitz by (.))

(4.9) exp
[X(t)-X(’)]2 [X(’)-’Y]2 -,2/(t-s)

8(t- o’) - i J -<- const, e e

where p := 1/4Ix(t)- y], q := 1/4[X(s)- y], to find

(4.10) integral in (4.8)<--C[x(t)y]-k/2e -p2/(’-s (t--s)-l/2(cr--s)-1 e -q/(-’) dtr.

By a change of variable the last integral is recognized as a Laplace transform involving
the Bessel function Io and it can be estimated by (t--s)-/2 e -q2/(t-s). Thus the lemma
follows. Q.E.D.

Proof ofLemma 4.2. Use (4.3), (4.6)x, Lemma 4.1, (4.9) (with obvious changes)
and finally estimate the resulting integral as above to prove (4.6)z. Similarly for
(4.7)z. Q.E.D.

THEOREM 4.2. If (i) f q(D) and is locally H61der continuous in x, uniformly in t,

for (x, t)mD; (ii) go c(o); (iii) ga e a[0, T]; (iv) go(x(O)= g(O), then the solution of
(IB VP)* is given by

(4.11) u(x, t)=g,(’)+ ff, ykG(x, t; y, s)/(y, s)dy ds+ f_ ykG(x, t; y, 0)go(y)dy,

with f(x, t):=f(x, t)-gl(t), go(X): go(x)- gl(0).
Proof. By Theorem 4.1, the integrals in (4.11) are analogous to the area potential

U[f] and the initial potential i[g0] respectively (see [2]); their properties and those of Z
allow one to show that u is a classical solution. Uniqueness follows from [2, 6, Thm. 2].
Details can be found in [3]. Q.E.D.

One of the advantages of representation (4.11) over the one in terms of potentials,
given in [2, 9], is that it does not involve the potential of second kind which is singular.
This enables us to show that the classical solution is also a generalized solution ( 2) and
that the two coincide.

THEOREM 4.3. The classical solution of (IBVP)* given in (4.11) belongs to
WX’(D, k) and for any q /l’a(D, k) it satisfies

T

(4.12) lim | XkUxq dt O.
x0

Outline ofproof. Since u (/), we only have to prove ux 6 2(O, k) and (4.12).
Now, u, can be computed from (4.11) and the resulting integrals behave respectively
like U[f] and ix[0], [2, 5 and 2]; from the estimate

lUx(X,t)l<-C, x-k/Z{tmml+t-/2m2}, x>0, O<t<=T, any0<m_-<1/2,

ml, m2 constants, we see that the trace of u along F is integrable and also that (4.12)
holds for q bounded on D. An energy type estimate from the equation shows
Ux ,2(O, k). Next, I/’a(D, k) implies that for a.a. x e [0, Xo] and any 0 < e < 1,
t-l/Zlqldt<-const. llo,ll2o.r)<o; also, the above estimate on lUx(X,t)l gives
Iro xkuqdtl<-C x k/2 t-x/2]ol dt, x >0, and from these (4.12)follows. Q.E.D.

Multiplying equation (4.1) by xkq and integrating over D using (4.12), one sees
that the classical solution u also satisfies a (u, q) Ao, q 1/l’a (D, k), therefore it is a
generalized solution. By uniqueness of the latter (Theorem 3.3) the two must coincide.
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Thus we have
THEOREM 4.4. Under the hypotheses of Theorem 4.2, the generalized solution of

(IBVP)* is classical.
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ORTHOGONAL POLYNOMIALS WHOSE DISTRIBUTION FUNCTIONS
HAVE FINITE POINT SPECTRA*

T. S. CHIHARAt

Abstract. A counterexample is given to an assertion by K. M. Case that if the coefficients in the
three-term recurrence formula for orthogonal polynomials converge as fast as n -2, the corresponding
distribution function has only finitely many discrete points in its spectrum. Some positive results concerning
this situation are also given, and continuity of the distribution function is investigated.

1. Introduction. The classical three-term recurrence formula

Pn(x) (x-cn)P,,-l(X)-h,,Pn-:z(x), n >- 1,
(1.1)

P-I(X)-- O, Po(x) 1, Cn real, hn+l > 0,

defines a sequence of monic polynomials which are orthogonal with respect to a real
distribution d on a subset of the real line. Conversely, of course, every monic
orthogonal polynomial sequence satisfies such a recurrence.

According to an often overlooked theorem of O. Blumenthal [1], if

(1.2) lim cn c, lim An A,

then the numbers

(1.3) o- c-2/, r c+2/
ar6 the smallest and largest limit points of 5(g,), the spectrum of (=support of d0).
Moreover, the zeros of all P, (x) form a dense subset of [m r].

Blumenthal also asserted that there are at most finitely many points of 51’(0) on the
complement of [o’, r], but this has been shown to be incorrect [6]. In recent years, there
has been important work by K. M. Case and others in which (1.1) is studied from the
viewpoint of scattering theory in physics (see [2], [3], [4], [9]). In particular, this work
has renewed some interest in the question of when there are, in fact, at most finite many
spectral points outside [cr, r].

J. S. Geronimo and Case [9] have recently proved that if

2
n=l

then there are at most finitely many spectral points on the complement of [o’, r], and 0 is
continuous at cr and r. (For two different and simpler proofs, see [8].) Also, P. Nevai has
shown 10, Thm. 40] that if

2
n=l

then is absolutely continuous on (r, r) and O is positive and continuous on (o-, r).
Earlier, Case [2], [3] had claimed that

(1.4) cn c O(n -2), An A O(n -:)
is sufficient for O to have at most finitely many discrete spectral points. However, his
proof [3] was in error so the question of whether in fact the assertion is correct has

* Received by the editors January 12, 1979, and in revised form May 10, 1979.
? Department of Mathematics, Purdue University Calumet Campus, Hammond, Indiana 46323.

358



ORTHOGONAL POLYNOMIALS 359

aroused some interest. It is the purpose of this note to provide a counterexample. In
addition, we will obtain a few positive results involving the hypothesis (1.4), and will
also investigate the continuity of at r and r.

2. Counterexanllfles. There is no loss of generality if we assume

(2.1) lim c 0, lim hn 1/4,

so that [r, z] [- 1, 1].
For brevity’s sake, we will denote by M the set of all distribution functions for

which [r, r] [-1, 1] and which have at most finitely many spectral points outside
[-1, 1]. We then recall the connection between (1.1) and chain sequences [5] (see also
[7]). We set

hn+l(2.2) an(x)= n=>l.
(x -c)(x-c/)’

THEOREM 1. A necessary and sufficient condition for g is that there existsN >= 0
such that Ic l < 1 for n >N and {an+N(t)}n_- is a chain sequence for -1 and 1.

Proof. Let {pN) (X)}= denote the orthogonal polynomial sequence determined by
(1.1) after replacing cn andAn by Cn+N and An+N. If ]Cn+N] < 1 (n => 1) and {an+N(t)}=l is
a chain sequence for + 1, then the true interval of orthogonality for P(ff)(x)} is a
subset of [-1, 1] [5, Lemma 5]. Hence by [5, Lemma 7], has at mostN spectral points
smaller than -1 and at most N larger than 1.

The converse is given by [6, Thm. 1].
We will have several occasions to refer to the following fundamental results of H. S.

Wall [12, pp. 82, 84] (see also [7]).
THEOREM 2. Let 0 < an <= bn, n >= 1.
(a) If {bn} is a chain sequence, so is {an}. Moreover, if mn and Mn are the n-th

minimal and maximal parameters of {an} and if gn is any n-th parameter for {bn}, then

rnn < <Mn, =0 1 2...gn rl

(2.3)

(b) {gn} is the maximal parameter sequence for {bn}/f and only if

y,. gl"’" g,,,
=oo.

m=l (1- gl) (i- gin)

Now consider

1 1
(2.4) an -7+ n >- 1.

4 16n(n 1)’+

We have an (1-Hn-1)Hn where

2n+1
Hn n->0.

4(n + 1)’

Then {an} is a chain sequence and Wall’s criterion (2.3) shows that {Hn} is its maximal
parameter sequence.

On the other hand, if we set

1 1
(2.5) bn b,,(y) =’7+y(-4 4 n n ’+ )’’ n >= 1,
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then direct calculation shows that {b,} is not a chain sequence if 0 < 3’ < 4. We will now
show that, at least for 0 < 3’ < 1, {bn/N}= is not a chain sequence for any N >-0.

For any numerical sequence {f,}, we write

Then let 0< 3"<1 and assume that {b(nN)(3")}n=l is a chain sequence. Let m, and Mn
denote its minimal and maximal parameters.

Since {}n=l is a chain sequence whose nth minimal parameter is n/(2n + 2), we
have by Theorem 2, M, > n/(2n + 2). On the other hand, {a (N)-.n is a chain sequence
whose maximal parameters are H(ff !-7, p. 94]. Since b (N), > a (N) Theorem 2 now yields

n <_M,,<HlV) 2(n +N)+ 1
(2.6)

2(n + 1)- 4(n +N + 1)"

Next set d. b (N), Then for every integer P>0= {d(nP)}nm=l is also a chain sequence
and its maximal parameter sequence is {MP) }.=o. We have

(2.7)

Mp) M(kp)_ d(kP) (1 M(kP)_I
1

dk+p--

1 --Mk+P-1
Therefore by (2.6),

Z 2(k + P)
Mn+p Mp >= L

k=l k+P+l
(dk+P-- 41-),

P+I .1 P -> [(k +N +P)(k +N +P+ 1)]-1.
2 2(P+1)-23"(P+2)k=l

Hence

P+2 N+P+I n+N+P+I
Letting n c, we conclude that we can choose P sufficiently large to arrive at a

contradiction. Thus {b(N (3")}--1 is not a chain sequence for any N > 0.
To obtain a counterexample to Case’s assertion, we can choose an arbitrary

sequence {c,} such that c, O(n-2), and then set

hn+l b,,(3")(1-c.)(1-c,,+l), 0< 3’ < 1.

Then {a CN) (1)} {bN) (3’)} is not a chain sequence for any N >0" hence by Theorem 1
the corresponding distribution function @ has denumerably many spectral points larger
than r 1. There may be at most finitely many spectral points smaller than r -1, but
it is possible to choose c, small enough (e.g. c, 0) so that {a ff)(-1)} is not a chain
sequence for any N either.

We note a specific, simple example involving (2.4). Let

1 n(n +1)
(2.8) c. X.+I4n2-1 (2n 1)(2n + 3)"

Then

(2n +1)2

a.(-1) =a.
16n(n + 1)
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so {an (- 1)} is a chain sequence and there are no spectral points smaller than 1. (In fact,
since {an} does not determine its parameters uniquely, the distribution will have the
form dp(x)= (x + 1) dcD(x), where the spectrum of b lies in [-1, oo) [5, Thm. 1].)

By contrast,

n(n+l)(2n+l)2

cn (1)= 4(2n2_ 1)(2n2 +4n + 1)
> bn(y)

for all n sufficiently large if - < /< 1. Thus there are denumerably many spectral points
larger than 1.

Remark. The inequality (2.7) can easily be improved and {bN) } shown to be not a
chain sequence if 0 < y < . However, this slight improvement seems not to be worth the
effort since we conjecture that this conclusion holds for 0 < y < 4.

3. Some positive results. We next note a few positive results involving the
condition (1.4). In many cases, the conclusion 6 can be obtained simply by
comparing an(+/-l) with an in (2.4). However, it seems desirable to have conditions
expressed directly in terms of the asymptotic properties of cn and An.

THEOREM 3. Let cn O(n-2), An- 1/4 O(n-2), and

(3.1) L(t) limn_sup n
2 An+l- +(cn + Cn+l)

If L(t) < for -I and t= 1, then O sg.
Proof. Let 8n (x) an (x) . Then for + 1.

4hn+l- 1 + t(cn + cn+l)-CnCn+l
(3.2) 8n(t)

4(t-cn)(t-Cn+l)

Thus if cn O(rt-2), then referring to (3.1),

lim sup nZn (t) L(t).

Therefore, if L(t) < 6, there exists an N ->_ 0 such that [cnl < 1 and

1 1
O<an(t)<-+16n(n + l) an

for n _-> N. By Theorem 2, {a (u)(t)}, is a chain sequence so 0 6 s.
For the (monic) Jacobi polynomials, we have

L(-1) (1- 4a2)/16, L(1) (1-4flz)/16,

where c and fl are the usual parameters. Thus Theorem 3 does not apply to the
Legendre polynomials (a =/3 0). However, in this case

1 1
cn=0, n+l +4(4n._ 1).

Thus a(1)(+/-l)n "-/n+2 <an so 0 s. We can, in fact, draw the conclusion that the
spectrum of O has at most one point smaller than 1 and one larger than 1. However, we
cannot conclude that the true interval of orthogonality is precisely [-1, 1] by a
comparison. This is because {nZ/(4n:-l)}= is a chain sequence that uniquely
determines its parameters, Mn =n/(2n + 1). Thus no other chain sequence can
dominate it (Theorem 2).
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We further note we can write
2n 1

4n:Z------_1 + 1[ 1 ]16ha l+4n 1
This suggests the following:

LEMMA. Let
1 l+e.

y.=+16n, n>l

If either (i) e. O(n-1),
or (ii) Y’. e. converges,
then there exists an N such that {(nN)}7=l is a chain sequence.

Proof. In case (i), simple inequalities show that for N sufficiently large,
(n -> 1). In case (ii), choose N ->_ 1 so that

s -<_1, n_->0.

Define

.+N 1 1
bn=1/2=N2 e, gn=--4(n+N+b.).

We have 0 _-< go < 1/2, 0 < g. < 1/2 (n => 1). Hence we form the chain sequence

1 1 + 2(b.- b._x)
/3. (1 g.-1)g. + 16(n +N + b._l- 1)(n +N +

1 1 + en+N

-4 16(n +N)2"

Thus/3, _-> y(N).
THEOREM 4. Let c, O(n-2). If, for +/- 1,

(3.3) 16n2(.+l-1/4)+4tn2(cn +cn+)<-- l +r.(t),

where r.(t)= O(n -1) or Y r.(t) converges, then
Proof. If c. O(n-2), we can write

[(t--c.)(t--c.+l)]- 1 + O.(t), t= +/-1,

where 0n (t) O(n-). Therefore, referring to (3.2), we have

(3.4) 16nZ6.(t) 16nZ(h.+l-1/4)+4tn2(c. +C.+l)+F.(t)
where F.(t)=-4nZc.c.+a + G.(t)O.(t), and G.(t) is bounded.

Thus if (3.3) holds, 16nZ6.(t)<-1+e.(t), where e.=-en(t)=r.(t)+F.(t). Since
F. (t) O(n-2), e. satisfies the conditions in the preceding lemma. Hence by Theorem

4, Continuity of at _+1. We conclude with a look at conditions that yield the
conclusion that is continuous at +/- 1.

If {aU)(x)}=l is a chain sequence, it follows from [6, Thm. 1] that it has a
parameter sequence given by

PN+n+I(X)
(4.1) g.(x) 1- n=>0.

(x CN+.+I)PN+. (X
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In terms of the orthonormal polynomials

pn(x) (A1A2...

(where A (()- (-))), (4.1) yields

[pN+n+,(x)] 2 [1--gn(x)]2(X--Cl+n+,)2 1--gn(x)X--Cs+n+l
pN+n(X) AN+n+2 gn+(X) X --CN+n+2

Thus

(4.2) lPN+n+l(X)12J I -- 1--gn(x)--gn+1(X)][gn+i# 1 =" CN+n+2--CN+n+I]x CN+n+2

For the remaining theorems we will maintain the preceding notation but will not
require the hypothesis (1.4). In fact, the following apply, to a limited extext, to
unbounded coefficients in (i. i).

THEOREM 5, Let Cn--Cn-1 o(n-1), An A >0, and let {aS)(x)}=l be a chain
sequence. If

n[1-gn(x)-gn+(x)]
L*(x) - lim sup <-1,

.- g.+(x)

then is continuous at x. If
n[1-gn(x)-gn+l(X)]

L,(x) =-- lim inf > 1,
n--,o gn+l(X)

then qt has a positive jump at x.
Proof. We note that {cn} may be unbounded. However, we can write cn

Y’-k=l k-lek where ek O. Thus]cnl<=M+logn (M>0). Since0<ar+n(x)< 1 (n =>1),
/, <[Ixl /M/ log (n + 1)]2 for n =>N. Thus A 2a/2 so by a theorem of Carleman
(see [11, p. 58]), the associated Hamburger moment problem is determined.

Now since An is bounded away from 0, x- cn is bounded away from 0. Hence
referring to (4.2), we can write

2

n[[P+n+(x)+ci -1 ] n[1-gn(x)-gn+(x)][l+(1)]+(1)gn+(x)
It now follows from Raabe’s test that p2 (x) converges if L*(x) < -1 and diverges

if L,(x) > -1. But according to a classical theorem from the problem of moments [11,
Cor. 2.6], if the moment problem is determined, then the jump of at x is p(x)=
{E.Co p(x)}-.

THEOREM 6. Let cn- cn-a o(n-1), An >=A > 0, and let {a(N)n (x)} be a chain
sequence satisfying

1 a<U>(x) >--a, n>l,
4 16n(n + 1)’

here 0 <= a < . Then 6 is continuous at x.
Proof. Let

/l+a-1 =<2s < 1,

and set

n+s
Mn-

2n
/3, (1-Mn-1)Mn n > 1
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Then {Mn},=0 is the maximal parameter sequence for the chain sequence {fln}= 1. Also

1 (l+s)s 1 a
fin 4 4n(n + l)-4 16n(n+l)"

Therefore c (N) (X) => fin SO, referring to (4.1) and Theorem 2, we conclude gn (x) -<_

Mn. Thus

n[1-gn(x)-gn+l(X)]> n
[1-Mn-Mn+l]

sn(2n +3)
gn+(x) Mn+l (n + 1)(n + s + 2)"

It now follows that

lim inf
n[1 gn(x)- gn+l.X.j>__( ]]

-2s > -1.
n--,oo gn+l(X)

Thus by Theorem 5, 4’ is continuous at x.
We note that in the case of the Jacobi polynomials, Theorem 6 yields the

conclusion that is continuous at + 1 only for la 1< 1, [B I< 1.
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SECONDARY BIFURCATION NEAR A DOUBLE EIGENVALUE*

M. SHEARERt

Abstract. General conditions are formulated under which secondary bifurcation is rigorously established
for a family of bifurcation problems depending continuously on a real auxiliary parameter. With more specific
conditions, it is shown that, although the presence of secondary bifurcation renders the problem a priori
degenerate, a full local bifurcation analysis is still possible.

The results of this paper demonstrate the prime importance of symmetry (or more generally, invariance)
to the mechanism by which secondary bifurcation points are created as the auxiliary parameter is varied.

1. Introduction. In this paper, we investigate the following suggestion made by
Bauer, Keller and Reiss [2] in connection with bifurcation problems for which
primary bifurcation points are continuous functions of a real parameter Ix" If a
multiple primary bifurcation point occurs for Ix Ixo, and splits into two or more simple
primary bifurcation points as Ix varies from/x0, then secondary bifurcation may occur
for values of Ix /xo near Ix0.

We show that for a wide class of problems, the splitting of primary bifurcation
points does occur (Theorem 3.2), and formulate conditions under which secondary
bifurcation points are created in the process of this splitting (Theorem 3.3). We also give
conditions under which no secondary bifurcation points are created, even though the
multiple primary bifurcation point splits into two simple primary bifurcation points
(Corollary 3.6, and Case CII (k 2), 4).

Let X, Y be real Banach spaces, and let F" R2 XX -- Y be a mapping of class C" for
some n >-2. That is, F is n times continuously Fr6chet differentiable at each point of
R2 X. We consider such mappings F for which there is a known solution x (h, Ix)
for each (h, Ix) , of the equation

(1.1) F(A, Ix, x) 0, (h, Ix, x) 2 xX

and such that " [2X is of class C". Without loss of generality, we assume (h, Ix) 0
identically, where 0 X denotes the zero of X.

(H1) F(h, Ix, O) 0 for all (h, Ix) 2.
Indeed, set G(h, ix, x)=F(h, ix,(h, tx)+x). Then G" R2X Y is of class C" and
G(h, Ix, 0)= 0 identically.

Our next assumption is that for fixed Ix Ixo, the linear operator F (h, Ixo, 0) (the
Fr6chet derivative at x- 0 of the map X- Y" x--F(h, Ixo, x)) possesses a double
degeneracy for some h ho. Without loss of generality, we assume ho 0 and Ixo 0, as
this is equivalent to relabelling h -ho as h and Ix- Ix0 as Ix.
(H2) Fx(O, O, O)’X- Y is a Fredholm operator with Fredholm index zero and
two-dimensional null space.

In order to define secondary bifurcation for (1.1), we specify that h is the
bifurcation parameter, and Ix is an auxiliary, or perturbation, parameter. With this
understanding, we shall principally be concerned with solutions (h, x) X near
(0, 0) of (1.1), for each fixed Ix near zero. In the following definitions, Ix is fixed.

* Received by the editors September 28, 1978, and in final revised form June 25, 1979.

" Fluid Mechanics Research Institute, University of Essex, Colchester, England. Now at Department of
Mathematics, Duke University, Durham, NC 27706. This work was supported by the United States Army
under Contract DAAG29-75-C-0024.
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A curve {(,(s), (s)" s e (-1, 1)} c R X is called a branch ofsolutions of (1.1)
if (,,)’(-1, 1)->RX is one-to-one and continuous, and F(h,/x,x)=O for each
(;,x) .

Let c, X be a branch of solutions of (1.1). A point (A1, Xl)e c, is called a

bifurcation point (with respect to c, and (1.1)) if, for each neighborhood U c X of
(A , x), there exists a solution (A, x) e U\C of (1.1). In particular, bifurcation points on
the set F,, {(A, 0) :A e }of trivial solutions of (1.1) are called primary, and if c, 71F, is
a single (primary bifurcation) point, then c, is called a primary branch of solutions of
(1.1). Bifurcation points on c,\F, are then referred to as secondary bifurcation points,
and if @, is a branch of solutions of (1.1) which intersects c,\F at a single (secondary
bifurcation) point, then @, is called a secondary branch of solutions of (1.1).

in 3, we give sufficient conditions for secondary bifurcation. The principal
assumption is that F should satisfy an invariance hypothesis (H3). With this assumption,
there are natural nondegeneracy conditions on the lower order derivatives of F at
(0, 0, 0), under which secondary bifurcation is guaranteed for each t 0 in an open
interval whose closure includes zero.

The conditions for secondary bifurcation in 3 are intended to cover a wide range
of possible symmetry properties for F. In 4, we consider various types of such
symmetry assumptions on F, each of which is shown to facilitate a full local bifurcation
analysis of (1.1) in a neighborhood of (0, 0, 0). The effect of some of these assumptions
is illustrated by an example in 5. Section 2 consists of preliminary results.

Symmetry properties, of equations of the form (1.1) satisfying (H1), (H2), have
been used explicitly in bifurcation analyses of specific buckling problems by List [13],
Mallet-Paret [16], and Shearer [18]. In each of these applications, secondary bifur-
cation occurs for each t # 0 near zero. Nonsymmetric cases were studied in [13] and
[16], by introducing a third parameter, variation of which removes the symmetry. In
[13], variation of the third parameter also removes hypothesis (H1), so that secondary
bifurcation is not so clearly defined. It is worth noting however, that there are locally no
bifurcation points (in our sense), except when the symmetry is present. In 16], variation
of the third paraxneter does not destroy either (H1) or (H2), but does remove the
secondary bifurcation.

Further examples of (1.1) satisfying (H1), (H2) and exhibiting secondary bifur-
cation, are discussed using formal methods in [4], [5], [10]-[12], [15], [20]. Each of
these applications possesses some form of symmetry, but this is not fully used in the
bifurcation analyses.

The use of symmetry in bifurcation problems has been explored in some generality
by Sattinger [17], who remarks that multiple degeneracy (such as (H2)) is often the
result of some inherent symmetry in the application being considered.

Notation. Subscripts will be used to indicate partial (Fr6chet) derivatives. The
symbols r(A), (A) will denote respectively the null space and range of a linear
operator A between Banach spaces. If M is a p-linear operator, M(x, x2, , xp) will
sometimes be written as Mxxz.. x.

Remark. While completing this paper, the author learned of the work of Golubit-
sky and Schaeffer [7]-[9] on bifurcation problems with several parameters. These
papers emphasize the role of symmetry in many problems involving bifurcation from a
double eigenvalue.

2. Preliminary results. To discuss secondary bifurcation for (1.1), we need first to
establish a primary branch of solutions for each /x near zero. This is achieved by
adapting the result of Crandall and Rabinowitz [6, Thm. 1.7] on one-parameter
bifurcation from a simple eigenvalue, to include the additional parameter/x. We require
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the following hypotheses on F.
(I1). There exist closed linear subspaces XI ofXand Y1 of Y such that
(i) F( U) c Y1 ]’or some neighborhood U 2 X1 of (0, 0, 0).
(ii) The restriction L: XI-* YI, of Fx(0, 0, 0) to X1, is a Fredholm operator with

Fredholm index zero and one-dimensional null space.
Since the theorem is concerned only with solutions of (1.1) in U, we may suppose

that U
(I2). If F satisfies (I1), then Fxx(0, 0, 0)O (Fx(0, 0, 0)), where X1 spans

(L).
THEOREM 2.1. Suppose F: z X Y is of class C for some n >= 2, and satisfies

(H1), (I1), (I2). Let Z1 be a closed linear subspace of X1 complementary to span {O}.
Then there exist e > O, 6 > 0 and functions h, Y. from D(6)

{(,, a) = [1 < , lal < } into , Z1 respectively such that
(i) For fixed Ix (-8, 8), the curve

c, {(,g(tt, a), a(O + zT(tz, a))" la[ < ,}

is a primary branch of solutions of (1.1).
(ii) (0, 0) 0, h (0, 0) 0.
(iii) ;and are of class C"-1, and of class C on )(8)= {(/x, a)6D(8)’a #0}.
(iv) If (h,/x, x) 2 X1 is a solution of (1.1) satisfying [h[< e, f/z[ < 8, Ilx[I < e, then

either x 0, or (h, x) ,.
The proof of the theorem may be found in [19].
Given the hypotheses (H1), (H2), (I 1) and (I2), it is convenient to discuss secondary

bifurcation from the branches , of Theorem 2.1, by considering the bifurcation
equations for (1.1). These equations are derived as follows.

Let g" X, 9 Y denote respectively the null space and range of F (0, 0, 0), and
let Z be a closed linear subspace of X complementary to A;,

(2.1) X=q3Z.

By (H2), there exist elements tPl, 2 of Y such that

(2.2) span {//1, 2}() Y.

Set Yo span {01, 02}, and let 0, O be continuous linear functionals on Y such that

(2.3) (i, ;)= 8ii and (, ;)= 0 (/" 1, 2) if 0 .
Next, define the projection P" Y Yo by

ey (y, Itl)ll-[" (Y,

In later sections, we define more specific I1, I//2, Z satisfying (2.1), (2.2), which in turn
define Y0, 6, and P.

Equation (1.1) is equivalent to the system of equations

(2.4) (I P)F(A,/x, v + z) 0, (h, fit,, /A, Z R2 X ,j X Z,

(2.5) (F(X, tx, v+z),O})=O, (/= 1, 2)(h, tz, v,z)N2x3cxZ.
For 8>0, set A(8)={(h, lx, v)N2xjV’:lhl<&[tx[<&[Iv[[<8} and B(8)=
{ z: I1 < ,}.
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LEMMA 2.2. Suppose F: 2 XX --) Y is of class Cn, with n >-_ 1, and satisfies (H1),
(H2). Then there exist 6 > O, e > 0 and a function . A(8 -Z of class C such that

(i) (h, , 0) 0 for each (h, z) , Il< , I1 < .
(ii) (I-P)F(A, tz, v + 3(h, tz, v)) 0 for each (h, t, v) A(6).
(iii) If (h, z, v)A(6) and z 6B(e) satisfy (2.4), then z (h, tz, v).
(iv) (0, 0, O)v 0 for all v
Proof. Since (I-P)F(A, g, 0)= 0 for all (h, z)6 2, and F(0, 0, 0) is one-to-one

and onto between Z and , (i), (ii), (iii) follow from the implicit function theorem.
Property (iv) follows by differentiating (ii) with respect to v, and setting h -0, v
0.

Let 4x, 42 span , and set v =al +fl2, with (a,/3)[2. Substituting z
3 (h, tz, v) into (2.5), we obtain the bifurcation equations"

(2.6) (F(A,/d,, (1 q- j)2 q- ’(, /d,, 1 q- j2)), 0, (f 1, 2).

Define (8) {(h, U, a, 13) 4" (h, tz, acx + flc2) a(6)}, and let
denote the left-hand side of (2.6), for/" 1, 2 and (h,/z, a,/3) 4(6).

THEOREM 2.3. Suppose F" 2 XX ---> Y is Of class C", with n >- 1, and satisfies (H1),
(H2). Then there exists a neighborhood U = 2 XXof (0, O, 0), and 8 > 0 such that" If
(h, tz, x) U is a solution of (1.1), then there exists a unique element (a, fl 2 such that
(h, l, a, [3) 3(61), x aCl + [c2 + (h, tz, aCl + [3b2), and fi(A, t.t,, a, [3) O (f 1,2).
Moreover, F (h, tz, x)" X- Y has a bounded inverse if and only if the 2 2 matrix
[0(/1, fz)/0(a,/3)], evaluated at (h, g, a, ), is nonsingular.

The first statement follows immediately from Lemma 2.2. The second statement is
proved in [19].

3. Secondary bitureation. Throughout this section, we assume F: z X- Y is of
class C" for some n _-> 2, and satisfies (H1), (H2). In the investigation into the possibility
of secondary bifurcation for (1.1), the following assumption plays a central role.

(H3). There exist closed subspaces XI, X2 ofX, and YI, Y2 of Y such that
(i) Xl(X2---.X YI Y2 Y;
(ii) F(z Xx) c Y1;
(iii) vV’f3Xx {0}, (i= 1,2);
(iv) Y f3Y # Y, (i= 1,2);
(v) Fx (0, O, O)X2 c Y2.

Note that (H3) implies (I1). However, we wish to apply Theorem 2.1, so we make the
further assumption

(H4) Fax (0, 0, 0)v and v f together imply v O.

Assumption (H4) establishes that A is to be considered the bifurcation parameter
in (1.1). If (H1)-(H4) are satisfied, then the conditions of Theorem 2.1 all hold. We shall
freely refer to the primary branches of solutions c. predicted by Theorem 2.1.

Since (H3) implies Fx(0, 0, 0)X c y, (i 1, 2), let Ai" X - Y,. be defined by
Aix Fx (0, O, O)x, x X, 1, 2. Then (H2), (H3) imply that Ai is a Fredholm opera-
tor with index zero and null space spanned by an element 4i 6X,. (i 1, 2). Let
1 YI, d/2 Y2 satisfy span {Oi}(Y/) Y/(i 1, 2), and define @, b in Y’ by
(2.3), which in turn define P" Y span {Ol, 2}. Let Zx, Z2 be closed linear subspaces of
Xx, X2 respectively such that span {b/}0)Z X; (i 1, 2), and set Z Z10)Z2.
Finally, let PI" Y --) span {01} be the restriction of P to Y1 given by

Pxy (y, , )h (y Y1).
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Since (I-P1)F(,, IX, x)=(I-P)F(,, Ix, x) whenever (h, Ix, x) N2xX1, Lemma
2.2 implies that

(h, Ix, a&l) Zl for each (h, Ix, ate1) A(8).

Setting/3 0 in (2.6), we have

so that

whenever (h, Ix, O1)A(8),

(3.2) fz(h, Ix, a, 0) 0 identically.

Recall that, provided [h and [Ix[ are small enough (h, 0) F, is a bifurcation point
only if Fx (h, Ix, 0)" X Y does not possess a bounded inverse. Theorem 2.1 tells us that
there is at least one primary bifurcation point (h (Ix, 0), 0)F, near (0, 0), for each
Ix (-8, 8). The following theorem states that, if (H1)-(H4) are satisfied, then for
p > 0 (p < 8) small enough, and each Ix (-p, p), there is at most one other primary
bifurcation point near (0, 0).

THEOREM 3.1. Suppose F" N2xX- Y is of class C" with n _2, and satisfies
(H1)-(H4). Then there exist p > 0 and functions h 1, h 2 from (- p, p) to , each of class
C-1, such that V(F(hi(Ix), Ix, 0)){0} for each Ix(-p,p)(i= 1,2). If (h, IX)N2

satisfies Il< , Il< p, and does not lie in the set {(hi(Ix), Ix)" ]Ix I< p, 1, 2}, then
F(h, Ix, 0)" X Y has a bounded inverse.

Proof. By Theorem 2.3, provided Ih[< 8, [Ixl < 8, F(h, Ix, 0)" X - Y has a bounded
inverse if and only if the matrix [O(fl, fE)/O(a, fl)], evaluated at (h, Ix, 0, 0), is nonsin-
gular. But (3.2) implies (OfE/Oa )(h, Ix, 0, 0)=0 identically. Therefore, for [h[<8 and

IIxl< 8, A/’(Fx (h, Ix, 0)) {0} if and only if either

f--21(;, , 0, 0)= 0(3.3)

or

0(, , 0 o)=o.(3.4)
0/3

By (H2), h =Ix=0 satisfies both (3.3) and (3.4). Moreover, (H3)(ii) implies
F (0, 0, 0)bl Y1, so that (Fx (0, 0, 0)bl, Oh)= 0, and

02fl(0, O, O, O)--<Vxh (0, 0, 0)(1, Itl 0 by (H4).

But (H4) also implies that O does not annihilate Fx (0, 0, 0)At. Therefore,

(o, o, o, o)= <F (0, O, 0)62, g,l> O.

The result now follows immediately from the implicit function theorem.
Theorem 3.1 does not rule out situations which we wish to consider as being

degenerate. For example, set X Y 2 and define F" 2X Y by
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Then F is real analytic, and satisfies (H1)-(H4). But the only points for which

Fx(a,,0,0)=
0 a

is singular are given by A =0. So, Ai(/x) 0, (i I, 2) for all /x, and

W(Fx (0,/x, 0, 0)) span { [] }, (/x # 0).

We now consider hypotheses which guarantee that the primary bifurcation point
(0, 0) F0 splits into exactly two primary bifurcation points as/z varies from zero. This
splitting is central to the assertion of Bauer, Keller and Reiss [2] concerning secondary
bifurcation.

Define the linear mapping z0" N->Z by z0(v)= ,v(0, 0, O)v, or equivalently,
differentiating (2.4) with respect to/x and v, with z we have

(3.5) Fx(O, O, O)zo(v)+(I-P)F,,.,,(O, O, O)v =0 (v /’).

Note that z0(1) Z1.
To simplify the notation in the following conditions on F, set L1 Fx(0, 0, 0),

M1 F,(0, 0, 0), M2 F,,(0, 0, 0), each of which is a linear operator from X to Y.
The conditions (D1), (D2) below are clearly mutually exclusive, and are intended

to serve two purposes. Firstly, (Dk) (k 1 or 2) asserts that fx(A,/x, a,/3) and
kf2(A,/z, a,/3) contain terms involving /x a,/x respectively, as the lowest order

coupled terms between/z and (a,/3) which are linear in (a,/3). Secondly, (D1) and (D2)
are a convenient form of transversality condition which will enable us to use the implicit
function theorem. These conditions are intended to be quite general, but they are
important to the results in the rest of this section, as the above degenerate example
illustrates.

(D1)

(D2) (MlV, @)=0

(Limb1, @)

(MII, )j’l is nonsingular.
(M1(2, ’(i 1, 2) for all v Vand

<M2bl + MlZo(l), 0 >] is nonsingular.
<M2&2 +MlZo(2),

As in Theorem 2.1, define D(6) {(/x, a) e 2" I, < 3, la[ < 6}.
THEOEREM 3.2. Suppose F"2X- Y is of class C", with n >= 3, and satisfies

(H1)-(H4), together with either (D1) or (D2).
Then there exist > 0, e > 0 and continuous functions , from D(a) to , x

respectively such that
(i) (0, O) O, ;(0, O) 0.
(ii) For each Ix (-& ), I O, the curve {((tz, v), 2(t, v))’lvl < 8} is a

primary branch of solutions of (1.1). In fact (pc, v) 0 if and only if v 0.
(iii) and are ofclass C-1 in the region defined by Ix 0, ofclass C in the region

defined by vtt O, and of class C--1 everywhere if (Dk) is satisfied (k 1 or 2).
(iv) For It, l<& if (h, o)r, is a bifurcation point for (1.1) and [hi<e, then
(tx, O) or (tx, 0), where is given in Theorem 2.1.

Proof. For i, ] 1, 2, set

(3.6) a,i (tli, 05
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and

(3.7) bi (Mk& +(k- 1)MlZo(qbi), ;)

if (Dk) is satisfied (k 1 or 2). Now set a--a21b22-a22b21 and b =a22blx-alxb22.
Then b # 0 by assumption.

If (Dk) is satisfied (k 1, 2), let h (hi, h2)" 4_.) 2 be defined by

-1 -2k ku /z f(/xk,/x, /x (a + r/), ,/xkb) if . 0,

h(, n, , u)= -k
L0a

(k, , 0, 0)(a + n)+(k, , 0, 0)b if, 0, # 0,

(al+bx)(a +)+(aEl+bE1)b if =0,
-1 -2ku f2(, , uk(a +), b) if 0,

h2(,,,p)= k g ,0,0)b ifp=0,#0,

(a22 + bzE)b if 0.

Then h(, , , u) is defined for all , in bounded intervals, and for all , u sufficiently
small. In such a domain, h is continuous, of class C" with respect to (, ), of class C"-1

away from 0, of class C" in the region defined by u 0, and of class C"-k-

everhere.
Now, h(-b2z/azz, 0, 0, 0)=0 (i 1, 2) and [(0(h, hz)/O(, ))(-bz2/a22, 0, 0, 0)]

has determinant -(abEE-ab1)2O, (by (Dk)). The existence of >0 and A,
satisfying properties (i)-(iii) follows from the implicit function theorem. Property (iv) is
a consequence of Theorem 3.1, once (i)-(iii) have been established, and property (v) is
obvious, since if 0<ll<6, then (, u)sX if and only if u=0. But (,0)=0
identically, and A(, 0)= A (, 0) only if 0 (by construction). This completes the
proof.

To determine secondary bifurcation points on ,, define a function g2" 4 by

(3.8) g:(A,/z, a,/3)= cf (A,

if/3 # 0,

By (3.2), g2 is of class Cn-1 on (6) (with 6 > 0 as in Lemma 2.2), of class C away
from/3 0, and of class C" with respect to (A,/x, a) everywhere.

Suppose that, for fixed/x (-6, 6), we can find a sequence {(A,,, a,,/3,,)} c N3 of
solutions of the equations

(3.9) /I(A, , a,/3) 0, gz(A,/x, a,/3) 0,

such that < IIml"+’m2l[< 6, ,, #0 for each m, and (A,,,a,.,,,8)(Ao, ao, O)
as m --> oo, with co 0. Then x0 aoCa + (Ao, z, aoCa) X1, and (A, x) (Ao, Xo) is a
solution of (1.1). Therefore, by Theorem 2.1, provided 6 > 0 is small enough, (Ao, Xo)
c,. But x, a,& + fl,,2 + (A,,, ix, a,,a +/3,2) is not in X1 for any m, and (A, x)
(A,,,x,,) is a solution of (1.1). Since (X,,, x,,)--> (Xo, Xo)C,, xoO and
(A, x,,,) ,, (Ao, Xo) must be a secondary bifurcation point.

For this argument, fl may be considered small compared with a, in (3.9). We need
to examine the lower order terms of the Taylor expansion of (fl, g)(A, ix, a,/3) about
(0, 0, 0, 0). The Taylor expansion of F(A, ix, x) about (0, 0, 0) may be written in the
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form

F(A,/z, x) Lox + ALlX -F tzMIX q- N2M2x + QoX2 + izQix 2 q- Cx 3 -t- R (A, Ix, x),

where

Lo Fx(O, O, 0), Oo 1/2Fxx(0, 0, 0),

Q1 =-F.xx(O, O, 0), C=gFxxx(O, O, 0).

The linear operators L1, M1, M2 were defined earlier. The function R: [2 XX -- Y is of
class C", and represents the remaining terms in the Taylor expansion. In particular,

R(A,

Let z:3cZ be the quadratic mapping defined by Zl(V,v)=f(O,O,O)v, or
equivalently, differentiating (2.4) we have

(3.10) F(O, O, O)z(v, v)+(I-P)Ex(O, O, 0)v 0

Assuming (H1)--(H3) and (Dk) (k 1 or 2), (3.9) takes the form

(3.11) (alh +blk)a+Ala2+BlNa+pa3+Rl(h,,a, fl)=O,

(3.12) (aEh +bE)+Aa+BENa+qaE+RE(A,,a, fl)=O.

The coecients a aii, b bi, (i 1, 2) are defined by (3.6), (3.7),

A1 (O0,
B1

B2

q (3C1+ Oo (, z(, Cz))+ 200(2, z(x, Cx)), Oi ).

RI: (6)-N is of class C", and R2: ’(t) has the same differentiability
properties as g2: M(8) N defined by (3.8). The term (Rl(h,/, a,/3), Rz(A, N, c,/3))
represents the remaining terms in the Taylor expansion of (/1, gz)(A,/, c, fl) about
(,/, a,/3) (0, 0, 0, 0). In particular, when k 1, the terms involving (/2a,/2) are
included in (RI(h,/, a,/3), Rz(A,/, a, fl)).

The aim is to obtain quite general sufficient conditions for secondary bifurcation, in
essence independent of whether the nonlinearity in F is quadratic or cubic. The details
of the analysis are however different for these two cases, so we distinguish between
them with the following mutually exclusive nondegeneracy conditions.

(El) alA2-a2A1 0,

(E2) A1 =A2=0 and aq--a2p 50.

The functions Zo, Z1 defined by (3.5), (3.10) will in general be difficult to calculate,
so that it is important to recognize circumstances in which these functions do not affect
the hypotheses (D2), (E2) respectively. Such conditions are as follows:

(i) PMx=O for allxeX, or Mv=O for allve3c.
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Condition (D2) becomes

(M2b2,

(ii) POox2 0 for all x X, or QoV 2 0 for all v 3c.

Condition (E2) then reduces to

</-.,
0

(3Cb162, 0;_)

Conditions like (i) and (ii) have been assumed by other authors (notably in 14]) to
avoid having to include implicitly defined functions in hypotheses to guarantee bifur-
cation.

As hypotheses (Dk), (Ek), (k 1, 2) are concerned only with coefficients in the
bifurcation equations, we shall assume that these coefficients may be determined, at
least to a degree of accuracy to guarantee the particular set of conditions required of a
specific F. The example considered in 5 includes a situation in which the function
ZI" dV"-- Z plays an important part in the bifurcation analysis.

THEOREM 3.3. Suppose F: N2xX Y is of class C" with n >-3, and satisfies
(H1)-(H4), (D1) or (D2) and (El) or (E2). If F satisfies (D2) and (E2), assume the
additional condition

(3.13) (a2B1 a 1B2)2 > 4(a2bl alb2)(a2p alq).

Then there exists an open interval I containing zero and continuous functions
IxIN, 12" I, w" IxIXsuch that

(i) I()1- = i (D1) and (E2) are satisfied, otherwise 12(/2) =/2, (/2 I).
(ii) Forxed /2 I,/2 O, set tx t2(/2). The curve @, {((/2, y), w(/2, y))’y 6 I} is

secondary branch of solutions of (1.1), intersecting at the single point
(2(, o), w(, o)).

(iii) (0, 0) @0 (corresponding to/2 0).
Proof. For/" 1 or 2 and k 1 or 2, suppose (D/’) and (Ek) are satisfied. Let

(G1, G): N3 N2 be the polynomial mapping defined by

GI(A, 7",x)=(alA+blri)x +AlX2+(j-1)(k-1)BlrX2+(k-1)px3,
G2(A, r,x)=(a2A+b2ri)+A2x +(j-1)(k-1)B2rx +(k-1)qx.

To express the fact that Gx(h, Ix, a), Ga(A, Ix, a) represent the dominant terms in (3.11),
(3.12) when/ 0, we introduce the following rescaling functions.

h*(/2, A) {/2A/2A
IX*(/2, r) {/22r
,(, x) { 2x

u2y
B*(v, y)=

vy

if (D1), (El),
otherwise,

if (D1), (E2),
otherwise,

if (D2), (El),
otherwise,

if (D2), (El),
otherwise.
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Here, u N is the rescaling parameter, and A, z, x, y are all real.

(3.14)

(3.15)

Now substitute h h*,/. =/x*, a a*, B B* into (3.11), (3.12).

fX(, *(P, h),/*(p, 7"), o*(b,, x), *(b,, y))
M=v {Gx(A,’r,x)+hl(A,r,x, y)y+’01(A,’r,x, y,u)},

g(X *(, h), *(, ), *(, x),/3"(, y))
Nu {G2(A, r, x) + hE(A, r, x, y)y + r/2(A, , x, y, )}.

Here,

and

2 if (D1), (El),
M= 3 if(E2),

4 if (D2), (El)

1 if (D1), (El),
N=

2 otherwise.

hi(A, "r, x, y), h2(A, ’, x, y) are polynomials, and "0i" Ns_N (i 1, 2) is defined on a set
of the form

S {(A, , x, y, .) e .(*(., A), .*(., r), *(., x),/*(., y)) e se()}.

(’01, "02)" S -’) [[2 is continuous, and possesses continuous partial derivatives with respect
to (A, x). Moreover, "01, "02 are of class Cn, Cn-1 respectively away from u 0, and "02 is
of class C away from uy =0. We also have "01(A, r,x, y, 0)= rt2(A, r,x, y, 0)=0
identically.

Now divide the expressions (3.14), (3.15) by uM, respectively. That is, define
(H1, H2): S --> by

[.-"/’l(;t *(.. A)..*(.. ). *(.. x). *(,. y))HI(A, P)T, X, y,
GI(A, r, x)+ yhl(A, % x, y)

/.-(,*(. A). z*(.. r). *(. x)./*(., y))
Hz(A, P)X, y,

Gz(A, % x)+ yhz(A, ’, X, y)

if uO,

if u=O,

ifu#O

if u=O.

Then/-/" $ N (i 1, 2) has the same ditterentiability properties as described above for
the corresponding

Under the conditions of the theorem, we shall show that the equations

(3.16) GI(A, 7", x) 0, G2(A, -r, x) 0

possess a solution (A0, r0, Xo) such that Xo#0 and the matrix [O(G1, G2)/O(A,x)],
evaluated at (Ao, to, x0), is nonsingular.

But (A, r, x, 0, 0) Gi (A, r, x) identically, so we may apply the implicit function
theorem to the equations

Hl(A, r, x, y, p) O, H2(A, r, x, y, v)= 0.

This implies that there exist p > 0 and continuous functions , from I x I to N (where
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I (-p, p)), satisfying
(i) X(0, 0)= A0, (0,0)= x0;

(ii) h and are of class C"-M (if n > M), of class C"-1 on (I I)\({0} I), and of
class C" on (I x I)\[({0} x I) U (I x {0})]

(iii) /-/((u, y), zo, (u, y), y, u)= 0, (i 1, 2) for all (u, y) I x L
Let (u, y) h *(u, fk(u, y)), t2(u) tx*(u, z0), 3(u, y) a*(u, (v, y))41 +

/3*(u, y)42 and w(u, y)= 3(u, y)+((u, y), t2(u), 3(u, y)). Then F((u, y), t2(u),
w(u, y))= 0 for all (u, y) I x L and w(u, y)X if and only if uy 0. In particular, if
p > 0 is chosen sufficiently small, Theorem 2.1 implies (h (u, 0), w(u, 0)) @, when
/x=(u) and [ul<p. Moreover, w(u, 0)=0,[u[<p if and only if u=0, so that
((u, 0), w(u, 0)) is a secondary bifurcation point whenever 0< [u[ < p. Note also that, ={(u, y), w(u, y))’ly]<p} (with tx =(u)) is C"- if /x 0, and
@g\{(h (u, 0), w(u, 0))} is C". Also, @o {(0, 0)}.

It remains only to solve (3.16) in the manner indicated above, and with ro 1
unless (D1) and (E2) hold, in which case [zo[ 1. If (Ao, zo, Xo) is a solution of (3.16),
let Jo denote the determinant of the 22 matrix [0(G1, G2)/O(A, x)], evaluated at
(Ao, zo, Xo). We consider separately the different cases covered by the theorem.

Cases (D1), (El) and (D2), (El) differ only in the definition of ba, b2. Set zo 1.
Then (3.16) is solved, by Ao=(A2bl-Alb2)/(A2a-Axa2), Xo
(blaz-bza)/(Azal-Ala2). By assumption, Xo 0, and Jo bla-b2aa 0.

If (D1) and (E2) hold, set zo=-sgn(blaa-bzaa)(paa-qal). Then Ao
zo(bq-bzp)/(pa2-qa), Xo=[(baz-b2al)/(pa2-qa)l/. Again, Xo0 and Jo
2(a b2 azba)’o O.

Finally, suppose (D2) and (E2) hold, together with (3.13). Then d=
B :(azBx-ax :)-4(azbx-ab2,)(azp-aq)>O. Setting zo=l, we require Xo

1/2(alB2-a2B +x/-d)/(a2p-axq) and Ao=(bq-b2p+xo(Bq-Bzp))/(azp-alq).
Then Xo#0 and Jo=2(aabl-axb2)+(a2Bl-axBa)xo. In particular, (D2) and (3.13)
imply Jo 0. 13

If (D2), (E2) and (3.13) hold, then the definition of Xo in the proof of Theorem 3.3
involves a choice of sign. Therefore, we have the immediate corollary.

COROLLARY 3.4. Under the conditions of Theorem 3.3, if (D2), (E2) and (3.13) all
hold, then there are two functions (h a, Wx), (h, we) from I I to X satisfying the
conclusions of Theorem 3.3. In particular, there are two secondary bifurcation points on
c for each 0 in L

The proof of the following completeness result 19] is fairly straightforward, but we
omit it here, as it is also quite long and technical.

COROLLARY 3.5. Under the conditions of Theorem 3.3, there exists 3/> 0 such that if
]/x]< y, Ih[< y, Ilx]l < y, and (h, x) c, is a secondary bifurcation point, then (h, x) is one

of the secondary bifurcation points determined in Theorem 3.3 and Corollary 3.4.
If the inequality (3.13) is reversed, then

(a2bl-alb2)+(a2Bl-alB:z)x +(a:zp--alq)X2=O

has no solutions. Consequently, under (D2), (E2), there are no solutions of (3.16) with- 1. This leads to the following result.
COROLLARY 3.6. Suppose F" zX--> Y is of class C3, and satisfies (H1)-(H4),

(D2), (E2), together with

(3.17) (aaB aB:): < 4(aabl albz)(azp aaq)

then there exists p >0 such that if (h, x) ., with Ih]<p, Ilxll<o, then (h,x) is
not a secondary bifurcation point.
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4. Bifurcation and symmetry. In applications, condition (H3) is often satisfied as a
consequence of a symmetry in the physical problem associated with (1.1). In this section
we list various such symmetries as conditions on F. These conditions, together with
appropriate nondegeneracy conditions (such as (El), (E2)), facilitate a full bifurcation
analysis of (1.1) in a neighborhood of (0, 0, 0). Throughout the section we assume that
F: 2XX-- Y is of class C with n ->_ 4, and that F satisfies (H1), (H2).

($1). There exist linear operators S: X-X, T: Y- Y such that
(i) S(Sx)=x, T(Ty)=y for all x6X, y6 Y;
(ii) F(h, tx, Sx) TF(h, lx, x) for all (h, lz, x) 6 E x;

(iii) there exist bx, 2 which span such that

Sl 1, S(2 --2
(iv) there exist 4, : in Y\ such that

TI 1, T2
If F satisfies (S 1), set

X+ {x X: Sx +x}, Y+ {y e Y: Ty +y}.

Then X=X+X_, Y= Y+ Y_. SetZ Z+Z_, where Z+span {qbl}=X+,Z_
span {bu} X_.

Let T’: Y’- Y’ be the adjoint of T,

<Ty, ’> <y, T’t0’> if y e Y, @’e Y’

and note that span {4, }, defined by (2.3), is invariant under T’. In fact, T’
and T’ =-. Therefore, P" Y-->span {b,, 2} commutes with T: PT TP. Lemma
2.2 now implies

(4.1) S.(A, Ix, v)= (h, Ix, Sv) if (h, tx, v) A(6)

which in turn implies that the bifurcation equations (2.6) satisfy

(4.2) fl(X,/d,, c,-3)--fi(,/d,, c, 3),

(4.3) f2(h,/x, a,-) -f2(h,/x,.a, 3)

for all (h,/x, a, 3) ’(6).

Remark. In the bifurcation analysis under (S1), we shall only use the fact that (S1)
implies (4.2), (4.3). Therefore, we could replace (S1) by the weaker condition that (4.2),
(4.3) hold. However, (fl, f2) is only implicitly defined, so that it seems more satisfactory
to interpret the symmetry (4.2), (4.3) in terms of a corresponding symmetry (S1) in F. A
similar remark applies to the "double" symmetry assumption ($2) that follows.

($2) There exist linear operators S, $2 on X, and T, T2 on Y such that
(i) S(Sx)=x, T(T/y) y for all x X, y Y, i= 1,2;
(ii) $1S2 $2S1, T1 T2 T2 T1
(iii) F(A, tz, Six) T/F(A,/x, x), 1, 2, for all (h, tz, x) in 2 X;
(iv) there exist b, b2 which span d" and satisfy

S,b (-1)’+ibi (i, j 1, 2);

(v) there exist , 2 in Y\Y such that

T6 (-1)’+;6i (i, j 1, 2);
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If F satisfies ($2), set

Xo {x X: Sax ox, Sx crx},

Yo {Y 6 Y: ray py, r2y ry} (p, tr +/-).

Then X X++@X+_@X_+@X__, and Y Y++@ Y+_( Y_+( Y__. Additionally,
&IX+-, &2X-+, 01 Y+-, 02 Y-+. Set Z=ZIZ2@X++@X__ where ZI@
span {1} X+_, Z2(span {(b2} X_+. Repeating the argument under ($1), we have

(4.4) S(A,/.L, Sir)--" SiS(A,/./.,/)) (i 1, 2), (A, tx, v)e A(6)

so that (4.2), (4.3) hold, together with

(4.5) fl(A, tx,-a, fl)= -f(A,/x, a, fl),

(4.6) f2(A, /x, -a, /3)= f(A,/x, c,/3).

A particular case of ($2) occurs when ($1) is satisfied, and F(A,/x, x) is odd with
respect to x,

(4.7) F(A,/x, -x) -F(A,/x, x)

for all (A,/x, x) Na xX. In fact, set S=S, S2=-S, T= T, T2=-T. Then ($1), (4.7)
imply ($2) with X++ X__ {0}, Y++ Y__ {0}, and f(A,/x, -v) -f(A,/x, v) for all
(A, l.t, v) s a(8).

Now, if F satisfies (S1) or ($2), then (H4) is satisfied if and only if

(H4’) (Fx(O, O, 0)i, 01) 0 (i 1, 2).

For the rest of this section, we assume (H4’).
Note that if F satisfies (S1), then (H3) is satisfied (which implies (I1)), withX X+,

X2 X_, Ya Y+, Y2 Y-. Therefore, by Theorem 2.1 there is a primary branch
c, = X+ of solutions of (1.1), for each small I/zl. These primary branches correspond
to the fact that/2(A,/x, a, 0)= 0 identically, by (4.3).

Similarly, if F satisfies ($2), then (H3) is satisfied withX X//X+_, Xz X_/@
X__ (and similarly for Y1, Y2) and also with Xa X//X_/, Xz =X/_X__(and
similarly for Y, Y2). Therefore, for each/x near zero, Theorem 2.1 establishes the
existence of two primary branches, c, (X++@X+_), and c (X++@X_+).
These branches correspond to setting/3 0 and c 0 respectively in the bifurcation
equations

(4.8) f(A,/z, a, fl) 0, fa(X, ix, c,/) 0.

To obtain the branches c,, , we need only assure that

(4.9) f(A, ix, a, 0) 0 and f2(A, ix, 0,/3) 0 identically.

This condition is provided by the following assumption.
(J1). There exist closed linear subspaces X), X), XCe) ofX and yO), y), y) of

Y such that

X__x(O)(X(1)(X(2), y y(O)@ y(1)() y(2),

F(2 (x(O)Gx(i))) y(O)@ y(i) (i 1, 2).

A/" span {&, &2} with i e X (i 1, 2),

(span {, 2} Y with Oi y(i (i 1, 2).
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Suppose F satisfies (J1), and set Z---X()(Z(1)Z(2), where Z(ispan {&i}=
X(i) (i 1, 2). Restricting (2.4) to 2 span {i} (X()z(i)), for i= 1, 2 in turn, we
see that z(h, Ix, ai)X()Z(i), (i 1, 2) for all A, IX, a near zero. This implies (4.9).

For a full bifurcation analysis under (J1), we require the following additional
conditions.

(J2) F(A, Ix, -x) -F(A, Ix, x) for all (h, IX, x) 6 2 X X,

(J3) (Fxxx (0, 0, 0)2j,4/i 0 if (i, ) (1, 2) or (i, ]) (2, 1).

Bifurcation analysis under ($1). Suppose F satisfies (H1), (H2), ($1), and (Dk),
k=lor2.

The bifurcation equations (4.8) satisfy (4.2), (4.3), and are of the form

(4.10) (axA +bxixk)a+Aa2+C[32+hx(h, ix, a,[3)--O

(4.11) (a2h +b2ixk)+Ba[3+h2(h, ix, ce,[3)=O,

where ai, bi, (i 1,2), A =A1, B=A2 are defined in 3 and C=(Oo&, 4’); the
mapping (hl, flh2)" s4(6)[ is of class C", and represents higher order terms in
(;, , , t),

I’-h,(,, , ,, )l
<= const. {l(a,/3)13 + (IA[+ IIx I)[(a,/3 )[2 +

(i 1, 2), where I(a,/3)1 (a 2 + [2)1/2.
In terms of (4.10), (4.11), we assume

(Sl) h,(,, Ix, a,-) hi(h, Ix, a,/3) (i 1, 2),

(H4) ala2 0,

(Dk) axb2aEbl,

(El) alB a2A and the additional condition BC O.

Remark. We do not assume A # 0. However, if A 0, this provides information
about the direction of bifurcation of the primary branch , from (h (Ix, 0), 0) F,,
where ,, h are given by Theorem 2.1. In fact,

sgn ha(Ix, 0) -sgn (axA) 0

provided A 0 and [Ix[ is sufficiently small. So, A 0 implies that, for each Ix near zero,
primary bifurcation from (h (Ix, 0), 0) is transcritical (or two-sided, or asymmetric).

The solution/3 0 of (4.11) corresponds to the trivial solution F, and the primary
branches c of solutions of (1.1). By Theorem 2.1, we lose no additional solutions of
(1.1) near (0, 0, 0), by dividing (6.11) by/3. Disregarding the higher order terms (hi, h2),
we are left with

(4.12)
(alA + blixk)ce +Aa2+ Cfl2 0,

(a2h + bIx k) +Ba O.

Let (G, Ga) denote the left-hand side of (4.12). In order that the structure of zeros of
(G1, Ga) should be qualitatively unaffected by the addition of (h, h.), we need only
observe that, under our assumptions, if (, Ix, a,/) is a solution of (4.12), then (i)/ 0
implies [O(G, G2)/O(a,)IO, whereas (ii) /3=0 and (h, Ix, a)(0, 0, 0) together
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imply Io(G1, Gz)/O(A, a)l 0. This procedure is now familiar in bifurcation theory,
although the full details (omitted here) are often rather technical [13], [16], [18], [19].
The solutions of (4.12) are conveniently written in the form

(4.13)
a -(aEA + b2ixk)/B,
32=(B:zC)-a(a2A +bzixk)[(alB-a2A)h +(bxB-bzA)ixk].

We can now describe bifurcation diagrams for (1.1), under assumption ($1), by
drawing the corresponding diagrams for the bifurcation equations (4.10), (4.11), One
bifurcation diagram for each of Ix < 0, Ix 0, tx > 0 describes the structure of solutions.
We distinguish two cases as follows. For fixed Ix, let y, (A) be the quadratic

y (h C(azh + b,ix’)((alB a2A)h + (blB bzA)ixk).
Case QI: a2C(axB -a2A) >0. For each Ix, y,(h) has a minimum. Consequently,

the primary branch of solutions ’ (corresponding to a =/3 =0 in (4.13)) and the
secondary branch , (corresponding to/3 0, a 0) have no point of intersection if
Ix 0. As tx --> 0, the secondary branch becomes a primary branch through (0, 0), so that
there are exactly three primary branches of solutions of (1.1) through (0, 0) when Ix 0.
An example is represented in Fig. 1.

FIG, 1. QI: a2C(alB-a2A)>O. Example illustrated: k 1; O>B/a2>A/al; b2/a2>bl/at.

Case QII: a2C(aaB-a2A)< O. For each Ix, y,(h) has a maximum. Consequently,
for Ix # 0, , and 5, are coincident. As Ix - 0, these branches collapse into the point
(0, 0), so there is just one primary branch o through (0, 0) when Ix = 0. An example of
Case QII is represented in Fig. 2.

Remark. Our case QI, with k 1 corresponds to cases I-iII for quadratic
nonlinearities in Keener’s formal study of a pair of one-dimensional reaction diffusion
equations [11]. Case QII (k 1) corresponds to Keener’s cases IV-VI.
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/

FIG. 2. QII: a2C(alB-a2A)<O. Example illustrated" As for Fig. 1.

Bifurcation analysis under ($2) or (J1)-(J3). Suppose F is of class C" with n -> 4,
and satisfies (H1), (H2), ($2) or (J1)-(J3), and (Dk), k 1 or 2. The bifurcation
equations (4.8) satisfy (4.9) and are of the form

(4.14) (alA +btx)oL +pa3+ra[32+ce-11(h, la.,ce,)=O,

(4.15) (aA +blz)+qa+s3+h’z(h, lz, a,)=O,

where p (C, ), q (3C, ), r (3C, ), s (C, ); the mapping
(1, )" (8) is of class C-1, and represents higher order terms in (A, , a, ),

const. {[(a, B)[3 +
Note that if ($2) holds, then (1, z)(h,
whereas under (J1)-(J3), (1, h)(h,

In terms of (4.14), (4.15), we assume

(H4) alazO,

(Dk) alb2#a2b,

(E2) alq a2p

and the additional conditions

(E2’) as # a2r and ps # rq.

Let h =(g, a) be the solution of (4.14) with B =0, and let h (g, ) be the
solution of (4.15) with a =0. Both and are guaranteed, by Theorem 2.1, and
correspond respectively to the branches ,, of solutions of (1.1). A simple cal-
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culation shows that

(4.16) h(tz, O) 0 h(z, O) for all z
and (0, O)--2p/a1; (0, O) --2s/a2, so that

sgn (z, O) -sgn pa 1,

(4.17)
sgn A(, 0) -sgn sa2.

for all near zero, provided p and s are nonzero. The formulae (4.16), (4.17) determine
the direction of bifurcation of the primary solution branches c, and c.

Dividing (4.14) by a, (4.15) by , and disregarding the higher order terms (1, h),
alA +b +paZ+rflZ=O,

(4.8)
azA + b2# k + qa2 +s2 0.

Let (G, G2) denote the left-hand side of (4.18), and suppose (A, a, ) # (0, 0, 0, 0) is
a solution of (4.18). Then (a, ) # (0, 0) and

[O(G, G2) =2(ps-rq)aO,(i) a 0 implies
)

G2)] 2(a2p-aaq)a 0,(ii) a0, fl=0 implies
O(a,h)

G2)] 2(ar-als)B 0(iii) a=0, 0 implies )
Consequently, the addition of (h, hz) to (G, G2) does not affect the structure of the
zeros of (Gx, Gz) near (0, 0, 0, 0). Corresponding solutions of (1.1) are obtained from
Theorem 2.3.

Two distinct types of bifurcation diagram arise, depending on the coefficients in
(4.18).

Case CI: (as-azr)(aaq-azp)<O. For fixed , the lines
kta(Z)=-(ps-rq){(axs-azr)Z +(bs-bzr) },

t(Z (ps rq){(aq azp)Z + (bq bzp) }

have gradients with the same sign.
Consequently, there are exactly two secondary bifurcation points for each 0.

Both secondary branches of solutions of (1.1) meet

c if (alb2-a2bx)(alq-a2p)tz k <0,
c, if (alb2_a2bl)(alq_a2p)tzk>o

only at the secondary bifurcation points. When/ 0, there are exactly four primary
branches of solutions of (1.1) passing through (0, 0).

Case CII: (axs-a2r)(axq-a2p)>O. For each , tl(h) and t2(h) have gradients
with opposite signs.

If (axb2-a2bx)(axq-a2p)lz k <0, there are precisely two secondary bifurcation
points on each of c,, c,. The corresponding secondary branches of solutions of (1.1)
connect all these secondary bifurcation points in a loop in R X. As/z 0, this loop
collapses onto the point (0, 0), so that there are just two primary branches of solutions
of (1.1) through (0, 0) when/ -0.
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If (alb2- a2bl)(aq a2p)lz k > 0, then there are no secondary bifurcation points.
More precisely, there is a neighborhood V c 2xX of (0, 0, 0) for which the set
{(A, IZ, x) E V: (axb2- aEbx)(aq aEp)tzk 0} contains no secondary bifurcation points
for (1.1).

Clearly, the cases k 1 and k 2 are different.
CII (k 1). There are four (respectively, zero) secondary bifurcation points if

(ab2- a2b)(alq a2p)tz is negative (respectively, positive).
CII (k--2). There are four (respectively, zero) secondary bifurcation points for

each/z # 0 if (ab2-aabx)(alq-aEp) is negative (respectively, positive).
Examples of cases CI, CII are represented in Figs. 3-6.

5. An example. For a >0 let fa =(0, a) (0, r), and consider the following
nonlinear boundary value problem

Uxx(X, y)+ uyy(x, y)+hg(u(x, y))=0 (x,
(5.)

u(x, y) 0 (x, y) a,
where s [; g s C(I, ), for some open interval I, 0 I, g(O) 0, g’(O) 1.

\

.................. /z:>O

FIG. 3. CI:(aas-a2r)(alq-azp)<O. Example illustrated" k=l’ b2/a2>ba/al; q/a2>O>p/a"
(alb2-a2b)(ps-rq)<O" r/ax >O>s/a2.
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FIG. 4. CII: (a a r)(a q a P > 0, and k 1. Example illustrated: b2/a > b /a I; q/a > 0 >pai;

azs < O.

FIG. 5. CII: (als-a_r)(alq-ag_p)>O, k =2, and (abz-a2b)(alq-a2p)<O. Example illustrated:
bl/al > bz/a2; q/a2 >0 > p/a1; a2s < O.
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FIG. 6. CII: (als-azr)(alq-a2p)>O, k=2, and (alb2-a2bl)(aq-a2p)>O. Example illustrated:

b/aa > b2/aa; 0> p/a > q/az; azs < O.

Equation (5.1) has been studied by Kriegsmann and Reiss [12], in connection with
the equations of magnetohydrodynamics, using formal perturbation methods, and by
Budden and Norbury [4], using both formal and numerical methods. Under the
condition g"(0) 0, g’"(0) 0, these authors observe secondary bifurcation for values of
a near r, where h is the bifurcation parameter, and u(x, y)= 0 is the trivial solution.

To set (5.1) in the form of (1.1), transform x zrx/a, and let D (0, 7r)2 be the
transformed domain. Define the linear operator Aa from W2’2(D) f3 Iv’I’2(D) to L2(D)
by

02ua2 02u
(x, y)+(x, y)(Au)(x, y) 7rr Ox y

where the derivatives are generalized (L2) derivatives. We write A A,. Let X
W2’2(D) f’l IfCl’2(D) be the Banach space with graph norm of A,

Ilullx -Ilulk=(o +
In fact, X is a Hilbert space with inner product

(u, v)x (u, v )(o) + (au, ZXv

Set Y L2(D) with inner product (.,.). The estimate [1]

Ilu IIw’,=(o)--< const. Ilullx, u X

implies that Aa.X Y is bounded for all a 0. Moreover, the graph norms of A for
different a 0 are all equivalent to the W2’2 norm of W2’2(D) IfC’x’2(D).

Define "X Y by

ff(u)(x, y) g(u(x, y)), (x, y) e D, u e X.

Since W’(D) is embedded in C(D), ff is of class C in a neighborhood the zero O, of X.
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Now let F: 2X X--) Y be defined by

F(A, a, u) Aau + h,(u).

Then for each a 0, F is of class C4,
F(A, a, 0) 0 identically

and F,(h, a, 0): X- Y is a Fredholm operator with Fredholm index zero

F,(h, a, O)u (A, + h )u, u X, a O.

The eigenvalues of Aa are given by
2 2

h,,(a)
m a 2

z +n m,n=l,2,...

with corresponding eigenfunctions (normalized in Y)"

2
b,,,, =--sin (mx) sin (ny).

When a or, h2,1--, 1,2 5, and h3,1 h 1.3-- 10 are double eigenvalues. We shall be
concerned with bifurcation near u 0, when a is near r, and the two cases h near 5 and
h near 10. These cases give rise to significantly different symmetry properties of F
which affect the bifurcation analysis.

We first consider solutions (h, a, u) R2 X near (5, r, 0) of the equation

(5.2) F(h,a,u)=O.

Define orthogonal subsets Uo,(p, tr +) of L2(D) by

U++. {2m+l,2n+1 m, n= 0, 1, 2,. .},

U+_ {D2m+l,2n m, n 0, 1, 2,. .},

U_+ {2m,Zn+l m, F/--- 0, 1, 2,. .},

and set
U__ {2m.2n "m, n 1, 2,...},

Xo Clx span U,,,

Y,,, Cly span U,,,,

(p, tr ), where Clx, CIy denotes the closure in X, Y respectively. Then

X= Xo:, Y= Yo:.

Next define linear operators T1, T2 from Y to Y by

Tly.= py, Y Yo+ Yo- (P ),

Tzy=y, y6Y+Y_ (g=)

and let Sl, Sz be the restrictions to X of T1, Tz respectively. The symmetry hypothesis
($2) of 4 takes the form

F(X, a, Su) F(X, a, u), (X, a, u) 2 xX (i 1, 2),

,2 X+_ = Y+_, 2. X_+ Y_+,

@span {x,z, ,1} Y.
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(Here, =(Fu(5, or, 0)), and we write AZ=,AZ(Fu(5, 7r, 0)).) Hypothesis (H4) is
satisfied,

Fu (5, r, 0)1,2 1.2 ,
F(5, , 0), ,1 .

Therefore, for each a near , we have two primary branches c N x (X++X+_),
c N x (X++@X_+) of solutions of (5,2). branches from F {(A, 0) A } at

2A.a 1 +4aa/a, whereas a branches from F at A. 4+a/
The bifurcation equations must be of the form (4.14), (4.15), where a -, and

A is transformed to A 5. Clearly, k I and a au; b -2/, b -8/u. It remains
to calculate the coecients p, q, r, s.

Let B:X xX Y be the symmetric bilinear operator given by B(u, v) uv. Then
B maps. X,, xXe to Yo whenever vo + and +. In particular, . Y++,

2$, e Y++, and ,a" a.a Y--. Let Z+ (respectively Z_) be the orthogonal comple-
ment of span {$,l}(span {$.a}) in X+_(X_+). Setting Z Z+@Z_X++X__, the
symmetric bilinear mapping z: xoZ, defined in general by (3.10), is here given by

(5.3) aZl(W,V)+5Zl(W,V)+5g"(O)wv=O (w, ve).

Then z (,, x,a) e X++, z (., .) X.+ and z1(., a.) X__, so that

,z(,, ,) e Y_+,

,zx(,, ,) e Y+-,

6:,z(,, ,) e Y_+,

,1z1(61,, 62,1) e Y+_.

We can now write down the bifurcation equations

(X 4 (a/zr)2)ce +pa 3 + ro2 + agl(A, a, a, ) 0,

(Z 1 (2a/)2)B + qa2B + sfl 3 + Bg2(Z, a, a, fl) 0,

where

p g"’(0)(3 "0.:, 6.> +g )(,z1(6,, 6x,2),

q =sg )..,
5t(O+S (62,1Zl(61,2,61,Z)+261,2Zl(61,2,62,1)

r g’"(0)(,.,,
+g"(0)(,.z,(.,, .)+2.z(., 6.,),

g"(0)(.z,s g (0)(:., .)+ (.,, :.,)

and (g, gu)" is defined, and of class C3, near (5, v, 0, 0), and satisfies

Ig,(X,a,,3)lKl(,3)l{l(,3)l+lx-5l+la-l} (i=

where K > 0 is independent of (A, a, , 3).
Expressing z(w, v)(w, v e) as Fourier series, using (5.3) one obtains

p s 0.1900g’"(0)- 0.3638(g"(0))u,
q r 0,2533g’"(0) + 27.4104(g"(0))u.

In order to appeal to the bifurcation analysis under ($2), of 4, we have only to ensure
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that g"(O), g"’(O) satisfy

(5.4) Ipllql.

Clearly, (5.4) holds if either g’"(0) > 0, or if g"(0) 0 and g"’(0) 0. If (5.4) holds, then

(als a.r)(alq a2p) -(p -q)2 < 0

so that the bifurcation diagrams of case CI (k 1) apply.
We now turn to considering solutions of (5.2) near (10, 7r, 0), under the assumption

that

(5.5) g(-u)=-g(u), uN.

Define W W(F,(10, r, 0))= span {61.3, 4,3.1}, (Fu(10, rr, 0)).
For ], k 1, 2, 3, set

and

U.,k span {3m+],3n+k" m, n O, 1, 2,. .}

X,., CIxU,.,,

Then 1,3 e X1,3 c gl,3, 3,1 X3,1 c Y3,1.
LEMMA 5.1. ff maps

3

k=l

3

1=1

and X3,3 to Y3,3.

tO
3

3

Proof. Since is continuous and odd, and/) c R2 is compact, we can approximate

"X - Y by odd polynomials n :X - Y, n(u)- (u) as n eo for each u e X.
3Set U1 =@k=l U3k, X1 ClxU1, Y1 CIyU1, and let u U1. Then u Y1 for

each odd integer n ->_ 1, since (u n, Cp,q} contains only terms of the form

Io’ f0’ sin (3mix).’. (3mnx)(px)(kly)’"" sin (k,y)sin (qy) dx dy,sin sin sin

each of which is zero unless p is a multiple of 3. Therefore, if f, is an odd polynomial,
f, (u) Y1 whenever u U1, since Y1 is linear.

Let u X1, and let {ur} c U1 be a sequence such that UN - U in X as N- eo. Then
(ur)- (u) (since is continuous), so let {ft,} be a sequence of polynomials such that
n(w) (w) as n -00 for all w X. Then (ur) (uN) Y1 as n 00 and (Ur)
(u) in Y1 as N 0. Therefore, (u) Y1. This proves the first statement of the lemma.
The proof of the second statement is identical to that of the first. To show that maps
X3,3 to Y3,3, it is sufficient to note that

u e Y3,3 if u e U3.3 and n is odd.

The proof is then identical to that above, except that u X3,3 should be approximated
by u, U3,3.
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Now set

X()= X3,3, y(O)= Y3,3,
2 2

X(a)= @ X3,k, y(a)= @ Y3,k,
k=l k=l

2 2

X2)= ) X/,3, y2)= ) Y/,3,
/=1 /=1

2 2

2= (R) X,,,, ?= (R) ,.,.
i,k=l i,k=l

Then X--X()X(1)X(2); y= y(O)o) y(1)() g(2)() I7,- and F(2
(x(i)tx(O)))c y(i) y(0), i= 1, 2. Moreover, 3,1EX(1), 1,3 E X(2) and

span {&3,1, bl,3}) K

These conditions provide a slight generalization of condition (J1), due to the inclusion
of the closed subspaces , of X, Y respectively, which play essentially no role in the
symmetry property of F (for the purposes of a bifurcation analysis). It is easy to check
directly that

<,33,1, 1,3> 0 <,11,3, 3,1)

so that (J3) is satisfied. We have assumed explicitly that (J2) holds. Consequently, the
bifurcation equations have the form (4.14)-(4.15),

( -9-(a/)z)a +pa + raZ+ahl(A, a, a, )=0,

(h 1 -(3a/)2)fl + qa2fl + sfl3 + flh2(A, a, a, fl) 0.

So, al 1 a2, b =-2/, b2 -18/,

p 9(5g’"(0)/42) s, q 12(5g"’(0)/42) r.

In particular, under the assumption g’"(0) 0, we have

Ipllql

which implies that all the conditions of the bifurcation analysis under (J1)-(J3) are
satisfied. In fact, case CI (k 1) applies, since

(a 1s a2r)(aq ap) -(p q) < O.
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financial support.
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A SHORT NOTE ON A DIFFERENTIAL RECURSION FORMULA
FOR APPELL’S HYPERGEOMETRIC FUNCTION F*

R. P. SINGAL"

Abstract. Mullen (SIAM J. Appl. Math., 14 (1966), pp. 1152-1163) gave differential recursion formulae
for Appell’s hypergeometric functions of two variables F1, F2, F3, and F4. The author pointed out
(Dissertation, Punjabi University, Patiala, 1972) that Mullen’s result for raising the double series denomina-
tor parameter for F3 is not correct. Here the correct result for F3 has been obtained.

Mullen [1] gave differential recursion formulae for Appell’s hypergeometric
functions F1, F2, F3 and F4. The author [2] in his dissertation pointed out that Mullen’s
result for raising a double series denominator parameter for F3(a, a’; b, b’; c" x, y) is
not correct. In fact the correct result in Mullen’s notation is

where

c
F3(c + 1)= [A-B(1-1Ix)O-D(1- l/y)& +E(1-1Ix- 1/y)O&]F3

A 33’ + (abe3 + a’b’$’)/F, 3 c a b, 3’ c a’- b’,

B ,’ + (ab a’b’)/F, D + (a’b’- ab)/F,

E=(8+8’)/F, F=c-a-a’-b-b’,

E (8 + 3’)/F, F c a a’- b b’,

A c3’+ abS’+ a’b’8 +[abc8 + a’b’c3’+ (a’b’- ab)-]/F

o X-ox, 6=Y y"
Proof. The differential equations for f3(c + 1) are

[0(0 + b + c)-x(O + a)(O + b)]F3(c + 1) 0,

[b(0 + 49 + c)- Y(6 + a’)(rb + b’)]F3(c + 1) 0

which can be rewritten as

(I) (0 + a)(O + b)F3(c + 1) cOF3,
x

(II) ( + a’)(c/) + b’)F3(c + 1)
c
bF3,

Y

with the help of the known operational result

(III) (0 + + c)F3(c + 1) cF3.

Defining

(1- 1Ix)OF3 U, (1-1/y)bF3 V, (1-1Ix- 1/y)OqbF3 W
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and taking

we get

(IV)

Again taking

we get

(v)

(0 b )(III)- (I) + (II),

(60- 6’ -ab + a’b’)F3(c + 1)= c(U- V).

(FO + F4, 204,)(III) + (24, F)(I) + (20 F)(II),

[(F6 + 2a’b’)O +(F6’ + 2ab)4 -F(ab + a’b’)]F3(c + 1)

cF(U + V)-2cW.

Now eliminating OF3(c + 1) and F3(c + 1) between (III), (IV) and (V) we get the
desired result, i am thankful to the referee for his suggestions.

REFERENCES

[1] JAMES A. MULLEN, The differential recursion formulae for Appell’s hypergeometric functions of two
variables, SIAM J. Appl. Math., 14 (1966), pp. 1152-1163.

[2] R. P. SINGAL, Dissertation, Punjabi University, Patiala, India, 1972.



SIAM J. MATH. ANAL.
Vol. 11, No. 2, March 1980

1980 Society for Industrial and Applied Mathematics
0036-1410/80/1102-0017 $01.00/0

AN APPROXIMATION THEOREM FOR A HAMMERSTEIN-TYPE
EQUATION AND APPLICATIONS*

VACLAV DOLEZALI"

Abstract. An approximation theorem for a Hammerstein-type equation in a Hilbert space is proved.
Also, applications to the Ritz-Galerkin method and to construction of an approximating feedback system are
discussed.

1. Introduction. In their paper [1] Br6zis and Browder consider the Hammerstein-
type equation (I + AB)x y in a separable Banach space .X. They give conditions for A
and B under which the sequence of solutions xn of (I + AnBn)xn P*y, n 1, 2,...
converges to the solution x. Here, An P*APn, Bn P,BP*. P* is the conjugate of
and (Pn) is a sequence of bounded projections each having a finite-dimensional range
such that PnZ Z as n c for every z X. In order to guarantee that xn- x, it is
basically required that (a) A is continuous, monotone and bounded, and (b) B is
continuous, angle-bounded, and maps bounded sets into weakly compact sets.

However, in many problems we encounter operators I +AB which do not satisfy
(a), e.g., we can assume only that A + aI is monotone for some a > 0. Of course, in
order to insure the existence and uniqueness of solutions as well as the convergence
xn x, we are compelled to strengthen the assumptions imposed on B.

The objective of the present paper is to do precisely this. To simplify our
considerations, we assume that A and B are operators mapping a Hilbert space H into
itself, and that the Pn’s are orthogonal projections. Our result is formulated in Theorem
1.

Moreover, as applications we consider the numerical aspects of Theorem 1, when
A and B are linear and H is separable. In addition, we give a construction of feedback
systems over a finite-dimensional space which approximate a given feedback system
over an infinite-dimensional space.

2. Results. To simplify the formulation of results, let us introduce the following
notation.

If H is a real Hilbert space, let (H) be the set of all operators N" H H such that

(1) IxN= inf (Nxl-NX2, Xl-X2)llXl-X2ll-:>-x3.
Xl,x2H
Xl x2

Similarly, let Lip (H) be the set of all operators N" H H such that

(2) [IN[I* sup [[Nxl-NX2ll’ilxi-xzl1-1<oo.
xI,x2H
X.lX2

It is clear that we have:
(i) N, M J//(H) :ffN +M J//(H) and IZN/M ---->- + M.
(ii) II" I1" is a seminorm, and N, M Lip (H):NM Lip (H) with IINMII* <--

(iii) If N is linear, then N is bounded,N Lip (H). In this case, IINII*
(iv) Lip (n) c /(n) and IlNl[* --> Il for every N Lip (n).
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LEMMA 1. LetN ill (H) and let/xu > 0; ifN is hemicontinuous, then Nis invertible,
N-1 Lip (H), tzN-’ >-- 0 and

(3) IIN-’II* --<
If, in addition, N Lip (H), then

(4)

Pro@ The assumption N (H) shows that

(5) (Nxl -Nx2, X 1-- 22) t.ZNIIX1-- X2II2

for all xl, x2 H. Hence, N is one-to-one.
Moreover, since/xu > 0, N is monotone by (5), and since N is hemicontinuous, it is

maximal monotone. Also, (5) shows that N is coercive, and consequently, NH H, [2].
Thus, N is invertible.

Next, choosing yi H, 1, 2 and putting xi N-lyi into (5), we get

(6) (N-lyl N-ly2, Yl Y2) tXNllN-ayl Y21
Hence, N-1 s/(H) with abN 0. Furthermore, (6) yields by Schwarz inequality,

-1I[N-lyl- N-ly2[I <-- Ix)lily1 y211. Consequently, N-1
6 Lip (H) and

If, in addition, N Lip (H), then Ilgx gx211 =< IINIl*llxl x2l[ for any xl, x2 s H, so
that Ilg-yl-g-Y211>=llg[l*-llY-y2[[. Introducing this inequality into (6)it follows
that/XN-’ >---- NIlNII*-z. Hence the proof.

LEMMA 2. Let A tt (H) be hemicontinuous, and let B Lip (H) with IxB > 0. If
A / IIBII*-2 > 0, then the operator N I +AB is invertible, N-1 Lip (H) and

(7) ]IN-all* /x (/./.,A / .IIBII*

Pro@ The assumptions B Lip(H) and /xB > 0 imply by Lemma 1 that B is
1invertible B-I rid(H),/xs-, >=/zsllB]l*-2 B-1 Lip (H) and liB-all* </z Thus, the

operator B-1 +A is hemicontinuous, B-a +A dd (H) and

(8)

Hence, again by Lemma 1, B-a +A is invertible, (B -a + A)-1 Lip (H) and II(B -1 +
-1A)-all* --< .-’+a (a //zBIIBII*-2)-1 by (8).

On the other hand, N (B -1 +A)B; consequently, N is invertible, and N
B-a(B-a + A)-1. Hence, we have by the above,

(9)

which proves (7).
Note that the number/-/A in Lemma 2 need not be nonnegative, i.e., it suffices that

A + aI is monotone for some c > 0.
LEMMA 3. Let Po # 0 be an orthogonal projection on H, let N" H Hbe an operator,

and let [PoN]: Ho- Ho be the restriction ofPoN to Ho Poll.
(i) IfN (H), then [PoN] e (Ho) and

/..L[PoN ’/L6N

(ii) IfN Lip (H), then [PoN] Lip (Ho) and

ll[PoN]ll* <- IlNl[*.
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Proof. (i) We have

/[PoN inf
Xl,X2Ho
Xl#X2

inf
,X2 Ho
Xl #X2

>- inf
Xl,x2H
Xl #X

([PoN]x, -[PoN]x, X1- X2> IlXl x2[1-2

(Nx1- Nx2, x x2>llx1- X2[[-2

(Nx Nx2, x x2)l[X x2l1-2

Id,N >

The proof of (ii) follows a similar pattern.
Now we are ready to state the approximation theorem.
THEOREM 1. Let A ill (H) be uniformly continuous, let B Lip (H) with tzB > O,

and let

(10) /A / sllell*-= > 0.

Furthermore, ]:or n 1, 2,..., let P," H-H be an orthogonal projection such that
P,x - x (strongly) as n - o for any x H.

Let y H and let x H be the (unique) solution of (I + AB)x y. Then, for each
n 1, 2,. , there exists a unique x H P,H such that

(11) (I + PnAP,B)x, Py,

and we have x, x (strongly) as n - c.
Proof. First, the existence and uniqueness of an x H satisfying the equation

(I +AB)x y is guaranteed by Lemma 2.
Next, observe that H, P,H is a closed linear subspace of/-/and therefore it is a

Hilbert space of its own right. By our hypothesis and Lemma 3 it follows that, for any
n>-l, [P,,A], [P,B]e./bI(H,,), [Yl.[PnA]l.ZA, [[PnB]ld,B)O and [P,,B]eLip(H,,),
II[P,,B]II*<-_IIBII*, where [P,,A] and [P,,B] is the restriction of P,,A and P,,B to H,,
respectively. Consequently, by (10),

(12) tJb[PnA]’+" t,,,211[P,N]ll*- -_> z + llSll*- > 0.

Also, it is clear that [P,A] is hemicontinuous. Hence, by Lemma 2, the operator
(I +[P,A][P,B]): H,, --> H, is invertible. Since P,y e H, for any y e H, (11) possesses a
unique solution x, in H,.

Next, denote r/=/.zA + BIIBII*-2 and let

a=/xB if/xA-->_0,
(13)

IIBII*= if/a ( 0.

Thus, we always have a > 0.
Furthermore, observe that the family {AP,B’n 1, 2,. .} is equicontinuous, i.e.,

for every eo>0 there exists 80>0 such that, for any n=>l and xl, x2H with

IlXl-- x2ll < 80 we have

(14) IIAPBx Ae=nx=ll < o.

Indeed, let so > 0; then, by uniform continuity of A, there exists 8’> 0 such that

IIAzx-az=ll< o whenever zl, z2 H and IIz- zll< ’. Put --Ilnll*-’ > 0. Choosing
n >- 1 and Xl, x2 e H with IIx x=ll < , we have IIP=nx PnBx=II- IIP (Bx Bx=)II--<
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[IBXl Bxll IlBll*llx, xall < [IBI[* ’. Hence, (14) holds.
Choose now y e H, and let x H be the solution of x + ABx y. If x, H, satisfies

(11), we have x, P,x,, and (11) can be written as

(15)

Also,

(16)

Consequently,

P (x,, + AP,Bx,, P,y.

P,, (x + ABx) P,,y.

P,, (x,, x + AP,,Bx,, ABx O,

i.e., x,, x + AP,,Bx,, ABx H.. Thus, for each c H.,

(17) (c, x,, x + AP,,Bx,, ABx O.

However, (17) can be written as

(18) (c, (x,,-P.x)+((AP.B)x.-(AP.B)P.x))=-(c, (P,,x-x)+(AP.BP.x-ABx)).

Now, let us put c =P.(Bx.-BP.x)H. into (18). We get

(P,, (Bx,, BP,,x ), x,, P.x + (P,,Bx,, P,,BP,,x, AP,,Bx,, AP,,BP,,x
(19)

-(Pn (Bx,, BP,,x), P,x x + (AP,,BP,,x ABx)).

Letting

(20) h (Bx,, -BP,,x, x. -P.x}+.(P.Bx,, -P.BP.x, AP,,Bx. -AP.BP.x),

we find that (19) reads

(21) h -(Bx. BP.x, P,, (AP.BP.x ABx )).

(We denoted the left-hand side of (19) by h and used the selfadjointness of P.,)
On the other hand, by our hypotheses,

,IIx. -g=xll <--(Bx,,- BP,,x, x,, -P,,x>,(22)

and

(23) allP.Bx. P,,BP,,xl)2 <= (P.Bx,, P,,BP,,x, AP.Bx. AP,,BP.x >.
Now, if gA--> 0, then by (23), the second term on the right-hand side of (20) is

nonnegative, and consequently txs[Ix.-Pxll<- h. Thus, by our notation (13),

(24) allx. P.xll= - h.

On the other hand, if /ZA < 0, then [IP,,Bx,, -P,,BP,,xll <= IIBx,, -BP,,xII <=
[IBll*llx,, P,,xll, so that

(25) tzallP,,Bx,, P,,BP.xll= >-- tzallBll*=llx. P,,xllz.
Thus, by (22), (23) and (20),

(26) (/-on + ,all/3 I[*=)llx. P.xll= <-- h.

However, / lIBll*= -IIll*=( / lIBII*-=) IIll*= a. Hence, independently
of the sign of/XA, we always have (24) with a > 0.
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Using now (21), we can write

allx. P.xll2 --< h =< Ihl--< IlBx. BP.xll lIP. (AP,BP,x
=< lIB [1" ]Ix, P,x IIAP,BP,x aBx

--< lIB I1" IIx. PxlI{II(APB)Px (AP,B)x[I + IIa (P,,Bx

Hence,

(27) IIx. Pxll a-aIIBII*{II(AP.B)P.x (AP.B)xII + [IA (P.Bx A(Bx

-A(Bx)II}.

Observe that inequality (27) holds for any n >= 1.
To conclude the proof, choose an e > 0. Using the equicontinuity of {AP,B’n

1, 2,. .} mentioned above it follows that there exists 31 > 0 such that

(28) IIAP.Bul- AP.Bu2I[ < a IIBII*-a

whenever [lu u2[I < 6a and n is any integer. Moreover, by the uniform continuity of A,
there exists 82 > 0 such that

(29) IIAv- Av2ll < a lIB II*-’
whenever IIv v211 < 2.

However, by our hypothesis, P,w w for any w e H. Thus, there exists integer
Ma > 0 such that

(30) IIP,x xll < min 81,

for all n _-> M1. Similarly, there exists integer M2 > 0 such that

(31) IIP.Bx Bx < ’%

for all n -> M2.
Hence, putting M max [M1, M2], we have for each n _-> M,

and

IIAP.BP.x AP.Bx < -a liB II*-
IIAP.Bx ABx < -a lib

Consequently, by (27), IIx.-Pxll< /2. Finally, since ][P.x-xll< /2 for all n =>M, it
follows that [Ix, x[[ <= [Ix, P,xl[ +[IP,x xll < e. Thus, x, - x and the proof is complete.

Comparing our result with Theorem 4 in 1], we see that the former assumption on
monotonicity of A was relaxed, but the assumption on B was strengthened.

3. Applications. Let us now consider two applications of Theorem 1.
(a) Solving the equation (I+AB)x =y becomes particularly simple, if H is

separable (infinite dimensional), and if both operators Aand B are linear. Note that in
this case the assumptions A e A/(H), uniformly continuous, and B e Lip (H) amount to
the requirement that both A and B are bounded.
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To outline the procedure, choose a fixed orthonormal basis {ei" 1, 2,. .} in H,
and for each integer n ->_.1 define Pn" H H by

(32) P,,z (z, ei) ei.
i=1

Clearly, every Pn is an orthogonal projection on H, Hn PnH is the linear span of
{el, e2," en}, and PnZ Z for every z H.

Moreover, the mapping T"H 12 defined by

(33) TZ ((z, e), (z, e2), ")

is a norm-preserving isomorphism. Consequently, every linear bounded operator
M’H H can be represented by a linear bounded operator 57/= TMT-I.12 12.
However, interp.reting elements in 12 as column vectors, it is easy to see thatM is equal
to the product M , where the entries mik of the (infinite) matrix are given by

(34) mik (Mek, el), i, k 1, 2,"

Similarly, defining Tn" H,, R" by

(35) Tnz ((z, el), (z, ez), (z, e,,)),

it follows that the restriction [P,M]" Hn - Hn of PriM to Hn can be represented by an
operator/l/n Tn[PnM]T-" R" R n. ]lln is described by a matrix//n that is the upper
left n x n submatrix of M.

Using these facts, we confirm readily that the following is true.
Equation (11) has a unique solution xn in Hn => the equation (I + ,/n) sen Tny

has a unique solution :n in R n. In this case, x, Tascn. Thus, to find an approximation
xn to the exact solution x of (I + AB)x y, it suffices to calculate matrices An,/,, vector
Tny and solve the linear algebraic equation (I + A,/,) sen T,y.

(b) The Hammerstein-type operator I +AB plays a central role in the theory of
feedback systems. We are going to show that Theorem 1 permits us to construct
feedback systems f, which approximate a given system f (see Fig. 1). To this end, let us
introduce the following definition.

AI’ Ale1

A2e2
A2

FIG.

Let H be a real Hilbert space, and let A,A2" HH;.then the ordered pair
f--[A 1, A2] will be called a feedback system (further F.S.) over H.

(i) If (ua, u2) e H2 H x H, then a pair (e, e2) H2 will be called a solution of f
corresponding to (ul, Uz),if

(36) el Ul-A2e2, e2 u2+Alel.

(ii) The F.S..f is. called normal, if for every (Ua, u2)e H there exists a unique
solution (el, e2) H2 of corresponding to (Ul, u2).
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by

(37)

A simple argument shows [3] that the following assertion is true.
LEMMA 4. Letf [A 1, A2], andforeach a Hletthe operatorMa" H - Hbe defined

Max x + A:(a +Ax).

Then f is normal *Ma is invertible for every a H. In this case, the solution (el, e2) off
corresponding to (ul, uz) H: is given by

-1(38) (el, e2)= (M-1 Ul, Uz + A1Mu2
The approximation result mentioned above reads as follows.
TrZOREM 2. Letf [A1, A:] be a F.S. over H, and assume that A1 cLip (H) with

/XA >0, Azu///(H) is uniformly continuous, and that [Jl,A2"t" zallAxll*-> 0. Further-
more, let P," H H, n 1, 2,... be an orthogonal profection on H such that P,x x
(strongly) as n oo for each x H. Then

(a) The F.S.’s [ and L [P,A 1, Pna2] Over H, P,H, n 1, 2,. are normal.
(b) I]" (Ul, u2) H2, and (el, e2) H2 is the solution off corresponding to (Ul, u2),

and (e’, e)HZ, is the solution ofL corresponding to (P,ul, P,u2) H2,, n
1, 2,.. , we have e el, e -. e2 (strongly) as n

Proofi Choose a e H and define the operator B" HH by Bx a +Alx.
Clearly, Ba e Lip (H),/zn. =/.A > 0, and by (37),M I + A2Ba. Thus, by Theorem 1,
Ma is invertible since y H is arbitrary. Hence, f is normal by virtue of Lemma 4.

Next, fix n >_- 1, choose b e H, and define M(b")" H, H, by

(39) Mtb")X x +P,A2(b +P,Alx).

Since P,b b, we have M(b")x (I + P,A2P,Bb)x for each x H,. Thus, referring to (11)
in Theorem 1, for each y s H, there exists a unique x, e H, such that M(b")X, y, i.e.,
the operator M(b") is invertible. Hence, by Lemma 4, the F.S. f, over H, is normal, and
our claim (a) is proved.

To prove (b), choose (Ul, u2)sH2. Then by (38) in Lemma 4, el Mul, so that

(40) (I +A2BuE)e u 1.

(M’ )-lP,Ul, i.e., by (39)Similarly, e Pnu2

(41) e’ + P.A2(P.u2 + P,,Ale’) P.ul.

However, (41) can be written as

(42) (I + P,,AEP.B,)e’ P,,u.

Thus, invoking the second claim of Theorem 1 and (40), (42), it follows that e 7 el.
Finally, by (36), e2 UE+Alel and ez =P,,uE+P,,AleT. Since IIP.II 1, we have

Ile e.ll <- IIe.uz uzll + llP.A e 7 A e

<-liP.u=- u=]l + IIAII*" lie7 eall/lle.(Aaea)-Axeall--’O.
Hence the proof.

A comment on Theorem 2 is in order. For a majority of concrete F.S.’s the
underlying space H is infinite-dimensional, but separable. Thus, if we define the
orthogonal projection P, by (32), Theorem 2 permits us to approximate such a F.S. [by
a F.S. ’, over a finite-dimensional space H,; this can be readily modeled on a computer.
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PERIODIC SOLUTIONS OF x"+ g(t, x) = O*

ROBERT R. STEVENS,

Abstract. Conditions are given which ensure that the nonlinear second order differential equation
x" + g(t, x) 0 has a nontrivial periodic solution with pre-assigned period. The results are obtained via the
direct methods of the calculus of variations.

1. Introduction. In this paper we shall be concerned with the existence of periodic
solutions of the differential equation

(I) x"+, g(t, x) 0 (’= d/dt)

where the function g is assumed to be continuously differentiable for all real t, x.
This problem has a long history and many results have been established under

various additional hypotheses concerning the function g. For example, Urabe [9]
discusses the autonomous case (g independent of t) and shows that if g satisfies a certain
functional equation, then all solutions of (I) are periodic and have the same common
period.

More recently, Jacobowitz [6] shows that (I) has an infinite number of periodic
solutions of period 2zr, assuming the "superlinear" condition

g(t, x)/x 00 as Ixl-
for the function G. Using this same hypothesis, Hartman [5] establishes the existence of
solutions of a wide class of separated two-point boundary value problems for (I). In both
[5] and [6], the results are established using the Poincar6-Birkhoff (twist) fixed point
theorem.

For a special case of (I), Nehari [7] proves the existence of infinitely many solutions
of given period using an approach based on the calculus of variations and the hypothesis
of superlinearity.

Many other similar results are presented in the book by Sansone and Conti [8] and
are established using the fixed point theorems, mainly Brouwer’s theorem..

Here we shall establish the existence of periodic solutions using the direct methods
of the calculus of variations. The hypotheses which we use appear to be of a novel form;
in particular, we shall make no use of the superlinearity condition.

For the principal result (Theorem 1), we shall assume that g(t, x) satisfies the
following conditions:

(1)
g(t, x) is even and 27r-periodic in t"

g(t, x)= g(-t, x), g(t + 27r, x)= g(t, x),

(2) xg(t, x) > 0 for all and all x 0,

(3) gx(t, x) > 0 and gx(t, 0) > 1 for all t, x (gx Og/Ox),

there exist constants/3, A, B with/3 < 2 such
(4) that G(t,x)<=Alx[ +B for all t, x.

(Here G(t, x)= g(t, s) ds.)
THEOREM 1. If g(t, X) satisfies conditions (1), (2), (3), and (4) then there exists a

nontrivial 2zr periodic solution of (I).

* Received by the editors August 9, 1978 and in revised form April 2, 1979.
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For the autonomous case (g(.t, x) g(x)) we have the following result which we also
state for the case of a single scalar equation.

THEOREM 2. Ifw is a positive constant ( >0) and if (i) xg(x) >0 for all x # O, (ii)
dg/dx > 0 for all x and dg/dx(O) > (rr/w)2, (iii) there exist constants , A, B with < 2
such that o g(s) ds <= Alxl +B for all x, then the equation x" + g(x) 0 has a nontrivial
( 0) solution of period 2o.

2. Proof of Theorems. We assume throughout the discussion that the conditions
(1), (2), (3), (4) hold. Let H denote the Hilbert space consisting of all real absolutely
continuous functions :/(t) such that x’ is square summable on [0, rr], (x’(t))2 dt < oo,
with inner product defined by

(x, y)= xy + x’y’ dt.

We shall consider the isoperimetric problem of the minimum of the functional

on the constraint set

1 ,)2J[x]= -(x a(t, x) dt

S= x sH: g(t,x) dt=O

LEMMA 1. lfx His a C (twice continuously differentiable) minimum pointfor the
isoperimetric problem above, then x is a 2rr periodic solution of (I).

Proof. The Euler equation here is

(5) ao[X" + g(t, x)]+ a,g,(t, x)=0,

where ao, a (/02 "+" , 12 1) are the Lagrange multipliers. Natural boundary conditions
(see [1], [2], [3]) for this nonfixed-endpoint problem are

(6) aoX’(0) aox’(rr) 0.

Also A a= 0. This follows by integrating (5) between 0 and rr and using (6) and the
constraint condition g(t, x) dt 0. Hence ao 1 and the function x satisfies

(7) x" + g(t, x) O, x’(O) x’(rr) O.

The boundary conditions of (7) now imply that x is a 2rr-periodic solution of (I). This
follows since the functions u(t)=--x(2rr-t) and x(t) both satisfy (I) and u(rr)= x(rr),
u’(zr) =-x’(rr) 0= x’(rr). This implies that x(t)=-x(2rr-t). Similarly, x(t) is even:
x(t) =- x(-t). Hence, x(t) =- x(-t) =- x(2rr + t).

Theorem 1 can now be proved by using Lemma 1 and showing that there exists a
nonzero C2 solution of this isoperimetric problem. One of the main difficulties in doing
this is to show that the functional J assumes negative values in the constraint set $; i.e.,
that there exists y e S satisfying J[y < 0. That this actually happens is a consequence of
the second part of condition (3). For (3) implies that

G(t, x) 1 1
(8) lim_.o x2 =-g(t, O) >-.
Thus there exists c > 0 such that

(9) G(t, x)>1/2x 2 for,0<lxl_<-c.
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The functions

{-_accost, 0<t0r/2,
(10) y,,,b (t)

bc cos t, zr/2 __.- _<- r,

then satisfy lYa.b(t)l<=C for 0<a<l, 0<b<l, and 0_-<t-<Tr. Further, let F(a,b)=-
o g(t, y,,.b(t)) dr. Then for all 0 < a < 1, 0 < b < 1’

(i) y,,.b(t) < 0 (>0) for < 7r/2 (t > 7r/2);
(ii) Ya.b H;
(iii) J[Ya.b < O.

((iii) may be verified by a straightforward calculation using (9).) Also, F(a, b)< 0 for
(a, b) near (1, 0) and F(a, b)>0 for (a, b) near (0, 1). (This follows from (2).) Thus, by
continuity of F, there exists 0<a<l, 0<b<l such that 0 g(t, Ya.b(y))dt=O and
J[Ya.b] < 0; i.e., the functional J does assume negative value in the constraint set S.

Also, using (4), we have
LEMMA 2. Let yoS and J[yo]=-k <0 and let T={y SlJ[y]<-_-k}. If y6 T,

then

(11) lylmax_-< C (lYlmx maxly(t)l,/[0, r]),

where C is a constant which depends only on/3, A, B; i.e., the set T is bounded relative to
the supremum norm.

Proof. If y T then

(y dt < G(t, y) dt<-erlylOma+Bor.

Also y 0 for some to [0, zr], since ff g(t, y) dt 0. Hence, for all [0, or],
2

ly(t)l2 y’(s) ds <- r ly’(s) ds < 2Arlylmx + 2B,r

and lY IEmax < 2ATrly Imax + 2Bzr. The assertion of Lemma 2 now follows since fl < 2.
We are now in a position to prove the main result, using what have become classical

steps in the direct methods of the calculus of variations. (See [1], [2], [3].)
Proof of Theorem 1. Let {yn} be a minimizing sequence for J:

y,, S and J[y]-->/,

where/z inf Jly ], y S. Note that we may assume that y, T (Lemma 2). Since T is
uniformly bounded relative to the supremum norm, it follows that J is bounded below
on T, and/x >-oo. Then {y,} is uniformly bounded in H; i.e., Ilyll,-" o y. +(y,,)2 dt<__

constant. Hence, there exists a subsequence (we denote it also by {yn}) which converges
weakly in H to x H. Hence y, converges uniformly on [0, or] to x, and o g(t, x) dt
lim g(t, y,)dt=O. Also, since J is lower semi-continuous with respect to weak
convergence in H,

J[x] -<_ lim J’[y,,] -<, k and x T.

Further, again using this lower semi-continuity of J, J[x]_-<lim J[y]=/.,. But also
J[x] >-_ tx. Hence J[x]

Actually x is a C2 function on [0, r]. As in [1, pp. 114-117], the functions

fo(t) x’(t) + g(s, x(s)) ds Co
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and

fl(t)-=- gx(S, x(s)) ds Ca

(Co, Ca are constants chosen so that io f0 i0 fa 0) have Gram determinant equal to
zero. Hence ’o and/ca are linearly dependent, in almost everywhere sense, on [0, r]:

lofo(t) + lafa(t) 0 (a.e. in [0, rr]),

where lo, la are constants l + I 1. Clearly, lo 0; for otherwise gx(s, x(s)) ds =- -Ca
and gx(t, x(t)) 0,for all t. This contradicts condition (3). Therefore fo(t) (-la/lo)fo(t)
almost everywhere. That is, x’ is equivalent to a continuously differentiable function.
Hence, x is a nonzero C2 solution of the above isoperimetric problem and by Lemma 1,
the proof is complete.

The proof of Theorem 2 is the same in every way as that for Theorem 1 except that
(a) each occurrence of zr is replaced by to and (b) each occurrence of cos in (10) is
replaced by cos (rr/to)t.
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GENERALIZED HANKEL MATRICES AND SYSTEM REALIZATION*

MICHAEL A. ARBIB’ AND ERNEST G. MANESt

Abstract. We define the Hankel matrix of an adjoint system. Adjoint systems include linear and bilinear
systems, automata, and group systems in both the time-varying and time-invariant cases. Our definition of the
Hankel matrix unifies the familiar H CAi+JB of linear system theory (e.g.R.E. Kalman, P. L. Falb and
M. A. Arbib, Topics in Mathematical Systems Theory, McGraw-Hill, New York, 1969) with the bilinear
Hankel matrix of A. Isidori (Direct construction of minimal bilinear realizations from nonlinear input-output
maps, IEEE Trans. Automatic Control, AC-18 (1973), pp. 626-631), T. J. Tarn and S. Nonoyama
(Realization of discrete-time internally bilinear systems, Proc. IEEE Conf. Decision and Control, 76CH
1150-2CS (1976), pp. 125-133) and the Hankel matrix of M. Fliess (Matrices de Hankel, J. Math. Pure Appl.,
53 (1974), pp. 197-224). The time-varying case is subsumed by regarding a time-varying system as a
time-invariant system in a sequence category as in M. A. Arbib and E. G. Manes (Time-varying systems,
SIAM J. Control, 13 (1975), pp. 1252-1270). For minimal realization theory and duality theory in the
framework of this paper see B. D. O. Anderson, M. A. Arbib and E. G. Manes (Foundations ofsystem theory:
Finitary and infinitary conditions, Lecture Notes in Economics and Mathematical Systems, 115, Springer-
Verlag, New York, 1976), M. A. Arbib and E. G. Manes (Adioint machi.nes, state-behavior machines and
duality, J. Pure Appl. Algebra, 6 (1975), pp. 313-344) and S. J. Hegner (Duality theory for discrete-time linear
systems, J. Comp. System Sci., 17 (1978), pp. 116-143). However, we lean much less heavily on category
theory than in our earlier works on realization.

We introduce "adjoint correspondences" as the key algebraic ingredient in generalizing familiar linear
n i+ does notsystem results to the nonlinear case. For example, the linear realizability criterion

make sense in the nonlinear setting; the precise condition needed is that"H/ and correspond under
adjointness."

We provide a realizability theorem characterizing when a matrix H can be the Hankel matrix of a
system, and offer partial realization and canonical realization theorems which associate systems with finite
blocks of a Hankel matrix. We provide a general theory of "dimension in a category," and relate it to system
realization via a simple recursion principle.

1. Adjoint processes and systems. In what follows, if{ denotes an arbitrary
category [3], [20]. Further axioms on ’ will be added graduallyna summary appears
before Lemma 2.13. In this section, we define adjoint processes and systems, and
present a number of examples. Recall that a functorX :’’--> ’" assigns to each object O
of ’" another object OX of ff" and assigns to each morphism f: -> R of ’ another
morphism of form fX" OX-->RX subject to the preservation of identities and
composition, that is, idoX idox and, given f: O --> R, g: R -> S, (gf)X gXfX. As
discussed below, basic examples include tensoring with a fixed vector space in the
category of vector spaces and linear maps or assigning to a set O the set of all functions
from a fixed set to O in the category of sets and functions. Let ff{(O, R) denote the set of
morphisms from to R in ff’.

1.1. DErIrITION. An adjoint process in ff" is a pair (X, Z) of functors ’’--> if{

together with bijective correspondences ?{(RX, S)--> {(R, SZ) (one such for each pair
(R, S) of objects) subject to the axiom that, given f: O --> R and h" S --> T, if g" RX -> S
and : R --> SZ correspond then hg(fX): OX--> T and (hZ)f: --> TZ correspond.

In the usual language of category theory, to say (X, Z) is an adjoint process
amounts to saying that Z is right adjoint to X and, equivalently, that X is left adjoint to

* Received by the editors March 10, 1978, and in revised form June 4, 1979. The research reported in
this paper was supported in part by the National Science Foundation under grant DCR72-03722 A01.

" Department of Computer and Information Science, University of Massachusetts, Amherst,
Massachusetts 01003.
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Z. The literature of category theory offers a number of equivalent forms of these
definitions. We have chosen the original one of 18, Def. 3.1 ].

For the duration of the paper we fix an adfoint process (X, Z) in 7{. A convenient
notation is the display

R "- SZ

to indicate that g and p correspond. We say g and ff correspond under ad]ointness.
We may equally well use the notation

R SZ

RX- - S
g

and we will frequently use displays like

g

RX . S

R SZ

k
RX - S

to conclude that g k.
The axiom is then succinctly displayed as

(1.2)

fX h
QX RX -- S’ T

Q R -- SZ - TZ, hZ

We call attention to the special cases that arise when f idR and when h ids.
1.3. LEMMA. For each B, define eB BZX B as the correspondent of idBz :BZ

BZ. Then if g: AX B and : A BZ correspond under adfointness, we may recover g
from p by

g=e X.
Proof. Applying (1.2) we conclude that

AX BZX B

@ idBz
A BZ BZ

g

AX B [-]

1.4. Ad]oint systems. An adjoint system isM (Q, 8, L ’, Y, fl) where Q, L Y are
objects (the state ob]ect, input obfect and output obfect of M) and ;: QX Q, z: 1 Q
and fl: Q Y are morphisms (the dynamics, input map and output map of M). (Note:
"map" is here a synonym for "morphism.") The codynamics of M is the map
A: Q QZ which corresponds to ; under adjointness.
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Given two dynamics 8" QX- Q and 0" RX- R, a dynamorphism h" (Q, 6)-
(R, 0) is a map h" Q R which "respects the dynamics""

hX
QX RX

h

O .R

The time-i reachability map ri: IXi Q and the time-j observability map crj" Q-
YZ are defined by

to-- T

rX
ri+l=IXi+l QX Q

A z
%+ O ; OZ -- YZi+

The bisequence H, where H" IXi YZ is defined byH criri, is the Hankel matrix
of M.

Adjoint systems are closely related to the machines studied in [10], [11] and [13].
Realization theory for adjoint systems was developed in [1] and [4]. The Hankel matrix
for adjoint systems is new, perhaps because the previous authors were motivated more
by automata theory (where the Hankel matrix is not conventionally defined) than by
system theory.

We conclude this section with a number of examples of adjoint systems and their
Hankel matrices.

Example 1.5. The decomposable case. Here X Z is the identity functor of 3’/’.
The realization theory in this specical case was studied in [2]. When Yf is the category of
vector spaces (or of modules over a ring) an adjoint system is just a linear system

B A c
I O O -O O Y.

The same system description holds in any category. The adjointness correspondence is
just

Q .R
so that the codynamics is again A. We have ri AiB and cr CA so thatH CAi+JB.

Example 1.6. Automata. Let Y[ be the category of sets and functions. Let A be a
fixed input alphabet. Define QX Q A, QZ QA, the set of functions from A to Q.
For f: Q-R, fX" QxAR xA is defined by (q, a)-(f(q), a)whereas fZ" QA’-’>RA
sends g" A - Q to fg" A R. The adjointness correspondence

QxA )R

Q , )RA
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is the familiar (Oq)(a) g(q, a). Let I have one element. Then - amounts to an element
of O, the initial state. The dynamics and output map have their usual forms 8: O x A
Q,/3: O Y. It is easily checked that re: A O sends an i-tuple of input letters to the
state reached from the initial state if the letters are inputted in sequence, whereas
r: O - y(A) sends q to the function A Y obtained by composing/ with the time-]
reachability map that results if the initial state is q. Thus H" Ai- y(AO is essentially a
way of describing fl re+: A e+i Y with emphasis on as "present time."

Example 1.7. Internally bilinear machines ([12], [16], [22]). Let if{ be the category
of real vector spaces and linear maps. Define QX- Q(R) U, tensoring with a vector
space U, while QZ Q t, the vector space of linear maps from U to Q. The adjointness
correspondence

QxU .R

Q .R v

is then the familiar Oq(u) g(q(R)u). Let I be a vector space. Ttien -: I Q specifies the
space -(I) of initial states "reachable in time 0," the dynamics is then a bilinear map
8: Q (R) U Q while the output is a linear map/3: Q Y.

It is easily checked that re: I (R) U(R)i Q extends the map I x U Q which sends
a u in I and i-tuple of input vectors to the state reached from -(u) under that input
sequence; whereas try.: Q yUi sends q to the function U Y obtained by composing
fl with the time-] reachability map that results if the initial state is q. The Hankel matrix
H{" ! (R) U(R)e yUi can be viewed in a more symmetrical way as providing for each
initial state label a matrix U(R)e(R) U(R) - Y.

The previous three examples can be subsumed in one very general example, given
below as example 1.11. But first we need to recall [3, 1.2], [20, III.3, III.4] that if
(Q" I) is a family of objects of ffr then their product prk" 1-I Qe - Qk satisfies the
universal property that for all families of form fe:Q- Qe (i I) there exists unique
f: Q 1-I Qe with pre f fe for all i. If it exists, the product is unique up to isomorphism.

prk

I1O, O
in

Ok l_IO,

0

The dual notion is the coproduct ink Qk - l_I Qi. As we see in (1.8), in both cases there is
a bijective correspondence between arbitrary families (k" k I) and morphisms fi In
the category of sets, coproducts are constructed as the disjoint union whereas in the
category of modules over a ring (or a semiring), coproducts are constructed as weak
direct sums. Both categories have products via the usual Cartesian product con-
struction.

PRESERVATION PRINCIPLE FOR ADJOINT PROCESSES 1.9. Xpreserves coproducts,
thatis, ifink Qk ]_l Qi is a coproduct, so is inkX: QkX (I_I Qi)X. Similarly, Zpreserves
products.

Proof. The result is standard in category theory [3, p. 134], [20, V.5]. To outline the
proof, given a family fk" (.kX -’ Q, let’ gk" Qk - QZ correspond to/Ok under adjointness,
inducing the g: L[ Q - QZ whose correspondent is the desired fi The second statement
is dual. lq
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The following result should be viewed as generalizing the relationship between
matrices and linear maps. (It is precisely that in the category of vector spaces, if L J are
finite and Qi, Rj scalar field.)

BI-INDEX PRINCIPLE 1.10. If (Qi: I), (Rj: f J) andf: Qi -- Ri then, so long as
the coproduct and product exist, there exists a unique morphism f: H Qi - I-[ Ri such that
prif ini f for all i, ].

Proof. Define f: I_[ Qi - R. by fJ ini f and then define f by prif= fJ. Unique-
ness is left as an exercise.

For the balance ofthe paper we assume our category 7to be such that every countable
family of objects has a product and a coproduct.

Example 1.11. Let A be a fixed set (usually finite in applications). The following
very general example of adjoint processes and systems.works in any category :[ obeying
our standard assumptions, and subsumes Examples 5 (A has one element); 6 (ff[ Set)
and 7 (’[- Vect, with A a basis for U). Define

QX=Q -A=def LIO
aA

the coproduct of IAI copies of Q. For f: O R, fX is defined by the coproduct property

Q . QX
[f Ifx

in

R - RX
(aA)

If we define Z by

Oz oA--def I-I O
aA

the product of [AI copies of Q, with

O, QZ

t.,,

R RZ

it can easily be. verified that (X, Z) is indeed an adjoint process, with the cor-
.respondence

OX’ R

O RZ

being simply given by g. ina pra" " Q R for each a A.
Given a system (-" I Q, 3" QX Q, " Q Y), we have that ri" LIvA I - Q,

cri" Q I-IwaJ Y and that, by the bi-index principle, the Hankel matrix H" Hva’ I -[IwA, Y is equivalent to a IAIIAI "matrix" whose entries are the maps
prw H inv" I - Y.

2. Realizability and realizations. Before stating the next theorem we define the
obfect of inputs f and the observability space F. The notation follows Kalman’s for the
linear case [17, 10.3]. In [4] the notation used was IX for f and YX for F.
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2.1. We set f to be the coproduct lI (IXi" i>-O) where IX--I and IXi+1=
(IXi)X. lq carries a dynamical structure/xo" fX-> defined by

IXiX

Here, we have used the preservation principle 1.9. (The story behind the cumbersome
notation/Xo instead of/x is found in [21, 4.2].)

2.2. F is defined as the product [-I YZj" j --> 0) with dynamical structure L" FX -> F
the correspondent under adjointness of the map A defined by

A

F :- FZ

YZZ

These definitions coincide with Kalman’s (save that he denotes both/Xo and A by z)
when 3’{ is the category of modules over a ring and when (X, Z) is the identity process.

2.3. RZALIZABILIT THEOREM. Let H" IXi--> YZ be an arbitrary bisequence of
morphisms and letH" lq --> F be the unique morphism with priH ini H as in 1.10. Then
the following three conditions are equivalent (and we say H is a Hankel matrix with
Hankel dynamorphism H if these conditions hold).

(i) H is realizable, that is, is the Hankel matrix of some system.
(ii) (The Hankel crossover condition): For all i, f:

Hil+l
IXi+ YZ

IX yzi+
i-i

Equivalently, by 1.3, the condition states

id

IX*X . IX+

Hi+

yzi+lx yz

(iii) H" (lq,/Xo) -> (F, L) is a dynamorphism, that is, L(HX) Htxo" fX --> F.
Proof. (i) => (ii) is immediate from

rXIXX ; QX O - YZ
IX Q QZ * YZiZr A
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For (ii) ::)> (iii), consult the diagram

in X HX

IXX ; fiX . FX

; yz

By principles 1.9 and 1.10, it suffices to prove that the bottom and top paths from IXiX
to YZ are equal. But the bottom path is exactly H/1, whereas prj L corresponds under
adjointness to pro/l" F--> YZ/1 so that the top path corresponds toH/1 and is thus also
ni+l.

To complete the proof we show (iii) :=> (i). We shall show that if H is a dynamor-
phism, then the "free realization" Q fl, 8 txo, z ino, fl pro H has Hankel matrix
(H). One checks easily that ri ini. To show that o’irg priH ini it suffices to show that

o- priH. This is true by definition for/’ 0. The inductive step here is given by using the
adjointness axiom with f ida, and where A is now the codynamics of tz0"

(pri "H)Z

i’l llZ yzj+

Again

fiX FX YZ
Hx 9’L)

Butbythedynamorphismproperty,H o L. HX, andsopri+a H (pri H)Z A

The Hankel crossover condition provides evidence that adjointness arises
naturally in system theory. In the decomposable case (example 1.5) we capture the
familiar condition H+I H+1 of linear system theory.

In the general context of example 1.11, 12 may be identified with I A*, where A*
is the free monoid generated by A and F may be identified with yA*.

In familiar system examples one can discuss the subspace of Q reached by time i.
Such a subspace may be constructed by "taking the image" of the map f: LI IXk: 0 <-

k _-< i) Q defined by [ ink rk. TO formalize taking the image we structure Y{ with an
image factorization system.

2.4. An imagefactorization system for a category Y{ is a pair (, J//) where , J//are

subclasses of morphisms satisfying the following four axioms"
IFS1. and J//are each closed under composition.
IFS2. Every isomorphism is both in and in ///.
IFS3. Every element of is an epimorphism and every element of is a

monomorphism. (A map [: R S is an epimorphism if whenever g, h: $ T satisfy
g,f hf, then g h; dually, [ is a monomorphism if whenever a, b: Q - R satisfy fa fb
then a b.)

IFS4. Every morphism f: Q R admits an - factorization (e, m)--that is,
f me with e ’ and m ///--and such factorizations are unique up to isomorphism in
the sense that if (e’, m’) is another one then there exists a unique isomorphism O with
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0e=e’ and m’O=m. We then may also denote any S with Q-SR (an g’-

factorization of f as Im (f).
The category of sets and the category of modules over a ring both have g’

surjections and //= injections as unique image factorization system. Thus in these
categories Im (f) is the usual image f(Q) of/: Q R. The same construction works in
the category of semigroups but in that category g’ epimorphisms determines (see (2.8)
below) another system; the inclusion of the natural numbers into the integers is a

nonsurjective epimorphism in that category. Image factorization systems in the cate-
gory of linearly topologized vector spaces were investigated in a system-theoretic
context in 14].

The notion of an image factorization system can be traced to [19]. The version
presented here is due to [15], References in the system literature to (2.7) below as the
Zeiger fill-in lemma are historically inaccurate.

For the balance of this paper, , /l) is a fixed image factorization system in 27{.

DEFINITION 2.5. LetM be an adjoint system. The reachability map r: ft O ofM
is defined by

H IX’ "-0
i0

IX’

Dually, the observability map or: O F of M is defined by

I-I YZJ=F

yZ

We sayM is reachable if r is in g’, observable if tr is in /. M is reachable in time if
(rk [0 _-< k -< i): [I (IXk l0 -< k _-< i) O is in g’. Correspondingly, M is observable in time
if (cr 10 -<- k -<_/’) is in
M is reachable in bounded time if M is reachable in time for some i; and M is

observable in bounded time if M is observable in time ] for some ].
We conclude this section by collecting a number of standard results. Proofs of

2.6-2.11 appear in [21, 3.4] although all are easy exercises.
Let YC’P denote the dual category of P’g. For a discussion of duality for adjoint

systems see the end of 4 and [4]. Thus products in Y{ coproducts in y{op, monomor-
phisms in /" epimorphisms in ygoo and

PROPOSITION 2.6. (/, ’) is an image ]actorization system in the opposite category

Proposition 2.6 clearly plays a role in establishing the duality between results on
reachability and corresponding results on observabilityme.g, the fact noted after
Proposition 2.10.
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PROPOSITION 2.7. (Diagonal fill-in). Given a commutative square ge mf

with e , m [ them exists (necessarily unique) 4 with Oe f and mO g. [Hint for
proof: take the images of f and g.]

PROPOSITION 2.8. ( determines d//). The converse ofdiagonal fill-in holds. That is,
ifm is an arbitrary morphism with the property that wheneverge mfwith e there exists

with Oe f then necessarily rn l. [Hint for proof: factor m m’e and let f ids.]
Dually, [ determines .

PROPOSITION 2.9. Iff and f tt then f is an isomorphism.
PROPOSITION’ 2.10. If f: Q R and g: R S then gf implies g whereas

g/ implies f . [Hint for proof: use 2.8.]
Reachability in bounded time implies reachable. To prove this, observe that

where is defined by ink ink. Thus (ri) r. in ’ implies r in . Dually,
observability in bounded time implies observable.

PROPOSITION 2.11. Given a family fi: Q- Rg with each fi ill then the unique
f: I-I Qi - I-I Ri defined by prif fi pri is also in ill. Dually, given a family fi Qi - Ri with
each fi , the unique f: LI Qi- LI Ri with f ini ini fi is again in . [Hint for proof:
use 2.8.]

PROPOSITION 2.12. Xpreserves if and only ifZ preserves
Proof. Assuming X preserves ’ we wish to shov that mZ" QZ RZ given

that m" Q-R ///. This is immediate from 2.8 and the adjoint correspondences

S’ T

QZ RZ

eX
SX . TX
F P C;

Q- -R

(where capital and lower case letters correspond). The converse result is dual. ]
We can now state all necessary standing assumptions and summarize them here for

convenience. For the balance of the paper we will assume that:
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’{" is a category with products and coproducts of countable families.
(X, Z) is an adjoint process in
(ff, J//) is an image factorization system in ’{’.

X preserves (and hence Z preserves
I is a fixed input object. Y is a fixed output object.
It is often the case that all epimorphisms or that f all morphisms which are

the coequalizer of some pair [3, 1.3], [20, p. 64]. This is the case for the category of sets
and for the category of modules over a ring, the unique being the class of
epimorphisms the class of all coequalizers. In these two cases, it is well known that X
must preserve g [20, V.5].

DYNAMORPHIC IMAGE LEMMA 2.13. Letf: (Q, 6)- (S, 0) be a dynamorphism, that
is, the perimeter of the diagram below commutes.

RX SXOX ,x mx

l 1
O R

Letf me be an -lfactorization off. Then them exists a unique dynamics y: RX R
rendering the above diagram commutative.

Proof. Since eX , this is immediate from 2.7. [3
DErINITION 2.14. The canonical realization MH of a Hankel matrix H is the

system (On, 6H, ’n, /3n) defined as follows. Let H: (f, o)-(F, L), defined by
prj. H. ini H, be the Hankel dynamorphism of Theorem 2.3. Let

il OH - F

be an f-J//factorization of H. By the dynamorphic image lemma, there exists a unique
dynamics 8H: QHX- QH rendering rn and o’n dynamorphisms. Define i4 r1-1 ino and
t4 pro rn.

It is proved in [4, Thms. 2.1, 3.15] that Mn is a realization of H, that the
reachability and observability maps of MH are rH and crn (so that MH is reachable and
observable) and that any other reachable and observable realization is isomorphic
to MHo

The question of interest here, however, is under what conditions the canonical
realization can be found from a finite fragment of the Hankel matrix (HI0 =< i-<_ k,
0 =</" -< n). We first present a partial realization which tells us when such a fragment lets
us define an adjoint system whose behavior is consistent with that portion of the Hankel
matrix. Then, in the remaining sections, we present general conditions on m and n
under which this partial realization will be isomorphic to the canonical realization.

Let us fix the following notations:

n={0, ,-..,n}

IX;= H IXi" YX I-I YZ
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while

ais defined by prj. H. ini Hi for 6 k,/" ri.
Define fi" IXX IXrT-f by fi ini X ini+l

" YZn+IX YZ by prj. eyzJ.pri+lX.
Then the Hankel crossover condition yields

(2.15)

IX’iX IX +---’

YZTiX "- YZ

(just precede the square by ini X and follow it by pri for 0 _-< <_- k, 0 -< j _-< n to recapture
the square of 2.3(ii)).

Letn-+1 have g-factorization (& rh) with image 0 while H,+I factors as (, rfi)
with image t. Then, since X preserves g, we may define g: tX + O by diagonal fill-in"

(2.16)

IX X
;"

IX +----

Ox --, 0

YZ +’-’X . yza

The important fact is that g is completely determined by the H for O<-i<-.k + 1,
0=<j<=n+l.

To obtain our partial realization theorem, we must establish conditions under
which g may be viewed as a dynamics. To this end, define

in" IXr’ IXk +---f by in. ini ini,

pr" YZ+ -. yz by pr pr pri.

Then the bi-index principle, 1.10, yields

(2.17)
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Forming the -/factorization (e, m) of H,- with image R, we then obtain and u by
diagonal fill-in"

(2.18)

ixk+l

PARTIAL REALIZATION THEOREM 2.19. If t, U are isomorphisms in 2.18, we may
define the system M Q, 6, r, 13) by

(2.20) 6 -1. u -1. d: 0X-+ ( (using 2.16 and 2.18)

(2.21) r " ino" I -IX; (,

(2.22) t3 =pro" fit" ( + YZ + Y.

Then the Hankel matrix ofM agrees with H for 0 <= <- n, 0 <- j <= k.
Proof. Let r, r. be the/-step reachability and j-step observability maps, respec-

tively, of M. We prove the theorem in two steps:
in

(i) We show ri IX IX;" > for 0 _-< _-< k.

(ii) We show rj Q -. yzn+l o-----, YZ for O<-j<-k.
_n+lIt is then immediate that try. ri pri fit. . ini pr .,, r, ini Hi.

Proof of (i). For 0, this is 2.21. Now, for 0 _-< < k, we have by induction

ri+ =6.fix

t-u-" d" riX
t-lu -1. . 4X. iniX by induction hypothesis

t-lu -1" " t2" iniX by 2.16

t-lu -1. . ini/ by definition of/2
t-lu -1. u. t. . ini+l by 2.18, and definition of in

" ini/ as was to be shown.

Proof of (ii). By definition o’o =/3 pro" m. But then, for 0 <_- j < k,

O’j+l o’a A

ri.6
=pr. fit 6

pri rfi u t. 6

pr rfi 8

prj. [:.

8yzJ pri+X

by 1.2

by induction hypothesis

by 2.18, and definition of pr

by definition of 6

by 2.16

by definition of d.
pri+ fit
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3. Generalizing the notion of finite dimensionality. For a linear system M, the
subspaces Q generated by the union of the images AkB: I -> Q, 0 <- k <- i, constitute an
ascending chain of subspaces of Q. If Q is finite-dimensional---or more generally, for
modules over a ring rather than vector spaces, if Q is Noetherian--this chain is
eventually stationary, Q Q,+ and M is reachable in time m. In this section,
we show how such dimensionality considerations may be extended to our category
fwith dimension reducing, essentially, to cardinality in the case of Set. The notions
of g’-height and ///-height were introduced in [1]. Further properties of Noetherian
objects appear in [7].

DEFINITIONS 3.1. Let Q be an object of ’tr. The set of all pairs (R, m) with
m: R - Q admits a reflexive and transitive order by defining (R, rn) N (R’, m :) if
there exists with rn’O m

R

(note that such O is necessarily unique and is itself in ). Thus (R, m)-(R ’, m’) if
(R, m)-< (R’, m’) and (R’, m’)_-< (R, rn) is an equivalence relation whose equivalence
classes [R, rn are called the subobfects of Q. [R, rn _-< [R’, m’] if (R, m)<-_ (R’, m’) is a
well-defined partial order on the subobjects of Q. It is easily seen that [R, m] [R’, m’]
if and only if there exists an isomorphism O with m’0 m.

Q is Noetherian if every strictly ascending chain of subobject of Q is finite. Let
h _-> 0 be an integer. Q has /t-height h if Q admits a strict chain of proper subobjects of
length h, but none of length h + 1. Q has finite l-height if Q has K-height h for some h.

The dual concepts relative to 5rf are formulated by repeating the above definitions
in ’trp (using 2.6). Thus, the ordering on quotient objects of Q is described by

R

, ’ O [R, e] _<-[R’, e’]
e, e’ g’

(Note that we reverse the arrows, not the ordering.) We say Q is Artinian if Q is
co-Noetherian, that is, if every strictly ascending chain of quotient objects of Q is finite.
The definitions of "-height" and "finite -height" are clear.

Examples 3.2. In the category of sets, subobjects may be identified with subsets of
Q and quotient objects may be identified with the canonical quotient projections
induced by equivalence relations on Q. A set with h elements has ,//g-height h + 1 and
g’-height h, except that the empty set has g’-height 1. For sets, Noetherian Artinian
finite. Notice that for both subsets and quotient sets, ascending chains mean increasing
cardinality.

In the category of modules over a ring, the passage from a submodule S to its
cokernel Q\S establishes an anti-isomorphism of partially ordered sets between
subobjects and quotient objects. For this reason, Artinian is equivalent to the descend-
ing chain condition on subobjects (the usual definition on module theory) and a module
has finite height if and only if it is simultaneously Noetherian and Artinian. These two
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properties do not hold in a general category where descending chain conditions are not
equivalent to the ascending chain conditions defined above, and do not seem to be well
motivated in a system context.

In Abelian groups, Noetherian finitely-generated, whereas finite -height
finite. The group of additive integers is not Artinian. For vector spaces, on the other
hand, Noetherian Artinian finite height and ///-height g-height 1 + dimension.

We do not use the term "proper subobject" since no single usage seems consistent
with all four finite-height conditions discussed above. One could exclude the proper
subobject [Q, idol although from the system point of view this subobject is not the
trivial one; it is the zero subobject that is trivial from the point of view of building
increasing chains. Recall that an object 0 is initial if there is a unique morphism 0- Q
to every Q and, dually, an object 1 is terminal if there is a unique morphism Q 1 for
every Q. For sets, 0 is the empty set, 1 is a one-element set and for modules 0 is both
initial and terminal. While the unique 0 Q is not always in , the image factoriza-
tion of this map produces the least element of the partially ordered set of subobjects of
Q. Dually, the image factorization of Q 1 produces the least quotient object of Q. It
seems hard to posit a natural procedure to decide when to omit the zero subobject from
chains which preserves duality (i.e., the same procedure must be applied to quotient
chains) and works right in the examples above.

Motivated by the sequence ri" IXi Q induced by an adjoint system, we consider
an arbitrary sequence of morphisms of form fi: Pi Q, the set {0, 1, 2, .} of
natural numbers. The following four constructions are useful. We fix their notations for
the remainder of the paper.

3.3. For each non-empty subset $ of 3c define

Ps H (Pi 6 S),

fs Ps O, where fs ini fi (iS).

3.4. For S T , insT," Ps - PT- is defined by insT- ini ini (i S).
3.5. Fix an g’-J//factorization of fs"

es
Ps Is 0.

3.6. For S c T 3c, resT-" Is I7- is defined by diagonal fill-in (2.7)"

insT I
P

lr

reST /

(to prove that the square commutes observe that both paths are ’i when preceded by
ini).
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We observe at once, using the results of 2, that msr all, that rnrurnsr rnscr for
S c T c U, and that if fs then fr e f whenever S c T.

Motivated by system theory we should like to prove results such as "if Q is
Noetherian andM is reachable thenM is reachable in bounded time" and "if fs is onto
and if T is the subset of S obtained by deleting those k for which the union of the images
of fo, , fk-1 is the same as the union of the images of fo, , fk then fr is still onto."
We observe that the reason these results are so easy to obtain in the category of sets is
because the passage S-Is is union-preserving; Is is, after all, just the union of the
images of the (fs: s S). Our approach below is to show that, in general, this passage is
sufficiently supremum-preserving to lift the theory to a category. We present general
results about dimension in a category in this section; and turn to their system-theoretic
application in 4.

LEMMA 3.7. For any object Q, every nonempty countable family of subobjects of Q
has a supremum.

Proof. Given [Rk, mk define f by f ink ink, and consider

R

O

where (e, m) is an g’-A/ factorization of fi There exists Ok with mOk- mk (namely
Ok e ink) which demonstrates that [Rk, mk]<=[R, m] for all k. We will show that
[R, m] is the least upper bound. Suppose that [Rk, mk] =< [R’, m’]. Then there exist

in

Rk "; HRk

O

as shown and hence a unique h with h ink t. Clearly m’h =f. Hence, if (, nS) is an
g’- factorization of h, (, rn’rfi) is an g-d/factorization of f so that [R, m] [I, m’rfi].
But then, via rfi, [R, rn <-[R’, rn’].

Given f: R Q, let If] denote the subobject of Q obtained by taking the image
factorization of f.

LEMMA 3.8. Let fi: Ri Q be a nonempty countable family of morphisms and let
f: H Ri - Q be defined by f ini fi. Then [f] sup ([fi ]).
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Proof. Consider the diagram shown in which [fi]= [Ti, mi] and [/, rn ] sup ([fi])
according to the construction of Lemma 3.7.

T, i-
II,

O

Define e by e ini ini ei. Then the diagram commutesmthat is,/ m e’ e--because both
paths coincide with/i when preceded by ini. By 2.11, e so that [/] [L m] as
desired. [-1

Before continuing, we introduce the abbreviation ls for the more cumbersome
[Is, ms]. Thus, Is is a subobject of Q.

LEMMA 3.9. The passage S -> Is preserves nortempty countable suprema.
Proofi Let (Sk: k I) be a nonempty countable family of nonempty subsets of N

and set $ Sk. We must show that Is is the supremum of the lk (where we use the
subscript k for the more cumbersome S’k throughout). Consider the map 0" 11 Pk -* Ps
defined by 0 ink inks (k I). In view of the commutative diagram

in

it suffices to show that 0 , for then (esO, ms) is precisely the construction of the
supremum in Lemma 3.7. To prove that 0 ’ we use the dual of 2.8. For s $ choose
k(s) with s Sk(s). Then consider the diagram

where g, f and m are only required to satisfy gO mf and m ///.
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We must construct with m g. Define by 0 ins link(s) ins as shown. Since
0 ink(s ins ink(s)S in. ins (see 3.4) we have (m)ins mf ink(s) ins g 0 ink(s) ins
g ins for all s S, so that mp g. [3

For the next definition and two propositions we consider an arbitrary nonempty-
countable-supremum-preserving map I: R -L where R is the partially ordered set of
nonempty sets of N and L is an arbitrary partially ordered set. For the general I we
write I(S) instead of Is. Is is not the only application; see [7].

DEFINITION 3.10. Define ri {0, , n} R. I is stationary ifI(g) I(n + 1) for all
n. A R is adequate if I(A) I(S) whenever A c S. Equivalently, A is adequate if and
only if I(S) I(T) whenever A c S c:_ T.

PROPOSITION 3.11. IrA is one-step adequate in the sense that I(A) I(A {k}) for
all k then A is adequate.

Proof. If A c S, S U(A U {k}: k S). [3
PROPOSITION 3.12. For each nonempty-countable-supremum-preserving map

I R L, the set

A {0}[A {k e]I(k- 1) < I(k)}
is adequate.

Proof. Note that if I is stationary, then A {0}, and certainly this A is adequate.
Otherwise, it suffices to prove I(A) I(A LI {0,. , n }) for all n. Since {0} c A, this is
certainly true for n 0. Suppose now that I(A) I(A {0, , n 1}). Then if n A,
it is certainly true that I(A)= I(A {0,..., n}). Otherwise, I(n-1)= I(ri), and so

I(A LA {0,..., n})= sup (I(A), I(i))

=sup(I(A),I(n-1))

=I(AUn-1)=I(A).

COROLLARY 3.13. If0 has ell-height h, fi: Pi --> 0 has an adequate set with h + 1 or

fewer elements. [3

4. Adequacy for systems and the simple recursion principle. In this section, we
study the implications of 3 for an adjoint system M. We introduce all of the notions of

3, with f: P -, 0 r :IX - O. We write IXs instead of Ps.
PROPOSITION 4.1. IfMis reachable and 0 is Noetherian, Mis reachable in bounded

time. Dually, ifM is observable and 0 is Artinian, M is observable in bounded time.

Proof. By definition, r r is the reachability of map M and M is reachable in
bounded time if and only if rs for some finite S. Since is Noetherian, there exists a
finite one-step adequate set S. Then S is adequate by 3.11 and, in the diagram shown,
rns is an isomorphism.

If M is reachable, mx is an isomorphism (2.10 and 2.9) so that rs mcmsxes (by
IFS1 and IFS2).
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DEFINITION 4.2. Let V be a set. A sequence vn in V is defined by simple recursion
if there exists a function g: V--> V such that Vn+l g(v,), that is, vn g" (v0).

Example 4.3. The sequence span (B, AB,..., AnB) of subspaces of the state
space of a linear system is defined by simple recursion. Define g(S)= span (S (.l A(S))
for each subspace S. The next result shows that this construction works for arbitrary
adjoint systems.

Recall that ri -{0,..., n}.
SIMPLE RECURSION PRINCIPLE FOR ADJOINT SYSTEMS 4.4. LetIe be the subobfect

[re] of the state obfect of an adfoint system "reachable in time n." Then the ascending
sequence Ie is defined by simple recursion. Dually, the ascending sequence ofobservability
quotient objects of the state object is also defined by simple recursion.

Proof. We define the endomorphism g on the subobjects of O by g([R, mJ)=
sup ([R, m J, [6. mX]). To verify that g(Ie)= I-2;-f, recall that r;+l 6. fiX, and that
ri re ini for <_-n, and that the vertical maps constitute a coproduct in the following
diagram:

IXiX

IX"X QX O
rX

Now, by Lemma 3.8, [6. reX] sup ([rl], ", [r,+l])= sup (I1," ", In+l). But because
X preserves ,

[6. reX] [6. meX" eeX] [6" meX].

Moreover, Ie sup (Io,’’’, In) by 3.9. Therefore

g(Ie)=sup(sup(Io, I), sup (I,..., In+))= sup (Io,...,/+) I,--f.

An immediate consequence is a better proof of the general version 1, Thm. 4.6] of
the "if you stick you’re stuck" result of [9]"

COROLLARY 4.5. If Ie I-, then g is adequate.
Proof. In+k+l g(I--;-) g(In+k-1) (induction hypothesis) In+to. [-]

While the proof of Corollary 4.5 bypasses Proposition 3.12, the latter is still a
useful principle, as we shall show in [7].

COROLLARY 4.6. LetMbe an adfoint system with state object Q. IfQ has /l-height
h thenMis reachable in time h. Dually, ifQ has -height h, Mis observable in time h. 71

To tie this back to the realization theory of 2, and especially the Partial
Realization Theorem 2.19, we make the

Observation 4.7. It is clear from 2.18 and 2.10 that is in $’ and that u is in t//. It is
then clear that if g’-height (Q) g-height (R) and both are finite, then is eventually an
isomorphism; while if ///-height (R)= J//-height (Q) and both are finite, then u is
eventually an isomorphism. Thus the condition "t and u are isomorphisms" in 2.1 9 may
be replaced by "g’-height (()= g-height (R) and J//-height (R) =/-height (() and
both are finite."

COROLLARY 4.8. For ad]ointprocesses in Veer, we may obtain a partial realization
as soon as

dim (O) dim (R) dim (() finite.
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This yields both Tether’s [23] criterion for partial realization of linear systems, and
Isidori’s [16] criterion for partial realization of bilinear systems (internal sense).

Given a matrix A: R Rn, one way to define its rank is simply as the dimension of
the image (recall 2.4) Im (A)=A(R’). We have seen that in Veer we have that
g-height(Q) :///-height(Q) dim (Q) for any finite-dimensional vector space Q. This
suggests the following:

DEFINITION 4.9. Let f: Q - R be a morphism of Y{. The rank of f is (h, l) if Im (f)
has finite g-height h and finite -height l, and is undefined if no such finite numbers
exist.

Now recall that in 2.3 we associated with each Hankel matrix H{ its Hankel
dynamorphism H: (,/xo) - (F, L) satisfying pr H ini H{, where f LI (IXi] 0) is
the object of inputs and F I-[ (YZ I/" ->- 0) is the observability space. In the usual linear
case, H is precisely the infinite Hankel matrix whose blocks are the H{ CAi+iB.

DEFINITION 4.10. We say that the Hankel matrix H{ has rank (h, l) just in case its
Hankel dynamorphism has rank (h, l).

Combining the argument for Corollary 4.6 with the Partial Realization Theorem
2.19 and observation 4.7 we have

THE HANKEL REALIZATION THEOREM 4.11. LetH{ be a Hankel matrix with rank
(h, l). Then the canonical realization ofH{ may be constructed by applying the construc-
tion of 2.19 with k h and n in 2.18.

Proof outline. The crucial point is that the rank condition implies that items (i) and
(ii) of the proof of 2.19--ri . ini and rj pri. rh--hold for all and ] respectively. But
this not only shows that the M of 2.19 has Hankel matrix H{, but also that M has
reachability map in g’ and observability map in A//mso that M is canonical.

Observation 4.12. As in 4.8, we note that when 3’g" Veer the two height conditions
in 4.9 collapse to the single condition "Q having finite dimension h," and we may then
take k n h in forming the realization.

For the biadequacy criterion for Hankel realization, see [7, Prop. 8.6].
We close this section with a few brief remarks on duality as it relates to Hankel

matrices. Recall from 1.4 that an adjoint system

M=(Q,&I, z, Y, fl)

is given by the input map r: I - Q, dynamics ;: QX - Q and output map/3: Q - Y, and
that we may associate with M its codynamics A: Q- QZ which corresponds to
under adjointness.

Let us use f: R--<Q for the ’/’-morphism f: Q R interpreted as 3’/’P-morphism.
We may associate with M its dual [4, Definition 4.6]

MP=(Q, A, Y,,I, ’)

in the category 3’p, given by the input map/3: Y-<Q, dynamics A: QZ--Q and output
map z: Q-<I.

It is then easy to verify that the Hankel matrix K{" Yzi--<IX for Mp is just the
H}" IX -. YZ for M in Tg’, so we have that H: F - fl corresponds to the K{ in ,rop in
the fashion specified by 2.3.

Now we saw in 2.6 that (g’, //) is an image factorization system in the category 5rg" iff
(A//, g’) is an image factorization system in the opposite category ,/.op. Thus a realization
M of a Hankel matrix in ’g" corresponds precisely to a realizationMp of the "reversed"
Hankel matrix in ,dop. In [4, Example 4.12] we show how the usual duality results of
linear system theory follow because the finite-dimensional part of Veerp can be
modeled in Yeet, with Bp for B: R - R being modeled as its transpose B r: R - Rm.



424 MICHAEL A. ARBIB AND ERNEST G. MANES

Thus the linear system M (A: Q - Q, B: I- Q, C: Q - Y) has opposite system
Mp-(A" Q-<Q, C" Y--<Q,B’Q-<I) modeled as the familiar dual M
(A T. Q - Q, CT. y Q, B 7-. Q - I). Another perspective, based on the imposition of
suitable topologies on linear vector spaces, is given in [14]. An interesting open problem
is to explore conditions on a ring R for such results to extend from Veer to R-Mod, the
category of modules over R.

Acknowledgment. This paper is the third reference promised in [6]. The authors
gratefully acknowledge T. J. Tarn for conversations which initiated the investigations
that led to this paper.
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BASIC HYPERGEOMETRIC SERIES*
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Abstract. A quadratic transformation for a basic hypergeometric series is obtained.

1. Introduction. Hypergeometric series have been studied and used for almost two
hundred years. One of the useful facts about some hypergeometric series is that they
have a quadratic transformation. In fact, the general Legendre function is just an
algebraic function times a hypergeometric function that satisfies a condition for the
existence of a quadratic transformation. Hypergeometric series have been generalized
to basic hypergeometric series. However basic hypergeometric series have not been
studied as extensively. In particular, there only seems to be one quadratic trans-
formation of a basic hypergeometric series in point. This transformation was found by
Carlitz [3]. Before stating Carlitz’s identity we need some notation.

(1.1)

If [q[< 1 then

[a; q]n (1 a)(1 aq). (1 aq"-l), n=l,2,...,

=1, n=0.

(1.2) [a; q] I-[ (1 aqk).
k=O

Set

(1.3) [al,’’ ", ar+l; q, t] [al; q]""" [ar+l; q]
r+l()r

bl,’’’, br k=O -g; q]k (ii
k

[q; q]k"

Carlitz [3] proved

;q [a;q]z.qa’ b’ c; q’--c =[ax; q] 2
a_ql aq [x;q] .=O

[q; q].[_; q] [7;q] [ax; q].[; q]
(1.4)

lax; q]
[x; q]o

5(I)4

aq 1/2, 1/2, /2, aq)l/2b---’ a -a (aq) -( ;q,

aq aq q, ax,b’c x

when a q-k, k 0, 1, He does not state the restriction that a q-.k which
terminates both series; but without it his proof does not work, for one of his series
diverges.

* Received by the editors September 19, 1978, and in revised form July 10, 1979.
t Department of Mathematics, Roorkee University, Roorkee, India.
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2. Another quadratic transformation. Andrews [1] found a q-extension of a
terminating form of an identity of Watson. It is

4(D3 [ a, b, c /2, -cl/2; q, q ](2.1) l (abq) 1/2, -(abq) 1/2, c]

a,/2[aq, q2[cq]ooa q2] [.q;q2]
[q; q2]oo[abq qZ]oo[cq qZ]o cq q2

This can be rewritten as

(2.2) 4(I)3

-2n 2 2n aq 1/2 a ql/2
q ’a q ’- b

’q’q

=(ql/2) 2" [q;q2]"[b2"q2]’’2
aql/2 aql/2 a q [a2q q2]

[" a2 q,- ,,[- ;q

when b q-2n. When b q-2n- then the series in (2.1) vanishes. Use these results as
follows.

2(1)
a b q2, Y [a2; q]2n 2n [q; q2]n[b2 q2],

2
2 a 2-q [a2q;q ]n q2;q

(2.3)
[q-;q]k[aaq q]k q2

kZ -’ y /2
n,kO [ q]n 1 2 ra[aaq; q ][ q; q][q; q]

Here (2.2) is used when n is even and when n is odd the sum vanishes. To simplify this
series we will need the q-binomial theorem.

(2.4)
[a;q], [ax;q]o

,=o[q;iTx [x;q

This result is true if Ix[< 1 or for all x when a =q-i for some j, j=0, 1, 2,.... To
simplify (2.3) we will assume a q-i. Then

[a2q. 2] [a2;q2]
k

k=0 a 2

_(k2/2) [abyq -(1/2)’, q]
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[abyq -l/z); q] [a z., q2]k q; q2 kq

[a-lbyq-(1/2)’q]k=[a- ]q; q [q; q]k[abyq-(a/2); q]k
k

a ql/ a ql/2
[abyq_l/2. q] a, -a,- - ;q,

[a-lbyq-(1/’2. q] 4(I)3
a 2 q3/2 a q
q- abyq_(1/2), a

by

-i

To see what this identity generalizes set a q, b q and let q 1- The result is

(2.6)

4y )21a, fl; y2 a, a --fl +1/2; --(1--y[ ] y) 2F1
2a-2fl+l

2Fl 1 + o -/
(1 --2a

Formula (2.6) holds even when a is not a negative integer.
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THE LAPLACE TRANSFORM OF A PRODUCT OF BESSEL FUNCTIONS*
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Abstract. The Laplace transform of Jtz(at)Jv(bt)t is an R-function if h =/x- u or h =/x- v + 1. It is a
finite sum of R-functions if tz u and h 2/ is a nonnegative integer, or if both h +/x u and h + u tz are

nonnegative integers. The last result is proved by the techniques of double Dirichlet averages. If 2A, 2/x, and
2u are integers, rules are given for determining by,inspection whether the R-functions are rational, algebraic,
elementary transcendental, or elliptic. When and u are nonnegative integers and h is an integer, the Laplace
transform is a complete elliptic integral of the first or second kind if h => [/x ul and is conjectured to be a

complete elliptic integral of the third kind if

I. Introduction. Integrals of the type

(1.1) I(lz, u; A e-"J, (at)J(bt)tx dt

occur in electromagnetism, gravitational potential theory, heat conduction, hydro-
dynamics, and elasticity, typically in connection with axially symmetric systems. Five
examples are cited with references in [10, p. 530]. The fourth is the potential of a
uniform mass distribution on a circular disk (see also 12], 19]), which is proportional to
I(0, 1;-1); it is currently of interest in calculating the effect of Saturn’s rings on a
passing spacecraft [14]. The gravitational field of a right circular cylinder [12], [20] is
used in interpreting gravity data, and the magnetic field of a right circular cylinder [21
or a circular disk [22] is used in interpreting geomagnetic anomalies. The potential
energy of interaction between two coaxial circular disks [4] is proportional to
I(1, 1;-2). Other examples are met in signal statistics [17] and in calculating the
magnetic field of axially symmetric coils [13], [24]. Integrals in which one Bessel
function is spherical occur in elasticity [23, pp. 459-468], [27]. Both may be spherical in
hydrodynamics [18] and quantum-mechanical collision theory [9].

Watson [25, pp. 389-391] summarizes results of Gegenbauer and others for the
cases z u, h u, and h t + u. Eason, Noble, and Sneddon [10] transform the
integral, deduce recurrence relations, and analyze and tabulate numerically eleven
cases with integral values of h, , u. Luke-J15, pp. 314-320] cites further numerical
tables and gives additional results, notably representations by series. Benton [3]
considers the case t u. Erd61yi [11, vol. 1, pp. 182-184, 196] lists integrals with
various restrictions on the parameters, and Okui [17] expresses I(/z, u;,) in terms of
complete elliptic integrals for many numerical values of z, u, h. Cases in which both
Bessel functions are spherical are evaluated by Detrich and Conn [9] in terms of
elementary functions.

Since Y_,,=(-1)’J, if m is an integer, we assume throughout that /z, u
-1,-2,-3,.... Since the case p 0 (the possibly discontinuous Weber-Schafheitlin
integral) is discussed thoroughly by Watson [25, pp. 398-410], we assume further that
p #0. Then the integral converges at the upper limit of integration if Rep >
IIm a]+llm bl and at the lower limit if Re(A +/x + u)>-1. Expansion of the Bessel

* Received by the editors January 11, 1979, and in revised form July 16, 1979.
t Ames Laboratory, United States Department of Energy and Departments of Mathematics and Physics,

Iowa State University, Ames, Iowa 50011. This research was supported in part by the Department of Energy
under Contract W-7405-Eng-82.
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functions in 0Fl-series leads to [11, 4.16(13)],

(1.2)
I(/x, v; ) C(/x, v)F(h +/x + v + 1)p-x-*-’-I

"F4(h+/x+u+12 ,+tz+v+22 -a2 -b2),/x+l,v+l; P-’ p2
where

(1.3) C(/z, v)=
(a/2)t*(b/2)

r(> + 1)F(v + 1)"

The series representation [11, vol. 1, p. 384] of Appell’s function F4 converges if
Ipl > la[ / [bl. Hence (1.2) is directly useful only for sufficiently large IPl. Expansion of
the Bessel functions in 1Fl-series leads to [11, 4.14(24)],

I(, v; A) C(, v)F(a + + v + 1)(p + ia + ib)-x-*-’-I

(1.4)
F2(A +> +v+ 1,, +21-, v+21-; 2> + 1,2v+ 1;

2ia 2ib )p + ia + ib’ p + ia + ib

Unfortunately the arguments are complex if p, a, b are real. Equations (1.2) and (1.4)
are related by a known quadratic transformation of a restricted F4 [2, (3.1)], [6, (4.4)].

In this paper we note several cases in which restrictions on ,,/x, u allow F4 or F2 to
be expressed in terms of R-functions of two or three variables. The R-function of two
variables is a variant of the hypergeometric function 2F1 [8, (5.9-11)]:

(1.5)

where (a),, is Pochhammer’s symbol, the R-function is symmetric in the indices I and 2,
and the seriesconverges if I1 z/z=l < 1. The R-function of three variables is a variant
of Appell’s F1 [8, Ex. 6.3-5]"

(1.6)

where the R-function is symmetric in the indices 1, 2, 3, and the series converges if
II-Zl/Z3l< 1 and II-z2/z31< 1.

The use of R has three advantages in this context. First, if 2h, 2t,, 2v are given
integers, it is easy to tell by inspection whether the R-function is rational, algebraic,
elementary transcendental, or elliptic (see 2). Second, if the R-function is an .elliptic
integral, a table and other aids for reduction to standard integrals are available
[8, 9.3]. Third, if p, a, b are positive or if p is positive and a, b are purely imaginary, the
R-function can be expanded in a convergent power series without searching for a
suitable linear transformation of 2F1 or F1. For example, if p, a, b are positive we may
use the symmetry of R to choose z3 =A2 in (2.3), but if the Bessel functions are
replaced by modified Bessel functions (a and b purely imaginary), we choose z3
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A2 b 2. In each case z3 is then the largest of three positive arguments, and the series in
(1.6) converges.

2. List of results. We assume throughout that/x, v -1,-2,-3,... and Re p >
IIma I+ IImb I, which implies that p + ia + ib lies in the open right half-plane for all four
choices of the signs. We define

2 2 G2(2.1) r+=p +(a+b)2, A=1/2(r++r_) =r+r_,

2where A and G denote arithmetic and geometric means. Since r+-
(p + ia + ib). (p ia ib) we may choose r+ (and similarly r_ and G) in the open right
half-plane. Some useful identities are

2A2-G2=1/2(r2+ +r2)=p2+a2+b,
(2.2) A G2

2

A-a-p2= b 1-

A(r+ r_) 1/2 (r2+ r2_) 2ab,

(A2 a2)(A2 b 2) p2A2,

A-b2-p2=a 2 1-

We define I(tx, v; A) and C(Iz, v) by (1.1) and (1.3). (To replace J,(at) in (1.1) by a
modified Bessel function I, (at), leave COx, v) unchanged and replace a by ia every-
where else; similarly for Jv(bt).) In 3 it is shown that

I(tz, v; v)= C(/z, v)F(2/z + 1)
(2.3)

.R_,_/2(v+1/2, tx-v+1/2, v-tz;A2, G, A2-b), Re tz > 1/2,

I(z, v;/z v + 1) C(/z, v)F(2/z + 2)p

(2.4) "R--3/z(u-,-u+, u-;Az, GZ, AZ-bZ),
Re>-l.

Similar formulas for I(, u; u-) and I(, u; u- + 1) are obtained by interchanging
with u and a with b (which does not change A or G). These four formulas include ten

of the eleven integrals tabulated in [10].
In n is a nonnegative integer, we find also

I(, ; n)= C(, )C(2 + 1) (-n)2( +),-(2p)"-2
=o m

(2.s) a rR-.-/2-.+( +, +; r+, ), Re u > -(n + 1)/2,
"/a (-1)

I(,;2+n)=C(u,)F(4+I) 2 (-n)2(2 +),-
m=0 m

(2 6) (2p),-ZR 2
-2.-/2-.+ ( +, +,-; r+, r, pa),

Re/x >-(n + 1)/4.

Here [n/2] is the largest integer not exceeding n/2. In (2.5) the R-functions have equal
parameters and hence are Legendre functions [8, pp. 158-159]. If/x is a nonnegative
integer, the R-functions in (2.6) can be expressed in terms of Legendre functions by
successive applications of [8, (5.9-8)].

A product of Legendre functions occurs in the previously known case , =-1/2
[11, 4.16(12)]. We give it here in several forms that may prove convenient in different
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circumstances:

I(t, v;-1/2) C(t, v)F(t + v + 1/2)A’+"+/f(t, v; a, b)f(v, ;b, a)
(2.7)

C(/X, u)F(/x + v +1/2)p,+,,+l/2g(/x, v; a, b)g(v,/x;b, a),

where Re (/x + u + 1/2) > 0;

2/x-2v+ 1 2/x +2v+3,A2 2f(/x, v; a, b) R-(2v.+Zu+l)/4 --a A
4 4

(2.8) R-,-,,-1/2 [/x + 1/2,/x + 1/2; (A2- a2)1/2 + ia, (a2- a2)1/2- ia]

R_,_,._l/z[/x u + 1/2, u + 1/2; A + (Az- az)l/2 ]2
,A;

(2.9)

2/x 2v + 1 2/2 + 2u + 3g(/x, u; a, b) R-(2tz+2v+l)/4
4 4

2 2 2);p ,A -b

=R-,--I/z[/X +1/2,/x + 1/2; p + (p2-AZ + b2)1/2, p -(p2-A2 + b2)1/2]

R-u.-,,-l/2[/x -v+, v+1/2;P+(A2-b2)l/22 (A2-b2)1/2J"
If A +/x v and A + v -/x are nonnegative integers, it is shown in 4 that I (/x, v; a

is a finite sum of R-functions. Define

m =h +v- n =h +/x- v,
(2..10)

x p + ia + ib, y p + ia ib,

(m,n =0, 1,2,... );

z p ia + ib, w p ia ib.

Some useful identities are

XW r+, yZ r
(2.11)

(XZ)I/2+(Wy)I/2= 2(A2-b2) 1/2.

If Re (A +/x + u) > -1 we find

F(a+/x+v+l) (7)()I(/x, v; a)= C(/x, v)
2(2/x + 1),,(2v + 1),

y"
r=O s=O

(2.12)

(xy) 1/2 + (WZ) 1/2 2(A2 a2) 1/2,

(/x +1/2)r(/x +1/2)m-r(lJ + 1/2)s(1,J + 1/2)n-s(xr+S-Ay r+n-s-A + Wr+s-’zr+n-s-X)

R-t,-(l/2)-(v + 1/2 + s, v + 1/2 + n s’, r 2+, r z_ ),

where is a binomial coefficient. The equation still holds if r=o s=O is replaced for
r

quicker computation by

[n/2] Ira/2]

Y’. 2 (2- 6,.2,1 or Y’. Y’. (2- rn,2r).
r=0 s=0 r=0 s=0

The singularity of (/x + )r(/x -" 1/2)m-r/(2/x + 1),, when/x =-1/2,-23-, is removable, and
similarly for v. If/x, v, a, b are real, then w and z 37 and the summand is real.

When 2/x, 2v, 2A are integers, the nature of the R-functions in the preceding
formulas can readily be identified. Let m, n, r, s be integers. Setting s 0 is equivalent
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[8, (6.3-3)] to omitting s and z in the following rules, wherein x, y, z are independent
variables unrelated to the notation of (2.10):

1) R,,,(n, r; x, y), where n + r > 0, is a polynomial in x and y if m ->_ 0 and a rational
function if m < 0 and m + n + r <-- 0 or if m < 0 and exactly one of n and r is positive.
Otherwise it involves a logarithm.

2) Rm(n +1/2, r, s; x, y, z) is a polynomial in x, y, z if m ->_0; a rational function if
m < 0, r-< 0, and s-< 0; and a logarithm or arctangent otherwise.

3) R,, (n + 1/2, r + 1/2, s; x, y, z), where n + r + s -> 0, is a polynomial in x, y, z if m _-> 0;
a logarithm or arctangent if m <0, m +n +r+s >-_0, and s >0; and an algebraic
function otherwise.

4) R,,,--1/2(n, r; x, y), where n + r > 0, is an algebraic function of x and y.
5) Rm-1/2(n + 1/2, r, s; x, y, z) is an algebraic function of x, y, z if m + n + r + s <- 0 or

if r-< 0 and s <-0. Otherwise it is a logarithm or arctangent.
6) R,-l/2(n +1/2, r +1/2, s; x, y, z), where n + r + s _->0, is a complete elliptic integral

of the first kind if m n r =s 0; the third kind if s >0; and the second kind
otherwise.

Suppose for example that A, /x, u are integers (/z and u being nonnegative). If
h -> Itx u[, (2.12) and the last rule show that I(tx, u; h is a complete elliptic integral of
the first or second kind. The conjecture that it is a complete elliptic integral of the third
kind if h < [/x ,[ is supported by (2.3), (2.4), and the recurrence relations in [10].

For another example suppose that one of h, Ix, u is an integer and the other two are
half-odd integers. Then h +-, and h + u- are integers, and (2.12) shows that
I(/z, u; h) is an elementary function if h _-> Itz ul.

Near the end of 3 it is shown that

(2.13)

(2.14)

We note also some special cases of (2.4):

/( 1 ) (__)
1/2 2 2)1/2

(2.15) t,/x +; a,b,+l/2 (A a
G2A2,+a

I e-PtJo(at) cos (bt) dt
(A2_b2)1/2

62(2.16)

e-PtJo(at) sin (bt) dt
(A2-a2_p2)a/2

62(2.17)

Equation (2.17) is given by Benton [3] in a different form.

Re( + v)>-l.

Re x >-1;
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3. Proofs by reduction of F4. From [1, p. 102] and [8, Ex. 6.3-5] (alternatively see
[6, (4.2)] and [7, (1.8)]), we find

(3.1)

Define

(3.2)

Fa[a,/3; y, fl;X(1 Y), Y(1 -X)]

=R_[fl +y-a-l, l+a-y, y-fl; (l-X)(1- Y), l-X- Y, 1- Y].

x X(1 Y), y Y(1 -X),
2 q..y -’1/2(Z+-bZ-), 1" --Z+Z-.z 1 (x /2 1/2)2, 2

If 1 +/- x 1/2 +/- yl/2 is in the open right half-plane for all four choices of signs, we can choose
z+, z_, r/in the open right half-plane. The first two equations of (3.2) can be solved for

(3.3)
X x+2 2

-r/ 1 Y _.2, y Y + 72 2
--r/ =l--x--f2,

(1 X)(1 Y) 2 1 X Y 71
2 XY 2 2

Substitution in (3.1) yields

2, :2(3.4) F4(a,; y,;x,y)=R_(fl+y-a-l,l+a-y, y-fl;,2, rl +x).

Equations (1.2) and (3.4), together with the symmetry of F4 in its first two parameters,
imply (2..3) and (2.4). The case/x v of (2.3) can be transformed by [8, (6.10-1)] into
the case n 0 of (2.5). The general case of (2.5) is then obtained by n differentiations
with respect to p using [8, Ex. 5.9-18].

From [6, (2.5)] and [8, Ex. 6.3-5] we find

(3.5) F4(a, 23, 1", % 3’; x, y)= R_(y-1/2, y-1/2, 1 y; z 2+, z_,1).2

Equations (1.2) and (3.5) imply the case n 0 of (2.6), and the general case is then
obtained by n differentiations with respect to p using [8, Ex. 5.9-18].

From [1, p. 81] and [8, (5.9-12)] (alternatively from [6, (4.1)]), we find

(3.6) Fa(a,; %1+a+fl-y;x, y)

=R_, (, "v ; 2+ y, 1)R_(fl, l +a_,g ;:2 + x, 1).

Equations (1.2) and (3.6) lead to (2.7) and the first form of g given in (2.9). The second
form of g is deduced from the first by [8, (6.9-7)], and the third form from the second by
[8, (6.10-1)]. The expressions for f in (2.8) follow from those for g by (2.2) and the
homogeneity of R.

From [1, p. 102], or from [6, (4.3)] and [5, (3.1)], we find

(3.7) F4(y+a-l, fl; %8;x, y)=F2(,/+8-1, fl, fl; %8; 1-y-:2, 1-x-:2).

Equations (1.2) and (3.7), together with the symmetry of F4 in its first two parameters,
imply (2.13) and (2.14).

The six rules about the nature of the R-function are deduced from the results and
methods of [8, 8.4, 8.5, 9.3]. Equation (2.15) follows from (2.4) and [8, (6.8-15)],

-1/2and (2.16) and (2.17) are the cases/x and tz 0, respectively.
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4. Proof by reduction of F2. By [5, (3.1), (2.9)] we can rewrite (1.4) in the form

(4.1)
I(/x, u; A)= C(tx, ,)F(A +/x + u+ 1)-x-,--x (/x +1/2,/x +1/2; Z; u+1/2, u+1/2),

z w p-ia+ib p-ia-ib

To prove (2.12) we now assume that A + , -/z m and A +/x , n, where m and n
are nonnegative integers. Then the sum of the homogeneity parameter (-A -/x , 1)
and the row parameters (/x + 1/2,/x / 1/2) is -m. We aim to increase by m the sum of the row
parameters by using a relation between associated -functions, and similarly for the
column parameters. In the notation of [5],

Jo )’ (u) du ,) (v)(4.2) Y,(a, a’; Z;/3,/3’) (u. Z. v d/x(, ,) (,

Inserting unity in the integrand in the form

m
)m--r1 (U +l--u)" Y ur(1--U

r=O r

and using [8, (5.6-7)], we find

(4.3)
,(c, a’; Z;/3,/’)

m
(Og)r(Ogt)m_

(O / Ot)m r=O r

,(ce+r, ce’+m-r;Z;fl,’).

From (4.3) and a corresponding relation that raises the column parameters, we get

(4.4)

I(x, v; A) COx, ,)
(2x + 1),,(2v + 1). rO s=O r s

( @ )r( + )m--r( @ )s( + )n--s
(++r, ++m-r;Z; v++s, v++n-s).

The last function is a bare -function [5, (4.5)], in which the sum of the row parameters,
the sum of the column parameters, and the negative of the degree of homogeneity are
all equa! From [5, (5.3)] and [8, (5.9-11)] we find

(4.5) (a, c’; Z;/3,/3’) z-w-"R_,,(3, ’; xw, yz), Z Ix y ].Z W

The double sum in (4.4) will now be rearranged so that it is plainly real when , u,
p, a, b are real. We denote the summand by Ur.,(Z) and write the double sum in the form

(4.6)
2 Ur,s(Z

1
2 Vr,

r=O s=O r=O s=O

1.)r,s Ur,s(Z / Urn-r,rt-s(Z).

The row and column symmetries of Y imply

(4.7) Vr, U,s(Z) + u,(Z,), z [ x y] Z, [ w z]z w y x
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If/x, u, p, a, b are real, Z and Z’ are conjugate complex and vr.s is real. From (4.4) and
(4.5) we find

Ur, Z I.lb --1-- 1/2 I.l, -]" 1/2)m-r(12 -4;- 1/2 ll +
r s

(4.8)
R-,-a/z)-r(u + 1/2 + s, u + 1/2 + n s xw, yz).

Adding u.s(Z’) to get v,, we obtain (2.12). Since v, v.,_,.._ by (4.6), we can write
(with Kronecker deltas), [n/2] fro/2]

(4.9) E vr, E Y’. (2- n,2s)l)r,s 2 2 (2-- 8m,2r)l.)r,
r=0 s=0 r=0 s=0 r=0 s=0

to reduce the number of terms for purposes of computation.
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DEGREE OF L, APPROXIMATION BY MONOTONE SPLINES*

C. K. CHUI, P. W. SMITH? AND J. D. WARD

Abstract. Using elementary techniques, we obtain Jackson type estimates for the approximation of
monotone nondecreasing functions by monotone nondecreasing splines with equally spaced knots in Lp[0, ],

-< p oo. Our method, which works for all p, is different from that of De Vore.

1. Introduction. In [4], De Vore proved that the Jackson type estimates for
approximating monotone nondecreasing functions by monotone nondecreasing splines
with equally spaced knots in L[0, 1] are of the same order as the Jackson type
estimates in unconstrained approximation. The proofs in [4] are very clever but at the
same time are quite complicated, and it is not clear to these authors whether the
techniques employed there can be extended to settle the L,[0, 1 problem for 1
The object of this paper is to introduce different and perhaps more transparent methods
to give the Lp[0, 1] results for 1 _<-p _-< c.

Let k and N be positive integers and let (k, N) denote the space of all splines of
order k with knots {i/N}=o. If A is a collection of functions defined on [0, 1], then A*
will denote the subcollection of functions in A which are nondecreasing on [0, 1].
Hence, *(k, N) is the set of those splines s in (k, N) with s’. For any nonnegative
integer j and 1 _-< p < o, let L[0, 1] be the space of functions which are j-fold integrals of
Lp[O, 1] functions. For convenience, we also let L[0, 1] C’[0, 1] denote the space
of all/" times continuously differentiable functions on [0, 1]. If f is a nondecreasing
function on [0, 1], we will study the Lp[O, 1] distance, 1 <- p _-< oo, of f from 5*(k, N),
denoted by E*N,p(f, k)= inf {llf-sll.’s 6e*(k, N)}, where II" II.-II" IlL.tO,13 is the usual
Lp[0, 1] norm on [0, 1]. We also let to(C, h)p =-to(]’, h; [0, 1])p denote the Lp[0, 1]
modulus of continuity of f on [0, 1]. That is,

1--t lip

to(f, h)p =-to(]’, h; [0, 1])p oS_<_U,_<_ph [f(x + t)--f(X)l dx

if l_-<p <m, and

to(f,h)oo=-to(f,h;[O, 1])= sup If(x/h)-f(x)l.
O<=x<=l-h

We will establish the following result.
THEOREM 1.1. Let 1 <-- p <- o and k be a positive integer. There is a constant C > O,

depending only on k and p, such that i/re L*[0, 1] where O<-]<-k 1, then

(1 1) (f(i), 1)E,.(L k) <-_ CN-o -.,
where N 1, 2,....

As mentioned above, the case where p oc is a result due to De Vore 4]. Our
proof for p- oc is different from that of De Vore’s and employs "local techniques"
which work for all p, 1-< p <_-oc. If k equals 1 or 2, Theorem 1 follows easily. So we
always assume k ->_ 3. In the next section, we will first study unconstrained piecewise
polynomial approximation, proving the classical Jackson type estimates as stated in
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Proposition 2.1. In Section 3, the analogous estimates for monotone approximation by
piecewise polynomials are obtained. All these are preliminary results needed for our
proof of Theorem 1.1, which is given in 4. We remark again that the techniques
employed in this paper are elementary and self-contained.

2. Unconstrained approximation by piecewise polynomials. In this section we will
study best approximation in Lp[0, 1 ], 1 -< p 00, by (continuous) piecewise polynomials
with equally spaced knots. For f Lp[0, 1], let

III]’lll, inf {Ill- cll:c a real constant}

denote the distance in L,[0, 1 of f from the one-dimensional space of all real constants.
We will first prove that II1" II1 and to(., 1), are equivalent. A proof of this result is also
given in [3, Thm. 3.1] by using the K-functional. Our proof is very elementary.

LEMMA 2.1. Let 1 <--p <=00. There exist positive constants ca and c2 such that
clllJqll --<,o(f, 1) =< c)lllflll for all f Lp[0, 1].

Proof. The second inequality is trivial with c2 2 for all p, 1 <= p -<_ 0o. We proceed
with the proof of the existence of c > 0 by contradiction. Suppose c does not exist.
Then there exists a sequence of functions f e L[0, 1], satisfying IIIflll- 1, f- 0,
and w(f, 1)p 0 as n - c If Of j f denotes the projection from Le[0, 1] to N, then
IILII -IlL -Io LII II(I-’O1)f2llp II(z- O)(L -c)ll --<11I-o11 IlL -cll for all real
constants c, so that IILII <--17 Oall" IIILII[ -III O11, Thus, {LI is a bounded sequence
in Lo[0, 1]. Also, since co(f,, 1)p --> 0, we have

(2.1)

for every [0, 1]. Let

/2

g. (x) 2 L (x + t) dt.

Then {g.,} is a bounded sequence in Lp[0, 1], and because of (2.1), is also equicontinuous
on [0, 1/2]. By the Ascoli theorem, it has a subsequence, which we will also denote by {gn },
that converges uniformly on [0,1/2] to some function g. But from (2.1), using the
generalized Minkowski inequality, we also have ]lg.-fnllLoCO,1/2-.O, so that
gll,0. /- 0. By (2.1) again, g(x + t)-g(x)=O a.e. for almost all [0, 1/2], and this
means that g is a constant a.e. This constant is in fact equal to zero, since fn 0 for all
n. Hence, g,0 uniformly on [0, 1/2], so that I111,o.-, 0. By the change of variable
x l-x, we also have IILII,c.a3-0. Therefore, we conclude that I111-,0. This
contradicts the fact that IILIIo ->-IIILIII 1 for all n, completing the proof of the lemma.

If f is a function defined on [0, 1], Pkf will denote the polynomial of degree k that
interpolates f at the points 0, 1 !k, 2/k, , 1. We will establish the following inequal-
ity, which also follows from [3, Thm. 3.1]. Again, since our proof here is very
elementary and it does not depend on the K-functional as in [3], we include it here for
completeness.

LEMMA 2.2. Let j be a nonnegative integer and 1 <-p <-00. There is a positive
constant c3 such that

(2.2) II(f- P;f)(*)llo c3w(f(i), 1),

for all f L/[0, 1] and 0,..., j.
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Proof. Fix -< j and consider (f- Pff)(g). If j, then (f- e/f)(i) has at least j + 1
zeros, so that

(f -P/f)(g)(x) (f -P/f)(i+l)(’rl) d7"1

(f -P/f)(/)(r/-i) dr1"" dr/-i

for some appropriate xa,..., x/_g 6 [0, 1]. Hence, we have

for all 0, ,/’, and it is therefore sufficient to obtain (2.2) for j. To do this, recall
that by the Peano kernel theorem,

where M/is a nonnegative B-spline of order/" with knots at {i/j}, i- 0,..., ], which
integrates to 1. Hence, the mapping Qzg m/g is a linear projection from Lp[0, 1] to
the space of constants. It follows that

II(f- P/.f)(/)lip --I1(I

for any constant c, so that

hl(f-P/f)<;>ll, -< llI- oII lllf<;)III,

by applying the first inequality in Lemma 2.1. This completes the proof of Lemma 2.2
with c,- c1111- OII.

Before we can change the interval [0, 1] to an arbitrary subinterval so that we can
study piecewise polynomial approximation in Lp[0, I], we need the following lemma to
estimate the sum of the errors. Again, we need some notation which will be used
throughout the rest of the paper"

b-t

oo(, h [a, b])p oUh If(x + t) f(x)l p dx

if l_--<p <oe, and

w(f, h; [a, b])= sup If(x+h)-f(x)l.
a<_x<=b-h

Here, 0 < h <- b a. Let 0 Xo < Xl <" < XN 1 be a partition of [0, 1] and let

6i Xi Xi-1 and 6 max
l<=i<:N

We have the following
LEMMA 2.3. Let 1 <= p <, and 0 Xo <" < XN 1, 3 > 0 be as above. There

exists a positive constant c4, depending only on p, such that

N

(2.3) Y, w(f, (i; [Xi--1, Xi]) =C400(f,
i=1
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(2.4)

Proof. Let g 6 Lap[0, 1] and 0 < _-< 6i. Then we have

fx,_, ix +,Ig(x + t)-g(x)l dx g’ dx
"xj-1 j-1

<- "/" Ig’l dx
"Xi_

By Jensen’s inequality, it follows that

ix,-, If(x + t)-f(x)[ dx
j--1

Ixxi-t I xi--t
<----3 p-I If(x + t)-g(x + t)lp dx + Ig(x + t)-g(x)[ dx

j--1 "xj--1

+ If(x)- g(x)l dx
"Xj_

<-_ 2.3’- If- gl + Ig(x + t)- g(x)[ dx
i-1

Hence, by using (2.4), we have

[x,-, If(x + t) f(x)l dx < 2.3o-l(llf gll 8Lp[Xi_l,Xi]-- ][g llLo[xi-x,Xi]),
"Xj--1

and this gives

N

E o)(f, i" [Xi-1, Xi])p <2.3O(llf- gll + llg’llg)p--"
i=1

<_- 2.3 (Ill- ell,, +

The above inequality holds for all g L[0, 1]. Thus, we have

N

(2.5) E co(f, ’ [Xi--1, Xi]) <-_2.3P(KI,p(6)f)
i=1

where

gl,p()f inf (llW-gllo + llg’ll)
gL[0, 13

is a K-functional of Peetre. It is well known (cf. [4], [8]) that Kl,p(8)f is equivalent to
w(f, 6),. Hence, (2.5) implies (2.3) for some postive constant Ca, depending only on p.
This completes the proof of the lemma.

We are now ready to derive the Jackson type estimates for (unconstrained)
approximation by (continuous) piecewise polynomials. Let r(k, N) be the space of all
continuous functions f on [0, 1] such that the restriction f[[(i-1)/N,i/N] of f on [(i-
1)IN, i/N] is a polynomial of degree <_-k, 1, , N; and for f
let

DN.o(f, k)= inf {Ill-gll "g rr(k, N)}.
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The following well known result is now easily proved. We will give a proof of this result
in order to facilitate the proof of Proposition 3.1 in the next section.

PROPOSITION 2.1. Let 1 <--p <--_. There exists a positive constant c5, depending
only on k and p, such that

(2.6) DN.p(f, k) <-_ c5N-io)(f(), 1/N),
for all f e L[O, 1], O <= ] <-_ k.

Proof. Let feL[O, 1], O<=]<=k, and set fi(t)=f((t+i-1)/N). Also, let g=Pf
be the polynomial of degree =<], interpolating f at the points 0, 1/], 2/],..., 1. By
Lemma 2.2, we have

(2.7) ,() 1).Ilfi gillp c3o.)(.i

Let h 6 r(j, N) be such that gi(t) h((t + 1)/N), 1, , N. That h is continuous
follows since gi-l(1) gi(0) =f((i- 1)/N), 1,. , N. For p , (2.7) immediately
gives

DN,(f, k)<=DN,(f, ]) <-[If -h[[<-c3N-iw(f(i), 1/N)oo

which is (2.6) with c5 c3. For 1 =< p <, we can apply Lemma 2.3 with xi i/N and
6 1/N to obtain

1
Ilf- h ll

i=1

N

i=1

N cN-1N-ip+l w (i)

i=1 N

cc4N-iP(f(i), 1/N).
Hence, we have

Du.o(L k)Ou,,(L )[If hll csN-%(f), 1/N)o,

with c5 c3c/, completing the proof of the proposition.

3. Monotone approximation by piecewise polynomials. As in the above section,
(k, N) will denote the collection of all continuous functions on [0, 1] whose restric-
tions on each subinterval [(i-1)IN, i/N], i= 1,... ,N, are polynomials of degree
k. Hence, *(k,N) is the subcollection of functions in (k,N) which are non-
decreasing on [0, 1]. Let

Ou.(L k) inf {11-g[[ "g *(k,N).

In this section, we will establish the following result.
PooswIOy 3.1. Let 1 p and k be a positive integer. There exists a positive

constant c6, depending only on p and k, such that

(3.1) D.(L k) c6N-%([, 1/N)o

[orall[L*[O, 1], Ofk.
We remind the reader that L*[0, 1] denotes the subcollection of functions in

i,L[0, 1 which are nondecreasing on [0, 1 ]. If Lp [0, 1 ], we wish to modify PiL the flh
degree polynomial interpolating f at 0, 1/j, , 1, to give a nondecreasing polynomial
approximant of [. To do this, we need the following two lemmas.
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LEMMA 3.1. Let 1 -< p <- and j >= 1. There exists a positive constant C7 such that

(3.2) -min min (Pff)’(x), O) <- c7w(f(i), 1),
x[0,1]

for all f L* [0, 1].
Proof. Since f’_-> 0 a.e., we have

-min ((Pif)’(x ), O) <= I(f Pif)’(x )l

for almost all x [0, 1]. Hence, (3.2) follows from the proof of Lemma 2.1 with 1 and
C7 C3.

LEMMA 3.2. Let 1 <-p <--_ oo and f >= 1. There exists a positive constant c8, with the
property that for every f L,* [0, 1], there is a non-decreasing polynomial g with degree <-

j, such that g(O)= f(0), g(1) =f(1) and

(3.3) II(f- g)(i)[Ip C80) (f(j), 1),

fori=O,. ,j.
Proof. Let h Pjf be the polynomial with degree -< j which interpolates f at l/j,

0,. , j, and set

g(x) =f(0) + h’(t) dt + dhx f(1)-f(0) + dh

where dh "--min (minxtO.ll h’(x), 0). Since h interpolates f at 0 and 1, it is clear that
g(0) f(0) and g(1) f(1). Is is also clear that g’=> 0, so that g is nondecreasing on [0, 1].
Without loss of generality, we assume that f(0)= 0. By using Lemmas 2.2 and 3.1, we
have

II(f- g)(’)ll II(f-h)(i)llp /llh(’)llo(dh/(f(1)/ dh))-- dh(f(1))/(f(1) + dh).

dh---(c3 -1 c7)(.o (f(j), 1)p / IIh(i)llp h(1)+ dh
Consider

dhB(f)=-IIh"’ll h(1)+&’

where h =Pf. Since B(cf)=B(f) and o)((cf) (), 1)p co)(f(), 1) for any positive
constant c, it is sufficient to prove that {B(f)" feL[O, 1], o)(f(), 1)-< 1} is bounded.
Also, since all L norms are equivalent on the space of all polynomials with degree -< k,
we conclude, using the Markov’s inequality, that it is sufficient to prove that

dhsup IIh Ioo h(1) + dh f L[0 1], o)(f(J) 1)p

Let Xo [0, 1] be chosen such that Ih (Xo)I--Ilhll. If h(xo)= Ilhll, then we have, for some
a (Xo, 1),

h(1)-h(xo)= h’(a)(1-Xo)>--dh(1-Xo)
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so that

Ilhlloo h (Xo)

<_- h(1) + dh(1 Xo) <- h(1) + dh,

and

dh[Ih }G
h (1) + dh

<- dh

<= CTW ([), 1), <= c7

by Lemma 3.1. If, on the other hand, h (Xo)= -IIh 11oo, then we have, for some b e (0, Xo),

h(xo) h’(b)xo >--dhXo,

so that

dh -(h(xo))dh
h(1)+dh h(1)+dh

dhX<-- <-- dh -< C7(.O 1)p < C7,
-h(1)+dn-

again by Lemma 3.1. This completes the proof of the lemma.
By using Lemmas 2.3 and 3.2, and following the proof of Proposition 2.1, we have

Proposition 3.1.

4. Monotone approximation by splines. In this section we will study monotone
approximation by splines and prove Theorem 1.1. Let t= {ti}-2_00 where ti i, and
s {si}i--o where So sk-1 0 and sj j- k + 1 for j => k, be two knot sequences.
For -oe< i-<-1, let Ni Ni, k,t, and for 0-<i< oo, let Ni Ni.,s be the normalized
B-splines of order k and with knots at and s as indicated by the third subscripts (cf. 1 ]).
Also, let X be the spline space spanned by these normalized B-splines Ni, -oe < < o,
and Y the subspace spanned by Ni where -oo < =< -1 and k 1 -< i. < oo. Denote by T a
"smoothing operator" mapping X to Y, defined by

gi)
-1

T E ai E aigi+ ., aigi,
i=-00 i=-00 k-1

and set E I- T, where I is the identity map. Note that for any s X, Es has finite
support and is an element of L-I[(-, 0) LI (0, oo)], 1 =< p =< o0. In addition, we have the
following estimate.

LEMMA 4.1. There is a positive c,.onstant c9, depending only on k, such that for any
seX,

k-2

(4.1) II(Es)()II,.(R):c9 2 Is(i)(o+)-s(i)(o-)l
i=O

for O<=jk-1 and l<-p<-o.
Proof. By (Es)(i) we mean the function defined pointwise by taking/" derivatives.

Since Y is the kernel of the linear operator E, we may assume that s(i)(0-)=0,
0 =< i-< k- 1, by simply adding a suitable polynomial of degree <-k- 1 to s. Thus, if
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s aiNi, then

=0 Lo(R

k-2

i=0

lai max
=0 o<=i<=k-2

k-2

i=0

for all/, 0 N ] N k 1, and some constant c9 depending only on k. The latter inequality
follows from considering the B-spline representation of derivatives of splines or from
the work of de Boor-Fix [2]. This completes the proof of the lemma.

We also have the following
LEMMA 4.2. Let k be a positive integer and 1 p . There existpositive numbers

and 8, depending only on k and p, such that ifq is a polynomial ofdegree k with q(O) 0
and [qllo 1, there is an interval I c [0, 1] of length e, such that

min {[q’(x)l x

This lemma follows easily from a compactness argument by using the fact that the
Lp[0, 1 norm is homogeneous and the collection of all polynomials q of degree N k with
q(0) 0 and Ilqll 1 is a compact set.

Let C (N) be the space of all continuous functions on the real line N. Hence, C*(N)
denotes the collection of all nondecreasing functions which are continuous on R, and
Y* the nondecreasing spline functions in Y. We have the following result on monotone
approximation of piecewise polynomials by monotone splines.

LEMMA 4.3. There is a positive constantclo, depending only on k, such thatforevery
f C*(N) whose restrictions to (-, O) and (0, ) are (k- 1)-stdegreepolynomials, there
is an s Y* such that s f on (-, -4k2) and (4k, ), and

k-2

(4.2) IIs --fllL.( C10 E If(’(0+)-f((0-)l.
i=1

Proof. Let d 4k 2 and F be the collection of functions f C*(N) whose restric-
tions to (-m, 0) and (0, ) are (k- 1)st degree polynomials such that f(0)= 0 and
-2E=I (0+) -f(i)(0-)[ N 1. It is sucient to prove that for every f e E there is an s Y*

such that s(x)=f(x) for all x[-d,d] and IIs--fllLoe-,aCo for some constant clo
depending only on k. We divide the proof into two cases" (i)IlfllL.r-a, and (ii)
IIllLor-,a > , where a > 0 is to be determined later. The referee has kindly informed us
that cases i) and ii) are somewhat analogous to the cases handled by type 1 and type 4
intervals respectively in [3].

(i) Suppose that f F and IlfllLot-. . Write f E- aN and g (Tf)’=
E- N,-I., where z {z i}. Note that f has at most a k-fold knot at 0. Since Tf f
except on [0, k- 1 ], we conclude (cf. [1 ]) that

k-Bi 0 for i [1 k, 0],

where Ak-1 denotes, as usual, the (k 1)st order forward difference operator. Hence, it
follows that there are two (k-2)nd degree polynomials q and q2 such that q(i) B for
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i>-0 and q2(i)=i for i<0. Since g(x)=f’(x)>-O for x[0, k-l], we have, in every
segment (/31+1, , flZ+k-1) of {/3i} with length k 1, where >= 0 or + k 1 < 0, there
must exist an index/’z, where + 1 <_-jl + k 1, so that/3h >- 0. Furthermore, since q
has at most k-3 sign changes, there must be a segment (fit*+1,’"" ,1"+2k-2) of
nonnegative coefficients with length 2(k 1) for some l*, 0 <- l* <= 4(k 1)(k 2) <
4k2- 2(k 1). Similarly, there is an l,, -4k2 <-- l, <_--2(k- 1), so that all coefficients of
the segment (fl,,..., fl/*+2k-3) are nonnegative. Let

l*+k-1

h Y’. iNi.g.z.
i=l,+k-1

Then 0-<_h<-g on (-oo, l,+2k-2) LJ(l*+k, oo) and h=g=(Tf)’ on (I,+2k-2,
l* + k- 1). Since f is nondecreasing and Tf f except on [0, k- 1], we have

/*+k-1

"/.+2(k-1)

Since the integral of No,k-l,. on N is k- 1, we let

and set

h3’ k-1

s(x) f(- d) + (g h + 7No,k-,, ).
d

Clearly, s 6 Y* and s =f on (-oe,-d)U(d, oo), and by applying Lemma 4.1, we
conclude that lib-TNo,g_x,zllL,[-a,a] and IIs--fllL,E-d,a3, are bounded by some constant
which depends only on k and a.

(ii) Suppose now [ F and [[fllLoE-d,aa> a. Since f(0) 0, it is intuitively clear that f’
is large on quite substantial sets if a is very large. This allows us to modify Tf in order to
guarantee that it is nondecreasing and satisfies (4.2). Indeed, by using Lemma 4.2, we
can choose a so large that if [[f[lL, f_d,a]_-->a, then there is an integer such that
[/, + k- 1]c [-d, d] and f’(x)>-(k 1) on [l, + k- 1] where

B =c9
i=-k+2

Here, C9 is the positive constant introduced in the estimate (4.1). Note that a can be
chosen independent of f in F. Now, set

S(X)-- (Tf)(X)’-[- C9 E
-k+2

Ni,g-l,,. fl (2k 4)N,g_l,..]
=- T.f)(x +M(x

whereM(x) is the function defined by the indefinite integral. From Lemma 4.1, we have

k-2

II(Es) (;11,.( 69 Y [s(’(0+)- s(’(0-)[, o <_- ] <_- k 1,
i=0

k-2
and 1 _-< p -<_ oo. If / Y-o aiNi.k,,, then T[-f i=o aiNi.k,, and (Tf-f)’ =- 0 except
possibly on [0, k- 1]. By assumption, f is continuous at zero and everywhere increas-

g-- If(i)ing; thus, i= (O+)-f(i)(o-)[ -< 1 so that Lemma 4.1 (with ] 1 and p o) assures
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that

(Tf)’>-O on (-00, 0)U(k-1, 00)

(Tf)’>=-c9 on [0, k 1].
k-2

Ni k 1 on [0, k 1] and the construction of s thus guaran-In particular, C9i=_k+2 -x.z
tees s’(x)>--O on (-00, 00) and s(x)=f except on [0, 4k]. Since

and both terms on the right are uniformly bounded for all f F with IlfllL.[-d, da----> , we
have completed the proof of the lemma.

We need another lemma to relate the error estimates in (4.2) to the Lp moduli of
continuity. As an application of Lemma 3.2, we note that for every f L*[-1, 1], there
is a nondecreasing continuous function g on [- 1, 1 such that g interpolates f at 1 and
1, the restrictions of g on [-1, 0] and [0, 1] are polynomials of degree <-/’, and such
that

(4.3) [[(f- g)i)l[Lpt-1, o -< csoa(f(i), 1; [-1, 0])p

and

(4.4) (i)11 (f(J),II(.f- g) liLts[o,1] (780) 1; [0, 1]),

for i= 0,..., j. Let 8 be the continuous linear functional defined on L[-1, 0] and
L[O, 1] by 8i=f(i)(O), O<-i<-]-l. Here we are using the well known fact that
II/(’ll=tO,l--< cllfll;tO.l for i< j, and the norms

j-1

IIfllGr-l,< E
i=0

and

j--1

IlfllGtO,l E IIfi)llot0,x
i=0

on L[-1, 0] and L[0, 1] respectively. Hence,
i-1 i-1

[g(i)(o+)--g(i)(o-)l <= ., {Ig(i)(o+)-f(i)(o)l + Ig(i)(o-)-f(i)(o)l}
i=1 i=l

j--1

<- E (llsilllllf gll;t-l,<+llSillllf
i=l

j--1

E E (ll,5illll(f-g)(’ll,,r-l,o+ll,.Sill211(f-g)n"iiLr,[O,1]
i=1 /=0

<_-(j+ 1)c I1111+1111 (o(f(n, 1;[-1,

+to(f(i), 1"[0,,1])),
where 118il11 and Ilaill: are the norms of the linear functionals (i on L[- 1, 0] and L[0, 1
respectively. Hence, by using the Jensen’s inequality

(lal + Ib[) --< 2o-1(la p + Ibl ")
for all p, 1 _-< p <, and applying Lemma 2.3, we have the following result.
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LEMMA 4.4. Let 1 <--p <--oo and k >= 2. There is a positive constant C l, depending
only on p and k, such that for every f LSp*[- 1, 1] and for every g C*[- 1, 1] whose
restrictions on [-1, 0] and [0, 1 are polynomials of degree <= f and which satisfies (4.3)
and (4.4), the inequality

i-1

E ]g(i)(0+) (i) (f(i),-g (O-){-<cxxw 1; [-1, 1]).,
i=1

is satisfied for all 1 <- ] <= k 1 and 1 <- p <- oo.
We are now ready to prove the main result of this paper.
Proof of Theorem 1.1. Let f L* [0, 1 and 0 <-/" <_- k 1. It is sufficient to consider

j>- 1 and N > 3d, where d =4k2 as defined in proof of Lemma 4.3, since (1.1) holds for
all N 1, 2,..., if it holds for all sufficiently large N by a standard compactness
argumenl. Set f(t)=f(t/N) and let M be the integer part of N/(3d), so that N-3d <
3Md<-N. By applying Lemma 3.2 to each of the intervals I1=[0,3d], I2
[3d, 6d],... ,It_l=[3d(M-2),3d(M-1)], and IM=[3d(M-1),N], we can find a
nondecreasing continuous function such that the restriction of ff to each of the
intervals I1," , IM is a polynomial of degree <-k- 1 and such that

(4.5)

for all 1= 1,... ,M, l<-]<-k-1 and 1-<p-<oo, where c12 is a positive constant
depending only on k. Note that c12 depends only on c8 and the lengths of intervals
I1,’’’, IM. Hence, by applying Lemma 4.4, there exists a positive constant c13,

depending only on k, d, and p, such that

i-1
(4.6) E I,(i)(3ld +) ff(’)(3/d-)l-<_ c13o) (jj), 1; X J II+l)p

i=1

for all 1, , M 1, and 1 =< ] =< k 1. Also, by applying Lemma 4.3 to each of the
intervals Il U D+I, 1, , M- 1, there are nondecreasing splines g e Y* such that
g(x) if(x) for all x [(3/-1)d, (3/+ 1)d] and that

i-1
(4.7) lid

i=1

Let e Y* such that =gl on /tLJIt+x for all 1,... ,M-l, and s(t)=g(tN),
0 _-< =< 1. Then s e oW*(k, N) (el. 1). For p m, we have, using (4.6),

<= Cl3N-koo(f(i), 1/N)oo.
This, combined with (4.5) gives

(4.8) IIs flloo <- cN-iw(f, 1/N)oo,

with c c12 "- C13. Now let 1 <-- p < oo. We have

1 ilV-PlIL ,, IIs fliP, ’/=1

2p-1 M-1
E (ll.e-

N I=1
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by Jensen’s inequality. Hence, by using (4.5), (4.6) and (4.7), we have

M-1

Ils-fl]Pp<=c14N-1 , to(fl ), 1; Il l,.J ll+l)Pp
/=1

where c14 depends only on k and p. By Lemma 2.3, with partition
{0, 3d/N, 6d/N,..., 3d(M-1)IN, 1}, we have proved that

(4.9) IIs-fllo --< CN-koa(f(), 1/N),
for some constant C depending only on k and p. With (4.8) and (4.9), we have
completed the proof of the theorem.

$. Remarks. We feel that the techniques introduced in this paper are more
important than the results. In particular, by judiciously using these techniques, it may be
possible to successfully attack more complicated constrained approximation problems
(such as approximation of convex functions by convex splines, etc.). One problem which
we are investigating and, we feel, may fall to these techniques, is the problem mentioned
by De Vore [4], namely show that

EN,p(f, k)<=CO)k(f, 1IN)p,

where tOk is the kth order Lo modulus of smoothness. This inequality would yield
inverse theorems, for instance, of the type considered by K. Scherer [11].

The analogous problem in monotone approximation by polynomials in Lo is also of
interest. In the case p , Lorentz [7] and Lorentz and Zeller [8, 9] have studied this
problem for j 0, 1 and De Vore [5] has obtained the most complete results to date.
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A SEMIGROUP ON THE
SPACE OF COMPACT CONVEX BODIES*

STEPHEN J. WILLSON

Abstract. Let Co denote the space of all compact convex subsets of R" with nonempty interior. Give Co
its natural topology. It is proved that any continuous nonnegative function g on the unit sphere may be used to

define a continuous semigroup on Co; i.e., a continuous map F: Co [0, co) Co so F(F(X, s), t) F(X, s + t)
and F(X, O) X. If g is strictly positive, it is proved that there is a W in Co depending only on g so for each X
and for large it follows F(X, t) is approximately tW. Indications are given for applications to crystal growth.

1. Introduction. Let Co denote the set of compact convex subsets of R with
nonempty interior. Give Co its natural metric, that of the Blaschke selection theorem. If
g is any continuous nonnegative function on the unit sphere S-1, we define a map
F" Co [0, oo) --> Co, denoted (X, t) -> FtX, by the formula

F,X= 0 H(v, hx(v)+ tg(v)).
UES

Here hx(v) is the support function of X; H(v, a(v)) denotes the closed half space

H(v, a(v)) {w Rn: (V, W) a(v)}.

Thus FtX is obtained by moving each supporting hyperplane ofX an amount tg(v) away
from X. (More precise definitions are given later.)

Our major results are as follows"
THEOREM 5.7. Fis a semigroupon Co. More precisely, Fis continuous, and ifs, >= 0

and X Co, then FFtX F+tX.
THEOREM 6.1. (Rough statement). Suppose g(v) is always positive. There exists

W 6 Co, depending only on g, so that if X Co, then FtX approximately equals tWfor
large t.

The difficulty in proving Theorem 5.7 is that the support function hF,x(V) of FtX
need not equal hx(v) + tg(v); it is quite possible that other hyperplanes intervene to cut
off FtX well before it reaches the hyperplane bounding H(v, hx(v)+tg(v)). The
definitions of FFX and F+,X then become quite different.

These results trivialize in the special case where there exists W Co such that
g(v) hw(v). We then obtain FtX X + tW, using vector addition, and Theorems 5.7
and 6.1 become immediate. The interest in the above results thus lies in the case where g
is not a support function.

The methods of the paper actually prove more than is indicated above. If g is
merely assumed continuous but possibly negative, then for fixed X Co, FtX will still be
defined for positive sufficiently near 0. In fact, we still obtain the formula of Theorem
5.7 for sufficiently small positive s and t; this result is Theorem 5.6.

This research was motivated by analogy with the growth of physical crystals.
Suppose that for a certain kind of crystal in a certain medium any facet with outward
unit normal vector v has growth rate g(v). If X is an arbitrary "seed crystal", one would
guess that after time the crystal has shape FtX. Theorems 5.6 and 5.7 say that this
mathematical model is plausible, even if g(v)< 0 and the crystal is dissolving.

* Received by the editors April 12, 1978, and in revised form July 10, 1979.

" Department of Mathematics, Iowa State University, Ames, Iowa 50011.
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In 1901 G. Wulff [9] described for physical crystals a characteristic "equilibrium
shape" W: for certain crystals W is a rectangular parallelepiped, for others an
octahedron, etc. The shape W is defined in terms of the surface free energy function,
which is assumed to be proportional to g(v). The physics literature has focused on
whether W minimizes the total surface free energy among all convex bodies of the same
volume. Assuming this result, physicists have inferred convergence to W by means of
"surface tension." This paper gives an alternate, more direct proof of the convergence
in Theorem 6.1. For a discussion, the reader may refer to Burton et al. [2], von Laue [5],
and Herring [4].

It is well-known that the characteristic equilibrium shape W for real crystals tends
to be polyhedral. In Proposition 6.6 we give conditions on g sufficient to ensure that W
be a convex polytope.

In [8] the author has obtained a discrete analogue of Theorem 6.1 using cellular
automata. The discrete model has the advantage of applying to nonconvex sets but the
disadvantage that one must treat bothersome "edge effects." The assumptions in the
current paper imply that we are ignoring those edge effects.

In 2 we fix notations. In 3 we study convex sets given in the form f3H(v, a(v)).
In 4 we study the continuity of F and in 5 the semigroup property. The last section
treats convergence to W.

2. Notations. Let R denote n-dimensional Euclidean space, equipped with the
standard inner product denoted (x, y) for x, y 6 R n. For x R , let Ix l- 4<x, x>. Let

I l- l} denote the unit sphere. If e >0, let B(e)={vR n" Ivl < If
v R and a R, set H(v, a) {x R" (x, v) <= a}; if v 0 then H(v, a) is a closed half
space bounded by 7r(v, a) {x R "" (x, v)= a}.

If X is a nonempty compact convex subset of R", let hx be the support function of
X" hx(v) SUpxx(X, v). It is well-known that hx is a convex function, continuous and
positively homogeneous. It is also known that X vs"-’ H(v, hx(v)).

Let C denote the set of nonempty compact convex subsets of R and let Co denote
those members of C with nonempty interior.

If X and Y are nonempty convex sets and a,bR, let aX+bY=
{ax + by" x X, b Y}. Then aX + bY is a convex subset of R . Observe that we have
the following identities" (i) hax ahx if a >= 0, X C; (ii) hx+ Y hx + hy, if X, Y C.
If y R ", then H(v, a)+ y H(v, a +(v, y)).

If X C, then Bd X denotes its boundary, Int X denotes its interior, and Ext X its
extreme points. If X R ", then Y(X) denotes the convex hull of X, -X its comple-
ment, and cl X its closure. The polar of X is X* {y R" (x, y) -< 1 for all x X}. It is
known that X** (X*)* Yg(X LI {0}); hence if 0 X C, X** X.

A good general reference for the above concepts is Eggleston [3].

3. Dual descriptions. Let a(v) be a continuous function from Sn-1 to R. We are
concerned in this section with subsets of R of the form X fqvs.-1H(v, a(v)). The
function a(v) gives a "dual description" of X. Note that either X is empty or X is a
compact convex subset of R n.

If X is nonempty, clearly hx(v)<=a(v) for each v S-1. It is, however, quite
possible that hx(v)< a(v). Similarly there might exist a closed proper subset D of S-1

such that X OoH(v, a(v)), in which case any v S-I-D "does not really affect
X." We are thus led to the problem of computing the support function hx and of
distinguishing in some sense the minimal possible D. The first problem is solved in
Proposition 3.1 and the second in Proposition 3.2.

Given the continuous function a(v) on Sn-l, we may extend a(v) over R by
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requiring that the extension be positively homogeneous; i.e., we may define a(tv)=
ta(v) for [0, oo), v Sn-1. We shall usually assume that this extension has been made.
Note then that X=(-’)sn-,H(v,a(v))=f’-)vRnH(v,a(v)) and we shall usually
denote this set f’-)H(v, a(v)).

If y R n, then X + y [’-) H(v, a (v) + (v, y)). Hence ifX we shall often be free
to translate X, for example, so as to assume 0 X and a(v)>= O. If X has nonempty
interior, we may often translate X to assume 0 Int X and a(v)> O.

PROPOSITION 3.1. Assume a(v) is continuous and nonnegative on Sn- (and
extended to be positively homogeneous on Rn). Let X=(’H(v,a(v)), K=
{v R" a(v) <-_ 1}. Define c(v) R [._J{eo} by c(v) sup {t" tv Yg(K)}. Then

(i) Y(K) X* and X Yg(K)*.
(ii) If a(v)= hx(v) for all v, then K is convex.
(iii) c(v)>0 for all v and hx(v)= 1/c(v).

(Here 1/oo 0.)
(iv) If a (v) is a positively homogeneous convex function, then a (v) hx (v) for

all v.
Proof. (i) If v K and x X, then (v, x) <- hx(v) <- a(v) <= 1; hence K X*. Since

X* is convex, it follows Y(K) X*.
Conversely, if w K* and v R n, we show (w, v)<=a(v) if a(v)> 0, then (w, v)=

(w, v/a(v))a(v) <= a(v) since.v/a(v) K;if a(v) 0 then for all > 0, tv K, so (w, tv) <=
1, (w, v)<= l/t, and (w, v)=<0 by letting go to oo. Thus wX and K* c X. By duality
X* c K** Y((K). Hence X*= Y(K) and (i) is proved.

(ii) Since a(v)= hx(v), a(v) is a convex function, whence K is convex, for
example, by Rockafellar [6, p. 29].

(iii) Since K Y(K), c(v) > 0. Observe that c(v) is the reciprocal of the "distance
function" of Y(K)= X*, so (iii) follows from Eggleston [3, p. 55].

(iv) Since a(v) is convex, K= Y(K). Thus c(v)=sup{t" treK}=
sup {t" a (tv) <_- 1 } sup {t" ta (v) <-_ 1 } 1 / a (v). From (iii) it follows hx (v) a (v). [q

PROPOSITION 3.2. Assume a(v) is continuous and strictly positive on S-. Let X
and K be as in Proposition 3.1, so that K is compact and Y(K) is a compact convex set.

Define A {y/ly]" y Ext g(g)}. Then
(i) X (-vA H(v, a(v)).
(ii) I[ v A, h(v) a(v).

(iii) I[ E is a closed subset of S-1 which does not contain A, then X
f-z H(v, a(v)).

Proof. (i) If y Ext g(K), then y K and ]y[ 1/a(y/ly]). Since
K is compact, g(K)=(Ext(K)). By Proposition 3.1, X=g(K)*=
(g(Ext g(K)))* (Ext o(K))* fyzxtg()H(y, 1)= f’-’yzxtg(:)H(y/ly], 1/[y])=
f’hzt g(c)H(y/lyl, a(y/[yl)) f’hv H(v, a(v)).

(ii) Follows from Proposition 3.1 (iii).
(iii) Suppose voA, voE. Assume X=f-’zH(v,a(v)). Then X=

f-’lH(v/a(v), 1)={v/a(v)" vE}*, so (K)=X*= g(({v/a(v)" vE}12{0}) by
Eggleston [3, p. 25]. Thus every extreme point of g(K) is of form va (v) for some v E.
In particular, vo/a (Vo) is of this form, so v0 E, a contradiction.

COROLLmR 3.3. Make the same assumptions as in Proposition 3.2. The smallest
closed subset E of $- such that X =f"H(v, a(v)) is E =cl A.

COROLLARY 3.4. Assume a(v) is strictly positive. Let X=f-’lH(v, a(v)) and let
D={v $-1" a(v)= hx(v)}. Then X=f’hoH(v, a(v)).

Remark. In Corollary 3.4 we cannot omit the hypothesis that a(v) be strictly
positive. For example, if n 2 and a((cos 0, sin 0))=cos 0, then we can compute
X {0},D ={(0, :t:1)}, and f-’lvoH(v, 0)is the entire real axis.
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We may, however, strengthen Corollary 3.4 slightly as follows:
PROPOSITION 3.5. Suppose a(v) is continuous on $-1. LetX =[’-’l H(v, a(v)) and

suppose X . Set D {v e Sn-l: hx(v) a(v)}, set Y=f"lv19H(v, a(v)), and
assume Int Y : . Then X Y.

Proof. If X has nonempty interior, by translation we may assume 0 e Int X, and
then Corollary 3.4 implies X Y. Thus we may assume Int X-, and so we may
choose a point z e Int Y f’l ---X. Since X is closed, we may find the point x of X closest to
z. Since X

_
Y, it follows that the closed line segment joining x and z is in Y by

convexity; and all points of that line segment except for x itself lie in ---X. By translation
we may assume x=0 so Az e--X for 0<A _-<1. Since OeX, a(v)>=O for all yeS

Let L={veS"-l: (v, z)=>0}. I claim that a(v)>0 for all veL. To see this, since
a(v)>=O, we assume a(v)=0 for some v eL. Then O<=hx(v)<-a(v)=O so a(v)=
hx(v)=O and v eD. But since z eInt Y, (v,z)<a(v)=O, contradicting that v

Since a(v) is continuous and positive on the compact set L, there exists a positive
number 8 so a(v)>-_8 for all v eL. Let A be the minimum of 1 and 8/Iz]. Then for
veL, hz eH(v,a(v)) since (hz, v)<=6(z/lzl, v)<-_6<=a(v); and for vesn-l-L, Az
H(v,a(v)) since (hz, v)<O<-a(v). It follows hz eX and 0<h _-<1, a contradiction.
This proves Proposition 3.5.

4. Convergence. Suppose ag (v) converges to a (v). In this section we study whether
OH(v, ai(v)) converges to (")H(v, a(v)).

Let N denote the set of compact nonempty subsets of R". If X e and e > 0, let
U(X,e)={yeR" there exists xeX with [y-x[<e}. If X, YeI, let 61--
inf {8 > O" Y U(X, 8)} and 82 inf {8 > 0" X c U( Y, 8)}. Define A(X, Y) 81 + 89.. It
is well-known (See Eggleston [3, p. 60]) that A defines a metric on .. We may give C
the topology induced as a subspace of N. If Xi, X e Yd and Xi converges to X in this
topology, we write Xi - X. The Blaschke selection theorem (See Eggleston [3, p. 64].)
applies to C with this topology..

The major theorem of this section is the following"
THEOREM 4.1. Let ai(v) be a sequence of continuous functions on S-1 which

converges uniformly to the continuous function a(v). Let X =OH(v, ai(v)) and X=
(") H(v, a(v)). IfXhas nonempty interior, then for sufficiently large i, Int X , and Xi
converges to X in C.

We remark that if X has no interior, then Xg need not converge to X. For example,
if a(v)=--1/i thenX 3 for all while X {0}. For a less trivial example letn 2 and
let Vo be the unit vector in the direction of the angle 0. Define a(vo)- max (cos 0, 0).
Choose a sequence ai(vo) for -zr -< 0 _-< 7r so that (1) a(vo) a(vo) unless -zr/2 _-< 0 -<
-(zr/2) + 2-i or (zr/2)- 2- <_- 0 <_- 7r/2; (2) ai(vo) 0 if -zr/2 <-_ 0 <_- -(zr/2) + 2-i-1 or
(zr/2)- 2-i-1 -< 0 _-< zr/2; (3) ai(vo) is continuous and always satisfies 0 _-< a(vo)<-a(vo).
Then a(vo) converges uniformly to a(vo). On the other hand it is easy to verify that
Xi {0} for all while X is the unit interval [0, 1] on the x-axis. If we add suitable
positive constants to a(vo), we obtain an example where 0 e Int X, Xi - {0}, X [0, 1].

In Corollary 4.3 below there is a weaker result which applies even if X has no
interior.

The proof of Theorem 4.1 wi.ll occupy the remainder of this section.
LEMMA 4.2. Let X, X e C. Then X -X in C ifand only if hx, converges uniformly

to hx on B"-1.
Proof. This is a result of Bonnesen and Fenchel [1, p.35].
COROLLARY 4.3. Let ai(v) be a sequence of continuous functions on $,-1 which

converges pointwise to the function a(v). Let Xi =(")H(v, ai(v)) andX=O H(v, a(v)).
Suppose Xi Y in C. Then Y

_
X.
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Proof. For v Sn-l, hx,(V) <= ag(v). Applying Lemma 4.2 and taking limits, we see
hv(v) <= a(v) for each v S"-i. Hence Y___ X. l

The following two results are well-known.

(4.4) Let Xg X in . Then a(X/) (X)in C.

(4.5) Let Xi X in C. Suppose 0 Int X. Then for
sufficiently large i, 0 Int Xi, and X/* X*.

Proof of Theorem 4.1. We may assume by translation if necessary that 0 Int X.
Then a (v) has a strictly positive lower bound. Since ai(v) converges uniformly to a (v), it
follows that for sufficiently large i, ai(v) is positive for all v Sn-1. Hence 06 Int Xg for
sufficiently large i, and we shall assume henceforth 0 Int Xi for all i.

Let Ki {v/ai(v): v Sn-1}, K {v/a(v): v sn-1}. Then Ki, K and by uni-
form convergence of ag(v) to a(v) it follows Kg K in . By (4.4), g(Ki)o g(K) in C.
But 0int g(K) since a(v) is bounded above on Sn-1. Hence (4.5) implies (Kg)* -g(K)*. By (3.1) Xg a(Kg)* and X (K)*. The theorem follows. 71

5. The semigroup property.
DEFINITION. Let g be a fixed continuous real-valued function on Sn-1. If R and

X is a compact convex subset of R n, define

FtX= H(v, hx(v) + tg(v)).

This formula gives a dual description of FtX. Either FtX or FtX is a compact
convex set. Note that if y R", then F,(X + y) (F,X) + y.

Theorem 4.1 has the following consequence.
THEOREM 5.1. if Xg X in C, tg in R, and FiX has nonempty interior, then

Int Ft,X f for large i, and Ft,Xg FtX in C.
Proof. By Lemma 4.2 and the boundedness of g on S-1, hx,(v)+ tg(v) converges

uniformly to hx(v)+ tg(v) on S"-1. The result then follows from Theorem 4.1.
In the special case where g(v) > 0 for all v S n-1 and > 0, it is easy to see that FtX

has nonempty interior, so Theorem 5.1 applies. In another extreme case we have the
following result.

PROPOSITION 5.2. Suppose g(v) <-_ 0 for all v Sn-1. Suppose s > O, X C, and
FsX f. Then, if increases to the limit s, it follows FtX-> FX.

Proof. If 0 _-< _-< s, then hx(v) + sg(v) <- hx(v) + tg(v) for all v S-1. Hence FX
F,X and FiX f. Suppose FtX does not converge to FX as increases to s. By the
Blaschke selection theorem we may find a sequence tg increasing to s so Ft,X converges
to some Y C, where Y FX. Since Ft,X

_
FX it follows Y

_
FX. But by Corollary

4.3 Y
_
F,X. Hence Y FX, a contradiction. This proves the proposition.

The major result of this section asserts that FFtX =F+tX when s, _->0 and
Int F+tX f. The inclusion FFtX

_
F+tX is trivial. For the opposite inclusion we

require some intermediate results.
PROPOSITION 5.3. LetX C. If 0 <= s <-_ andFtX f thenFX f Moreover, if

0 < s and Int FtX , then Int FsX f.
Proof. Let a, b > 0. By translation, if necessary, we may assume 0 X, so X

__
(b/(a + b))X. Then

Fb(X)
_
Fb((b/(a + b))X) (’1 H(v, hb/,+b))x(V) + bg(v))

=OH(v, (b/(a +b))hx(v)+bg(v))

(b/(a + b))[[’)H(v, hx(v)+ (a + b)g(v))]

(b/(a + b))F,+bX.
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Hence Fa+bX 7 implies FbX # ; and Int Fa+bX implies Int FbX . The
result follows. 71

THEOREM 5.4. Let X be a compact convex subset of R" and let A
{t -> 0: FtX }. Then A is convex, and for any fixed v R , the function on A which
takes to hF,x(V) is concave.

Proof. A is convex by Proposition 5.3. Fix A and let kt(v) be the "convex hull"
of the function which takes v to hx(v)+ tg,(v); i.e., k,(v) is the greatest convex function
on R" majorized by hx(v)+ tg(v). By Rockafellar [6, p. 36] we obtain

(*) k,(v)=inf {Y, Ai(hx(vi)+ tg(vi))" V--/.lVl -t-" """lmVm, li O, tl -’’ -t-m 1},

where the functions are all regarded as defined on all of R ". It follows that for fixed v,
the function taking to k,(v) is an infimum of a family of affine functions of and is
therefore concave. (See Rockafellar [6; p. 35].)

To complete the proof of Theorem 5.4, we show k,(v) hF,x(V). But from (*), since
hx(v) and g(v) are positively homogeneous, it follows that k,(v) is positively homo-
geneous. By definition, hF,x(V)<-k(v) since hF,x(V) is convex. Hence FtX c__

0 H(v, k(v)) c_ 0 H(v, hx(v)+ tg(v)) FtX. It follows FtX= 0 H(v, k(v)) so kt(v)
hF,x(V) by Proposition 3.1(iv). IB

COROLLARY 5.5. Let s and be positive real numbers. Assume X Cand FF,X. Let

E {v Sn-l" hF,x(V)= hx(v)+ tg(v)},

D {v Sn-l" hvF,X(V)= hF,x(V)+ sg(v)}.

Then D E.
Proof. Note FtX , so E and D are defined. Write t=(s/(s+t))O+

(t/(s + t))(s + t); by Theorem 5.4 ]’or any v it follows that (s/(s + t))hx(v)+
(t/(s + t))hF+,x(V) <--_ hF,x(V), whence (t/s)(hF+,x(V)-- hF,x(V)) <= hF,x(V)-- hx(v).

Now suppose vD. Since F,FXc_F+tX we obtain tg(v)=(t/s)sg(v)=
(t/s)(h vsv,x(v)- hv,x(V)) <- (t/s)(h vs+,x(v) hv,x(V)) <= hv,x(V)- hx(v). Thus hv,x(V) >--
hx(v) + tg(v), and since the opposite inclusion is trivial it follows v

THEOREM 5.6. Let s and be nonnegative real numbers. Let X C and assume

F+X has nonempty interior. Then F,FX F+,X.
Proof. The result is immediate if either s 0 or 0, so we shall assume both are

positive. It is trivial that FFtX c_ F+tX, so we need only prove the opposite inclusion.
We first complete the proof underthe additional hypothesis that FsF,X " Since

FsFX , E and D may be defined as in Corollary 5.5. Then

Fs+tX (o.s H(v, hx(v) + (s + t)g(v)) c_ ’IE H(v, (hx(v) + tg(v)) + sg(v))

(-’]v H(v, hv,x(V) + sg(v))_
(-’] oeD H(v, hv,x(V) + sg(v)) [since D c__ E by Corollary 5.5].

Letting a(v)= hF,x(V)+ sg(v), we note (")veDH(V, a(v)) has nonempty interior since it
contains Int Fs+X. Hence by (3.5), ("IvDH(V, a(v))=f"qs"- H(v, a(v))=F,FX, so

Fs+tX
_
FsF,X.

Thus Theorem 5.6 is true if FFtX . We now show that FsF,X under the
hypotheses of Theorem 5.6. Fix > 0, and let J {a R 0 <_- a -< s and F,FtX }. We
shall show that J is nonempty, open, and closed in [0, s]; it will then follow by
connectedness that J [0, s] and the proof of Theorem 5.6 will be complete.
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By Proposition 5.3, Int F,X , so 0eJ. If a J, then Int Fa+tX 3 by Pro-
position 5.3, so F,FtX Fa+tX by the portion of Theorem 5.6 already proved. Since
hF,x(v)+bg(v) converges uniformly to hF,x(v)+ag(v) as b a, it follows from
Theorem 4.1 that Int Fda’tX 3 for b close to a. Hence J is open. Finally, if ai -+ a with

aie J and x F<FtX, then the sequence xg has a limit point which is easily seen to lie in
F,FtX. Thus J is closed and Theorem 5.6 is proved. ?]

Remark. If s < 0, > 0, s + >_- 0, g >= 0, it need not follow that FsFtX F,+tX even
if both have interior. Examples are easy to construct in the plane where X Y but
F1X FI Y.

We may summarize part of this section in terms of semigroups.
DEFINITION. Let K be a topological space. A semigroup on K is a continuous map

G: [0, oo) x K -K so G(s, G(t, X)) G(s + t, X) for all X e K, s, >_- 0; and G(0, X)
X for all X e K.

Recall that Co denotes the set of compact convex subsets of R with nonempty
interior. Give Co the topology as a subspace of C. We then have the following theorem.

TI-mORFM 5.7. Suppose g(v) is a continuous real valued function on S"-1 such that
f"]H(v,g(v))#. Then the map F(t,X)=FtX=(’lH(v, hx(v)+tg(v)) defines a
semigroup on Co.

Proof. It is immediate that FoX X. If z Int X and y (’-)H(v, g(v)) one easily
verifies that z + ty Int FtX. Hence the result follows from Theorems 5.1 and 5.6. Fl

Remark. Note that the hypothesis of Theorem 5.7 is equivalent to the existence of
z R" so (z, v) <- g(v) for all v S-1. This hypothesis is satisfied if, for example, g is
nonnegative and continuous.

6. The Wulff shape. In this section we study the behavior of FtX as gets large.
DEFINITION. Let X, K e C. We say FtX approaches the shape K (as -+ oo) if there

exist compact convex sets A and B in R" so, for all >-0,

A + tK _FtX
_
B + tK.

If K has interior, then tK grows arbitrarily large in all directions; the deviation of
FtX from tK remains bounded and hence becomes proportionally negligible. This
explains the definition. If K {0}, then F,X remains bounded for all t.

DEFINITION. The Wulff shape W of g is

W f’-)vs.-1H(v, g(v)).

We call this theWulff shape after G. Wulff who in [9] noticed its significance for physical
crystals.

The major theorem of this section is the following.
THEOREM 6.1. Suppose the Wulff shape Wfor g has nonempty interior and X C.

Then FtX approaches the shape W.
We note that the hypotheses are satisfied if, for example, g(v) is always strictly

positive.
Remark. If W does not have interior, then FtX need not approach the shape W.

For example, in R 2 define g by g((cos 0, sin 0))= cos2 0. The choices 0 +rr/2 show
that W is contained in the x-axis. The line through (cos2 0)(cos 0, sin 0) normal to

(cos 0, sin 0) meets the x-axis at x cos 0. Hence W {0}. Now let X f’s H(v, 1)
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be the unit disk. It is a simple argument from elementary calculus to show that the point
(2/, 0) lies in FiX for all _-> 0. Hence F,X is unbounded and cannot approach the shape
w={0}.

We now proceed to prove Theorem 6.1. We need two preliminary results.
PROPOSITION 6.2. Let X, Y C. IfX

_
Y, then FtX F, Y.

Proof. FrX=(’H(v, hx(v)+ tg(v))_("]H(v, hy(v)+ tg(v))=FtY. [

LEMMA 6.3. Let IX >--O, >--O. Let Wbe the Wulff shape and assume. W . Then

Ft(IX W) (ix + t) W.

Proof. Clearly h,w(V) <= Ixg(v) for all v. Hence Ft(ix W) (") H(v, h,w(V) + tg(v))
H(v, Ixg(v) + tg(v)) (Ix + t) W.
Conversely, if Ix > 0, then

( + t) w (( + t)/)( w)

((Ix + t)/Ix) (- H(v, h.w(V))

=OH(v, ((Ix + t)/Ix)h,w(V))

(- H(v, h,w(V) + (t/Ix )h,w(V))

(-’) H(v, h,w(V) + thw(v))_
[’ H(v, h,w(V) + tg(v)) Ft(Ix W).

Finally, if Ix 0, F,(Ix W) F/({0}) H(v, tg(v)) tW.
Proof of Theorem 6.1. Since W has interior we may find b R and Ix > 0 so
b + Ix W. Choose a X. Then

a +OWc_X c_b+IxW.

By Proposition 6.2, Ft(a +0 W)_ FiX c_ F,(b + Ix W). By Lemma 6.3 and invariance
under translation,

a + tW
_
FiX b + (Ix + t) W.

Let A {a }, B b + Ix W. Then

A+tWFtX_B+tW for allt=>0.

Theorem 6.1 then follows.
We have remarked that Theorem 6.1 can fail if W has no interior. Even then,

however, we do have the following weaker theorem. (Notethat if W has interior, the
result follows immediately from Theorem 6.1.)

PROPOSITION 6.4. Suppose the Wulff shape Wfor g is nonempty and X C. Then
for > 0 (FtX)/ C and lim

_
(FtX)/t W.

Proof. Let Y(t)=(F,X)/t. It is immediate that for vS"-l, hF,x(V)<=
hx(v)+tg(v); hence hy(t)(v)<=g(v)+hx(v)/t. Taking t_>-l, we see we may assume
Y(t) lies in a bounded region of R". By the Blaschke selection theorem to prove
lim_, Y(t) W we need only show that if ti and Y(ti) converges to K e C, then
K=W.

Suppose Y(ti) converges to K while ti --> . Then from the above, hK(v) <:- g(v) for
all v e S"-1, so K c W. On the other hand, if a e X, then a + 0W c X so a + tW
by Proposition 6.2 and Lemma 6.3; hence a/t+W Y(t) and hw(v)<=hK(v) for all
v Sn-1. It follows W = K and hence W K. This proves the proposition.

Since the conclusion of Theorem 6.1 is stronger than that of Proposition 6.4 it is
convenient to have different hypotheses which imply the former even if W has no
interior.
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PROPOSITION 6.5. Suppose W and there exists a finite set E c Sn-1 so W
(-E H(v, g(v)). Suppose X C has nonempty interior. Then FiX approaches the shape
W.

Proole. By translation we may assume 0 W, so that g(v)>-O. The result then
follows from Proposition 6.5 of Willson [8] together with the proof of Theorem 6.1
above. [

Using Proposition 3.1, one can check that the hypotheses of Proposition 6.5 are
satisfied if g is a continuous positively homogeneous polyhedral function (see
Rockafellar [6, p. 172]). The next result gives another condition on g which implies the
hypotheses of Proposition 6.5.

DEFINITION. The polar graph G of g is {g(v)v" v Sn-l} c R n. (It corresponds to
the graph of g in polar coordinates.) If c R , the standard sphere S on center c is
S--{x R .lx-cl-lcl) and the standard disk D on center c is D=
{x 6 R "" Ix c l-< Ic [}. Note 0 S. If c 0, S D {0}.

PROPOSITION 6.6. Let $1,"’, S, be the standard spheres on centers cl," ", Cm
respectively. Assume g(v)>-_0 for all v Sn-1 and the polar graph G of g lies in
$1 S,. Then there exists a finite set E c S-1 so the Wulff shape W satisfies

W= H(v, g(v)).
E

In particular, Wis a convex polytope. If, in addition, for each i, ci is a rational vector, then
W is a convex rational polytope.

Remark. A rational vector is an element of R each of whose coordinates is a
rational number. A convex rational polytope is the convex hull of finitely many rational
vectors.

The main interest of Proposition 6.6 lies in the application to growth of physical
crystals. In general, one assumes that the growth function g(v) is proportional to the
surface free energy in direction v. (See Herring [4].) But the surface free energy is often
obtained by combining inner products (v, ei) where the vectors ei are the locations of
atoms in the crystal lattice. The polar graph of gi(v)= (v, ei) is a standard sphere, and
frequently the resulting g(v) satisfies the hypotheses of Proposition 6.6. In any event, it
is routine to study free energies in terms of their polar graphs.

Proof. The existence of E is essentially the result (Theorem 4.1) of Willson [7].
More specifically for 1,..., m let D be the standard disk on center ci; Do
{0}cRn; cg={av’vS-l,0<a<g(v)};= K be the set of nonempty subsets T of
{0,. , m} such that f-’grDg c . Then the proof of (4.1) in [7] applies to show the
existence of E once we prove Q]rEnOirDi .

We indicate the proof that c_Jrc(lirD; the other inclusion is immediate.
For any vows-l,let T={i’O<i<m= ,g(vo)voDi}; then avoirDi for 0<a<=
g(vo) and we need only show T K. If g(vo) 0, then 0 T so T K trivially; hence we
may assume g(vo) > 0. Define k" S-1 [0, ee) by k(v) sup {, [0, oe). ,v e (’rD}.
Then k is continuous and to show T K we need only show k(v) <- g(v) for all v Sn-1.

Suppose x S-1 and k(x) > g(x). Clearly x +Vo and we may let P denote the
2-dimensional plane through 0 spanned by vo and x. Choose polar coordinates for P so

Vo has polar angle 0 and x lies in the upper half plane. Let Vo be the unit vector in the
direction 0. Since g(vo)vo lies on some S, h(vo) g(vo). Find 01 and e > 0 so 0 <_- 01 < r,

k(vo) <- g(vo) for 0 <_- 0 _<- 01, but k(vo) > g(vo) for 01 < 0 < 01 + e. By the definition of k
and by renumbering, we may assume k(vo)vo lies on $1 for 01 < 0 < 0 + e where 1 T;
and g(vo)Vo lies on $2 for 01 < 0 < 0 + e where 2 e T.

By definition of T, g(vo)voD1-D2. By simple geometry, D1 D2 c H(c2-cl, 0).
But by choice of 01 it is easy to see that all points of H(c2- Ca, O) I"l P have polar angle O
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satisfying 01 t//’01 +7/’. This excludes the positive x-axis and contradicts that
g(vo)Vo H(c2-Cl, 0). The contradiction proves the existence of E.

The last sentence of Proposition 6.6 follows by a study of each step of the proof of
Theorem 4.1 in.[7]; for more details, the reader may consult Willson [8, 3]. ?1

Acknowledgment. I wish to thank the referee for numerous simplifications of this
paper. In particular, Theorem 5.4 is due to the referee.
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A NOTE ON THE ASYMPTOTIC EXPANSION OF EIGENVALUES*

JAMES MURDOCK AND CLARK ROBINSON

Abstract. Under certain conditions k-term asymptotic expansions of the eigenvalues of a matrix can be
deduced from a k-term asymptotic expansion of the matrix.

2SupposeL Lo + eL -t- e L2 + is an asymptotic expansion of a matrix function
of a small parameter e, and it is desired to find a few terms of the expansion of the
eigenvalues. Does it suffice to take k terms in the expansion of L to obtain k terms in
the expansion of the eigenvalues? The example

k-1

L= te k+l
--e

k

which has eigenvalues =tzekx/1 / t3, shows that this is not always the case. The following
theorem gives a sufficient condition for this to be true.

THEOREM. Let L and N be continuous real or complex matrix functions of e

defined for e >-O, and letM L + e
k+1Ne. Suppose there exists a matrix C defined in

some interval 0 <-e < eo, continuous in e and nonsingular, such that C-ILC De
diag(Al(e),...,An(e)). Suppose further that each pair of eigenvalues Ai(e),Aj(e)
satisfies either Ai(e)= A.(e) + O(e k+l) or [Ai(e)-Aj(e)l>=ce k for some c >0 (this condi-
tion is satisfied automatically if each eigenvalue Ai(e) is a Ck+l function of e). ThenM
has n eigenvalues of the form

fori=l,. .,n.
Remarks. The hypotheses are satisfied for L Lo+ eL1 +’" + e kLk if L0 has

distinct eigenvalues, or if L0= I and L1 has distinct eigenvalues. The referee has
informed us that according to a theorem of Rellich, the hypotheses are also satisfied if
Lo,’" Lk are Hermitian; see [4, p. 376]. In the example preceding the theorem, C
exists for e > 0 but either becomes unbounded or singular as e - 0. Thus it is necessary
to insist on the continuity and nonsingularity of C at e 0 even if L0 is already
diagonal.

The proof is based on a degree argument of Levinson [2], previously exploited by
Coppel and Howe [1]. We first obtained this theorem in connection with our work on
asymptotic expansions in dynamical systems ([3]). Although we eventually used a
different argument there, we thought this result might have independent interest.

Proof. The eigenvalues of L may be partitioned into equivalence classes,/i and
being equivalent if Ai(e)=Ai(e)+o(ek+). By re-numbering the eigenvalues and
permuting the columns of C, we may assume that A 1, , Ap are equivalent and that
none of these are equivalent to Ap+l,’’’, An. We shall show the existence of p

k+lo’eigenvalues of the form/i(e) ,i(e)q- e "(e), 1, p. The existence of n such
eigenvalues follows by repeating the argument with different equivalence classes of
eigenvalues placed first.

Let A(e)=Al(e) and observe that for i=l,...,p we have Ai(e)=
k+l k+l k+l)A (e) + e &i(e), with Oi(e) continuous, hence Ai(e) A (e) + e Oi(O) + o(e Let

* Received by the editors February 28, 1979, and in revised form August 13, 1979.

" Department of Mathematics, Iowa State University, Ames, Iowa 50011.
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A(e) A (e)Ip, where Ip is the p p identity matrix, and let =diag (&l(0), ", b,(0)).
Then

D= A+e +o(e 0
0 /5

where De diag (A+ (e), , A, (e)). Now
k+lC-IMC D + e C-INoCo + o(e k+l),

and we write

c_lNoCo=B=fOll B12]
[B21 B22J

where B11 is a p p block. Now v is an eigenvalue ofM if and only if it is an eigenvalue
of c-aMC, hence if and only if

det A + e +B) + o(e )- I e + o(
+) ; 2 =0.

e +lB21 + o(e 0e + e B22 + o(e PIn-p

This equation has the form f(e, u) 0, to be solved for u u(e). Make the e-dependent
change of variables u defined by u A (e)+ e ; this will yield an equation
g(e, )=0 which we now determine. First note that A-uIp =-e+Ip. From the
manner of partitioning the A we see that there exist constants c >0, co>0 such
that for each > p,

=c for 0<e<eo.

k+lHence 0 uI,_ eT e I,_p where T is diagonal with each diagonal element
bounded away from zero as e 0. Inserting these relations in our determinant and

k+l kcanceling e from the top p rows and e from the remainder we find

+o(
0

det [(+Bll)-I] det T +o(1).

Since det T is bounded away from zero this reduces to

det [(+B)-I]+ o(1) 0.

When e =0 there exist p roots for by the fundamental theorem of algebra;
these persist for small e by RouchO’s theorem. Q.E.D.
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NONEXISTENCE OF CONTINUOUS SELECTIONS OF THE METRIC
PROECTION AND WEAK CHEBYSHEV SYSTEMS*

GNTHER NIRNBERGER

Abstract. We show that an n-dimensional subspace G of C[a, b] which admits a continuous selection for
the metric projection has to be weak Chebyshev. For C[a, b] this solves one part of a problem posed by
Lazar, Morris and Wulbert Continuous selections for metric projections, J. Functional Analysis, 3 (1969), pp.
193-216] who have proved this result for one-dimensional subspaces of C(X), X compact. Combining our
theorem with known results we obtain a complete characterization of the existence of continuous selections
for the metric projection for a certain class of n-dimensional subspaces in C[a, b].

1. Introduction. We c6nsider the following approximation problem: If G is an
n-dimensional subspace of Co(X), the space of real-valued continuous functions f on a
locally compact space X vanishing at infinity, i.e., for each e > 0 the set {x X: If(x)l >=
e} is compact, endowed with the norm Ilfll sup {If(x)l: x X}, then for each f Co(X)
we are interested in the set Pc(f)={goG: [If-go[[}=inf{llf-gll: gG} which is
called the set of best approximations of f from G. This defines a set-valued mapping Pc
from Co(X) into 2c which is called the metric projection onto G. A continuous mapping
s from Co(X) onto G is called continuous selection for Pc, if s(f) Pc(f) for each
f Co(X).

In the last years many authors have investigated continuity properties of the
set-valued metric projection, in particular selection problems (see e.g., Singer [9] and
Vlasov [12]). The question, if continuous selections for Pc exist, is relevant for the
convergence of algorithms for computing best approximations.

Lazar, Morris and Wulbert [4] were the first to characterize those one-dimensional
subspaces G in C(X), X compact, which admit continuous selections for P. They
posed the problem to characterize the corresponding n-dimensional subspaces. This
question has also been raised in the book of Holmes [2]. Applying new methods, namely
the theory of weak Chebyshev subspaces, Niirnberger and Sommer [7] were able to
establish the existence of continuous selections for Pc for a class of n-dimensional weak
Chebyshev subspaces G in C[a, b], n arbitrary, from which a result of Brown [1] for
five-dimensional subspaces in C[-1, 1] follows. The result of Niirnberger and Sommer
[7] has been extended by Niirnberger [6] to the case of n-dimensional subspaces of
Co(X), X locally compact, where X is a subset of the real line, if n => 2. Niirnberger and
Sommer [8] used their selection theorem in [7] to give a complete characterization of
those spline spaces G which admit a continuous selection for P. This result has been
extended by Sommer [11] to "generalized" splines which are also weak Chebyshev.

The literature shows that in all theorems about the existence of continuous
selections for the metric projection from C[a, b] onto n-dimensional subspaces G the
spaces G are weak Chebyshev. In this paper we can actually prove the following
theorem:

Let G be an n-dimensional subspace of C[a, b such that there exists a continuous
selection ]:or P. Then G is weak Chebyshev.

This solves one part of the problem, posed by Lazar, Morris and Wulbert [4], for
C[a,b].

Now combining our theorem and results in N/irnberger and Sommer [7], and
Sommer [10], we obtain a complete characterization of those n-dimensional subspaces

* Received by the editors February 28, 1979.
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G in C[a, b with the property that no g G, g 0, vanishes on an interval, which admit
a continuous selection for

For an n-dimensional subspace G in C[a, b with the property that no g e G, g 0,
vanishes on an interval, the following statements are equivalent"

(i) There exists a continuous selection for
(ii) (a) G is weak Chebyshev. (b) Each g G, g 0, has at most n distinct zeros in

[a,b].
This represents a complete solution of the problem, posed by Lazar, Morris and

Wulbert [4], for the case of n-dimensional subspaces G in C[a, b with the property that
no g e G, g 0, vanishes on an interval.

That (ii) implies (i) has been shown by Niirnberger, $ommer [7], that (i) implies (iib)
has been shown by Sommer [10], under the assumption that G is weak Chebyshev and
that (i) implies (iia) is a consequence of our theorem.

2. The main result. To prove our theorem we use the following notation"
For f, fl, f2 C[a, b and A c X we denote by Z(f) {x X: f(x) 0}, Z(Pc (f))

{x
_
X: g(x) 0 for each g Pc(f)} and by bd A the boundary of A. Furthermore fl f2

(respectively fl -<-f2) on A means that fl(x)- fE(x) (respectively fl(x) -< f2(x)) for each
x A. If x X then by U(x) we denote the system of all neighborhoods of x.

A set {gl, , gn} of n linearly independent real-valued functions, defined on a set
Y, which contains at least n / 1 distinct points, is called a Chebyshev-system, if for each n
distinct points yl," , yn in Y we have det (gi(y)) 0.

DEFINITION. An n-dimensional subspace G of C[a, b] is called weak Chebyshev,
if each g G has at most n 1 sign changes, i.e., there do not exist n + 1 distinct points
xl,.. ,Xn/l_[a,b], where Xl<’’’ <X/l, such that e(-1)ig(xi)>O, i-1,... ,n/l,
e =+1.

We remark that Jones and Karlovitz [3] have pointed out the importance of weak
Chebyshev subspaces by showing that an n-dimensional subspace G of C[a, b] is weak
Chebyshev if and only if for each fe C[a, b] there exists a function goe Pc(f) such that
f- go alternates n + 1 times, i.e., there exist n + 1 points Xl <" < xn/ such that
e(-1)i(f-go)(x)=llf-goll, i= 1,..., n + 1, s +1. This result has been extended by
Deutsch, Niirnberger and Singer [13] to Co(X), where X is a locally compact subset of
the real line.

In the proof of our theorem we use the following necessary condition for the
existence of continuous selections for Pc, proved by Lazar, Morris and Wulbert [4] for
C(X), X compact, which we only formulate for C[a, b].

LEMMA (Lazar, Morris and Wulbert [4]). Let G be an n-dimensional subspace of
C[a, b ], such that there exists a continuous selection forPc and tell C[a, b with
and O Pc(f). Then there exists a function goe Pc(f) such that:

(i) For each x bd Z(P(f)) f’) f-l(1) and each g Pc(f) there exists a neighbor-
hood U U(x) such that go >- g on U.

(ii) For each x bdZ(P(f)) f-I f-(-1) and each g Pc(f) there exists a neighbor-
hood U U(x) such that go <-- g on U.

Now we are in position to prove, that only the weak Chebyshev subspaces G in the
class of n-dimensional subspaces of C[a, b] admit a continuous selection for

THEOREM. Let G be an n-dimensional subspace of C[a, b ], such that there exists a
continuous selection for Pc. Then G is weak Chebyshev.

Proof. Assume that there exists a continuous selection for Pc and that G is not
weak Chebyshev, i.e., there exists a function h G and there exist n + 1 distinct points
z < < z,+ such that

e(-1)ih(zi) > O, 1,. , n + 1, e +/- 1.
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By scaling we may assume that IIhll 1.
Case 1. The function hn changes sign at n distinct points xl<’" <xn with

Zi < Xi < Zi+a, 1, , n, i.e. for each {1, , n} and each U U(xi) the function
h, attains both strictly positive and strictly negative values and hn (xi)= 0.

Let {hi,’’’, hn} be a basis of G. We show:
(1) There exist k distinct points yl,’’’,yk{Xl,’’’,Xn}, 1-<k=<n, and a

function f defined on {xl,’", Xn}\{y2,’’’, Yk} such that If[ 1 on
{xl,’’ ", x}\{y2,’’’, yk} and we have the choice to define f such that f(yx) 1 or
f(Yx)----1 such that for each continuous extension of f to [a, b] with IIf[[ 1 we have
P(f)c span {gl,..., gk}, where {gx,""", g/}c {hi,"’, hn} are linearly independent
and gx hn and YI 1" =1 Z(gi).

Proof of (1). We consider the subspace span{hi,...,hn_}. Either span
{hx,..., hn_} is a Chebyshev-system on {x,..., x} or, by choosing a new basis of
span{hi,..., h-l} and renumbering the points Xl,.",x,, if necessary, we may
assume that hn- =0 on {x,’’’, Xn-1}. Again, either span {hi,’’ ", h_2} is a Che-
byshev-system on {xl, , x,-1} or we may assume that hn-2 0 on {Xl, , Xn-2}. If
we continue this method by induction, at each step we may assume that hi 0 on
{Xl, , xi}, 1 _-< <_- n 1, until the induction stops.

Therefore we get that either the induction stops, i.e. there exists a number
m e {1, , n 1} such that span {hi, , hm} is a Chebyshev-system on {xl,. , Xm+l}
and xx,..., Xm+l ’ 7=m+l Z(hi), or span {hi} is not a Chebyshev-system on {x, X2},
i.e., we may assume that hi(x1) 0 and therefore xx f-li=l Z(hi).

If xa f"l ’_- 1Z(hi), we set yl Xl, choose a basis {gl," , g,}of G such that gl h,
and get (1) with k n.

Otherwise we conclude as follows"
Since span {hi," , h,} is a Chebyshev-system on {Xl," , x,+a}, by choosing a

new basis of span{h,..., h,}, if necessary, we may assume that for each i
{1," , m} we have hi(Xm+l) 1, hi(x1) 0 for each j {1,. m}\{i} and hi(xi) : 0 for
each i{1,..., m}. Now we define f on {x,...,x,/l} as follows: For each i
{1,..., m} set f(xi)= sgn hi(xi) and f(x,n/)=-1. If we extend f (arbitrarily) to [a, b]
such that I1 11-1, we get for g 2i=1 aihi in Pa(f)" If ai < 0 for some 1,..., m, then

If(x/)- g(x)l- Isgn h(xi) ah(x)l I1- aelh(x)[ > 1.

Therefore [If-gll > Ill-011, which is a contradiction.
Therefore for each e {1, , m} we have ai >_- 0. If ai > 0 for some 1, , m,

then

If(Xm+l)-- g(Xm+l)[ -1 F ai 1 + Y’. [ail> 1.
i=1

and we again have a contradiction.
Therefore for each i{1,..., m} we have ai =0. But this shows that Pc(f)

span {h,+x, , h}. Obviously we also can define f(x,/l) 1, if we set hi(x,/l) -1
for each e {1,. ., m} and, as above, we get p(f)c span {h,,+l, hn}. Now if we
set

gl hn, g2 hn-1, ", gn-m hm+
and

Yl Xm+l,

we obtain (1) with k n m.

Y2 Xm+2, Yn-m Xn,
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If k 1, then we obviously can extend f continuously to [a, b] such that 0_-<f_<-
min {1 +gx, 1} on a neighborhood of yi, if/(yi) 1 and max {-1 +gx,--1}=f--0 on a
neighborhood of yi, if [(yg)=-1, and f 0 outside these neighborhoods. (We choose
the neighborhoods to be disjoint.) Then []fll 1, 0, gl E PG(f) and dim Pc(f)= 1.

Then we consider f at a point yg, wliere g changes sign. There we have f(y) e for
some e E {-1, 1}. By the lemma there exists a function g Pc(f) and a neighborhood
U U(yi) such that g _-> max {0, gx} on Ui, if e 1, respectively g _-< min {0, gl} on U, if
e -1. But this is not possible, since span Pc(f) span {gl} and gx changes sign at xi.
Therefore we get a contradiction.

Therefore let k > 1. Now we make the following remark:
(2) If we define f as in (1) and on further points from {y2, , yk} and possibly on a

finite number of points in some neighborhoods of yi,’", Yk such that f(x)= 1
(respectively f(x)=-l) for x[a,b], where gx(x)>-0 (respectively gl (x <_- 0), then
there exists a continuous extension of f to [a, b] such that [[f[I 1 and 0, gl Pc(f).
Because, if f is defined as above, then we obviously can extend f continuously
such that 0<_-/<_-min{l+gx, 1} on neighborhoods of points, where f=l, and
max {-1 + gx,--1}--<f--0 on neighborhoods of points, where f=-1, and f= 0 outside
th6se neighborhoods. Of course we choose the neighborhoods to be disjoint. We make
the following convention"

(3) Let [ be defined (on a finite number of points) as in (2). Then, if we make a
statement for f, we mean that this statement shall be true for each continuous extension
of f to [a, b], for which [[f[[ 1 and 0, gl E Pc(f). (Such an extension exists according to
(2).)

(4) Now the method or our proo will be to show that either we can reduce the
dimension of Pc(f), by defining f as in (1) and additionally on further points from
{Y2," ", Yk}, or we have Yl," Yk [")/k=l Z(gi). Then from the fact that Yl," Yg
0 k=l Z(gi) we can deduce a contradiction or otherwise by reducing the dimension of
Pc(f) after a finite number of steps we get a contradiction analogously as before.

Therefore we proceed as follows
(5) Let be the maximal number of points in {YI," Yt} which are in ["]/k= Z(gi).

By renumbering, if necessary, we may assume that y 1, , yl are in f3/= Z(g). Let f be
as defined in (1).

For shortness we use the following notation"
We say that a function g G is an e-function, where e{-1, 1}, on U U(yi),

where {1, ,/}, if g => max {0, gi} (respectively g_<-rain {0, gl}) on U, if e 1
(respectively e 1).

We show"
(6) For each s e{l+l,. , k}, each el," , ee{-1, 1} and each e/l," , ek

{--1, 1} there exists a function g E span {g1,"" ", gk} and there exist neighborhoods
Ue U(yi), i= 1,..., l, such that g is an eg-function on Ug, i= 1,..., l, g(xi)=O,

l+ 1,. , s, and eig(yi) >-0, s + 1,. , k.
Proofof (6). We prove (6) by induction on s. Let s + 1, el," , el {-1, 1} and

e+2,..., ek {--1, 1} be given. Let f be defined as in (1) and extend f as follows:
f(y) e, 1,. , l, f(y) 1 and f(yg) e, + 2, , k. By the lemma there exists
a function hi Pc(f) span {gl," , gk} and neighborhoods Ui U(yi), 1, , l,
such that hi is an e-function on Ui, i=l,...,l, hl(y)=>0 and eihl(yi)>=O, i=
/+2,’" ,k.
Furthermore let f be defined as in (1) and extend f as follows" f(y) ei, 1, , l,

f(y,) =-1 and f(yg)= e, i= 1+2,..., k. By the lemma there exists a function h
Pc(f) span {gl,. , gk} and neighborhoods V U(y), 1,. , l, such that h2 is an
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e-function on V, 1, , I, h2(ys) <-- 0 and eih2(yi) >-- O, + 2, , k.
If hE(ys) 0, then g h2 has the desired property. If hE(ys) 0, then there exists a

scalar a ->_0 such that h(y)+ ahE(ys) 0 and g h / ah2 has the desired property. In
particular the function g is an eg-function on Ug Vg, 1,. , I.

Let the statement be true for s 1 and let e, , e {-1, 1} and e/, , ek

{--1, 1} be given and set e= 1 (respectively e=-l). By induction hypothesis
there exists a function hi span {g, , gk} (respectively hE span {gl, , gk}) and
neighborhoods Ug U(y) (respectively V U(y)), i= 1,. , l, such that h (respec-
tively hE) is an ei-function on Ug (respectively on Vg), 1,..., l, hl(y)= 0 (respec-
tively ha(y/) 0), + 1,. , s 1, hl(y) _-> 0 (respectively hE(ys) <= 0), eh(yi) >- 0
(respectively eh2(y) ->_ 0), i= s + 1,..., k. If hE(ys)= 0, then g hE has the desired
property. If hE(ys) O, then there exists a scalar a -> 0 such that h (Ys) 31- ah2(y) 0 and
g h / ah2 has the desired property. In particular the function g is an e-function on
U f’) V, i= 1,..., I. This shows (6).

From (6) we immediately get
(7) For each e, , e {-1, 1} there exists a function g span {g, , gk} and

there exists neighborhoods Ui U(yi), 1, , l, such that g is an e-function on Ug,
1, , l, and g(yi) 0, l+ 1, , k.
Now we assume that for each {1, , k} there exist neighborhoods V U(y),

1, , k, such that for each {1,. , k} we have g(x) < 0 (respectively gl(x) > 0)
on Vi f3 {x [a, b x < xi} (respectively Vi f3 {x [a, b]:x > xi}). The other cases follow
analogously.

We show:
(8) For each e, , et {-1, 1} we can choose an integer n as we want, provided

we choose n large enough, such that there exists a function g span {gl, gk} and
there exist neighborhoods U U(yg), 1,. , l, such that g is an e-function on U,
i= 1,. ., l, g(yx- 1/n)-<_0, where y- 1/n: U, and g(yi)=0, l+ 1,..., k.

Proof of (8). We prove (8) analogously as (7) by showing that in (6) additionally
g(y- 1/n)_-< 0 for some n with yx- 1/n : U. This we do by definingf in the proof of
(6) additionally to be -1 at the point yl- 1/n1. This shows (8).

We show:
(9) For each s {1,. ., l} and each e+, , e {-1, 1} we can choose integers

n , n, , n as we want, provided we choose them large enough, such that there exists
a function gspan{g,’’’,gk} with g>0 on (y,y+l/n], g(yi-1/n)=O, i-
1,..., s, eg>-_O on [y- 1/n, y], s + 1,.. , l, g(yg)=0, l+ 1,. ., k.

Proofof (9). We prove (9) by induction on s. Let s 1 and e2,"’", e/ {-1, 1} be
given. Set e 1 (respectively e 1). By (8) we can choose an integer m (respectively
n) as we want, provided we choose the integer large enough, such that there exists a
function hspan{gl,... ,gk} (respectively h.span{g,..., gk}) and there exist
neighborhoods U U(yg) (respectively Vi U(y)), 1,. , l, such that hi (respec-
tively hE) is an erfunction on Ug (respectively V), i= 1,... ,l, hl(y-l/ml)>-_O
(respectively hE(y-l/nl)<=O), where y-l/nC:V, and hx(yi)=0 (respectively
hE(yi) =0), l+ 1,..., k. We can choose the integers ml and n to be equal. If
hE(yl-1/n) 0 then it is easy to see that g- h2 has the desired property. If h2(y-
1/n) < 0 then there exists a scalar a _-> 0 such that h (y 1/n) / ah:(y 1/n) 0 and
it is easy to see that g h + ah2 has the desired property.

Let the induction be true for s- 1 and es+l, el {--1, 1} be given. Set es 1
(respectively e=-l). Then by induction hypothesis we can choose integers
m, m,..., ml (respectively n’l, n 1,’’’, hi) as we want, provided we choose them
large enough, such that there exists a function hl span {g,..., gk} (respectively
hEspan{g,’’’,gk}) such that hx>0 on (y,y+l/m] (respectively hE>0 on
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(Yx, Yl + 1/n]), h(y- 1/m) 0 (respectively h2(y- 1/n) 0), 1,..., s- 1, hx >_-
0 on [y-1/m, y,] (respectively hz_-<0 on [y,-1/n, y]), ehl>-O on [y-l/mi, y]
(respectively eih2>’-O on [y-1/n, yi]), i= s + 1,..., l, and hl(y)= 0 (respectively
h2(y) 0), + 1, k. We can choose the integers such that rn n’l and mg= n,
i=1,...,l.

Now we can choose an integer k _->m n. If h2(y-1/k)=0, then g h2 has
the desired property. If h2(y-l/ks)<O, then there exists a scalar a _->0 such that
hl(ys-1/ks)+ah2(ys-1/ks)=O and g=hl+ah2 has the desired property. This
proves (9).

From (9) we immediately get the following.
(10) We can choose integers n 1,’", nt as we want, provided we choose them

large enough, such that there exists a function g span {gl, , gk}, g 0, with g > 0 on
[Yl, yl+ 1/n], g(yi--1/ni)=O, i= 1,..., 1, and g(yi)-O, i= I+ 1,..., k.

We show"
(11) For each is{2,...,/}, each ss{1,...,l}\{j} and each ei{-1,1}, i-

s + 1, ., l, j, we can choose integers hi, ’, nl as we want, provided we choose
them large enough, such that there exists a function i span {gl, gk} with i < 0 on
[yi-1/nj, yi), i(yi-1/ni)=O, i=l,...,s,ij, eii>=O on [yi-1/ni, Yi], i=
s +1, ., l, j, and j(yi) =0, !+ 1,. , k.

Proof of (11). We prove (11) by induction on s. Let j {2,..., l}, s 1 and
ei {-1, 1}, 2,. , l, j, be given. Set ei -1 and el 1 (respectively el -1}. By
(7) there exists a function h. e span {gl,""", gk} (respectively h e span {gl,""",
and there exist neighborhoods Ui U(y) (respectively Vi U(y)), 1,..., l, such
that hi (respectively h}) is an e-function on U (respectively Vi), i= 1,..., l, and
hi(yi) 0 (respectively h (yi) 0), + 1,. , k. Now we can choose an integer n as
we want, provided we choose nl large enough, such that yl- l/n1 e U1 f’l V1. If
h (y 1 / n 1) 0, then i h has the desired property. If h (y 1 /n 1) < 0, then there
exists a scalar a -> 0 such that hi(y 1 / n 1) + ah (y 1 /n 1) 0 and i hi + ah has the
desired property. We remark that we obviously can choose an integer ni as we want,
provided we choose n large enough, such that ffi < 0 on [yi 1 / hi, yi) c U/C1 V/. Now we
proceed similarly as in the proof of (9) to prove the induction step. This shows (11).

From (11) we immediately get
(12) For each j {2,. , l} we can choose integers nl," , nt {-1, 1} as we want,

provided we choose them large enough, such that there exists a function
span {gl," , gk} with i < 0 on [Yi- 1/ni, Yi) and i(Y- 1/n) O, 1,. , l, j,
and i(Y) 0, + 1,. , k.

Now we choose integers nl,’", nl large enough such that gl(xl-1/nl)<O.
Furthermore let 1/1 span {gl, , gk} be the corresponding function to nl, , nt
which exists according to (10) and let 2, , span {gl, , gk} be the correspond-
ing function to nl," , n which exists according to (12).

We show"
(13) The functions gl, 2,""", 1+1 are linearly independent.
Proof of (13). Let a1,2,’" ",/1+1 be scalars such that axg1+t22+’" "+

dt+lt+l=0. Then from gl(yx-1/nl)<O and gi(yl-1/nl)=O, i=2,...,/+1,
(compare (10) and (12)) it follows that al=0. Then from 2(y2-1/n2)<0 and
i(y2-1/n2) 0, 3, , + 1, it follows that d2 0. We continue this method and
consider the remaining linear combinations at {y- 1/n" 3, , l} and get as above
di O, 3,’", I. Finally we have ii+lg// --0, from which we get d/+X--0, since
/1 0. This shows (13).

(14) If k then from (13) it follows that gl, g2,""", gk/l are linearly indepen-
dent functions in span {gl," ’, gk} which is a contradiction.
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(15) If <k then by (13) the functions g, _,..., /+1 are linearly independent
and by (10) and (12) have the property that g(y)=(y.)=0, i=2,..., l+l, j=
+ 1, , k. Therefore there exist functions ff+, , ffk span {gx, , gk} such that
g, ,. , +, +_, , form a basis of span {g, , g}. Now we consider the
k-l linearly independent functions gx,+:,..., at the k-l distinct points
Y/+I,""", Yk and, since yiZ(gl)(lki=l+2Z(gi), i=l+l,... ,k, because
y= 0 ki= Z (gi), + 1," , k, and (y) 0, 2,. , + 1, j + 1,. , k, we can
conclude as in (1) and extend the function f at further points from {Y/+I,""", Yk} to
reduce the dimension of Po (f), more precisely there exist p distinct points y , , y s
{Yl,’’’,Yk}, where y=yl and p<k, such .that f is defined on
{Xl,""", X,,}\{y’3,’’’, y’p}, such that Ill- 1 on {x,..., x,}\{y,..., yp} and we have
the choice to define f such that f(y[) 1 or f(y[) -1, and P(f) span {g[,. ., g},
where {g,. , g,} {gl, g2," , gk} are linearly independent with g gl, and
y s (q ’---1Z(g). Notice that also y yl E 1"1=1Z(g).

We continue this method by considering the functions {g’l,"’,g’p} on
{y, , y}, instead of {gl," , gk} on {Yl," Yk} as before, starting with (5). It can
be easily verified that after a finite number of steps we get a contradiction as
in (14).

Case 2. There do not exist n distinct points Xl<" .<x, with Zi<Xi<Zi+l,
1,..., n, such that h, changes sign at x, 1,.. , n.
Let s{1,..., n} and consider (zi, Zi+l). Then either there exists a point xis

(zi, z+1) such that h changes sign at xi or there exist two distinct points xi, .’i - [Zi, Zi+ 1],
xi < ;i, and there exist neighborhoods Ui U(xi) and U(.i), such that h 0 on
[xi, ;i], h, < 0 (respectively h, > 0) on Ui (q {x [a, b ]: x < xi} and h, > 0 (respectively
h, < 0) on Ui fq {x s [a, b ]’x > i}. In the "either"-case we set i Xi.

Therefore we get n pairs of points (Xl, 1)," , (x,, ,). Obviously there exists an
integer s {1, , n } with xi < i. Now we argue similarly as in Case 1. We first consider
the basis {hi,’’’, h,} on {Xl,’’’, x} and conclude as in (1) to obtain a function f,
defined on {Xl,’" ,x,}\{y2," ", Yk}, where {Yl,’’’, Yk}{Xl, ,X,}, such that
Po(f) span {gl, , gk}, where gx, , gk are linearly independent functions
in {hi,’", h,}with gl=h,, yxs /k=l Z(gi) and we have the choice to define f
such that f(yl)= 1 or f(yl)=-l. Since each Yi is equal to some x, we can set

Let s be the number of points in {y x, ’, y} for which we have yi 37i. Then we
have yi 7 for the remaining k s points. We may assume that there exist at most k 1
distinct points in {yx, , y, 7, , 37} which are not in the set 1"/k= 1Z(gi), because
otherwise we can apply (1) to reduce the dimension of Po(f) (provided we do not
already have k 1). Then, as can be easily verified, there exists at least one integer
is{l,.., n} such that yi= 37i and yis (’/k=l Z(gi) (respectively y # 37i and yi, 37is
1’/k=

By renumbering the points, if necessary, we may assume that 1. If k > 1 we
consider 71, y x," , y and conclude similarly as in case 1 to get, after a finite number
of steps, a contradiction as in (14).

If k 1 there exists a function f with Ilf[I 1, 0, g P(f) and dimP(f) 1. Then,
if there exists an integer s {1, , n } with xi i, we get a contradiction as in Case 1. If
not, there exists an integer s {1, , n } such that xi ;i and f has not been defined on
i. If f(xi)= e, where e s {-1, 1}, then we define f(.i)= e. By the lemma there exists a
function g, in P(f) and neighborhoods Ui U(xi) and Ui U(.i) with g ->max {0, gl}
on Ui I,.J Ui, if e 1, respectively g =<min {0, gl} on Ui 1,3 Oi, if e -1. But this is not
possible, since P,(f)= span {gl}, and we get a contradiction. This completes the p.roof
of the theorem.
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With our theorem we solve part of a problem, posed by Lazar, Morris and Wulbert
[4], for C[a, b], who have proved the theorem for one-dimensional subspaces in C(X),
X compact.

Furthermore from our theorem and results of Nijrnberger and Sommer [7], and
Sommer [10], it follows a complete characterization of those n-dimensional subspaces
G in C[a, b with the property that no g G, g 0, vanishes on an interval, which admit
a continuous selection for PG.

THEOREM. Let G be an n-dimensional subspace in C[a, b with the property that no
g G, g O, vanishes on an interval. Then the following statements are equivalent:

(i) There exists a continuous selection for PG.
(ii) G is weak Chebyshev and each g G, g O, has atrnostn distinctzeros in [a, b].
This gives us a complete solution of a problem, posed by Lazar, Morris and

Wulbert [4], for the case of n-dimensional subspaces G in C[a, b J, which have the
property that no g G, g 0, vanishes on an interval.
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STATISTICAL INDEPENDENCE AND INVARIANT SUBSPACES
FOR POINT TRANSFORMATIONS*

ALAN LAMBERT"

Abstract. Suppose (X, :E, m) is a probability space and z is a measure preserving transformation on X. If
b is strictly positive on X with E(blz-lE) a.e. and {b, b r, b r2, .} is an independent process, then
the closed L span of {1, b, b r, .} is a proper reducing subspace for the point transformation Uf=/o
Moreover ’- is infinite dimensional. It is shown that ’ is never invariant for the operator Tf 4 f
Necessary and sufficient conditions are established for the invariance of for T*.

1. Introduction. This paper is concerned with the relation between a family
of independent, identically distributed random variables and invariant subspaces of
certain operators on Hilbert space. The operators considered are convolution, or point,
transformations. The existence of invariant and reducing subspaces for such operators
is of importance in ergodic theory, especially subspaces which are the closure of the
orbit of a single function under the transformation (i.e., a cyclic subspace). This paper
develops the relationship between the i.i.d, process and the point transformation in
terms of a weighted point transformation. We show that if r is a measure preserving
mapping on the probability space (X, , m), qb is a strictly positive measurable function
on X with E(b[r-l,E) 1 a.e., and {4, b% b r2,...} is a statistically independent
process, then , the closed L2 span of {1, 4, 4 r,...), is a proper subspace of L2.
Further, is a reducing subspace for the point transformation Uf f and ’+/- is
infinite dimensional. We also establish necessary and sufficient conditions for the
invariance of under the weighted composition operator Tf bf and show that

is never invariant for T. The paper concludes with an example illustrating all these
properties.

2. Preliminaries. Let (X, E, m) be a probability measure space and for each p _-> 1,
LP LP(X, E, m) over C. (LP) is the ring of bounded linear transformations from Le

into LP. We shall be concerned in this paper with weighted composition operators
T T6, defined as follows: Let r be a measurable mapping of X onto X such that the
measure m r-l(A)- m(r-l(A)) is absolutely continuous with respect to m. Further,
suppose b is a strictly positive measurable mapping ofX to R. Then we set Tf qb f r
whenever the resultant function is in the appropriate space. The properties and notation
of weighted composition operators are developed in [2]. For coherence we briefly
review some of the pertinent information. We set r to be the n-fold composition of r

with itself and let En (f) be the conditional expectation of f with respect to z-hE. Define
n--1n (X) H k=0

( ,/.r (X). One sees easily that

T’f=6, .for.
Throughout this paper we will be concerned only with the case that z is a measure
preserving, i.e., dm r-l/din 1 a.e. dm. In this case IIT]IP (the norm of T in 3(LP)) is
seen to be ]]EI(bP)I[P. The conservative set for T is

{r }C(T)= x E (T"l)(x)=oo
n=O

* Received by the editors August 31, 1978, and in revised form August 13, 1979.
t Department of Mathematics, University of North Carolina at Charlotte, Charlotte, North Carolina

28223.
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(note that T 1 bn) and D(T) X- C(T) is the dissipative set for T. See [1; Chap. II]
for a general discussion of these sets. A set S E is an invariant set for T if T* 1 s 1 s. 1 s
is the indicator function for S. The following results are proved in [2].

PROPOSITION 2.1 [2; 4.3]. C(T) is the largest 7.-invariant subset of {xlb(x)= 1}.
PROPOSITION 2.2 [2; 3.2]. The following are equivalent"
(a) T is an isometry on LI"
(b) X is an invariant set for T;
(C) El(b) 1.

-1We shall on occasion write expressions such as El(f) 7- This is well defined because
one easily sees that since E(f) is r-v measurable, there is a Y.-measurable function h
such that El(f)= h r.

Throughout this paper function statements are to be interpreted as true a.e. dm
and set statements are to be interpreted as true modulo the m-null sets. Fbr example if
rn (A fq B) 0 we will simply write A (q B .

We shall refer to the composition operator U given by Uf f r. This operator is
isometric and doubly stochastic on every L" space, 1 <= P < oo. We shall often make use
of the fact that for any measurable f and g and any K -> 1 El(f. g r:) [El (f)]g r:.
We reserve the notation E(f) for the mean, f din.

-1It is shown in [2] that T*f El(f) 7.

3. Independence and invariance. We assume throughout that T T, is an
isometry on L, bounded on L2, and that b is not identically one. We assume further

2that {b, b z, r ,...} is a statistically independent process. Since r is measure
preserving we see that they are identically distributed. Set p [[b 1112

1, n 0,
n--1e(x)=

(1/p)(&o 7. -1), n =>1.

Since E(bo rg) E() 1 and [Id r 1112 II, 1112 p, {e,}=o is an orthonormal
sequence in L. Let g be its closed linear span. Of course is the span of
{1, , r,...} as well.

THEOREM 3.1. is a proper reducing subspace for U.
Proof. It is clear that 0 and U . Moreover U*eo e0 and in general

U*f (Exf) z 1. Thus U* E() r
-1 1 and U*( rK+I)

EI( yK+) Z
-1

zK E This proves that is invariant for both U and U*. It
remains to show that # L2.

Let K be a nonnegative integer. Then

eo) [ " r
K+I am(T( TK)

=1;

K [ K+I(T(or),e)=(1/O) .or .(-1)
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However, for n other than 0, 1, or K + 2,

(T( rK), e,)= (l/p) rK+I ( r 1)

(l/p)[I (-1)] =0.

Thus, if P is the orthogonal projection of L2 onto $’, we have for any K _-> 0

P[T(& rK)] P(& TK+I)
1 + pel + peK+2

1+( --1) + ( rc+1-1)

=+4’ z:+- 1.

We will now use these equations to show that for some K, . r
:/1 is not in .

Indeed, suppose all these functions are in $’. Then for all n >= 1 we have r"
+ r" 1, or equivalently ( 1)( z" 1) 0 for all n => 1. Let S {xl(x) 1}

andS, ={xl& z"(x) 1}= --"S. Set 1S,. Then X- S __. 9. Now r-
f3 r .= r-"S

__ . But since r is measure preserving we have r- B.
Now by Proposition 2.1 C(T)_S hence X-SgD(T)B. However on B.(x)
(x). ’"-(x)= (x) so E,=1 - a.e. on B, i.e., B

_
C(T). Thus X-$_

D(T) fq C(T) ;. That is X S. But by assumption is not identically one. Therefore
$ is a proper subspace and the proof is complete.

We have just seen that ’- 0. We now strengthen this result considerably.
THEOREM 3.2. " is infinite dimensional.
Proof. We know that ’+/- 0 and reduces U. Suppose 8’+/- is finite dimensional.

Then +/- has an orthonormal basis of eigenvector.s for U 1"3; Chap. 3]. Moreover if
f 0 and Uf el, then la[ 1 and f 6[ r. Also from the proof of Theorem 3.1, there
is a K>=I such that O.@or-P(.@ozK)=(-l)(@orC-1)E. But if
U[ a]’ then

((-1)(or -1),f)=a (-1)(orc-1)[or

O I E1(b 1)( 7.K 1)([ r)

=0.

This is a contradiction; hence 8’- is infinite dimensional.
Remark. Theorem 3.2 may be replaced by the stronger statement that the

eigenfunctions of U don’t span ’-.
We have seen that 8’ is invariant for U and U* but definitely not invariant for T.
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We will show that +/- may be invariant for T.
THEOREM 3.3. The following are equivalent:
(a) Tg-(b) T*
(c) T*& is constant;
(d) T* is in .
Proof. Statements (a) and (b) are equivalent for any Hilbert space operator. We

compute P(T*) as follows:

(T*,eo) I T* E(2) 2)[
"+’ 1])(T*, e,,+l)= (, Ten+l)--" (1/p)(, . [ r

=(l/p) 2. or &

Thus P(T*) 2 a.e. so (b) implies (d) and (d) implies (c). The equivalence cycle will
be closed if we show that (c) implies (b). We now proceed to do so. Assume (c). Since
T*eo eo we have as well that T’el (1/p)(T* T*eo) is in $. But for n _->2,

n--1 -1T*e, (lip)El(&[& r 1])o r

(I/p)[EI( &o -/-n-l) ,/.-!_ 1]
n-2(1/p){[El()o r-1] r 1}

n-2=(l/p)(& or -1)

en-1.

This shows that if T* is in g then T* g
___

g, and the proof is complete.
COROLLARY 3.4. T*$

_
ifand only if Tis a scalarmultiple ofan isometry on L2.

Proof. Since

[ [EI(2) g-1][fl
T is a scalar multiple of an isometry if and only if T* E() r- is constant almost
everywhere. By Theorem 3.3 this holds if and only if T* g .

The following example shows how all the restrictions placed on in the above
results may occur. We use Example 5.1 of [2].

Example. Let X [0, 1] and let m be Lebesgue measure. Let r be given by

2x, Ox,
r(x)=

2-2x, <xl
and

i O<x <1/2,
(x)= 1/2<x<__l.

Then T T6, is an isometry on L and r is measure preserving. We show first that, r, are statistically independent. Let fi & r, 0, 1, . It suffices to show
that for any finite collections A1,"’, A. of (nonempty) open intervals and any
collection K1, K2,’’’, K. of nonnegative integers with only K1 possibly 0, that
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Note that fl (A)= z-K (-1(A)). We proceed by induction on n. Suppose n 2. We
must show that

m (r-K’(-(A)) VI r-g+K) (-1(A))) m(r-q(-(A 1)))
(1)

m(r-(K+K2)(t-I(A2))).
This last expression reduces to m (b-X(A 1))" m (b-X(A2)) since r is measure preserving.
The left-hand side of the above equation may be rewritten as

(2) m (-X(A) Il r-K2(q-X(A2))).

Note that for any interval A, -(A) is one of the four sets ;, [0, 1], [0, 1/2], [1/2, 1]. If
t-l(Ax) is either ; or [0, 1] (1) holds. Moreover, if (1) holds whenever &-(A) [0, 1/2]
then it is easy to see it holds whenever -1(A1) is [1/2, 1]. Thus we assume b-(A.) is
[0, 1/2]. Then (2) becomes m([O, 1/2]CIr-K(-X(A2))). But K2 > 1 and the graph of -(hence .K, K >= 1) is symmetric about 1/2. Thus

m([0, 1/2] "/’-K2(t-I(A2)))=1/2m(T-K2(t-X(A2)))
1/2m (&-I(A2)),

showing (1) holds.
Now assume the result holds for n 1. As before we assume -1(A1) [0, 1/2]. Then

m(&-(A 1) CI r-r- (A2) VI r-(c+’’’+r") (A.))
--(K3+.. "+Km([0, 1/2]n r-g[ 1(A2)(’]... nr (A,)])

1/2m (-1(A2)’" r-g+’’’+K") (A.)).

This last expression is, according to the induction hypothesis.,
1/2m( -l(A2)) m (& -l(A. )). The proof of independence is complete.

This example in fact illustrates the invariance of g under T*. By Theorem 3.3 we
need only show that E1(2) is constant. Routine calculation shows that for any f

Now

E(f)
f(x)+f(1-x)

0=<x
1/4,

so EI(&) (-+1/4)/2 = on [0, 1]. Using other step functions and the same z as in the
preceding example one may generate examples where E()--1 but

2{, % r .} is not an independent process. It would be interesting to see if the
resulting space g is proper under looser hypotheses than those imposed in this paper.
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HOMOGENEOUS GENERALIZED TEMPERATURES*

Dedicated to the memory of Joaquin B. Diaz

DEBORAH TEPPER HAIMOt

Abstract. For the generalized heat equation uxx +(2v/x)ux ut, v >0, there are two basic kinds of
homogeneous solutions of nonnegative integral degree n and two of negative degree -n 1 2v, 0 < v < 1/2.
Criteria are established for the expansion of generalized homogeneous temperatures in series of these basic
solutions. The results parallel, in part, those of D. V. Widder for the classical heat equation.

1. Introduction. In a number of papers [9]-[12], D. V. Widder studied those
solutions of the classical heat equation ux, u, that are homogeneous of either positive
or negative integral degree. He determined that there are two fundamental kinds of
each, and established various criteria for the representation of any solution of the heat
equation in series of these basic homogeneous solutions.

We seek to extend some of the Widder results to the generalized heat equation
Uxx + (2v/X)Ux u, v >0, where the homogeneous solutions to be considered will be of
nonnegative integral degree n or of negative degree h =-n- 1- 2v, 0 < v < 1/2.

2. Definitions and preliminary results. The generalized heat equation is given by

Axu (x, t) 2--7. u (x, t),
Ot

where the operator A is defined by

2v
(2.2) Af(x)=f"(x)+--f’(x), v >0.

x

We denote byH the class of all C2 solutions of (2.1), and call a member u(x, t) of H
a generalized temperature.

The fundamental solution of (2.1) is the function

(2.3) O(x" t) (-t)
+1/2)

e-(X2/4’),

and its associated function is

(2.4) G(x, y; t)= ( l".)
v+(I/2)

-((x2+y2)/4t), (X_tt)
where

(2.5) 5 (z) 2 v-l/2)F(v + 1/2)z /2)-vI_a/2)(z),
I, (z) being the modified Bessel function of order

We denote by H* the class of all those members u (x, t) ofH for a < < b which, for
all t, t’ with a < t’ < < b, have the semigroup property

u(x, t)= I G(x, y; t-t’)u(y, t’) d/x(y),

(2.6)
y2dy

dtz(y) 2./F(v +1/2),

* Received by the editors October 3, 1978, and in revised form August 13, 1979.
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the integral converging absolutely for a < < b. A member of H* is said to have the
Huygens property.

We introduce the Appell transform uA(x, t) Of a generalized temperature u(x, t)
given by

(2.7) uA(x, t)= G(x; t)u(x/t, -l/t).

It is well known that if u (x, t) H* for 0 < a < < b, then uA (x; t) H* for 1 / a < <
-1/b. See, for example, 18, Lemma 2.6].

A generalized temperature u (x, t) is said to be homogeneous of degree a if, for any
h>O,

(2.8) u(Ax, A 2t)= Au(x, t).

The definition corresponds to that of the homogeneity of u (x, z) in the classical analytic
sense. We denote by M the class of all homogeneous generalized temperatures of
degree a.

The generalized heat polynomials are the polynomials

(2.9) Pn (x, t)
k--O k F(,+1/2+n-k) x

and their Appell transforms are the functions

(2.10) W..(x, t) G(x t)P..(x/ t, -1 / t).

In earlier papers [3]-[8], various criteria, particularly those involving membership in
H*, were established for the representation of generalized temperatures in series of the
generalized heat polynomials P..(x, t) and of their Appell transforms W..(x, t). We
note here that the P.,(x, t) are homogeneous of degree 2n, whereas the Wn,(x, t) are of
homogeneity -2n 1 2v.

Function theoretic properties will be central in the characterization of generalized
temperatures that are expandable in series of basic homogeneous generalized
temperatures. To this end, we introduce the class {tr, r} of all entire functions p that are
of order at most tr, and if of order tr, of type at most r. A function 0 {r, r} is said to have
growth {or, z}. We note that for q {tr, z} with q of order less than tr, z O. Hence we
have e {1, r}, and also, e {1 + e, O} for every e > O.

It is clear that a function cO has growth {r, r} if and only if, for any e > O,

(2.11) (z)= O(e(+)lzl), ]z’[ .
Further, if p has the Maclaurin expansion

(2.12) o(z)

then q {or, z} if and only if

(2.13) li--- nla,,I’/’’ <-eo’r.

3. Basic homogeneous temperatures. A function u(x, t) belongs to class M., n a

positive integer, if and only if, for h > 0,

(3.1) u(hx, h 2t) h nu(x, t).

By choosing h 1/x/, we have

u(x//, 1/2)= (1/x/t)"u(x, t),
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or

(3.2)

where

(3.3)

u (x, t) (2t)"/Z[(z),

f(z) u(z, 1/2), z

Noting that u(x, t) in (3.2) satisfies the generalized heat equation Axu ut, we find that
f(z) must satisfy the ordinary linear differential equation

(3..4) f"(z)+ z f’(z)-nf(z)=O.
z

If f(z) and f(z) are linearly independent solutions of (3.4), then all functions u(x, t) of
M must be of the torm

u(x, t)= (2t)"/2[Clf(z)+ c2fz(z)],

with c1, c2 arbitrary constants, or of the form

(3.5) u(x, t)=cu(x, t)+czu2(x, t),

where Ux(X, t)=(2t)"/2f(z), u2(x, t)=(2t)"/zfz(z) are a linearly independent set of
homogeneous generalized temperatures of degree n. To determine such functions, we
recall that the generalized heat polynomials P,.,(x, t) are homogeneous of degree 2n
and, as established in [5, Lemma 2.1], have the integral representation

(3.6) P,(x, t)= G(x, y; t)y d(y), t>0.

This suggests the introduction of the functions

(3.7) S,(x, t)= G(x, y; t)y d(y), t>0,

which clearly belong to M, andwhich we take as u(x, t). We call these functions basic
homogeneous generalized temperatures of degree n of the first kind.

To determine unctions u(x, t) that will satisty our needs, we seek ones that will
have symmetry of form with u(x, t). To this end, we define, tor 0 < < 2

2+(/2)
1/2)(3.8) X(z)

whereK(z) is the modified Bessel function of the third kind. In addition, we introduce
the function

(3.9) H(x, y t)()v+(1/2)_((x2+y2)/4t)ffff(X)e

the modified associated fundamental solution. We then take for Uz(X, t) the functions

(3.10) R,(x, t)= H(x, y; t)y d(y), t>0.

readily confirmed to be linearly independent of S,(x, t). These functions belong toM
and will be called homogeneous generalized temperatures of degree n of the second
kind.
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We thus have the following result.
THEOREM 3.1. A function u(x, t) is a homogeneous generalized temperature of

degree n if and only if
(3.11) u(x,t)=AS...(x,t)+BR...(x,t), t>0,

A, B arbitrary constants.
For homogeneous generalized temperatures of negative degree -n- 1-2u, we

introduce the functions

(3.12) s,.(x, t) y" e’Y25(xy) d/x (y), < 0,

of the first kind, and

(3.13) r,.(x, t) y" etY2Y[(xy) d/x (y), < 0,

of the second kind.
As may be readily verified, the Appell transformation establishes a duality

between homogeneous generalized temperatures of positive degree and those of
negative degree. For the basic homogeneous generalized temperatures, we have, in
particular, the following result.

THEOREM 3.2. For n O, 1, 2,. ,
(3.14)

(3.15)

A (X, t) 2-n-l-ZSn.(X, t),S n,

A (X, t) 2-"-1-2// (x, t).

As a consequence of Theorems 3.1 and 3.2, we obtain the totality of homogeneous
generalized temperatures of degree -n 1- 2,.

THEOREM 3.3. A /’unction u(x, t) is a homogeneous generalized temperature of
degree -n 1 2 u, 0 < < 1/2, i] and only if

u(x, t)= as..(x, t)+ br..(x, t), < O,

a, b arbitrary constants.

4. Properties ot the basic homogeneous generalized temperatures. The operator
A,, reduces the degree of homogeneity of a homogeneous function by two. In particular,
Ax transforms the basic homogeneous generalized temperatures of negative degree into
themselves, but those of positive degree into combinations of themselves. A straight-
forward computation yields the following result.

THEOREM 4.1. For n O, 1, 2,. ,

(2) 1
(4.1) AS.(x,t)

x +2n+2u+12t S(x’t)---4S+2"(x’t)’" t>0;

2

(4.2) AxRn.u(x, t) "lt2 2n+2u+l)R, (x, t) 1---R +2.(x,t) t>0+
2t . -4t2

(4.3) As..(x, t) Sn+2,u(X, t), < O,

(4.4) Ar..(x, t) r.+z.(x, t), < 0.

Recurrence relations may likewise be derived for the basic homogeneous general-
ized temperatures as given in the following theorem.
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THEOREM 4.2. For n 0, 1, 2,.

(4.5)

(4.6)

(4.7)

(4.8)

Sn+4,v(X, t) [x 2 + 2t(2n + 2v + 5)]Sn+2,(x, t)

-4t2(n + 2)(n + 2v + 1)S,,,(x, t),

Rn+4,v(X, t) Ix 2 + 2t(2n + 2v + 5)]R,+2,(x, t)

-4t2(n + 2)(n + 2v + 1)S,,(x, t),

1
s,+4,(x, t) -{[x- 2t(2n + 2v + 5)]sn+2,(x, t)

-(n + 2)(n + 2;, + 1)s..(x, t)},

1
rn+4.(x, t) -Z{[x2- 2t(2n + 2v + 5)]r.+z.(x, t)

-(n + 2)(n + 2v + 1)r,..(x, t)},

t>0,

t>0,

t<0,

t<0.

We note that by evaluating the four functions So,(x, t), sl,(x, t), to,(x, t) and
r,(x, t), and appealing to Theorems 3.2, 4.1 and 4.2, we may recursively derive all the
basic homogeneous generalized temperatures s,,(x,t), rn,(x,t), $n,(x,t) and
R,,,(x, t). The values of these four functions are

(4.9) So,(x,t) (tt)
v+(1/2)

e -xz/(40 t<O

(4.10) sx,(x, t)= 2+(/2)F(v + 1/2) F v + 1; v + 1/2;

where 1Fl(a, c; x) is the confluent hypergeometric function,

(411) ro.(x,t)
/’\
/ "71

v+(1/2)

e_XZ/(4,) /(4t))F(1/2-v,-x
\ Zt/

where F(a, x) is the incomplete gamma function e-Uu a- du,

t<0,

t<0,

(4 12) r,(x, t)=sx,(x, t) 2-(3/:Z)r(-)ll,p)
1-2 -3/2 (23_ xt),-,,3_ x (-t) 1F1 ;- u; < 0.

By an appeal to [2, p. 197(20) and p. 199(37)], the integrals defining the basic
homogeneous generalized temperatures may be evaluated explicitly. We then have

(4.13)

(4.14)

(4.15)

(4.16)
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with these equations serving to define the functions S,.,, R,., s,,., r,,,, for all t.
It is then immediate that, for > 0,

(4.17)

(4.18)

(4.19)

(4.20)

5. Estimates. From definition (2.4), it is clear that, for any 8 > 0,

(t+ 8) u+(1/2) x:/(4,3)_y:/(4(t+,3)).,[ t+6 t(t+ 8))(5.1) G(x, y, t)= e cr,x---, y;- 8 -..
We then have that, for > 0,

S,.(x, t)= G(x, y; t)y" d/x (y)

(5.2)

(t’-
+(1/2’ I: ( + 6

e x2/(48) G xT, y

Appealing to the inequality

t(t+6)) e
6

-y-/(4(+))y dtx (y).

we find that

S,.(x, t)<--(t
(5.4

()+(/
xZ/(46) 2n(t+6)]e

eX2/(48)[2n(t +e

n/2 [ t+6
Olx-T-, y;----

t(t +
d/x (y)

6
n/2

So. x, a
We have, however, that

(5.5) So.,(x, t)= 1.

Hence

(5.6) S..(x, t) <
+ 6 2n(t+8)] "/z.

e

We have, further, the readily established inequality
1--2v

(5.7) IX(x)l- :(x) X /

so that, noting definitions (2.4) and (3.9), we have

(5.8) IH(x, y;t)l<--G(x, y;t) 1 +
xy

whence it follows that, for > 0,

(5.9)
1-2v

\4tl
S,+l-2,(x,t).
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(5.10)

On the basis of (4.17), (4.18), (5.6) and (5.9), we have the following result.
THEOREM 5.1. For > 0 and 6 > O,

ISn,(x, +t)l < (__ff._)t+6
v+(1/2)

+x2/(46) [2n(t+6).],/2e
e

t+6 v+(1/2)

[2n(t+ 6)]
n/2

T) dzx2/(46)IR,.(x, +t)l <= e
e

[ (Ixl]l<(2(n+l-2v)(t+6l)/z)-(n+l+2v)1+\4t] e n

(5.11)

(5.12)

we have

From (4.13)-(4.16), noting that

1Fx(a, c x)= eXlFl(C- a, c;-x),

(5.13) s.(x, t) /l\/t)
n+v+(1/2)

--x2/(4t)Sn,e (x, -t),

(5.14) r.(x,t) e-X/4’)R...(x, -t).

From these equalities and Theorem 5.1, we have the following estimates for the basic
homogeneous generalized temperatures of negative degree.

THEOREM 5.2. For > 0 and 6 > 0

(515) [sn. (x, +t)l <(t
+(x/2)

[:.(,+.)/(4,.) n(t + 6)]e 2et2 j

(5.16)

Ir.,(x, +/-t)[ <---- (t-
+</z)

eX2(,+)/(4,) [ n (t + 6)]2et2

[ (Ix[’ -2, (2(n + 1- 2v)(t + 6))
(1/2)-v

(n.1+
\4t! e

Since 5(x)->_ 1, we also have, for > 0, the inequality

Sn,v(x, t)-- (t)
v+(1/2)

e-X2/(4t) Io e --Y2/(4t),(X-tt)ny d/z (y)

v+(1/2)

(5.17) => e -xV(4t) Io e-Y/(4t)y" dlx (y

2.t./2 F(n/2 + v + 1/2)
F(v +1/2) e

Appealing to (5.13), we then have the following result.
THEOREM 5.3. For > O,

(5.18) IS. (x, +t)l>2"t"/2F(n/2+v+1/2) :x2/(4t)e

(5 19)
\zt/ F(v +1/2)
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6. Regions of convergence. The series in terms of the basic functions of Mn
converge for 0< Itl < r, whereas those in terms of the basic functions of M-,-1-2
converge outside a strip, as established in the following results.

THEOREM 6.1. If

(6.1) lim n[a.I2/" e
n-c 2T

then the series

(6.2) Y a.S.,(x, t)
n=O

converges absolutely for 0 < ]t[ < r and uniformly on 0 < Itl < b < r, Ixl <--- c.
Proof. We have that, for 0 < r <,

(6.3) li--- n la. [2/n e

implies that, for 0 < 0 < 1,

(6.4) a,, O(;nb) ,/2,
Using (6.4) and (5.10), we have that, for > 0, the critical series that dominates

(6.5) E la.S.,(x, +t)[
n=O

is the geometric series

(6.6) 2
.=0

which converges for

(6.7) b + 6 < tO.

Since may be taken arbitrarily close to 0, and 0 to 1, the absolute and uniform
convergence of the series (6.2) follows by the Weierstrass M-test.

The proof of the analogous result for basic members of M, of the second kind is
similar and we have the following.

THEOREM 6.2. If

(6.8) lim nla.[2/"
e

,,-. 2-r

then the series

(6.9) E a,R,.(x, t)
n=O

converges absolutely for 0 < It[ < r and uniformly on 0 < a _-< Itl =< b < r, Ixl c.
For negative homogeneity, we have parallel results and will omit the proofs.
THEOREM 6.3. If

(6.10) li--- nla.[z/" 2ez,
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then each of the series

(6.11) 2 a.s., (x, t)

and

(6.12) a.r..(x, t)

converges absolutely ]:or It[ > r.

7. Membership in class H. Each of the series of basic functions belongs to class H
within its region of convergence, as we establish next.

THEOREM 7.1. Let

(7.1) u(x, t)= , a.S..(x, t),

the series converging at (Xo, to), 0 < Ito[ < z. Then u (x, t) is a generalized temperature for
0 < It[ < z, and

(7.2) u(x, O)= E a.lxl"
n=0

belongs to {2, 1 / (4z)}.
Proof. Since the function S..(x, t) belong to H, so will the series (7.1) if we can

establish that

(7.3) --u(x,t)= E a. S,(x,t).
Ot =o

To justify differentiation under the summation sign, we must show that the series in
(7.3) converges uniformly.

That this is so can be established on noting that, for > 0, by (4.1),

[(x 2n +2u+l) 1 ](7.4) .2= a.S.,(x, t)=
.=o’ a. +

2t
S.,(x, t)---S.+2,(x, t)

The convergence of the series (7.1) at (Xo, to) for any to, 0 < to < z, implies that
a.S..(Xo, to) tends to zero with n. It then follows that, by (5.18)

(7.5)

or, by Stirling’s formula,

( 1 )a. 0
S..(Xo, to)

r(+)
0 2.t/zF((n/2)+u+1/2 n --- (x3

(7.6) an
\zn/o/

The uniform convergence of (7.4) then follows in the region Ix] < R, 0 < tl < < t2 < to
on applying the estimates (7.6) and (5.10) to the right of (7.4). Since R and to are
arbitrary, we have the series (7.1) in H for 0 < < z, with an analogous computation
establishing membership in H for negative time -z < < 0.
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Finally, from (7.1), the definition of Sn.(x, t), and its evenness as a function of x, we
have (7.2). Moreover (7.6) implies that

2e
(7.7) lim n fan ]2/n

which establishes that u(x, 0)6 {2, 1/(4r)}.
We can prove the following somewhat weaker theorem for Rn,(x, t) in the same

way.
THEOREM 7.2. Let

(7.8) u(x, t)= Y, anRn,(x, t),
n=0

the series converging at (0, to), 0 < ]to] < r. Then u (x, t) belongs to class Hfor 0 < [tl < r.
Further,

(7.9) u (x, 0) a,x
n=0

is of growth {2, 1/(4r)}.
For series of basic functions of negative homogeneity, we have corresponding

results which we state without proof.
THEOREM 7.3. Each of the series

(7.10) u(x, t) 2 anSn,(x, t), It[ > ’,
n=0

and

(7.11) u(x, t)= anrn,(x, t), Itl>r,
n=0

belongs to class Hfor ]tl > r.

8. Representations in series of ,q.,v(x, t). We now obtain, as a principal result, a
characterization of those functions u(x, t) that can be expanded in series of the basic
homogeneous generalized temperatures S,,(x, t).

THEOREM 8.1. A necessary and sucient condition that a function u (x, t) have the
series representation

(8.1) u(x, t)= anSn,(x, t), 0<ltl< r,
n=0

is that

(8.2) u(x, t)= G(x, y; t)0(y) dtx (y),

(n)where 0 {2, 1/(4r)}. The coefficients an =o (O)/nt.
Proof. Let u(x, t) have the representation (8.2) with

(8.3)

of growth {2, 1/(4r)} so that

q(x)= anx
n=0

(8.4) lim nla.Iz/"
2e

0<t<r,
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Then, provided that termwise integration is valid, we have

u(x, t)= G(x, y; t) a,y" d(y)

( G
.0

2 aS.(x, t).
n=0

The interchange of summation and integration is justified provided that

Io(8.5) G(x, y; t) [a, ly" dz(y)<.
We note, however, thato la-[Y" {2, 1/(4z)}, and hence, by (2.11), for t>0,

(8.6) [a,[y" O(e(1/(4)+)Y)2, y o.

It follows that the integral (8.5) converges for 0 < < -/(1 + 4er) and so for 0 < < r. We
thus have established the sufficiency of the condition for 0 < < -, and by Theorem 6.1,
for 0 < It[ < r.

Conversely, assume that (8.1) holds. Then, as in the proof of Theorem 7.1, for
every < -,

(8.7) li--’- n la,, z/" <-
e

and so

(8.8) lim nla.[2/" < e__
r-o 2r"

Using a, as coefficients, we now define a function by

(8.9) q(x)= a,,x",
n=O

and note that as a consequence of (8.8), p {2, 1/(4-)}. If we now evaluate

y; t)q(y) d/x (y),

we determine, by the first part of the proof, that the integral (8.10) is equal to u (x, t). We
thus have established the necessity of the condition.

The determination of the coefficients a, as equal to q(")(0)/n! is immediate.
The theorem may be illustrated by the function

v+(1/2)

(8.11) u (x, t) (-t) e x2/,4,,-t),

As established in I-5, Lemma 2.4], u(x, t) has the series expansion
o ! S(8.12) kO= 22-.:k! zk,(x, t)
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and, further, it is the explicit value of the integral

ya/(4-)(8.13) G(x, y; t) e d/x (y),

where e y’/(4") clearly has growth {2, 1/(47)} as predicted by the theorem. We note that
the series (8.12) converges for 0< < -, and indeed, by Theorem 6.1, for 0< Itl < .
We find, however, that

kF(k-u-1/2)
kL $2 v(0, t)= E22kT"kk! k=O rkk!F(u +1/2)

diverges for 7-. It therefore follows that the strip of convergence of the series (8.1)
cannot be extended. The integral (8.13) converges for 0 < < -, and, indeed, if - is
negative, for all positive t.

9. Representation in series ot s.,(x, t). For a theorem analogous to that of the
preceding section for series of basic homogeneous generalized temperatures of negative
degree of the first kind, we take advantage of the duality provided by the Appell
transform.

THEOREM 9.1. A necessary and sufficient condition that a function u (x, t) have the
representation

(9.1) u(x, t)= E a.s..v(x, t), It[> ’,
n=O

is that

(9.2) u(x, t)= etyaS(xy)q(y) d/x (y),

where {2, r}. The coefficients a, q (")(O)/n !.
Proof. We have that

(9.3) u(x, t)= | e’YaS(xy)q(y) d(y),
ao

with q {2, -} if and only if

(9.4)

where

-< t<-r<0,

-< < -" < 0,

uA(x, t)=G(x;t)Io e-Y-/’5() (y) dtx(y),

G(x, y; t)(y) dx (y),

(9.5) (y) 22,,+1q

1
0<t<-

so that e {2, -/4}. By Theorem 8.1, however, (9.4) holds if and only if

(9.6) uA(x, t)= E b.S.,(x, t), Itl <--
n=0 7"

with

(9.7)
o(n)(o)
n
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Substituting (3.14) in (9.6), we have

(9.8) ua(x, t)= 2"+2+lb.s.,(x, t),
n=O

or

(9.9) u(x, t)= a,s,.(x, t),
n=O

where

an 2n+2v+lh

(9.10) 2n+2+1 (I)(n)(O)

"(0)
n!

and the proof is complete.
The theorem may be illustrated by the function

u(x, t)= G(ix, -t-r),(9.11)

which has the integral representation

(9.12)

1

<-z < O,

I; e(’+)Y2(xy) dtz (y),

10. Representations in series of R..v(x, t). We characterize those functions which
have series expansions in terms of the basic homogeneous generalized temperatures of
positive degree of the second kind. The proof is substantially that of Theorem 8.1 and
will be omitted.

THEOREM 10.1. A necessary and sufficient condition that a function u(x, t) have
representation

(10.1) u(x, t)= a,R,.(x, t), 0<It[< z,
n=0

is that

(10.2) u(x, t)= H(x, y; t)q(y) dx (y),

with o {2, 1/(4r)}. The coecients a o((O)/n!.
We illustrate the theorem by the example

v+(1/2)1 (Tt) X2/(4(r__t))((10:3) u(x, t) F(1/2- v)
e F -v + 1/2,

0<t<r,

2

xr))4t(r-

This series diverges for r so that the region of convergence of the series (9.1) cannot
be increased beyond [tl> ’. The integral (9.12) converges for <-z < 0, and for all
negative if z is negative.

,l.

(9.13) E .s2..(x, t),
n=O

where e*Y {2, -}. The function (9.11) also has the series expansion
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which is the value of the integral

(10.4) H(x, y; t) e y2/(4.) d/z (y),

with e y2/(4.) {2, 1/(4z)} as predicted bythe theorem. Further, the function (9.3) has the
series expansion

n=0Z " n:

whose strip convergence is limited to 0<]tl<z. The integral (10,4) converges for
0 < < z, and for all positive if z is negative.

11. llelresentations in series o| r.,(x, t). The Appell transform can be invoked
again and applied to Theorem 10.1 to obtain a corresponding characterization for
functions expandable in series of basic homogeneous generalized temperatures ot
negative degree ot the second kind. We state the result without proof.

THEOREM 11.1. A necessary and sufficient condition that a function u (x, t) have the
representation

(11.1) u(x, t) E a.r.,(x, t), Itl > r,
n--0

is that

(11.2) u(x, t)= e’Y2(xy)(y) d/x (y),

with {2, r}. The coefficients a. ")(O)/n!.
We illustrate the theorem with the example

1 [ 1 ](11.3) u(x, t) F..(1/2.L-,) -2(t + -)
e

which is the value of the integral

(11.4) e (’/’’Y/’(xy d (y),

and has the series expansion

n.-’O

-c < < -’r < O,

-xZl(4(t+.)) F (-v + 1/2;
4(t + r)

-oo < < -r < 0,

as the theorem requires.
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HAMMING ASSOCIATION SCHEMES AND CODES ON SPHERES*

STUART P. LLOYD,"

Abstract. A Hamming associator is defined for the unit sphere S c E"+1. The spherical harmonics are
the eigenfunctions of the associator; and the ultraspherical polynomials, the eigenvalues, corresponding to
the Krawtchouk polynomials in the binary case. A linear programming bound on the size of a minimum
distance code on S" generalizes the bound obtained by N. J. A. Sloane in the discrete case.

1. Introduction. A finite metric space is an association scheme if, given any a, b, c,
for each pair of points x, y such that d(x, y)= a, the number of points z such that
d(x, z)= b and d(z, y)=c is independent of x, y. (Typically the space is at least
two-point homogeneous under its isometry group.) N. J. A. Sloane in [1] discusses
algebraic systems induced by association schemes, and describes a linear programming
bound on the size of a minimum distance code in a metric association scheme.

The central unit sphere S in (n + 1)-dimensional Euclidean space En+l has the
orthogonal group O(n + 1) as isometry group, and is n + 1-point homogeneous. We
shall give a simple description of an associator which corresponds to the Hamming
associator in the binary case. We show that the spherical harmonics of S are the
eigenfunctions of the associator; and the ultraspherical polynomials, the eigenvalues,
corresponding to the Krawtchouk polynomials of the binary case.

The corresponding coding problem for S" is to place the largest possible number of
disjoint open spherical caps on S, each of specified angular radius a. The special value
a 7r/6 corresponds to finding the largest number of nonoverlapping unit spheres in
En/l which touch S". A linear programming bound on the size of such a code is set up,
analogous to the bound of [1] in the discrete case.

2. Polar coordinates in En/l. We will actually need very little about the explicit
form of the spherical harmonics on Sn. The formulas of [4, Chap. XI] are a challenge,
however, and we digress in 5 to present a tidy form for the spherical harmonics.
As a preliminary to this, we give a slightly modified version of polar coordinates on

S", so as to obtain a uniform notation in all dimensions. We start with n 0. The real
line E1 ={Xo -<Xo<} has unit sphere S={xoE" Xo 1}, i.e., S={-1, +1}
consists of two points. We introduce a two-valued polar coordinate 00 on SO by

cos0o=+lSO for0o=0,

cos0o=-lSO for

The radial coordinate being r +X/oo, the polar coordinate representation in E is
Xo r cos 00; the polar angle is discontinuous and undefined at the origin. In terms of
polar coordinates the Euclidean volume element is dxo dr[dOo] where dr is Lebesgue
measure on {r > 0} and where [d0o] is two unit point measures, one each at 0o {0, or}.
The 0-dimensional surface area of SO is thus

o’o I [d0o] 2.

Consider next n 1. The rectangular coordinates in E: being (Xo, x), the unit
sphere centered at the origin is $1 {(Xo, xl)E:: X2o+x 1}, and the radial coor-

* Received by the editors January 22, 1979, and in revised form August 20, 1979.

" Bell Laboratories, Whippany, New Jersey 07981.
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dinate is r +/C2o + xZx. Instead of the conventional xl r cos , Xo r sin b, 0 <_- b <
2zr, we take as our polar coordinate representation

xl r cos 01, 0 < 01 <

Xo r sin 01 cos 0o, 0o {0, ,r}.

In the half-space {x0> 0} the angle 0o has value 0, and in {Xo < 0} it has value ,r; on
{Xo 0} it is undefined. If 0 _-< 01 _-< ,r is thought of as longitude from the meridian then 0o
is the analog of the familiar designation E, W for longitudes. In conventional polar
coordinates the angle b winds clear around to 2,r, like right ascension or hour angle,
and is related to our variables by $ 101 20ol. Alternatively, if
then 01 ]b] and cos 00 sgn (b).

Let us now consider the general case. The unit sphere S" in E"+1 is S"=
{(Xo, , x,)" Xo

2 +. + x2 1}, and the radial coordinate is r +x/x20 +. + x2 Polar
coordinates for a point in general position are determined by

Xn r cos On,

xn-1 r sin 0n cos

x r sir 0n sin 0n-1 sin Oz cos 01,

Xo r sin 0n sin 0.-1 sin Oz sin 01 cos 0o,

where 0 -<_ 0n," ,
Notice that this definition places 01 on an equal footing with 02," , 0n, which are the
conventional colatitudes. In each En/l, cos 0o=sgn (Xo), Xo # 0, is constant on the
half-spaces {Xo > 0}, {Xo < 0}, and is discontinuous and undefined on {Xo 0}.

The Euclidean volume element dxo’" dxn in En+l will be written rndrdw in
polar coordinates, the n-dimensional element of area of S being

dw [d0o] fi (sinj-1 0. dOi),

for 0o," , 0, defined above. The area of S is

2.71"(n+11/2
O’n= .d ((n-I)

n>-0,

where z! always denotes F(z + 1). It is also convenient to define numbers ’1, , rn by
O’n CTO’F1 7"n i.e.,

Io’i sini-10dO B
]

(-1/2)!((]-2)/2)!
((/- 1)/2)!

U-[((/- 2)/2)!]2

U_a[((/_ 1)/2)!]2, /_->1;

’1 zr, ’3 zr/2, and ’z 2, r4
, . We point out that rl is not exceptional; the
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2 in trx o’0rx tr0 Jff dO 2r is the surface area of S. Again, the unit circle S is
treated as the union of two semicircles, each coordinatized by 0-< 0 -< rr.

3. The associator tor S". In the discrete case, the application of an adjacency
matrix Dk has the effect of summing on those points at distance k from a given point
[1, 3]. For the continuous analog it is more convenient to average, as follows. Let
C(S") denote the Banach space of continuous real functions on Sn, normed by
I111 max If(to)l. Let to S be fixed, and let the surface element dto’ of S" have polar
coordinates referred to to as pole, with 0 denoting the polar angle. That is,

to’to =COS

dto’= sin-1 0 dO d’to"

the small circle {to" to. to’= cos 0} consisting of points to’ at polar angle 0 from to is
congruent to (sin 0) S-1, and d’to’ is the element of area on the copy of S"-1:

for any 0 < 0 < rr,

sin 0 dO r,,,

do "l’ntT O’n.

For each 0 < 0 < zr we define the Hamming associator Ao" C(S) C(S") by

(Aof)(w) f [(o’) d’o’/o’,,_, osS", fsC(S"), 0<0<rr

with d’to’ as above; that is, (Ao f)(to) is an average of f over the points on S" at constant
polar angle 0 from to. For 0 0 we set (Ao f)(to) f(to) and for 0 7r we set (Ao f)(to)
]’(-to), to e S", fe C(Sn); this makes Ao continuous in 0 <- 0 <- r in the strong operator
topology. Obviously Ao >= 0 and Ao 1 1, so the operator norm of Ao is IIAoll 1, 0 <=
0 -<_ or. The property

[(Ao f)(to)] sin"-10dO/’, .f(to’) dto’/tr,, (constant in to), fs C(S")

is straightforward from the definition.
Let O(n + 1) denote the group of (n + 1) (n + 1) real orthogonal matrices. Treat-

ing to Sc En/l as a column vector, we have a group action to’= pto, to $", p
O(n + 1), which is uniformly jointly continuous. There is then an induced action

To C(S") C(S"), p O(n + 1), defined by

toeS", p60(n+l), fC(S").

This is an antirepresentation: To2Tol To,o2, with the properties To>=O, To l 1,
I[Toll 1. (The set of adjoints To* is a homomorphism which extends pto to the measures
on S".)

We will use without formal proof the property ToAo AoTo, p O(n + 1), 0 <= 0 <-

r. Geometrically the property is obvious. In (ToA0 f)(to) (Ao [)(pto) the averages over
small circles of angular radius 0 are found first, then the set of average values is slid over
S" by p-x. In (AoTo [)(to) the function is slid before the averaging is done; the rotational
invariance of the family of averaging measures will be taken for granted.
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Let do denote Haar measure on O(n + 1), with normalization do 1. If <o is fixed
then dp sweeps to’= pro uniformly over S, in the sense

f f(pto) do f (’)do’/, (constantin ), C(S");
(n+l) Js

this is well known [2], [3].
For lp we denote by L(S") the usual Lebesgue real function space

Lo(S", do/,); for 1 p < the norm is

All functions being real valued, the pairing (scalar product) is

([, g)= s.(o)g(o)d/.,
symmetric in f, g. Operators Ao have extensions Ao Lp(S) Lo(S) satisfying IIAollo
1, 1 p . This is clear for p ; for 1 p < assume first that [ C(S"). Then, for
any

s ](Af)(’)]
(+1)

(n+l)

(n+l)

[Ao(ToI fl)](w) dp (by Jensen’s inequality)
(n+l)

[11 11] (constant in )

atter some interchanges of the order of integration. The result stated now follows from
the usual approximation arguments. The property

[Is ][Is ](Aof, g)sin-x ede/r =(f, 1)(1, g)= f()d/ g(’) d’/

derives from a property of Ao given previously.

4. Polar polynomials. Polar (or ultraspherical or spherical) polynomials P) (x) for
S are defined by generating functions

1
n2:[l+t2-2tx]

1 l 7 ,pX)1. P)(x)= 1, log[+t:,:tx],/:= (x), -1x1,

n o. [ + - 2tx]/ 1 tx E (-1)’tlpi) (x), x {-1, 1}, [tl < 1.
/=0



492 STUART P. LLOYD

In terms of the Gegenbauer functions C; (z) [4, Chap. 3] these are

(n 2)!/! CI,,_1)/2 (x)P") (x)
(n 2 + l)!

=2Fl(-l,n+l-1;n/2;(1-x)/2), n>=l

and this serves to define P")(x) for complex n, l, x except for n 0, -2, -4, . We
will always have nonnegative integer values for n, l, and if n >_-1 then Pl")(x) is a
polynomial in x of exact degree l, even or odd in x for even or odd l, respectively.
Associated with P")(x) is the important normalization constant

d,) (n+l)! (n+l-2)!
n=>0, l=0,1,...

n!l! n !(1- 2)!

the second term vanishes for 0, 1. The dn) are integers, positive when n _-> 1, and will
be discussed later.

Certain values are, for n 1, 2,. and -1 <-x <_- 1,

PI") (1) 1 _-> [PI") (x)[, ->_ O,

p(o")(x) 1, d0") 1,

P]") (x x, d]") =n+l,

P2") (x) (n + 1)xz- 1 d(,) n(n + 3)
2 --n 2

(n 2)I/I
1+ n>-2,

and for =0, 1,...

n-O"

n--l"

n--2"

n--3"

d(o’ d) 1, d) d(3’ 0 and

P(o) (x) 1, P(1) (x) x, pO) (x) undefined for > 1

d(o1) 1, d(11) d(zx) 2 and

Pa (cos 0)= cos lO is the Chebycheff polynomial (lst kind),

dz) 21 + 1 and PIz)(x) is the Legendre polynomial,

d3) (l + 1)2 and e3)(cos 0)

x e{-1, 1},

sin (l + 1)0
is the Chebycheff polynomial (2nd kind).

(l + 1) sin 0

The well-known recurrence relations and differential equations for C(z)
[4, Chap. 3] [5, Chap. 22] transcribe to properties of P")(x). We list, for n 1, 2,..
and =0, 1,...,

xPl") (x)
n 1 + o(,,) (x) + (x),
n 1 +21TM n-l+2/

t-i (n-2+L)l
2 .’lA(n)l(n)l-I (x)en) (Y)=
t=o (n- 1)! (L- 1)!

p(’) (x)p(’) p(") (x)p(")L -I(Y)-- -1 (Y)
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"("+2m)[sinm aD(n+2m)(COS 0)]PI") (cos 0 cos y +sin 0 sin y cos b)= ._., -- l-m
m=O

[sin n(n+2m)
l--m (COS V)][d-I)P-1) (cos 6)]/dn)

when n i there is a restriction cos 1 in the last. The Poisson kernel for S En+x

derives from

l_t2

[ 2xt + t]("+1)/ ,0E " ")(x), -a x a, ]tl < a.

The P")(x) have the orthogonality property

o=P") (cos O)P) (cos O) sin- n l, O l, l’ <,O dO/z 6u,/d),

so that {ff P")(cos 0)} are real orthonormal in L") Lz([0, ], sin"--1 0 dO/z).
They are also complete, and each u e L") has orthogonal expansion

u(cos 0) E uP) (cos 0) in mean in L),
1=0

p(cos O)P (cos O) sinn- 0 dolts, O.

The completeness relation takes the form

i0[111]= (cos O)sin- OdO/,

)(/-(x)(1 -x dx/r

/=o

As indicated, ( will mean either of the equivalent spaces L([O, ], sin- 0 dO/r),
L([-1, 1], (1-x)(/- dx/r), clear from context.

g. See! es. Examination of the identity (1-t)(1-t)-(+=
(1 + t)(1 t) shows that for given integers n N O, 0, the integer d is the number
solutions of

l=lo+l+. .+l,

lo restricted to lo 0 or lo 1,

l, l 0 integers.

If 1 =(/o,/x,’’’, ln) denotes such an ordered restricted partition we call
lo +" + In the degree, and we define

mo 0,

mx to,

mz Io +

m. Io + Ix +" + ln-x.
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The real orthonormal spherical harmonics Y")(to) of degree [11 on S", relative to
probability measure dw/o’,, are taken to be (see [4, Chap. XI])

{[ 7"’4(i+2mi)’11/2Y"’ (to)= fi r-.+,, J
sin"’ Oi p}+2m,, (COS Oi) oo E

it l I sn
i=0

with the understanding that sin" 0o 0- 1 and zo/ro 1 always. We denote by the
special partition (0,..., 0,/); all m’s vanish, and

vl ( os ., e S
is the unique Y(o)) of degree which does not vanish at the standard pole
wo (0, 0, 1). For each O<-_k<-n the factor lI=o{’} in Y (to) above is
for h (lo, 11, lk) Of degree m/l; and w E S, the image of o under the mapping
(0o, 0,. , 0)-* (0o, 0,. , 0) of $ onto $.

We give the Y explicitly for small values of n or l, to make the connection with
the usual treatment.

n 0" dl 0 for l> 1, and only possible degrees are

l=lo=0 for whichY(o(to)=l, toSO

lo 1 for which Y(1 (to) cos 0o Xo/r, o) S.
These are just the angular factors of the two homogeneous harmonic polynomials 1, Xo
on E.

n 1" The partitions of degree are ! -(lo, l- lo)"

0 for which Y(o1 (to) 1,

1 (0, l) for > 0, for which

gl1) (to)= PI 1) (cos 0)=/ cos

I (1, 1) for > 0 for which

"( (o) cos 00 sn 01 (cos 0)(1,/_1)

sin lO cos 0o.

The usual treatment has e dependence on the last (hour) angle. In the present
version the factor cos 0o makes sin lO cos 0o an odd function around the meridian,
viz., sin l.

v()n 2" For I (lo, ll,/2), multiply --(lo. l (0o, 0) above by

’ o(2+2:(cos 02)2/2 sinm u2/2
T2+2m2

+ m2)
(2/+ 1)P? (cos 02) (associawd Legendre [unction.)

/=0" Y"()=I,eS",nO.
1’ If (i) denotes the partition with li 1 l,

n+lxi/r, eS, 0<i<n, n>0(i)

2" If (if) denotes the partition with li l 1, 2, 0 N < f N n,

Y(" () (n + 1)(n + 3)xixi/r2, S"(6)
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if (ii) denotes the partition with 1 2 l, 1-< <_-n,

.,,o,) (oo) (n + l)(n + 3)i[ -1 ]/2
ii 2(i + 1)

x/z -(1/i) x r2, o
i=0

The restriction lo 0 or 1 excludes 0 in the last; that there are n and not n + 1 of them
is seen from Xo

z +...+x] r2.
Since Ao commutes with every To, O O(n + 1), the Y")(o) for various I are a

complete set of eigenfunctions of Ao; we have invoked Schur’s lemma and the
Peter-Weyl theorem. Moreover, the eigenvalue of Ao for Y")(o) depends only on
l= [/[; it is thus

(aoY")(,o)=Pl"(cosO)Y"(o.,), oS", t=lt[,
easily obtained by evaluating (AoY"))(Oo).

The subspace of L2(S") spanned by the Y")(w) for fixed degree is irreducibly
invariant under the To, p O(n + 1), and the projection kernel is the well-known

X Y" (,o) Y" (o,’) dl" Pl" (o,. o,’), o,, o,’ S".

The projection Jt’L:(S")-+ L2(S") itself is

(.r,’) y. Y" (o,) f 1’(o,’) Y" (o,’) do’/,,.
Igl=/ ds

=cll" Is.l’(o,’)P" (o,. o,’)clo,’/o-,.

In this last, let us refer the integration variable w’ to o as pole:

O 0 COS 0

do’ sin"-x 0 dO d’w

with d’w’ the normalized surface area on the small circle at polar angle 0 from o, i.e.,
d’w’= cr,_x. This being the machinery for Ao, we see that

(JC’)(o))=dl" [(a0/’t(ot]el(cos O)sin- OdO/-,,,

or as an operator valued integral,

(1) J=d AoPl(cos O)sin"- OdO/r,;

this is the analog of [1, (11)] in the discrete case. The eigenvalues of Ao being as above,
the analog of [1, (7)] is

(2/ Ao Y’. Pl")(cos OlJ,.
/=0

It follows from this that Ao is selfadjoint on Lz(Sn), i.e., (Aof, g)= (f, Aog), f, g
tz(Sn), since each orthogonal projection Yl, >-- O, is selfadjoint. (This could have been
proved directly, of course.)

If we substitute (2) in the formula (1) for Y,

J d F. P}," (cos O)Jv P" (cos O) sin- 0 dO/
/’=0
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r./,--,(,,) (cos 0)}--0 in L(2n) is apparent" completeness is via thethe orthonormality of x*,,t ,-t

Peter-Weyl theorem. The discrete analog is [1, (19)]; indeed, the Krawtchouk poly-
nomials are the spherical functions of the n cube [6].

For completeness we mention the Bose-Mesner algebra, although we do not use it.
Namely, the analog of [1, (4)] is

AoA, An sinn-2 &

COS COS 01 COS 02 + sin O sin 02 cos $;

this can be shown geometrically but it is immediate from (2) and the addition formula
for the PI").

6. Polar functions, cap functions. In this section we are concerned with evaluating
the inner product

(AoG, H) fs" H(to )[(AoG)(to )] dto/o’

for functions G, H of a certain kind.
A polar function on S, with o S as pole, is a function W(to), to S, which

depends only on the angle between to and u. That is, there is a function w(x),-1 <= x <= 1,
such that W(to) w(o to), S. Using polar coordinates around o, it is easy to see
that []W]lp [[w[[, in L,(S), pr() respectively.

Consider (AoW)(to), S, where W(to)= w(o. ), S, is a polar function
around u. It should be clear geometrically that AoW is also a polar function with u as
pole; we sketch the proof, if p O(n + 1) leaves fixed, pu u, then TW W, from
w(v (pto))= w((p-Xo) to)= w(o to). There follows (aoW)(pto)= (ToAoW)(to)=
(AoToW)(to)=(AoW)(to), toeS", for every such p. Since the stabilizer {pc
O(n + 1): po o} acts as O(n) on each of the small circles around o, (AoW)(to) is
constant on the small circles, i.e., a polar function with o as pole. Thus there exists a
function (Aw)(x, y), 1 =< x, y -< 1,. independent of o and to, such that

(AoW)(to (Aw)(cos O, o to),

W(w) w(o oo), o e S".

to S’* when

To find (Aw)(x, y) explicitly we are free to choose, say, to =too, o (0,..., 0,
sin 3,, cos 3,), where cos 3, o to. The polar coordinates of integration variable to’ being
0, O’,-1, O, so that o to cos 0 cos 3’ +sin 0 sin 3, cos O’n-X, we obtain

(3)

(Aw)(cos O, cos 3,)= (AoW)(too)

1 w(o to’) d’to’/o’,-1

w(cos 0 cos 3, +sin 0 sin 3, cos &) sin-
the integrand is independent of coordinates 0,.. , 0’,-2 of to’, and we have replaced
0’,-1 by &. Note the symmetry in 0, y.

Suppose w L(n) has expansion

w(cos )= E wiP" (cos ).
l--O
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Then the spherical harmonic expansion of W(w)= w(o o) is

W(,,,) E wP" (o. ,,.,)
/=0

E [w,/dl" E Y")(o)Y")
/=0

convergent in L2(Sn). The spherical harmonics are eigenfunctions of Ao, whence

In other words,

(AoW)(w) E [w,/dl")]Pl")(cos 0)
/=0 l/l=/

E w,P") (cos O)P") (o. ).
/=0

(Aw)(cos 0, cos 3’)= E wt.PI") (cos O)PI") (cos y) if
/=0

(4)

W(COS T) X wIPn) (COS Y), W 6 L2").
/=0

This is also straightforward from (3) and the addition formula for PI").
Now we take up (AoG, H) for the case where G, H are each polar, with poles at

angle X, 0 <= X <= r. Since Ao commutes with each To, we may rotate coordinates so that
G has pole wo; let H then have pole o. By the above, if G(o)= g(cos 0,) has pole wo
then so does (AoG)(w)= (ag)(cos 0, cos 0,), so

(aoG, H) f h(o w)[(ag)(cos O, cos 0,)] dw/cr,.
as

If we integrate first coordinates 0o, , 0,-1 of to we find

f h(v o) sin Oz" dO,-1 o’,-l(Ao.H)(ogo)sinn-2On_l[dOo]
o’,-l[(ah)(cos 0,, o o0)]

r,-l[(Ah)(cos X, cos 0,)];

we have used o.o0=cosx and the symmetry of (Ah)(x, y). Now we do the 0,
integration, replacing 0, by rV

(AoG, H) [(Ah)(cos t’, cos r)][(Ag)(cos O, cos n)] sin"-1 r dn/r,

where 0-< _-< - is the angle between the poles of polar G and H.

We can interchange g and h in the integral, using (AoG, H) (G, AoH). From this it is
seen that the integral is also symmetric in O, X, although this is not geometrically
obvious.

Let g e/_, have expansion

g(cos 0)= Y’. g,P")(cos 0)
/=0

and let hi, >--_ O, be the corresponding coefficients for h. From (4) and the orthogonality
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of the

(AoG, H) Y. [glhddl")]eln) (cos o)eln) (cos x),
/=0

(6)
where 0 <_- X <-- r is the angle between the poles of polar G and H.

The expansions of g, h 6Ln) being as above, the spherical convolution (g h)(cos 0),
0 _<- 0 <_- r, can be defined by its expansion

(g * h)(cos 0) Y’. [glhl/dln)]Pl)(cos 0), O<--O<--Tr.
/=0

Comparing with (6), this can be regarded either as (AoG, H), where polar functions G,
H (from g, h) have the same pole, or else as (G, H), where the poles of polar G, H are at
angle 0. From (3) we have explicitly

i0(g * h)(cos 0) h(cos 3")[(Ag)(cos 0, cos 3")] sin"-a 3" d3"/’,,

h(cos 3")g(cos 0 cos 3" +sin 0 sin 3’ cos b)

sin"- b sin’- 3"d d3"/(r._r.)

Since

(= (h * g)(cos 0)).

[0 ] 1/2[ ]1/22t j(n)2 Iglhl/dl")l <---- g/dl hi/(.ll
o t.o

it follows that the series for g h converges uniformly to a continuous function when g,

h L2". (It is also true that

1 1 1
IIg * hll -<-Ilgll.llhll, -+-- 1, 1 _-< p, q, r _-< ,

r p q
r") is a commutative Banach algebra under multiplication and each Lp") is aso that 1

commutative Banach module over operators LI") [7, Chap. 2], [8].) By the same
argument, (AoG, H) is jointly continuous in 0-< 0, X <- 7r for any g, h L2").

By a cap function we mean a polar function w(o. to) such that w(cos 0)=0,
/ -<_ 0 -<_ 7r, for some 0 </ < zr. That is, the function is supported by a spherical cap of
angular radius B around the center o of the cap. The size fl will be mentioned when
necessary. Consider (Aw)(cos 0, cos V) for such a cap function. From

cos 0 cos 3’ + sin 0 sin y cos b cos (0 3’) (1 cos b) sin 0 sin y

-< cos (0 v)

it is apparent in (3) that (Aw)(cos 0, cos 3’)=0 unless cos (0- 3")>cos B, i.e., 0-B <
3" < 0 + B. This is a restatement of the geometrically obvious fact that for W(to)=
w(o to), (AoW)(to)= 0 unless the support of the averaging measure, i.e., the edge of
the cap of radius 0 around to, meets the support of W, i.e., within/ of o.

Suppose G, H in (AoG, H) are each cap functions of cap size/. The integral (5)
vanishes when the r/ intervals (X-/, X +/) and (0-/3, 0 +/) are disjoint, using the
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property of (Aw)(x, y) just described. It follows that (AoG, H) 0 unless X 2B < <
X + 2B, where, again, X is the angle between the poles of cap functions G, H, and B the
cap size of each. The geometrical interpretation is straightforward.

7. Minimum distance codes. Let o,, 1 _-</z <= N, be N > 1 distinct points on S, at
mutual angles 0 <- 0 -<_ r given by cos 0 o w, 1 _-</z, v -_< N. If 0 < a _-< r/2 is
defined as a 1/2 min {0,," 1 _-</z < v <_- N} then N disjoint open spherical caps of angular
radius will fit on S, each centered at an o.. Such a configuration is called a code of size
N on S", with minimum distance 2a.

Let o,,, 1 _-< _-< N, be a code with minimum distance 0 < 2a -< r. With > 0 to be
specified later, suppose v L() c L(x) has the properties

v(cos O) O, fl <_- 0 _-< -,

v(cos 0) 0 dO/r 1.sinn-1

Then the cap function V,, (to) v(to,, to), to S, is a copy of v around to,, we define

w,(cos O) (Ao V,, V)

[(Av)(cos O, cos n)][(Av)(cos 0., cos n)] sin- *7 drdr,

0<0 < 1 < <N,

the angle between poles w,, w being 0,. We have w,(cos/9) 0 unless 0, 2B </9 <
0, + 2/3, by the previous discussion.

Now let e satisfying 0 < e < a be chosen and fixed. We will require henceforth that
the cap size/3 of v satisfy 0 < 2B < e. Since 0, 2B > 2a e,/x # v, we see that

w. (cos O) O, e _-< O

w,(cos O) O, 0 =< 0 _-< 2a e, Ix # v

provided 0 < 2fl < e < 2a e.

There follows

w,(cos O) sin-x 0 dO/r 6, w,(cos O) sin-1 0 dO/r

8,(V,, 1):,, 1

If v L(") above has expansion

v(cos O)= E vPI") (cos 0),
/=0

the expansion of w, is

w,(cos O)= Y’. [v/dl")]Pl") (cos O,)P") (cos 0),
/=0

(7)
O <= O <- rr, l <- tz, v <= N,
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using (6); the series for w.(cos 0) converges uniformly on 0 <= 0-<_ 7r to a continuous
function.

The function

N

V(o) (l/N) E V.(o), w S"
tx=l

is a superposition of copies of (1/N)u around each code point o., 1 -< ix -<N. Consider

(8)

This satisfies

w (cos 0) (AoV, V)

=(1/N) EY w.(cos 0), 0<- 0 <= 7r.

w(cos 0) dO/’r,, (1,sinn-1 V)20

--1.

It also satisfies

w(cos 0) 0, e -< 0 -< 2a e,

W 0 sinn-10 =1 N(cos do / provided 0 <2 < e < 2a e

using the properties given previously for the w,(cos 0).
The expansion coefficients in

w(cos O) E wtPl") (cos 0), 0 -<_ 0 -<_ zr
0

are seen to be

Wl--" [p/dln)]ml for

Ml (1INz) E ., P’) (cos 0,)
(9)

,

-(1/dl’))ltl= .
0, lO

using (7) for the coefficients of w.(cos 0). (The property Wl 0 derives from (2)"
Wl=(J,v, v)=(IV, J,V)=EIT,VII=3=o, I0; el. [a, Thm. 8].)

We exhibit the first few of the Wl.

0" po (cos O) sin- 0 dO/r 1,

Mo (1/N:) E E 1 1,

WO [p2 (n)o/do ]Mo=l

Io sin -eo )w(cos O) dO/z.
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M1- (1/N:) E E w. w

m m where

m= (l/N) Z tog is the centroid in E"+1 of the code,

w [/(n + a)]m. m.

2" Mz (nN2)-1 E Y. [(n + 1)(w. to.)2_ 1]

=[(n + l)/n]dp’dp
22(n + 1),2

W2 nZ(n + 3) "
for traceless symmetric E"+ dyadic defined by

(I)= (l/N) E [to,,to,-(n + 1)-lln+l],

In+l being the unit dyadic. The Me for large will involve a traceless symetric/-adic in
averaged over the to,,, 1 <- tx <- N (tensor form of spherical harmonics.)

The limit as e --> 0 will be of interest. From (8), w(cos 0) behaves as (l/N) 6+(0)
near 0 0, and it can be shown that the rest of w (cos 0) behaves as (1/N:) Y,, 6 (0
0,). The moment squares Me do not depend on the cap function ,.

To get the variation of t,e with e consider
e/2

d")-
Pl alln) /2(COS 0)[1-P")(cos 0)] sin"-’ OdO/z,,;

a0

we have used here the fact that u integrates to unity and has support 0 _-< 0 < fl < e/2. If
Xel denotes the largest of the zeros of P") (x), then P") (x) increases monotonely from
0 to 1 on Xlx --< x -< 1. There follows

e/2

Idn) -l[<--dn) Iv(COS 0)[[1-f")(cos 0)] sin"-a OdO/r,
a0

_-< d")[1-P")(cos (e/2))]l[ul[1 provided cos (e/2)

If the various u’s all satisfy u _>- 0 then [lull1 1 and P") (cos (e/Z)) <_- ul/d") <- 1 pro-
vided cos (e/2)>-Xel. Otherwise, we must make the assumption that the family of u’s
involved is bounded in L"), i.e., Ilulll < a for soma fixed 1 < a < oc. We obtain

lim Pl dl"), lim W d")Me, >= O.
e0 e-0

We do not expect the limit to be uniform in l, since Xll "-> 1 as -> c.

8. Linear programming bound on the code size. The code size problem is" if a
positive lower bound on the minimum distance 2a is specified, what is the largest N can
be? The special value a r/6 corresponds to finding the largest number of nonover-
lapping unit spheres in En+a which can touch the central unit sphere Sn. Various linear
programs give a bound which is the analog of the bound in [1]. A discussion of
programming in linear spaces is given by Hurwicz [9, Chapter 4].
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Consider the following linear program.
(i) 0 < e < a r/2 are given.
(ii) Minimize

(10) h u(cos 0) sin"-1 0 dO/r,

over all continuous functions u(x) >- 0, -1 -< x -<_ 1, satisfying
(iii) u (cos O) 0, e -<_ 0 -< 2a e,
(iv) u _>- 610, => 0, where

u d") u(cos O)P") (cos 0) sin"-1 0 dO/r,.

If w., 1 _-< tz --< N, is a code on S" of minimum distance _-> 2a, and if cap function v of 7
satisfies v_->0, then u(cos O)=(AoV, V) of (8) is feasible with h 1/N. If the value
h(a, e) is the infimum of h’s in (10ii), then

N__<------

is an upper bound on the code size. This bound is the direct generalization of linear
programming problem (I) of [1]. Observe that as e 0 the constraints on u(cos O)
increase, so h (a, e) increases to a best value h (a) as e 0. In the limit, however, there is
no feasible u, the u’s are trying to become 6 functions.

The dual program, the analog of linear programming problem (II) of [1 ], does have
a limiting form as e 0, as follows.

(i) 0 < a -<_ zr/2 is given.
(ii) Maximize

(11) r/o ,/(cos 0)sin

over all continuous functions r/(x), -1 =< x -< 1, satisfying
(iii) r/(cos 0) < 0, 2a < 0 < zr,
(iv) r/ > 0, > 0, where

nl dl") ,/(cos O)PI") (cos O) sin"- 0 dO/r.,

(v) rt (1) E=o rt -<_ 1.
The supremum of r0’s in (ii) is the limiting value , () for program (10). This version of
the bound is equivalent to [10, Thin. 4.3], except that we do not require r to be a
polynomial. However,

_
0, 0 <-- 1 imply thato rhP" converges uniformly from

which it can be shown that the bounds are the same.
In both versions above the constraints involve function values on an interval and

also the nonnegativity of the P" expansion coefficients. The following result applies to
the coefficient constraint.

LEMMA. An f(cos 0) 2t=o ftPl") (cos 0), 0 0 <- zr satisfies

f >-_ O for all >- O,

f(.)= Z f<
l-O
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iff it is of the form f g g ]’or some g L2n) all such g have the form

g(cos 0)= . +x/d")[lPl" (cos 0) in L2).
/=0

2 j(n)Proof. being given, if gl=+x/dl")fl, l>=O, then o g/a =Yo <o, so {g}o
are the coefficients of some g L2"). The coefficients of g g are then g/dl , >- O.
The converse is equally trivial. Notice that each (+) is arbitrary, so there are 2 such g’s
where 0 <-a _<-Ro is the cardinal of {/: fl > 0}.

Using this, we restate the program (10) as
(i) 0 < e < a <= rr/2 are given.

(ii) Minimize

(12) , (g g)(cos O) sin- 0 dO/r

over all g L( with the properties
(iii) (g g)(cos 0) => 0, 0 -< 0 <- r,
(iv) (g * g)(cos 0) 0, e <- 0 -< 2a e,
(v) go g(cos 0) sin"- 0 dO/7",, >- 1.

The infimum of the A values is A (a, e) as before; we have used (-g) (-g) g g and
(g * g, 1)= (+g, 1)2.

In the same way, the program (11) can be rewritten as
(i) 0 < a _-< r/2 is given.
(ii) Maximize

i0(13) h0 h(cos O) sin- 0 dO/r

over all h eL with the properties
(iii) (h h)(cos O) -<_ O, 2a -<_ 0 <-_ r,
(iv) I0 h(cos O) sin- 0 dO/r <-_ 1.

In (iv)we have used (h h)(1)- [llhll]; the supremum of h in (ii)is the value I (a)of
program (11).

In the reformulated programs the coefficient constraint is built in, but the values of
f. f are constrained on an interval. In the first version, conditions (12ii-iv) are not
simply expressible in terms of g, although (12iv) has strong implications. In the dual,
(13iii) is satisfied if h has the property

h(cos O) O, a _-< 0 _-< zr

from the results of 6. It is straightforward that under this constraint the best h is
constant on 0 <- 0 < a. If p(y) denotes the fractional area of S covered by a cap of
radius y,

O(Y) sinn- 0 dO/r,, 0 <- <- r

then the following is feasible in (13)"

h(cos O)=[p()]-1/, 0 < 0 <a,=

=0, a <=0<-Tr
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and gives the elementary bound [11]

1
0()"

A related argument gives an upper bound for the value in (13), namely,
, (c)-<_ o(2).

This is a consequence of

hg h(cos 0) sin- 0 dO/r

2c

[(h hl(]0(l,

where we have used (13 iii) and also (h h)(cos O)N(h h)(1), 0NON. Curiously
enough,

N 0(2 (integerpart)

is a known lower bound on the maximal code size, but the proof is not related to the
above.

eleges. The author wishes to acknowledge the many stimulating
conversations with colleagues N. J. A. Sloane and A. M. Odlyzko. Numerical results for
the linear programming bound are given in [12] along with a simplified derivation of the
linear program.

A referee points out that the associator as defined above is a mean value operator
in the sense of [13, p. 435] with the spherical harmonics as eigenfunctions [13, p. 438].
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FOURIER EXPANSIONS OF RATIONAL FRACTIONS OF ELLIPTIC
INTEGRALS AND JACOBIAN ELLIPTIC FUNCTIONS*

R. G. LANGEBARTEL

Abstract. The Fourier expansions of rational fractions with numerators consisting of various combina-
tions of sn (u, k), cn (u, k), dn (u, k), and the periodic parts of the elliptic integrals E(am u, k) and
II(am u, 2, k), and denominators consisting of the first or second powers of + cn u or 1-a2sn2u are
listed. The parameter ranges are 0 < k < and -0 < a

2 < 0.

Introduction. Recent work in earth satellite orbit theory and earth-moon
trajectory theory [2 vol. II, p. 713], [5], and close binary star systems [4] has brought
about renewed interest in the two-fixed-centers problem, the two-center orbit serving
as an intermediate orbit. Elliptic functions arise naturally in such problems and
treatment of perturbations involves Fourier expansions of certain combinations of
elliptic functions and elliptic integrals. These combinations of functions occur as
rational fractions with products of elliptic integrals and elliptic functions in the

2sn 2numerator, and 1 +/- Bcn u or 1-a u (or their powers) in the denominator. The
availability of these expansions eliminates or greatly reduces the number of Fourier
series multiplications that otherwise appear in orbit theory. Where elliptic integrals of
the third kind appear, it is the circular case, a 2 negative, that is of interest and the
pertinent expansions are derived for this case.

1. Definitions. The notation and definitions for the standard functions follow the
convention in the book of Byrd and Friedman [1].

The elliptic integrals are not periodic, consisting, as they do, of a linear term plus a

periodic term. For the use to which the Fourier expansions are to be put, it is convenient
to have expansions for expressions involving only the periodic parts of the elliptic
integrals. The expansions listed below are of this type. Just as the Jacobian zeta

function, Z(u, k), is the periodic part of the elliptic integral of the second kind,
E(am u, k), so we define II(u, a 2, k) to be the periodic part of the elliptic integral of the
third kind, II(am u, o 2, k):

(1.1)
Z(u, k)= E(am u, k)-Eu/K,

2 2f(u, a k)= II(am u, a k)-II.u/K.

(The periodic part of the elliptic integral of the first kind, F(arn u, k)= u, is evidently
zero.)

The elliptic functions and integrals depend on the fundamental parameters k and
2

a We introduce the related parameters"

We define v0 by

(1.3) cn (vo, k’) 3,

x =/(a’n)-.
O<vo<K(k’),

* Received by the editors May 22, 1978.
5" Department of Mathematics, University of Illinois, Urbana, Illinois 61801.
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and the parameters w, w0 by

(1.4) w
2K(k)

The parameter ranges considered are

0<k<l,

(1.5) 0<k’< 1,

There is the further notation:

rr[K(k’)- Vo] rrK(k’)
Wo 2K(k)

0</<1,

0</’< 1.

K K(k), E E(k) E(am K, k), H YI(am K, a 2, k),
(1.6)

K’= K(k’), E’- E(k’)= E(am K’, k’), H’= YI(am K’, a ’2 k’)"

(1.7) A(z; n)=e + (-1)" e-, B(z; n)=e +(-1)+x e-.
2. Expansions. The expansions (2.1), (2.2), (2.3) for Z(u, k), l"(u, a, k) and
2 2 )-1(1-a sn u are not new. The first two go back at least as far as Jacobi [3] and the

2third is immediately obtained from Jacobi’s expansion for II(am u, a k) by differen-
2 2 )-1tiation. A residue theory derivation of the expansion for (1 a sn u has been given

by I. G. Izsak [2, vol. I, p. 209]. These three expansions are listed for easy reference.
Where the ambiguous sign, +, occurs, the top signs are to be taken together

throughout the formula and similarly for the bottom signs.

zr sin (nu/K)
(2.1) Z(u, k)=-,= sinh 2nwo

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

sinh 2nw sin (nzru/K)
a(u, c k) ,

n sinh 2nwo
1 II 7rA sinh 2nw cos (nzru/K)
2s.n2-’k- 2..,

1-a u K K,,= sinh2nw0

1 a’zII a’E.a’X B(w" wn) cos (n,n’u/2K)
l + cn u K K n=lZ" B(wo; n)

sn u B(w; wn) sin (nru/2K)
l+cnu ?K,=x A(wo; n)

1sn u dn u w---r A(w, wn) sin (nrru/2K)
.t:-Z(u, k),

1 :t: cn u flK ,,=x B(wo; n)

dn u zrfl’+ 7r’ L
a(w; n) cos (nzru/2K)

1 +/-Ben u 2-- ’-,,=1 a(wo; n)

1
)2 Ce ’2K-l[(2ce’2 a ’4A 2)l’I K + o t2, 2E]

l :t: flcn u

Ot. t471" oc
2,+--- E [n’hE(2K)-lA(w; n)h(2-a 2)B(w" n)]

n=l

cos (nzru/2K)
B(wo;n)
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(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

( +/-cn U_u)2 1 ZK ’2E
1 + flcn K[3 +/3 H] +

Y’. [n’rr(2K)-lA(w; q:n)+a’2XB(w; :n)]
n=l

2(+fl+cnu)dnu "rr nB(w; n)cos(nzru/2K)
(1 +/-cn u)2 -2r/K2

n=l A(wo; n)

sn u dn ; ra’h nB(w; qZn) sin (nzru/2K)
(1 + Bcn u -, n=l B(wo; n)

[+2/3 + (1 + flZ)cn u]sn u dn u

(l+Bcnu)2

-if- [ :r nzr’B w q: n

K ,,=1 2f12K
+1 2+ 2 Z(u, k),

2sn U

(l + 3cn u)-
cn U

2 21-a sn u

sn u dn u
2 21-a sn u

cos (n’tru/2K)
B(wo;n)

(1 + fl2)A(w q:n)]sin (nTru/2K)

12+ rtK .YI= [wB(w’, wn)- nr’l(2K)-A(w :n)]

cos (n’rru/2K)
B(wo;n)

7rh cosh (2n 1)w cos [(2n 1)’rru/2K]
/3K n=l cosh (2n 1)Wo

/3K
sinh (2n 1)w sin [(2n 1)Tru/2K]

n=l cosh (2n 1)Wo

1 ,21,/2K ,2 2
2 2 -(2a’47/2K)-1{a2E + a a [k + (1 + a’2)/2]1-I}

(1-a sn u)z-

,27. -1+ ,r(2a 3K) {nzr2qK-1 cosh 2nw

(2.17)

+/3/3’[k + (1 + a r/ sinh 2nw}
cos (nTru/K)
sinh 2nwo

Z(u, k) { ,2fl2i-I, ,217r(KK’)-I[K’+a + (W+Wo)]a(w" wn)
1 + Bcn u =1

7"/’20 sinh n (w :t: Wo) ] sin (ncru/2K)2(_1),+1
K2B(wo;n) i B(wo;n)

Z(u,k)
2 2 rAK-1

1-a sn u

(2.18) [-.rr(2K)-1 coth 2nwo sinh 2nw + I-I(AK)-1 cosh 2nw]
n=l

sin (nzru/K)
sinh 2nwo
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(1 + f12:1:: 23cn u Z u, k)
(l+Bcnu)

/2zr2a’/32(-1)"+1[fl sinh n(w + Wo)- nzr/3’r/(2K)- cosh n(w + Wo)]
n"l 3K2Br/ (Wo; n)

(2.19)
+ /2(7/2K)-1 h-

(2.20)

K-E ,2fl2 I-I
+a +

"+" nq’r2(r/2K)-I
2/3K

+ zrc’/37 II’

(2.21)

2KK’

’2h ], (w +/- wo)
K’

A(w; q:n)

(2.22)

zr(w + wo)]B(w" q:n)}Sin nzru/2K)
2KK’ B(wo; n)

Z t, )2
r2fl fl fl

2 3 rt + "rl
E
fl

(1 sn-u 4r3K

2f(u, a k)

2f(u, a k)
2 ,21-a sn u

1 + flcn u

sinh 2nw

nqr3fl2fl ’2

4r/ZK3 cosh 2nw] coth 2nwo

[ ,r/’fl2fl’2(n2 K E a’2fl2II+
2,7 K K’ K’ ]g + ++

n,rt"rr(3- fl2)l-I
cosh 2nw + 2K+

2K2 2rt

LK KK’ +-; sinh 2nw
sinh 2nwo

:2’aw[(-1)/(2Kw + ’K’) sinh n (w +
+(2Kw-rK’) sinh n(w wo)]

KK’B(wo; n)

+ (2a wK 2a IIK (nKK

[1 + (-1)"+I-B(w; qZn)]

+ an-a[1 + (- 1)"+][2 B(w;wn)] na 2zr2, (2KZ)-
K’

B(zr(K -s)/2K; n)f(s, a k ds
0

+[1 + (-1)"+x]/3hTrK-a

Ioc’ sinh [nrr(K’-s)/2K] ds} sin (nzru/2K)
+cn(s,k’) B(wo;n)

2’,K- . hwK(rK’)- cosh 2nw-[(,wK-K’II)
n----1

(2nrK’)- + 1/21 w coth 2nwo] sinh 2nw
K’

+ nr2(2K)- / sinh [nr(K’-s)/K]

’(S, 0’2, k’) dsl sin (nru/K)
sinh 2nwoJ
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The expansion (2.1) is valid for [I(u)l<K’, the expansions (2.2)-(2.22) for

3. Method. The fundamental procedure used was the evaluation of the Fourier
coefficients by contour integration. Some ot the formulae can be obtained from others
by algebraic or calculus-type operations. There is, for example, the relation

(3.1) 1--ot2sn2u 1-Scn u 1 +cn u

Since the functions sn u, cn u, dn u, Z(u), f(u) all have 4K as a period, the Fourier
coefficients ot a rational fraction combination, R (u), of these functions are

2K

cn | ei"=u/2:) R (u) du,
d_2K

where cn (2iK)-1 if R(u) is odd, and Co (4K)-1, c, (2K)-1, n -> 1, if R(u) is even.
The contour integral of ein’’/2KR (u) is taken around the fundamental parallelogram
with vertices -2K, 2K, 4K + 2iK’, 2iK’. Inside this parallelogram the functions sn u,
cn u, dn u, and Z(u) are all single-valued and have simple poles at iK’ and 2K + iK’.
The function (1-cn u)- has simple poles inside the parallelogram at Z ivo and
z3=2K+2iK’-ivo, with v0 given by (1.3); the poles of (l+Bcnu)- come at
Z2"" 2K + ivo and 2’4 "-2iK’-ivo. Evidently, (1-- o2sn2u)- has simple poles at za, z2,

z3, z4. The double periodicity of the elliptic functions enables us to express the integral
around the parallelogram in terms of the integral from -2K to 2K for those formulae
not involving the elliptic integrals. Consequently, in these cases the Fourier coefficients
can be obtained without difficulty by the theory of residues. The function Z(u) is only
singly periodic and in those formulae involving it, recourse must be made to the relation

(3.2) Z(u + 2iK’) Z(u)- irr/K,

in order to express the integral from 4K + 2iK’ to 2iK’ in terms of the one from -2K to
2K. When the symmetry considerations do not show it to be zero the constant term can
be obtained either by an appeal to known elliptic integration formulae [1] or by
reducing it to a known trigonometric definite integral upon letting am u o.

Further considerations are necessary when l(u, a 2, k) is involved because of its
multi-valued character. Its singularities inside the parallelogram are branch points at z 1,

z2, z3, z4, where it is logarithmically infinite. The function can be made single-valued by
introducing two branch cuts, one connecting zx and z4 and the other connecting z2 and
z3. In the neighborhood of zj,

(3.3) 2 i/3 In (u zj) +.f(u, c k)= e.2,----7
where ei =-1 for ] 1, 2, and e. 1 for/" 3, 4. Therefore, if u traces a closed loop
around z, z4 without crossing the cut 12(u, c 2, k) will return to its original value, and
the same holds for z2, z3. Consequently, the process of finding the residues at zj which
was fundamental in deriving the previous formulae is now replaced by determining the
values ot the integrals around these two loops. As is customary in such cases we shrink
each loop, traced in the positive direction, to two small circles around the z connected
by two straight line segments, one on each side ot the cut, and ultimately send the radii
ot the circles to zero.
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The comment concerning the single periodicity of Z(u) also applies to lq(u), the
corresponding formula being

(3.4) f(u + 2iK’) f(u) 2iA w.

This formula is to be understood as applying to the cut plane. It may be derived by first
noting that

0
u+2iK’ dz f2iK’ dz 2iK’+u dz

II(am (u + 2iK’), a 2, k
1 a2sn2z 0 1 a

2sn 2z
+
2iK’ 1 a 2sn 2z

2 Io" dz
(3.5) II(am2iK’, a k)+

1-ol 2sn 2z
2 2II(am2iK’, a k)+ II(am u, a k).

Whether one obtains the value of II(am2iK’, a 2, k) from its defining integral by
going up the left side of the imaginary axis from 0 to 2iK’ with indentations to the left at
the singularities zl and z4, or up the right side is immaterial since the result is the same as
long as the cut is observed. Carrying out this process, letting z i(, using the imaginary
argument transformation for sn(i, k) [1, p. 38], and letting the radii of the indentations
go to zero gives

(3.6) 2 ,2K, 2I-I,"II(am 2iK’, a k) 2i + 2i

It should be pointed out that this automatically defines II’ as the Cauchy principal value
of the integral

K’ dsr
1 a’2sn2((, k’)

with.respect to the singularities at v0 and 2K’-vo. Combining standard complete
elliptic integral formulae [1, pp. 230, 226] leads to

(3.7) ,2K,H 2KFI, ,2,ce KK’ + a a wK,

a result valid for the parameter ranges (1.5). An appeal to the definition of (u, O 2, k),
together with (3.5), (3.6), and (3.7) immediately validates (3.4).

We illustrate the details of evaluating the loop integrals by sketching the work for
2 2the expansion of II(u) (1-a sn u)- We consider first the integral

ein’n’u/2K’(U
(3 8) I(zi" n) f 2 21-a sn u

taken along the lower half of the loop around z l, z4, i.e., the half-loop starting at iK’,
traveling down the left side of the imaginary axis to just above z 1, swinging about z on a
circular arc, and finally moving back up the right side of the imaginary axis to iK’. On
the first line segment u z + r e -i3r/2, on the second u z + r e ir/2, and on the circle
u z + p e i. If we use

(u) 1 dl2Z(u) II
(3.9) X_aZsn2u=- d----+-f(u),
followed by an integration by parts, the integral taken along the first line segment
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becomes

-i e-n’rrv/2Kl- -n(K’-v)/2Kf2(Z + e-i3/2(K Vo)) e-"/2K2(z + e-i3"/2p

ncrf tc’- -.r/2rf2 i3,/2) r]+-o e (zl + re- d

+--H IoK"-o -"’r/2cf(z + r e-i3/2) dr}.
A similar result is obtained for the second line segment and we find the half-loop
integral from iK’ back to iK’ can be written as

l(z" n)= e-v/2{ _(,_o)/[(z i/2(K’ Vo))-e l+e

2(Z + e -i3/2 (g’- 00))]

_.0/2[2(z + e/2p) 2(zl + e_i3/2p)]+e
(3.0)

in ox’- _./2[2(z i/2 -i3/2r)e +e r)-O2(zx+e dr

[ ’-o -"/[O(z /r) -3+’o- e x+e -(z+e /2r)]dr

+ [/2 e into(cos 0+i sin O)/2K.(Z1 + 0 ei)oei dO}.
,-3/ i asn:(z + pe ,0)

The sort of analysis indicated above to determine (am2iK’) also suces to determine
(z) on each side of the cut. We find

O(z + e/r, ,k)=-iAw(vo+r)/K’
2+ iBO(Vo + r, k’) +/2,

(3.11) (O<r<K’-vo),
(z + e-i3/r, ,k)=-iAw(vo+r)/K’

2 )+ iBO(Vo + r, k /2,

where, as for H’, fl(v0 + r, ’, k’) is to be interpreted as the Cauchy principal value of
the defining integral. Use of (3.11) enables us to write the half-loop integral as

I(z,; n) k= j

[ A2W(Vo+p)_2AZwK 2An]+
K’ nK’ + e

(3.12)
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For small p,

iA Tr r/2 io/ io)p io

Te-nra/2K.).(Z ir/2) ]
exp (inTrp e 2K)’(zI 4- Pieo) e dO

+ p e +
-,/2 1 a2sn2(z + p e

iA Tr
e iZr/2e -nra/EK(z + p

2

frl2 iO)p+ exp (in,rp ei/2K)fl(z + p e
a-zr/2

---" P eio + 0(1) dO,

I 7r/2

i0/ iO)
iA

[exp (inzrp e 2K)fl(z + p e
2 -’n’/2

-exp (-nma/2K)l’(z + O e=/2)] dO + o(1),
, 2 . "n’/2

| [In (p e io) -In (p eir/2)]dO 4- o(1) ih 2"/7"2/8 4- O(1).
a-r/2

The pair of terms in (3.12) connected with the angle -3r/2 can be treated accordingly
and their sum is found to be equal to -ih 27/’2/8 4- 0(1). Consequently, sending p-->0
gives

e + K-----;-+ eI(zi" n)=
[ nK n nK’ n

(3.13)

nzrhzIo:’e--,/zfl(s,a, k’)ds}.+
2K

The upper half-loop integral (around z4), I(Z4; n), becomes simply expressed in
terms of I(Zl; n) under the transformation u 2iK’-v. In fact, using (3.4) and the
single-valuedness of sn v results in

e in’,ru/2K’(U
/(Z4; n)=

du
1 --ot2sn2u

=e_n.rK,/Ki(zl; _n)+2ihw e_nrK,/Kl e-inrv/EK dv
,-z,[=o 1 o2sn21)"

The last integral on the right is easily computed by residues.
Similarly, the closed-loop integral around z2, z3 is transformed by u 2K +

2iK’-v into a simple expression involving the closed-loop integral around z 1, z4.
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LIMIT ANALYSIS FOR PLASTIC PLATES*

EDMUND CHRISTIANSEN"

Abstract. The collapse problem for plate bending is considered as an infinite dimensional mathematical
programming problem. The duality between the static and kinematic formulations of limit analysis is proved,
and it is shown that limit fields for bending moments and displacement rates exist. Finally we analyze the
approximation of the continuous problem by finite-dimensional convex programming problems using the
finite element method.

1. Introduction. In [4] the collapse problem for a 3-dimensional plastic continuum
is analyzed. Here we shall attack the considerably modified problem, which arises when
the plate bending approximation is applicable (see [6]).

For a solid with volume V the notation is:

d
the displacement rate vector;

l ( Ovi Ovjeii \x+x/ the symmetric 3 3 strain tensor;

tr (o’ii) the symmetric 3 3 stress tensor.

The internal work rate for the pair (tr, u) is then given by (see [4])

Ouia (, u)= E gii-- dr.
i,j OXi

Now consider the case where the solid is a plate occupying the area in the x x
plane. Let u ua be the transversal displacement rate. Then at distance x3, measured
with sign, from the mid-plane of the plate we have ([6]):

0U
Ui --X3, 1, 2

and hence

d 02u
(1.1) dteii --X3 i,j 1,2.

OxiOxi

All other components of e vanish in the plate bending approximation.
The internal work rate may now be written

.IV 02U
a (o’, u) o’iix3 dv

i,i=l OXiOX
(1.2)

-Y’. | mij dA =- b (, u),
i,j dl) 3XiOXi

where
(1/2)H

(1.3) rnii x3o’ii dx3, i, ] 1, 2
a-(1/2)H

* Received by the editors January 30, 1979, and in revised form July 10, 1979.
5" Department of Mathematics, University of Odense, DK-5230, Odense M, Denmark.
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are the bending moments. H is the thickness of the plate and may depend on (xl, x2).
Let f ]’(xl, x2) be the transversal external load and define for convenience

(1.4) F(u) In ]’" u dA.

Finally the set B of admissible bending moments is determined by the admissible
stresses for the material and (1.3). The 2 most important yield conditions, the Mises and
the Tresca conditions, are for the case of plate bending given by ([6]),

BM {ml 2 2 2 <Mo},m mxxmyy + m yy + 3m xy

BT {mlmax(iml, fro=l, tm- m2l)-<-Mo},
m and m2 being the principal moments.

The problem of limit analysis is to find the maximal (or rather limit) multiple A of [,
which the plate can carry without collapsing. This problem may now be stated formally
as in [4].

Static formulation.
A sup {X [mB "B(m, u)=XF(u)tu}

(.5)
=sup inf b(m,u).
mB F(u)=

The interpretation is, that b(m, u) F(u) is the weak form of the equilibrium equations
for m with the load f.

Kinematic formulation (the dual problem).

(1.6)

where

A= inf supb(m,u)
F(u)= mB

inf D(u),
F(u)=l

(1.7) D(u) sup b(m, u)
mB

is the energy dissipation rate associated with u. Also (1.6) has a natural physical
interpretation (see [4]).

Our present aim is to formalize this approach choosing adequate spaces for m, u
and f, and to prove the duality theorem’ (1.5) and (1.6) give the same collapse multiplier
A, and limit fields for m and u exist. This generalizes the analysis in [2] and [3] to the
continuous case and falls in line with several recent contributions in limit analysis
among which [5] and [9] should be mentioned.

2. Prerequisites. The following theorem, which is proved in [4] is essential in our
approach.

THEOREM 2.1. X and Y are normed real vector spaces with a continuous bilinear
form a (., on X x Y. Let B X and C Y be convex sets such that B has nonempty
interior, and C is closed. Assume the following "reflexivity" condition

(i) II y* Y* satisfies sup (y*(y)ly C)<oo, then there exists xoX such that
y*(y) a(xo, y)Vy s Y.

(ii) fix* sX* satisfies (a)" inf (x*(x)[x sB)> -oo, and (b): (i]:a(x, y) 0y Y,
then x*(x) 0) then there existsyos Ysuch that x*(x)=a(x, yo)’dx X.
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Under these conditions

(2.1) inf sup a (x, y)= max inf a (x, y)
xB yC yC xB

provided the left-hand side is finite.
For cn let W"’o(f) denote the standard Sobolev spaces of functions with

generalized derivatives up to order m in Lp for m ->_ 0 integer. For m <_-0, W’’p is the
dual of Wff’’q where lip + 1/q 1. A quick review can be found in for example [1].

We need the following theorem which is basically proved in [7].
THEOREM 2.2. Let f c_E be a bounded domain with smooth boundary, and let

p > 1. For every pair

f W-l"" (fD and g

there is a solution u W’"() to the problem

Au f in f,

u g on

Proof. There exist fi e L" (fD, 1,..., n, such that

i= 10Xi

By Theorem 4.2 in [7] we may find i e W2"p (-) such that

Let

Then

Ai fi in

u e (f).
i= c3xi

AUl--
i=1 X/fi "-f in f

and ux has a trace in W-(1/p)’" (0f). Using again Theorem 4.2 in [7] we may solve

AU2 0 in fl,

/-/2 g-//1 on 012

with u2 6 Wl’"(fl). Now U / uz is the solution to the original problem. Q.E.D.
Remark. In applications in solid mechanics f is frequently a domain with Lipschitz

continuous boundary satisfying the cone property as for example a cube. In [8] the
Dirichlet problem is proved to have solutions in such domains, but in less generality
than in Theorem 2.2. We believe this difficulty to be purely technical, however, and
shall not hesitate to apply the results of this paper to such domains.

3. The theorem of limit analysis. Let 12 RE be the domain of a plate with regular
boundary (see remark following Theorem 2.2). The plate is fixed along its boundary
(and only there)

(3.1) u =0 onOf.
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The plate may be "clamped" along part of its boundary,

OU
(3.2) =0 on$_cOfl.

On

If f is the load distribution per unit area of the plate, the classical form of the
equilibrium equation for the bending moment tensor m is

(3.3a) -. ox;oxi mij f in fl

or

(3.3b)

with the boundary condition

-’.(V.m)=f inFl

(3.4) m,--=n, m.,n =0 on 3D\S.

Assuming sufficient regularity the internal work rate (1.2) may be written as

(3.5a)

where mi is the/’th column of m.
Using that Vu =(Ou/On)n+(Ou/OT)’r, where n and "r denote the normal resp. the

tangent of 0f, and that (3.2) and (3.4) hold we get

(3.5b)

b(m, u) (V. m). Vu dA- (n. m). "r ds

(V. m). Vu dA+ (n. m. "r)u ds

V" (V" m)u dA + (n. (V. m) + --- (n. m. x))u ds

(3.5c)

-Jn r. (V. m)u dA.

Remarks. The equality between (3.5a) and (3.5b) should be imposed as the natural
boundary condition (3.2). The equalities (3.5) are also regularity conditions on the pair
(m, u). The boundary conditions (3.1) and (3.4) should be imposed as essential
boundary conditions.

As usual the equilibrium equation (3.3) must be interpreted in a weak sense. From
(3.2), (3.4) and (3.5) we get the weak form

(3.6) b(m, u) F(u) for all u,
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where we have used the convenient notation

(3.7)
F(u) In fu dA;

(3.6) must hold for all u satisfying (3.1).
We are now ready to define the admissible spaces for m and u.
Let p > 2, such that Wa’"(l)) is continuously imbedded in C((I), and let 1/p+

1/q=l.

(3.8a) X {m (mq)lmq e WI’p(), mq mi, m,, 0 on 0f/\S},

where S is the clamped part of the boundary, and m, is given by (3.4).

Y { u W"q (f/)[there exist/zq C*(fi) such that

(3.8b) /xq =/zii and for all m e X:

Equation (3.2) is imposed as a natural boundary condition by the definition of Y.
We now interpret the integrals in (3.5) as formal dualities and define the bilinear

form b(., on X Y by (3.5a) or (3.5c).
LEMMA 3.1. For every ]’ W-a’P(I)) there exists m X, such that

-7.(’.m)=f in f.

Proof. By Theorem 2.2 we may find $ WI’p (f) such that

-Ab =f in

$ =0 on 0f.

Let u, u2 C3(1) such that u is constant on 01q. Define

Ou + l (Ou Ou2’.O u.._..z + c, m2z 49, m 2 -\--x + --x l
m

Ox2
Then

and
2m. n2max + 2nxn2mx2 + n2m22

-n2 +n2 n2=+n n ox ox/

Ou2 OUl=+na-nz Or
=0 onOO,

where 0/0r denotes the tangential derivative. Q.E.D.
Lemma 3.1 implies that for any load f W-a’P(O) there is NX, such that

(3.9) b(N, u) F(u) (f, u)w-,.,wb, Vu Y,

i.e. there is N X, which is in equilibrium with f. Otherwise the collapse multiplier for f
obviously would be zero.
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THEOREM 3.2. Let X, Yand b(., .) be as above, let f W-I’P(I)) and let NX
satisfy (3.9). LetB Xbe convex, such that with respect to the maximum-norm on X, B is
bounded, closed and contains 0 in its interior. Finally let

C-{u YlF(u)=-(f, U)w-a,pxw,q-- 1}o

Then the following problems all give the same value:
(a)

1=--inf supb(m,u) sup infb(m,u)
uC mB mB uC

(b) (c)

min D(u) sup A
(D): .y mB

F(u)=l b(m,u)=A[(u) fu. Y

(d)

max A
(e):

b(m,u)=XF(u) Vu Y

where

D(u) sup b(m, u)
mB

and

1 {m L(fl)13{m(k)} _B m(k)--- m weak-, in L

and b(m(k), u) AkF(UNU Yfor some converging sequence {Ak} in .}

Clearly b(m, u) extends to J x Y by the limit of the sequence {Ak}.
Proof. (a) and (b)" We apply Theorem 2.1 to X, Y, -b(m, u), B and C.
ad(i) If y* Y* is bounded on the affine hyperspace C, then y*(u)=AF(u)=

Ab(N, u), /u Y for some A.
ad(ii) Let x* 6 X* be bounded (from below) on B. Since B contains a ball for the

L-norm there exist measures/z. C*(), such that/z =/xi and

(3.10) x*(m) , (gii, mii)c*c.
i,j

We may additionally assume that x* satisfies:

(3.11) b(m,u)=0 VuY:ffx*(m)=0.

By Lemma 3.1 the map

T’m-V. (V" m)

maps X onto W-I’P(fl) and is thus open. By (3.11) we have

kernel (T)
_
kernel (x*)

and hence x* may be factorized over the kernel of T"

x*(m)=u(T(m))

for some u 6 W-I’p (fl))* W’q (1).
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Comparing with (3.10) we see that u e Y. Hence (ii) is satisfied, and by Theorem
2.1 (a) and (b) are proved.

(c) Since C is an affine hyperplane the inner infimum equals -oe, unless b (m, u)
AF(u)Vu Y for some real A. In this case b(m, u) for u C.

(d) Let b(m(k), u) hkF(u) hkb(N, u) for all u Y, and assume that hk converges
to the supremum A. By weak-, compactness of B in L there is m 1 such that

b(m,u)=AF(u) rubY. Q.E.D.

It is now easy to see that the limit fields are in fact a saddle point for b on B x C.
THEOREM 3.3. If (m, u) solve (P) and (D) in Theorem 3.2, then

(3.12) b(m,u)_<-h=b(m,u)=b(m,u) VmB, VuC.

Proof. For m B and u C we have

b(m, u) <-_D(u) h hF(u) b(m, u). Q.E.D.

4. Approximate solution. It is now clear how the solutions to the primal and dual
problems of limit analysis can be approximated" Replace X and Y by finite dimensional
subspaces Xh and Yh and solve the finite dimensional min-max problem. We always
choose Xh and Yh such that the equalities (3.5) hold in classical sense, so that the
bilinear form may be computed by the symmetric expression

b (lllh, Uh) If (V" lllh)" VUh dA V(lllh, Uh Xh X Yh

This way the mixed approximation can be based on subspaces of functions of less
regularity than the primal or dual problem. Another advantage of the mixed method is
that bending moments and displacements in the collapse state are approximated
simultaneously.

Let

and define

(4.1)

Xh
_
X, Yh C Y, Bh Xh B,

bh (lllh, Uh) b (Illh, Uh) (lllh, blh) Xh X

(4.2) Fh(Uh) F(Uh) VUh Yh.
We identify Xh and Yh with copies of R" and R respectively through a fixed

choice of bases and identify each space with its dual in canonical way. Then there is a
linear map, i.e., a matrix A:X, Yh, such that for all (mh, Uh) Xh X Yh

(4.3) b (lllh, Uh) (Aillh, Uh )n (Illh, AtUh }m,

where (., ) denotes the Euclidean inner product on R n, and A is the transposed of A.
Also Fh may be identified with an element of Yh,

(4.4) F(Uh)-" (Fh, Uh)n VUh Yh.

We now have the discrete analogue of Theorem 3.2.
THEOREM 4.1. Notation as above. Assume Fh A(Xh) and let Bh Sh be convex
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and compact with zero in its interior. Then

0<Ah =--- min max (mh, AtUh) max min
Fh (Uh)= mh EBh illh EBh Fh (Uh)=

(Amh, Uh)

(Dh): min Dh(Uh) (eh)" max ,
Fh Uh )= mh Bh

Amh=AFh

where

(4.5) Dh(Uh) max (lllh, AtUh).
mh Bh

This theorem can be proved using classical convex programming results or by
repeating the arguments (now simplified) from Theorem 3.2. Since it is a special case of
Theorem 5.1 in [4] we shall omit the details here.

Remark. The condition Fh A(Xh) is the discrete analogue of (3.9). It is easy to
see, that ifFA(X) then the duality in Theorem 4.1 still holds, but Ah 0. Of course
we may in that case replace Fh by its orthogonal projection on A(Xh), but simple
examples show that this process is inconsistent so that Ah diverges. In order to allow
general forces we shall always require

(4.6) A(Xh Yh.

COROLLARY 4.2. If mOh and Uh solve (Ph), respectively (Dh), then (m, Uh) is a
saddle point for bh" For all mh E Bh and Uh Ch

(4.7) bh(mh, uOh) <= Ah bh(mOh, uOh) bh(mOh, Uh).

The proof is identical to the proof of Theorem 3.3.
THEOREM 4.3. Let (A, m, u) and (Ah, m, uOh) solve the continuous and discrete

problem respectively. Then we have for all mh Bh and Uh Ch

(4.8) b(mh --m, u) < Ah --A <= b(m, uh u).

Proof. Subtract (3.12) from (4.7) and put u u and m m. Q.E.D.
Theorem 4.3 is the main inequality for convergence results for A. Let Ilmll and Ilul12

be norms on X and Y respectively such that

(4.9) Ib(m, u)[-<_ CIImllllull2.
There are several useful choices for these norms.

Assume the stability conditions"

(4.10) Ilull2 -< constant, IImll <= constant,

where the constants are independent of h, and the consistency conditions

(4.11a) min Ilmh--1110111--0 as’h 0,
illh Bh

(4.11b) min Iluh--U[l=-O as h 0;
Uh Ch

then Theorem 4.3 immediately implies the following convergence results.
COROLLARY 4.4. If we can find norms such that (4.9), (4.10) and (4.11) hold, then

AhA.
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The important question of convergence rate requires analysis of the approximation
used.

The stability condition (4.10) depends on the domain as well as the forces. No
general a priori results in this direction are known to the author, but in specific cases the
situation is usually better.

The consistency condition depends on the regularity of the solutions m and u. For
approximation by the finite element method the question of appropriate norms and
corresponding convergence rates is well analyzed, once the regularity of the solutions is
known. However the regularity problem for saddle point problems does not seem to be
solved in any generality yet.

In a forthcoming publication we shall apply the method developed here in
combination with the finite element method to a classical problem of plate bending.
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SUMMATION THEOREMS FOR HYPERGEOMETRIC SERIES IN U(n)*

WAYNE J. HOLMAN 1115

Abstract. Explicit expressions for the matrix elements of multiplicity-free Wigner and Racah coefficients
in U(n) are used to establish multidimensional analogs of known hypergeometric summation theorems.
Infinite sequences of such analogs are found for the Gauss theorem, Saalschiitz’ theorem, and the summation
theorem for well-poised 5F4(1). For the sake of completeness, results published earlier are also presented: an
infinite sequence of summation theorems analogous to that for well-poised 4F3(-1) and a single analog to
Whipple’s theorem which arises from the construction of tensor operators in U(3).

In a previous publication [4] Whipple’s notion of a well-poised hypergeometric
series [6] was generalized to multidimensional cases. The basis for the generalization
was analogy of structural function in the representation theory of U(n). For example,
the summation theorem for well-poised 4F3(-1) is realized in the representation theory
of U(2); it is expressed by the orthonormality relation for degenerate Wigner coefficients
in U(2). Hence we can form the analogous relations for degenerate multiplicity-free
Wigner coefficients in U(n) and interpret the resulting expressions as a sequence of
summation theorems for multidimensional series (in the cases n > 2) which form
analogs to the summation theorem for well-poised 4F3(-1) which is realized in the case
n=2.

This method can be extended further, and it is the purpose of the present note to
state multidimensional analogs for the Gauss summation theorem for 2F1(1), Saal-
schiitz’ theorem for certain cases of 3F2(1), and the summation theorem for well-poised
5F4(1). These analogs can all be obtained from known relationships between those
matrix elements of tensor or Racah operators in U(n) which have been explicitly
constructed. For the sake of completeness we shall state the summation theorems
presented in [4] as well: a sequence of analogs of the summation theorem for
well-poised 4F3(-1) and a single analog of Whipple’s theorem [7], which relates
well-poised 7F6(1) and Saalschiitzian 4F3(1), from the representation theory of U(3).

We must first establish our notation and some preliminary results. Following
Chac6n, Ciftan, and Biedenharn [3] we denote

(1) [rn], =Eml, m:z, rn,]

and

(2) rl-l =l Hs=l F(h-q, +k ,s +. 1)] 1/S,,,,, ([h ],, [q],,,)= S,,([h]" [q])= -,,-x ,,
+[ Hk=l Hs=k+l F(q h s k) ]

where n and m are positive integers, n -> m. Also, we shall denote the omission of all
factors containing qi from (2) above in the following manner"

[ I-I;i+l I’(q- h, + e-i) ]1/(3) S.c.([hi; [q])= LI-I=I F(he-q )2;)j S..,([h]; [q]);

and similarly
i-1

[ 1-ie=r(qe_hi+i_, ]1/2(4) S.,.([h]" [q])= -m- S..,([h]; [q])[I-Ie=,r(h,_qe+_il)

* Received by the editors April 3, 1979.
5" Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27514.
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and

(5a) S..,([h];[q])

F(h-q+]-i+l);--,VT+ e S([h]; [q])

for
-1 1/2

(5b) S([h]" [q]) [ ne= r(qe-h+-el ]--= S([h];[q])
F(qi-hi+i-l) e=F(h-qe+-i + l)

for i>f.
In terms of these quantities we can express the reduced matrix elements of totally

symmetric tensor operators in the following two distinct ways. From the calculation of
Chac6n, Ciftan, and Biedenharn [3] we have

((hl h h)l[p o  ]l(hl ha h))q q q_ q 0 q q q_

=(( [hi. ][p ]l( [h’].
k(q)._x] q

(6) 4(p q) S..([h]; [h])S.-([h’]; [q’])S.--([q]; [q’])
S.([h]; [h’])S_([h]; [q])

5]; [q’])
where q; + p,

and the expression on the right will be called the CCB form of the reduced matrix
element of a totally symmetric tensor operator. From the calculation of Aliauskas,
Jucys and Jucys [1] we find

(( [hi. ]lip 0]l([h’].))

(7)

where

(8)

1

4(p -q)!
--S..([h]; [h])S,,-1,,-l([q’]; [q’])S,,,,([h]; [h’])

S.n-l([h]; [q])
E (-1)*’ [S.,, ([r] [r])]2

S,-1,-a([q]; [q’])S,,,-l ([h’]; [q’]) j..i*,

Sp._x([r]; [q’])

;S,f([h]; [r])S ,([r]; [h ’])S,,_l([r] [q])

0a E (hi ri),
i=2

qi 2 (qi--qi +hi)+ hi- ri,
j=l j=i+l ji

n--1 n--1

,= E (qi-q;+h;)-2 ri.

2_<i=<n-1,
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The expression on the right of (7) will be called the AJJ form of the reduced matrix
element of a totally symmetric tensor operator. In both (6) and (7) the quantities h , hi,
q’i, qi, p, q are real integers which satisfy the usual "betweenness" conditions of Gel’land
labels.

LEMMA. The CCB form is equal to the AJJform.
Proof. The Wigner coefficients of U(n) are determined up to an invariant phase.

Hence the CCB form and the AJJ form can differ at most by a phase, and we can prove
the lemma by induction. We must first establish it for n 2. The relation to be proved is
then

(hi- h+ 1)(hl-hl)!(h-hl + 1)!(h2-hl)!(hl.,-q!!(q’l -hl)!]
/2

(p-q)!(ql-q’l)!(h --i; (---- -23!’"

(9)

(ql- r2)!(h -r2)!
(hi- r2 + 1)!(h2-r2)!(r2-h.)!(q’ -r2)!

r(hl- h;= + -q),(h’l-q’ ),(h’l- h2)’(ql 7 hE),(q-ql )’] 1’2

k 7 -_7 - h)i( h + 1)!---- h ;i.---/ii(hl-ql-Ol)!(ql +Ol-h)!
(q’l +o- h:)!(h’ -ql -O)!(q-q’l --/91)!(/91)!"

On the left side we have written down the AJJ form for n 2 with 1. The identity of
the AJJ form for different values of is demonstrated in [1 ]. We need demonstrate only
the equality of the CCB form and the AJJ form for a particular choice of i. The two sides
of (9) are easily recognized as different forms of the U(2) Wigner coefficient with the
standard (Condon-Shortley) phase convention. We make the correspondence

ql q q
(2j2 0 (2fl 0h.)}=((jl+j2+j jlq-j2 1)l\j2+m2}l\jl+rnl) }jl+j2+m

(10)

where we have adopted the notation of [5] for the U(2) Wigner coefficient. The
expression on the left of (9) can be identified [5(13.1c), p. 81] with

(;J m --m2 ml

while the expression on the right of (9) can be identified [5(13.1b), p. 81] with

(’2 ; ii’J ml -m --m2

both of which are equal to (10) by the elementary symmetries of the Wigner coefficient
[5(13.2), (13.3), pp. 82-83].

The equality of (6) and (7) has therefore been established for n 2; let us assume
that it holds for n N and seek to prove it for n N + 1. Since we are dealing with
matrix elements of totally symmetric tensor operators, which are multiplicity-free,
these matrix elements factor multiplicatively into the product of matrix elements of
reduced totally symmetric tensor operators. The U(N + 1) Wigner coefficient in a
multiplicity-free case is defined up to an invariant phase. Hence if the AJJ form of the
U(N) Wigner coefficient (i.e., the U(N) Wigner coefficient constructed as a product of
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matrix elements of totally symmetric tensor operators in the AJJ form) coincides with
the U(N) Wigner coefficient in the CCB form, then the two U(N) Wigner coefficients
do not differ by a phase factor dependent on the U(N) invariant labels. This is merely
the hypothesis of our induction procedure. Then the reduced Wigner coefficients in
U(N + !) can differ in the two forms only by a phase factor which depends only on the
U(N + 1) invariant labels. If the two U(N) Wigner coefficients differed by a phase
dependent on the U(N) invariants, then the reduced Wigner coefficients in U(N + 1)
would have to contain a canceling phase factor, dependent on the U(N) state labels, so
that the total U(N + 1) Wigner coefficient would be determined up to a U(N+ 1)
invariant phase. By hypothesis such is not the case. The AJJ form of the reduced Wigner
coefficient in U(N+I) can therefore differ from the CBB form only in a phase
dependent on the U(N + 1) labels. To prove their identity, therefore, it suffices to
establish the equality of any two corresponding degenerate forms. We need then merely
note the identity of (1) in [1] and (48) in [3].

We now establish our notation for hypergeometric series in U(n). We denote

(13)

F(n)

Ax2

A.13 A.23
\A’ Aa An-in

all alk

anl ank bnl b,i

Z1

(n]_l l_] (Aw+x_xe))(t, F(ae+Xe)((I fi l"(be,)=o i=le=i+ (Aie) = fi -ei ] F(ei-xei]xa,"’, g=l i=1

and

A23

A2n

(14) =q! ] I-I=lxi=q i=1 e=i+l

all alk

anl ank

bl bli

(Aie+xi-xe).)( fi fi F(aei+Xe)
(Ale) i= l= F(aeii

.(tiff r(bei)
i=1 ’=1 "i"(’b,ai’-l-X’))(i=lfi Zi)

Z1

We shall call the a’s numerator parameters and the b’s denominator parameters in each
case. Note that

(15) F")((A)[(a)l(b)l(z)) 2
1 w") ((A)l(a)l(b)l(z))

q=0 . q

since the sum in (14) is taken over all xi, with xi => 0, such that the sum of all x is equal to
q, where q is a nonnegative integer. In [4] we defined those conditions for which (14)
should be called well-poised in SU(n) in analogy to Whipple’s [6] original definition of a
well-poised hypergeometric series. Those conditions are that q can be a nonnegative
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integer and

Air -Ais Asr for s < r,

(16) air asr Ais for < s,

bit bsr Ais for < s,

bii-- 1, l <-i<-n.

These conditions are stated somewhat confusingly in (3.2) of [4], where k and/" are used
to denote, respectively, the numbers of columns of numerator and denominator
parameters in (3.1) and arbitrary indices in the second, third, and fourth relations of
(3.2).

THEOREM 1.

--zi+z2--1

F(. --Z1 + Z3--2 --Z2 "[- Z3-- 1

-zl + z,, n + l -z2 + z,, n + 2

(17)

-zn-1 + zn 1

ql--Zl + 1 q2-z1 qn -zl-n + 2
ql-z2+2 q2-z2+ 1 qn-z2-n+3

ql-z,+n q2-z,+n-1 q-zn+l

--zl--n+l
-z-n+2

1 Z2--Zl Zn -zl-n +2

Zl--Z2+2 1 Zn-Z2-n +3

Z1--Zn " n Z2--Zn + n 1 1

a-z1+2
a-z2+3

a-z,+n+l

r(a +Ei=I (zi--qi) + 1)IF(a-z1+2) r(a-zn +n + 1)]
r(a + n + 1)[r(a -ql + 1)... r(a -q,, + n)]

1

when the series is terminating.
Pro@ We equate the AJJ and CCB forms of the reduced matrix element of a

totally symmetric tensor operator in U(n), i.e., the right-hand sides of (6) and (7), as we
are permitted to do by the lemma above. We then introduce the restrictions h q’, for
1 < < n 1, and h’, 0. The CCB form immediately reduces to a monomial, and then
we are left with a sum of the form

)’S,,.([r];[r])

r, /’i S2,([h]; [r])S]n-1 ([r]; [q])[(rl + n 1)!
(ri-l+n-i+l)!(ri++n-i-1)!". (r,,)!]

(18)

--sL_ ([hi; [q])[r(h + n)... r(h. + 1)]

For the sum on the left of (18) we choose 1, relabel the parameters, and find that (18)
corresponds to the F("- case of (17). We may perform analytic continuation in the
parameters of (17) so long as all constituent series remain terminating.

We should note that the n 2 case of (18) reduces to the Gauss summation
theorem, which holds even when the series is not terminating but still convergent. If we
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choose 1 we find in this case that the factor S2 (Jr]; [r]) reduces to unity and we get
11

(19) (--1) h2-r2
r2

F(ql + 1- r2)
(r2)!F(hl + 2 r2)F(h2 + 1 r2)

F(h + h2-q + 1)F(q-h + 1)
F(h + 2)F(h2 + 1)F(h-ql + 1)"

Hence (17) gives us an infinite sequence of summation theorems analogous to the Gauss
theorem in higher dimensions. We may conjecture that (17) holds when the series is
nonterminating but convergent, but our proof holds only for the terminating case, i.e.,
the case in which at least one numerator parameter in each row is a nonpositive integer.

THEOREM 2.

Zl--Z2+I

W(q, Zl z3 + 2 z2- z3 + 1

z-z,,+n-1 z2-z+n-2 Zn-1- Zn + 1

(20)

z-o+l z-w2+2
z2 ol z2 02 + 1

z,, w n + 2 z. 092 n + 3

1 z-z+2
-Zl+Z2 1

-Z + Z,, n + 2 -z2 + z,, n + 3

Zl--O)n-1 + n 1

22 (.On-- + n -2

Z O.)n-

Zl--Zn +gl

z2-z, +n-1

1

1

Proof. This theorem is simply the orthonormality condition for matrix elements of
reduced totally symmetric tensor operators with maximal initial states. In this case the
CCB form (6) reduces to a monomial, and the theorem (20) above follows immediately
from the condition

(21)
Y.:’..1 h,=p+Z’.a h’i ql q,,- q 0 0

where the sum is taken over all representations [hi, obeying the degree condition

h p + Y--1 h and the betweenness conditions

(22) hi > qi > hi_, hi > h’ > hi-

for l<-i<-n-1.
This theorem and its proof were presented in [4] and are included here for the sake

of completeness. The theorem, however, was stated incorrectly in (3.4) of [4]. There
should be (n- 1) rather than n columns of numerator parameters in the well-poised
series. Equation (20) above gives us an infinite sequence of summation theorems which
begin with the classical summation theorem for well-poised 4F3(-1) as the initial case,
n=2.

A number of authors [1], [8] have noted the connection that exists between matrix
elements of reduced totally symmetric tensor operators in U(n) and the multiplicity-
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free Racah coefficients of U(n 1). This relationship is given by [8], [9]

(23)

where

[W, 0] [/z]. [rn’].
[p, 0] [M]. [m].J

[ //([M].)///([/].)]1/2//([m ’]. )// ([m ].)

[dim ([m’].)dim ([m].)]1/2

<(MI.... M.. O)l[p 0 O]l(m.... m’.. 0)>\ml. m.. p 0 0 /Zl. /z..

(24) e2-- , e.=l, n=>3,

(25)

(26)

in --t-tin),
i=l i=1

(mln + n 1)!" (m..)! ]//([m].) n-h--- flr_T (-m--i.- ,27: i)llj=2 11i=1

Since the U(2) Racah coefficient is proportional to a Saalschiitzian 4F3(1) series (a
classical hypergeometric series in which the sum of the denominator parameters is equal
to the sum of the numerator parameters plus one), and we realize this form of the U(2)
Racah coefficient by means of the AJJ form of the matrix element of a reduced totally
symmetric tensor operator in U(3), we should be able to realize Saalschiitz’ theorem
and a sequence of multidimensional analogs of it by introducing appropriate
degeneracies into the right side of (23) and, again, comparing the AJJ and CCB forms.
In the case of the U(2) Racah coefficient, which is Saalschiitzian 4F3(1), we find a
degeneracy which sets one numerator parameter equal to a denominator parameter,
whereupon the Saalschiitzian 4F3(1) series becomes Saalschiitzian 3F2(1), which is
summable by Saalschiitz’ theorem. We now want to find an analogous procedure for the
multiplicity-free Wigner coefficients of all U(n).

THEOREM 3.

(27)

F(n)t ZI--Z2+I
Zx--z3+2 Z2--z3+l

Zl-Z. +n-1 z2-z. +n-2 Z._l-Z.+l

zl-qx zx-q2+l zl-q.+n-1

z2-q-i z2-q2 z2-q.+n-2

z.-qx-n+l z.-q2-n+2

z1 -z2+2
Z2--Z

z.-zl-n +3 zn-z2-n +4

Zl--Z +n
Z2--zn+n--1

1

zl-a Zl-b
z2-a-1 z2-b-1

z.-a-n + z.-b-n +

Zx-C zx-d
z2-c-1 z-d-1

z-c-n + z-d-n +

_F(l + d-b)F(l +c-b)[F(c-q + l) F(c-q, + nl][F(d-ql + l) F(d-q, +n)]F(a d)F(a F(c z + 1) F(c z, + n F(d z + 1) F(d z, +
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when the series on the left is terminating and the parameters are related by

(28) a +b+ i--d--c- zi+ l.
i=1 i=1

Proof. Consider the matrix element of a reduced totally symmetric tensor operator
in U(n + 1) in the degenerate case indicated in (23) and equate the CCB and AJJ forms.
We shall take 1 in the AJJ form given in (7), and we shall impose the further
degeneracy

(29) mIn /- In q- p, mg. =/x. for _-> 2.

We find that the CCB form then becomes a sum over a single index. We obtain

Sa.,([tz + p()]; [Ix + p()])S,([M]; [Ix + p()])
S..([m’]; [tx +/9(1)])S2nn ([./ + P(1)]; [/-/, -1- (1)])S2nn([ "+" P(1)];

(30)
S2.,.([M]; [/x +p()])S2.,,([M]; Ira’])
S([m’]; [/x ])S. ([/x + P(1)]; [/z ])

(- 1)r7--(’"-’)S2.. (It]; [r])S2.. ([r]; [t* ])
11E 2.... $..([r]; [/z +p(1)])S=.,.([M]; [r])S.([r]; [m’])

where we have used the fact that the summation index r,/x on the right is restricted to
the single value r,/l 0 and we denote

[/-. "- 0(1)] I/A, In -[-/91, /-/,2., bl.n--ln, 0],

(31)
[/z -F P(1)] [/ln H- p, ld,2n, bl,n_ln, 0],

[m ’] [m ln, rn.,, ],

[M] [MI,,"""

Without loss of generality we can take/x,, 0 in (23) and in (30). The sum on the left of
(30) can be performed by application of the summation theorem stated in (14) of [1].
When this is done (30) above becomes Saalschiitz’ theorem in the n 2 case and (27) in
its most general form. Wo note that in both (23) and (30) the parameters are related by
the degree condition

(32) Y. Mi. m i,, + p.
i=1 i=1

When we have relabeled the parameters for ease in comparison with the classical
Saalschiitz’ theorem, condition (32) corresponds to (28) above. Again, both sides of
(27) can be continued analytically in their parameters in a unique manner so long as the
series on the left remains terminating, i.e., at least one numerator parameter in each row
must be a nonpositive integer.
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THEOREM 4.

zl-z2+l

Wn) Z1 -z3+2

z-zn+n-1

(33)

Z2--z3+l

z2-zn+n-2 z,-1-zn+l

zl-ol+l zl-aJ2+2 z-aJn-l+n-1

Z2---01 Z2--aJ2+ Z2--O)n_l +n -2

Z --091 --gl +2 Z --O)2--gl +3 Z --O)n_

z1--z2+2 Zn+Z+n --a+z
--Zl+Z2 zn +z2+n-- -a +z2-1

-z+z,-n+2 -z2+z,-n+3 -a+z,-n+l

[F(a -aJ + 2). F(a o,_l + n)][F(a -q z + 1). F(a -q z,, + n)]
[F(a-q-aJ+2)... F(a-q-o,_+n)][F(a-z+ l). F(a-z, +n)]’

where q is a nonnegative integer.
Proof. Theorem 2 above provides a sequence of summation theorems beginning

with the classical theorem for well-poised 4F3(-1) and is obtained from the orthonor-
mality condition for degenerate matrix elements of reduced totally symmetric tensor
operators. Similarly, we can obtain a sequence of summation theorems beginning with
the classical theorem for well-poised sF4(1) from the orthonormality condition for
degenerate cases of multiplicity-free Racah coefficients. We take

r,,,-,,,", o-, ’-,-’,-’,, [m’]n}]
2

(34)
xr:, -,’ wZ+xr:;.,. (dim [m’],,)(dim [m],,)kl [p, 61 [m + W(1)]n [m]n

1,

where the m in are indices of summation whose sum is fixed and, as before,

(35) [m,, + W(1)] [mln + W, m2n, m,,].

We form the degenerate Racah coefficient using (23) and the AJJ form of the matrix
element of a reduced totally symmetric tensor operator in U(n + 1), and we choose 1
in (7) above. We immediately obtain the sequence of theorems (33) above, since the
Racah coefficient with degeneracies indicated in (34) will become a monomial when we
construct it as indicated. Note that in the limit a- +oo we find that (33) becomes
identical with (20).

For the sake of completeness we present here the other theorem, in addition to
Theorem 2 above, which was established in [4]. The proof is given in [4] with reference
to work contained in [2]. This theorem is an analog of Whipple’s theorem [7] which
establishes a relationship between well-poised 7F6(1) and Saalschiitzian 4F3(1). This
relationship is realized in the representation theory of U(2) as a degenerate case of the
Biedenharn-Elliott identity, given in (1.25) of [4]. The following analog arises in the
representation theory of U(3) and is an analog in the limited sense that it relates
well-poised and Saalschiitzian forms. No sequence is yet known of which both
Whipple’s theorem and (36) below are individual members.
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THEOREM 5.

(3)

(36)

X3 + A1 A2
--X2 d- A A X1%" A A

x3 -b A A + -x2 nt A1 A3 -+
--X3-- A1 -+- A2"t- xl + A2-A3 +
XE-AI+A3+I -xI-AE+A3+

Al--q+l xa+Al--q+l --x2+Al--q + 11!)-xa+A2-q+l AE--q+l xx+A2--q+l

X d- A3-- q + --xt + Aa-q + A3-- q +

F(AI+ A2+ Aa-k-kE-k3+ 1)
kl,k2,k3 F(A1 + A2 A3--q + 1)(q kl- k2- k3)!

F(A2 + Xl--q d- 1)F(A3- Xl- q + 1)F(A1 q + 1)
k !F(A + x k -t- 1 )F(A x k + 1)F(Ax q k nt- 1)

l-’(A3 + x2 q d- 1)F(A1 x q d- 1)I"(A2 q + 1)
k2!F(Aa+x2-k2+ 1)F(A-x2- k2 + 1)F(A2-q + k2+ 1)

F(A1 + X3 q "1" 1)F(A X3 q + 1)F(A3 q + 1)

k3 !F(A1 + X k3 + 1)F(A x k3 + 1)F(A3 q + k3 + 1)’

where q is a nonnegative integer and xx + x2 + x3 Oo There are no numerator parameters
in the well-poised series on the left of (36).
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PERIODIC SOLUTIONS TO A NONLINEAR
VOLTERRA INTEGRO-DIFFERENTIAL EQUATION*

HARLAN W. STECH

Abstract. A nonlinear Volterra integro-differential equation arising from the theory of population
dynamics is shown to have a nonconstant periodic solution whenever the (biologically important) steady state
is unstable. Existence of the periodic solution is proved by a fixed point argument.

Introduction. For c, fl and No > 0, we consider the scalar equation

(1) /Q(t) aN(t) 1---o N(t +s) Is + r]"
n’.

e t3(s+r) ds

where r->0, and n is a nonnegative integer. Equation (1) arises in the study of
population fluctuations: N(t) > 0 represents the population density of a species; a is the
"intrinsic rate of growth" of the species, and No is the "carrying capacity" of the
environment. The choice of constants in the integrand is taken so that N(t)= No is a
steady state for (1). The integral term represents a self-regulating or negative feed-back
mechanism (with positive definite time delay when r > 0). Both Cushing [4] and May
[14] provide complete discussions of the model’s derivation.

Many authors have studied the stability of the steady state solution for variants of
model (1). (See, for example [4], [18] and [21] and the references therein.) For the
particular case we will consider it will be shown that whenever the steady state solution
to (1) is unstable (in a linearized sense) then there exists a nonconstant, positive periodic
solution. In particular, it will follow that for arbitrary n _-> 0,/3 > 0, (1) has a periodic
solution of period larger than 2r whenever a r > r/2.

Periodicity results for equations similar to (1) have been obtained by Hopf
bifurcation techniques (see, for example [3], [8], [12] and [19]) as well as topological
fixed point methods ([1], [2], [5], [6], [15], [16], [20] among others). The first approach
allows, in some cases, information concerning the stability of the periodic orbits, but
often applies only to a restricted range of parameter values. The latter method applies
to a wide range of parameter values but allows no conclusions concerning stability. The
techniques used here fall in this latter category.

It is important to note that the analysis to follow relies heavily on the particular
kernel in (1). Its special form allows one to relate (1) to a system of differential equations
of finite delay type (when r>0) or (when r=0) an ordinary differential system.
Equations with kernels similar to that in (1) have been the subject of considerable
interestmespecially in the case r 0. See, for example, [4], [10], [13], [14], [21] and
their extensive lists of references. We note also that the kernel of (1) arises in 16] in the
special case when n 0 and r>0. The results presented here are, in some sense,
complementary to those in [1], [2] and [20] in that the kernels considered there all have
compact support. While it would be of interest to know to what extent the periodicity
theorem of this paper generalizes to equations with the same qualitative form as that
found in (1) (e.g., kernels with "large" first moment and "small" variance), many of the
arguments used in this paper do not lend themselves to this more general problem.

* Received by the editors January 3, 1979, and in revised form October 5, 1979.
t Department of Mathematics, Iowa State University, Ames, Iowa 50010, and Virginia Polytechnic

Institute and State University, Blacksburg, Virginia 24061.
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Section 1 contains a statement of the principal result along with some preliminary
analysis. The characteristic equation associated with the linearization of (1) about No is
analyzed in Lemma 2.1. In 2 we detail the construction of a cone K of "initial
conditions" and a completely continuous map A :K K. A nontrivial fixed point of A
will correspond to a nontrivial periodic solution to (1). Using an ejective fixed point
theorem of Nussbaum [15] and an ejectivity criteria of Chow and Hale [2], we prove in
3 the existence of such a nontrivial fixed point. In the case r 0, it is evident that there

is a close connection between the method used here and that of Hastings, Tyson and
Webster [9] concerning a different negative feedback model.

1. Preliminaries. It is convenient to shift the equilibrium to the origin by setting
x(t) =-1 + N(t)/No. Then x solves

(1.1) 2(t) -a[x(t) + 1] x(t + u) pn(u + r) du,

where pn(v) n+l]/Aln e/n !. For any bounded continuous initial function x(t) q (t),
t-<_ 0, the solution of (1.1) exists for all > 0 and is unique.

We shall prove
THEOREM 1.1. Let > 0, r >= 0 and n >- 0 (with not both r and n equal to zero). Define

u0>0 to be the smallest solution of ruo+(n + 1) tan-1 (uo/)=Tr/2 and ao=-uo (1 +
(uo/)2) (+1)/2. For a > ao (1.1) has a nontrivial periodic solution x( > -1 with period
larger than 2r.

For the case r n 0 excluded by these hypotheses, it is well-known that the zero
solution of (1.1) is attracting for all solutions x >-1. (See, for example, Staffans [17].)
Thus, no positive nontrivial periodic solution of (1) exists.

To discuss the stability of the zero solution of (1.1) we linearize about x 0 to
obtain

(1.2) , (t) -a z(t + u)pn(u + r) du.

This will have the solution z(t) e At (h complex with Re h > -/3) if and only if h satisfies
the characteristic equation

h -a eUon(u + r) du
(1.3)

-rX +1)=-ae (I+A/B)-(

Thus, the zero solution of (1.2) will be unstable whenever (1.3) is satisfied by a ,t with
positive real part. The existence of such a root is given by the following lemma.

LZMMA 1.2. Fix n >=0 and >0. Define uo and ao as in Theorem 1.1. For
0 < a < ao all solutions h Ix + it, to (1.3) have negative real part. For a > ao there is a
simple zero of A + a e-Xr(1 +A//3) -(n+:) with Ix >0, uo < u (and u< r/r if r > O).

Proof. Considering the argument and modulus of each side of (1.3) we see that
A p + iu will be a characteristic root if and only if

(1.4) tan-x () r- ur-(n + 1) arg (1 +//3), mod 27r

and

(1.5) 2 2 2 -2r )2 -(n+l)
u +ix =a e [(l+tz// +(u//3)2]

Since complex roots occur in conjugate pairs we may assume u _>-0.
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Case 1’ r > 0. Considering, for the moment, purely imaginary roots A iu, (1.4)
reduces to

(1.6) ru+(n+l)tan-1 (u/B)=+2zrm, m an integer.

The left side of (1.6) defines an increasing unbounded function of u that is zero
when u 0. Thus, for each rn _>- 0 there is a unique solution u,, > 0 to (1.6), and iu,, is a
root provided a is taken so that (1.5) (with Ix =0, u u,,) is satisfied. That is,
o um[1 -(1}m/[)2](n+l)/2Ogm Clearly u,, (and therefore a,,,) increases with m.

For A Ix + iu, Ix > 0, the existence of roots can be shown similarly. Equation (1.4)
may be written

(1.7) ru+tan- (u/ix)+(n+l)tan- (u/(ix +))=zr+2rm, m>-O.

For fixed Ix > 0 and m _>-0, we find a unique solution u,,(ix) of (1.7)--then determine
a a,, (ix) from (1.5) (substituting , Ix + iu,, (ix)). It is not difficult to show u,, (ix) is an
increasing function of Ix, and therefore (using (1.5)) that O (IX) increases monotonically
without bound as Ix increases from zero. It follows that the minimum value of a for
which there are roots with nonnegative real part is ao(0)= ao. For a > ao the mono-
tonicity and unboundedness of ao(ix) show that (1.7) (with m =0) is solved by
tx a (a)> 0 and a unique u Uo(ix) with zr/r > uo(ix) > uo(0)= uo.

Concerning the root’s simplicity, we assume the opposite, and differentiate

h (1 +//)n+l .+. a.e- 0

with respect to h at the root. Into the resulting expression one can substitute for a e
the expression derived from (1.3). It is easy to see that h must be a root of a polynomial
that has all roots with negative real part--a contradiction.

Case 2" r- 0, n _-> 1. Arguing as in the previous case, we consider first purely
imaginary roots. The left side of (1.6) increases monotonically from 0 to (n + 1)(7r/2).
Thus, for each m =>0 satisfying 4m <n, there is a unique solution u,, =tan ((.rr/2)
((1 +4m)/(1 +n))) of (1.6). With minor adjustments (often simplifications) the line
of reason in Case 1 applies here as well, so we will omit further details.

Associated with (1.1) is an n + 2 dimensional system of finite delay equations. For
any solution x of (1.1) for > 0 we define

I____y(t) x(t + u)o(u + r) du
(1.8)

,--r

| x(s)ok(s- + r) ds

for k 0, 1,. , n. Differentiating, we find

A -a Ix + 1 ]y,,

(1.9)

:1 --Yl "[- YO,

:o=-Byo+X(t-r).

For (1.9) it is natural to use the space of initial conditions X =- C([- r, 0]) x "+x, where
C[-r, 0] is the space of continuous real valued functions on the interval [-r, 0].
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Elements of X will be denoted by ff (o(.), y,, y,-1," ", Yl, Yo), with the norm

I111- max {sup[_r, 03 Iq(s)[, ly,,I,""", lyol}. (When r 0, X R+2.)
Concerning periodic solutions, it is evident from (1.8) that each periodic solution of

(1.1) defines a periodic solution of (1.9). The converse is true as well.
LEMMA 1.3. If (X(’), y(" )," , Yo(" )) is a periodic solution of (1.9) then

yk(t) x(t + U)Pk(U + r) du, k=0, 1,...,n.

Thus x(" is a periodic solution of (1.1).
Proof. The argument is essentially that found in [10] for an equation with similar

kernel.
Let -< -< and integrate the last n + 1 equations over [-, t] to obtain

y0(t) yo(r) e t(t-’) + fl e(t-S)x(s r) ds,

y(t) y(r) e(t-’ + e(-’y_(s) ds

for k 1,. , n. The periodic solution is bounded so that we may let r --oe. Thus

and

y0(t) =/3 e’(’-S)x(s r) ds

yk(t) fl et(’-)Yk-l(S) ds,

The conclusion now follows by an elementary induction argument. 1-]

By this equivalence, we must show (1.9) to have a periodic solution with x >-1.
Towards that end, we introduce the following convex cone of initial conditions for (1.9).
Let K { (q(.), 0, y,_l, , yo) 6 XIq is a continuous, nonnegative and increasing
function defined on [-5 0], 0 -< Yk -< q (0) for k 0, , n }. For 0 K, we will show
that there is a first -()> 2r such that the solution of (1.9) with initial condition q,
satisfies (x(z +.), y,(-), y-l(r), , yo(’)) K. (By x(" +.) we mean the element of
C[-r, 0] whose value at s is x(" + s).) In addition, it will be necessary that we show ’(4)
bounded uniformly for bounded Ilffl[. This will be shown with the aid of the following
technical lemma.
LEMMA 1.4. Let O Xand x(O) denote the first coordinate of the solution to (1.9) with

initial condition O. Then x(t)= x()(t) satisfies

2 (t) -a [x (t) + 1][ Y(o,

k=o(n--k)!
(t)"-k e-t, + o(u)p, (u + r) du

(1.10) -c[x(t) + 1][ k=o(n--k)! e

forO<-t<=r
0

-’ + I_ (u)o.(u + r) du

+ (u)p.(u + r) du
aO

forr<=t.
(The integrals over f-r, 0] are absent if r 0.)
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Proof. By direct computation one can show that the last n + 1 coordinates of the
solution of (1.9) with initial condition 6 are given by

yi(t)=
yk(0) (t)i_k _, [’-rx

k=0 (I"-- k)!
e / (gl)pj(U + r) du, f O, ,n

for > 0. 71

2. Construction of a cone map. Fix/3 > 0, r and n >-0, and assume c > ao. We
proceed to show the existence and boundedness of the function " K\{0} -, [2r, )
defined previously. As above, we will write x(. x (4,)(") for the first coordinate of the
solution of (1.9) with initial condition .

LEMMA 2.1. Assume c > 0 and K satisfies 0< II]l<= c. Then there is a first
tl t($) >=O atwhich x(tx) O, and x(t + e)< O forsmall e > O. As a function of$, t($)
is continuous and bounded above by a constant dependent only on C.

Proof. We will use the existence of a characteristic root A =/z + iu with positive real
part to construct a comparison function with which we can show x to have the desired
change in sign. As seen from the previous section, :(t) e" sin (ut) solves (1.2). Define
for > 0, jl(t) (t) for -l -r <- =< 0 and jl(t) 0, otherwise. Since :l _, : uniformly
on (-c, 0] as lc, the solution zl( to (1.2) with initial condition l will vary
continuously with l. As l-, , z-, : uniformly on compact subsets of [0, c). Thus
one may find sufficiently large so that (as is the case for :) there is a unique
0<t* < 3r/(2u) such that O<z(l)(t) for O<t<t*,zl)(t)<O for t* <t<=3r/(2u), and
the maximum value of z(l)(t) for -- < _<-- t* lies in [0, 3r/(2u)].

We claim that x must change sign on [0, r +l+ t*]. If not then 6 K and (1.10)
imply x is nonincreasing on [0, r] and decreasing on It, r + + t*]. Choose 6 >0 to
be the maximum number such that z(l)(t r) <= x(t) for 0 <= <= r + + 3r/(2v). (Such
a 6 exists since x is positive on this interval.) By our choice of 6 there is some
0 <= t** < r + + 37r/(2v) such that 6z)(t** r) x(t**) and z)(t r) < x(t) for
t* < < r + + 3r/(2v). In fact, by our choice of and the monotonicity of x we have
r + < t** < r + + t*. Finally, for t** < < r + + t*, we have from (1.10)

t-r

k(t) =<-a[0 + 1] x(u)p,(u-t+r) du

t-r

(l)(u<= -aS z r)pn (u + r) du

--OZ z(l)(t r + S)pn(S + r) ds

--0 z(l)(t r + S)pn(S + r) ds

since z
obtain

(l)(t- I-- r / s) 0 if s < t. Now, integrate over It**, r + + t*] and use (1.2) to

x(t* + r + l)-x(t**)<- fr+l+t*
Jr**

<l)(t-l-r)dt

6z()(t*) z(l)(t** r).

From the definition of t** and z)(t*) 0, we obtain the contradiction x(t* + r + l) <= O.
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The existence of a first zero has been proved. Since 0 #0 and x(t)>0 for
O<-t<-tl(O), (1.10) shows 2(t1(0))<0. Thus, the zero of x at tl(0) is simple. The
uniform bound on tl(O) follows directly from the proof (l is independent of C).
Continuity of tl at 0 # 0 is a consequence of continuous dependence of x(O) on its initial
data.

As we have observed in the lemma, if 0 O e K then (1.10) shows x to decrease for
values of slightly larger than h(O). (In fact, if r >0 then x decreases on [tl, t + r].)
Clearly x(O) must continue to decrease until either y,(t) or [x(t)+ 1] change signs. The
latter is not possible since (1.10) implies that as long as x decreases from x (0) c,

2(t)e-a[x(t)+l](l+ o(u-t+r)du I1 11

-a[x(t)+l]2C
n-1 -Bt(Note: l=ee-2=o(1/(n-k))(Bt)"-e .) Thus (d/dt)ln(x(t)+l)-2aC

and (integrating over [tl(), t])

x(t) -1 +exp {-(t-h(O))2aC}.

We may integrate the last n + 1 equations of (1.9) to obtain the equivalent system

2(t) -a[x(t) + 1 ]y (t),

y(t) y(0) e -or + e-O(t-y_l(S) ds,

(2.1)
(t) y(O) e-’+ o e-{’-}Y(S) ds,

Io’yo(t) yo(0) e -or + e-(t-x(s r) ds.

From this and the positivity of the yg(0), it is clear that y(t) can change sign only after
yo(t), y(t), , and y-l(t) have. In fact, as x(t)< 0 decreases past tl + r, the last
equation in (2.1) shows yo(t) to eventually decrease and change sign at some t>
tl + r. For > we have

ety(t) =B ex(s-r) ds

so that yo(t) e ot remains negative and decreases as long as e x(s- r)< 0. From the
equation for yt(t) in (2.1) we see that this forces y(t) to eventually decrease and change
sign at some . For > ,

ety(t) eyo(s) ds

is negative and decreasing. Continuing this line of reasoning, we see that y, will
eventually change sign at some t t(0) > tl() + r.

Observe also that since x decreases on (h, t],

eOtY(t) eO’x(s r) ds

> eOdsx(t)

so that yo(t)x(t). Similarly, since yo decreases on It, t], yl(t)Nyo(t)x(t).
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Continuing, we see that yk(t2)>=x(t2) for k=0,..., n-1 so that (x(t2+.), yn(t2),
yn-l(t2), y0(t2)) defines an element of -K.

The two technical lemmas to follow show t2(l) to be uniformly bounded for
0<ll ll=<c.

LEMMA 2.2. Let 0<IIII-<_C, and assume tE(b)>tx(k)+l+r. There is a 8>0
dependent only on C such that x (tl(O)+ 1) <- - 11 11.

Proof. Since x decreases on [0, tl], x(t) <- x(0) 11[[_-< C. Thus (as above)

t_r

]
-> -2c C + 1] I111

which we integrate over O<-t<-u<-tl to obtain x(u) l[Oll a(u), where a(u)=-
max {1-2a(C + 1)u, 0} for 0 <- u _<- h. (We define a(u)=-O outside that interval.) Over
[tl, tl + 1], (2.1) implies

2(t)<--ce{x(t)+ 1] 0+0+11 11 a(u)p,(u-t+r) du

We assume x(t + 1 + r)>--1/2 (otherwise, take 8 1/(2C)). Then

O (
t-

a2(t) <- -- II011 (u)o(u + r) du
aO

since x decreases on It1, tl + 1 + r]. Finally, we integrate over that interval to obtain the
desired 8. Iq

LEMMA 2.3. For 0 < [1011 <- C, tz(b) is uniformly bounded by a constant dependent on
C alone.

Proof. Without loss of generality we may restrict our attention to those ff satisfying
the hypotheses of the previous lem.mR. For tl() + 1 + r < < t2() the monotonicity of x
implies

0

y.(t)<--[[4,11
=o (n- k). e-O’+ rP"(u-t+r) du

t-r

-I1 ,11 (u / r) du.
x+l+r

The last term approaches -11118 as t- +o while the first approaches zero. Thus, the
uniform bound on the zero of y, t2(), follows from that of h(). [3

From this lemma and the discussion following Lemma 2.1 we obtain
COROLLARY 2.4. The minimum value ofx on [0, t2(O)], X(tE(ff)), is bounded above

-1 by a positive constant dependent only on C.
LEMMA 2.5. There is a first t3 t3() > t2() for which x(t3) 0 and x(t3 + e) > 0 for

small e > O. As a function of , t3() is continuous and bounded on 0 < [l ll c by a
constant dependent on C alone.

Proof. Since (1.9) is autonomous, we may consider x(t) for t> t2 as the first
coordinate of the solution to (1.9) for > 0 with initial data given by if(u) x (/2() + u),
-r u 0, and yk=Yk(t2()), k=0, 1,’.’, n. From (1.10) and (if, y,..., Yo) -K,
we see that x must increase as long as x(t)< O.

Assume for the moment that X(tE)[ao/a 1]=(ao+a)/2a- 1. Then from
(1.10) we have (t) -((a0 + )/2)y, and we may proceed exactly as in Lemma 2.1 to
construct a comparison function to show the existence and boundedness of t3(). Note
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that since (ao+a)/2>ao, Lemma 1.2 provides the needed growing exponential
solution to the linear equation

2(t) z(t+u)p,(u+r)du.
2

The details are omitted.
Finally, if x(t2) _->[(ao/a)- 1] fails, one can use the bound given by Corollary 2.4

and an argument similar to that used in Lemma 2.3 to show that x (t) will increase until
the inequality does hold at some 72 > t2, with 72-t2 uniformly bounded by a constant
dependent on C alone. The details are again omitted.

LEMMA 2.6. There is a first >_- z(q) >- t3(q) + r > 2r at which it(z) O. As a function
oj 4J, z is completely continuous on 0 < I1 11--< c,

Proof. The existence of a first positive maximum for x for > t3 + r can be shown
using an argument similar to that following Lemma 2.1. Variants of Lemmas 2.2 and 2.3
may be obtained to show z() uniformly bounded for 0 < flail <-- c. Continuity follows
from continuous dependence, as usual.

Using the same line of argument as that presented after Lemma 2.1, we see that
(x(qJ)(’(O)+.), y,(’), y,,-l(Z),’", yo(r))K. We define A’KK by aqJ
(x(qJ)(z(qJ) + ), y,(z),. , yo(z)) and A0= 0. (A is, in general, not continuous at 0.)
Clearly, any nonzero fixed point qJ of A defines a nontrivial periodic solution of (1.9)
with period z(qJ) > 2r.

3. Existence of a fixed point. Following the procedure outlined in Hale [7], we
intend to apply the following fixed point theorem of Nussbaum.

THZORZM 3.1, [7]. Assume K is a closed convex subset of a Banach space X,
A K\{0} K is completely continuous, 0 K is an ejective point of A and there is an
M>0 such that II4,[1--M and AJ 64J implies 6 < 1. Then A has a fixed point in
0 < IIqll <M if either K is infinite dimensional or 0 is an extreme point of K.

Recall that 0 K is an ejective point of K provided there exists an open neighbor-
hood 6 of 0 in K such that for any 4J K 0 6\{0}, A"qJ ’ .for some positive integer
m m (4J). Ejectivity of 0 is the most complicated hypothesis of Theorem 3.1 to verify.
For this condition we will use a technique of Chow and Hale [2].

If (1.9) is linearized about the zero solution one has

(3.1)

where z(t) R"+z and

(t) A xz(t) + A2z(t r),

-0 -a 0 0 0

o -/ t o o
0 0 -/ t o

o o -t /
0 o o -t-

0 0 0

0

0 0

t o o

are both (n + 2)x (n + 2) matrices. An elementary calculation shows that any root of
(1.3) with Re A > -/3 is a root of the characteristic equation associated with (3.1). Thus,
under the condition a > ao, we may use the root A with positive real part to decompose
X P(A)O(h ), where P(1 and O( are invariant under the usual solution operator
T(t):XX, T(t)=(x(t+.), y,,(t), , yo(t)), t_->0. The restriction of T(t) to P(A)
has only the eigenvalue {eat}. The projection II(A):X P(A) is described in Hale [7].
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LEMMA 3.2. Assume a > ao and A t. + iu is the root given in Lemma 1.2. Then
inf {llrt(x)oll Io K, [1 11 > o.

Proofi The adjoint equation associated with (3.1) is

(3.2) (t) -w(t)A- w(t + r)A2,

where w(t) is a n + 2 dimensional row vector. Since A is a characteristic root, w
e-tb(O b r "+) will solve (3.2). Substituting into (3.2) we find that the equations
may be solved recursively for b (1, (A/B)(A/ + 1)" e a (A/)(A/ + 1)"-1 e
(/B) e).

Let ((.), 0, y,_a(0), , yo(0))K. Since X is a simple root, Iln(x) ll is a
nonzero constant multiple of I(w, 6)[, where

(w, )= w(0)O(0)+ w(s)A2(s- r) ds

(3.3) b6(0) +o b e-X(O, 0,..., O, O(s-r)) ds

=(0)+A ex e-X(s-r)ds+we +1 y (0).

Case 1" r > 0. Let u s-r in the integral, and ( being of bounded variation)
integrate by parts to find

(3.4) (w, O) e- e_(,+) A A
+ 1 y(0).(u)+x

Note that since 0 < r < and is nondecreasing

0

(3.5) -zr <-ru---arg | e-x(+) dq (u)_<-0.

Assume for the moment that each term (A//3)(A//3 + 1)k lies in the angular sector
0 <_- arg (r) < zr ru e for some e > 0. If 4() is a sequence from K (all with unit norm),
we may deduce from y(k/) (0) _--> 0, 0(--r)_--> 0, (3.4) and (3.5) that y)(0) 0, k =0, 1,...,
n 1 as well as

0

(3.6) q(/)(--r) + [ e -x("+) dq (1)

(Note, that for e > 0 {" e C I-ru < arg (st) -< r, e + r} defines a cone/ in C with the
property: if sri /;/" 1,. ,p then 12=x il >=6 Y’.=I [ril for some 6=6(e)>0.)

Consider the imaginary part of the integral. Since 0< ru < zr and each is
monotone increasing, we have for each -r < s .<-0,

0 (0 (/)(0)- (0 (l)(s)
o

J dq(t)(u)

-<- e -"(’+ sin (,(u + r)) do( (u),-d

where d d(s) > 0 is the minimum value of e-"(/ sin (,(u + r)) on (s, 0]. The integral
approaches zero as +oo, thus the monotonicity of 0 shows o((s) - o((0) 1 on
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compact subsets of (-r, 0]. Thus (from 3.3) (w,/(I))...> 1 + h e " [9 e -xs ds 0--a
contradiction.

Finally, we must show for each k 0,. ., n- 1, that (h//3)(h// + 1)k lies in the
sector 0<arg(ff)<w+r-e for some e>0. Fix k and consider 0(g)=
arg ((ff/B)(/B + 1)k) for ff = +i as g increases from 0 to . When g=0, clearly
0 =0, while as g increases 0<arg (UB) O()< arg ((U)(UB + 1)) Thus

0<arg( +iu (())B /
O(u) < arg +1

-arg(( 1) "+x)
arg (- e-")- arg + 1

=<=r-arg(+,+1)
using (1.3) and o (from Lemma 1.2).

Case 2: r 0. Here, (3.3) reduces to

Arguing as in the previous case we find that each (I/B) (I/ + 1) lies in the sector
0 < arg () N e for some e > 0. Since (0) 1, each term on the right side of (3.7) lies
in the sector 0 N arg () N e, and the techniques of the previous case apply here as
well.

One final lemma is needed.
LEMMA 3.3. Dene > 0 to be the unique solution o

O.(u + r) du p. (u + r) du.
2

Then, for any 0 : K, x (’(4)) < 2 e" 1.
Proof. Without loss of generality we may assume x()> 1. However, x(t) 1

cannot hold on [- , r] since, if so, we arrive at the contradiction

0

[ yk(O) (z)n_ke_, + f_ (U)pn(U_r+r) du(r) -a [x (r) + l]
(n k)k 0

+ x(u)p,(u -r + r) du + x(u)p,(u -r + r) du

<-[x(r) + 1] 0+0- O(u-r+r) du+ O(u-r+r) du

<-[x(r)+ 1] p.(s + r) ds + o.(s + r) ds

=0.

Let t* e It-n, r] satisfy x(t*)= 1.
The previous inequalities can be modified to show (t)< a[x(t)+ 1] for t* r.



NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION 543

Thus

and
In (x(r)+ 1)-ln (x(t*)+ 1) < c(z- t*)

In (x(r)+ 1)-In (2) < ar/.

Proof of Theorem 1.1. We show that K and A satisfy the hypotheses of Theorem
3.1. Clearly K is closed and convex. When r > 0, K is infinite dimensional and when
r- 0, 0 0 is an extreme point of K.

Since [[A0[] x(’(O)), we may take M 2 en 1, the upper bound derived in the
previous lemma. The continuity of A on K\{0} is a consequence of continuous
dependence. The previous lemma implies A(K\{0}) is uniformly bounded so that
complete continuity follows in the case r- 0 from the finite dimensionality of K. For
r>0 we note that on [z(O)-r, r(O)], 2(t)<-a[x(t)+ 1]<2a e n’, and apply the Ascoli-
Arzela lemma.

Finally, the ejectivity of 0 follows from Lemmas 1.2, 2.6, 3.2 and the complete
continuity of A. (See [7, TAm. 11.2.3].)

Using the boundM derived in the previous theorem we can summarize as follows"
COROLLARY 3.4. Assume > O, n >--_ 0, r >= 0 (with not both r and n zero). Define ao

as in Theorem 1.1 and as in Lemma 3.3 Fora > ao them is a nontrivial periodic solution
o]’ (1) with period> 2r and O<N(t)<2Noen.
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A BIFURCATION APPLICATION OF THE GENERALIZED INVERSE OF
A LINEAR DIFFERENTIAL OPERATOR*

W. S. LOUDt

Abstract. If L is a linear differential operator, and if E and F are projections such that the range of F is
the range of L while the null space of E is the null space of L, there is a unique generalized inverse X of L such
that LXL L, XLX X, LX F and XL E (restricted to the domain of L). The freedom of choice of the
projections E and F leads to simplifications in the analysis of branching problems for solutions of nonlinear
boundary problems. This is illustrated with two examples.

1. Introduction. In recent years there has been much activity in the area of
generalized inverses of linear operators. See the books of Ben-Israel and Greville [1]
and Nashed [10], and the references given therein. For the case of a regular differential
operator the generalized inverse leads to generalized Green’s functions, an idea which
goes back to Hilbert. See also the work of Reid [11], [12], [13].

The most common generalized inverse of an operator L’ is the Moore-Penrose
pseudoinverse L*. It is characterized by the relations LL*L L, L*LL* L*, and by the
requirements that L*L and LL* be orthogonal projections. A larger class of generalized
inverses, denoted in [1] as (1-2)-generalized inverses is characterized by the first two of
the requirements for L*; but if X is the generalized inverse, the projections XL and LX
are arbitrary except that the range of LX must be the range of L, while the null space of
XL must be the null space of L. It turns out that the freedom of choice of these
projections can lead to simplification of calculations in some applications.

In 2 we give a Hilbert space setting for the generalized inverses. Section 3 is a
collection of known results in the matrix case; one lemma needed for a later application
is given. Section 4 is a collection of known results for differential operators. As an
example the generalized Green’s matrix corresponding to the group inverse is given for
a differential operator.

In 5 we study a branching problem for solutions of a nonlinear boundary-value
problem involving a differential equation. This leads to an equation Lx Nx, where L is
of necessity a noninvertible linear operator and N is a nonlinear operator with no linear
terms. To obtain the determining equation for the branching problem, a generalized
inverse X of L can be used. It turns out, that by a judicious choice of the projection LX,
the calculations can be simplified. Section 6 consists of the discussion of two examples to
illustrate the use of the generalized inverse with branching problems.

2. Abstract setting. Let Y be a separable Hilbert space, and let L be a densely
defined, closed linear operator in Y(, such that the null spaces of L and of its adjoint L*
are both finite-dimensional. This will imply that the ranges of L and of L* are closed
subspaces. The reason for this last assumption is that we have regular ordinary
differential operators in mind.

An operator X with domain o will be called a (1-2)-generalized inverse of L if the
range of X is contained in the domain of L and if

(1) LXL L,

:z XLX X.

* Received by the editors April 28, 1978, and in final revised form September 18, 1979. This research
was supported in part by the U.S. Army Research Office under Grant DA-AROD-31-124-73-G199.

School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455.
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The relations (1) and (2) imply that LX and XL are idempotents. LX is a projection
operator, and the range of LX is the same as the range of L. XL is the restriction of a
projection operator to the domain of L, and the null space of XL is the same as the null
space of L.

If E and F are any projection operators such that the null space of E is the null
space of L, and the range of F is the range of L, we shall construct the unique
(1-2)-generalized inverse X such that XL E (restricted to the domain of L), and
LX F.

The study of the projections E and F will be simpler if we consider the sup-
plementary projections P I-E and Q I-F. If the dimensions of the null gpaces
of L and L* are k and k’ respectively, P and Q are projection operators whose ranges
have dimension k and k’ respectively. Let (Ul, u2, , Uk) be a basis for the null space
of L, which is the range of P. It is always possible to choose a basis (rl, r2," , rk) for
the range of P* such that

(r, u)= , i, / 1,. , k.

If this is done, the projection P is given by the formula

k

(2.1) Px
i=1

Similarly if (Vx," , Vk’) is a basis for the null space of L*, which is the range of Q*, a
basis (sx,. , Sk,) can be found for the range of Q such that

(vi, sj)= ij, i, ] 1,. , k’,

and the projection Q is given by the formula

k’

(2.2) Qx (x, vi)si.
i=1

THEOREM 2.1. LetE andFbe projection operators such that the null space orE is the
null space of L and the range of F is the range of L. Then there exists a unique
(1-2)-generalized inverse of L such that LX F and XL E (restricted to the domain
of L).

Proof. Let L be any operator with domain such that LLL L. We claim that

(2.3) X EL_F

is the desired generalized inverse. Note that the defining conditions on E and F imply
that LE FL L. Hence LX LEL_F LL_F, and XL ELFL EL_L. Now if y is any
element of the range of L, the definition of L gives that LLy y. Since the range of F is
the range of L, this means that for any vector z, LLFz Fz, so that LLF F. Also if x is
in the domain of L, L__Lx x + u, where u is in the null space of L. Since u is in the null
space of E, for any x in the domain of L, EL__Lx Ex, so that EL__L E (restricted to the
domain of L). This shows that LX F and XL E (restricted to the domain of L).
LXL LELFL LLL L, and XLX ELFLELF ELLLF ELF X, where we
used FLE L and LL_F F. This proves that X is a (1-2)-generalized inverse of L with
the asserted properties.

To prove uniqueness, suppose that X and Y are such that XLX X, YLY Y,
LX LY F, XL YL E (restricted to the domain of L). Then

X XLX XLY YLY Y.

This completes the proof.
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There are many generalized inverses of L which satisfy LXL L, LX F, XL E
(restricted), but the above shows that there is only one which satisfies the additional
requirement XLX X. In what follows, the projections LX and XL are of principal
interest, so it seems simplifying and not particularly restrictive to ask that XLX X.

The two most important generalized inverses of L are the Moore-Penrose pseudo-
inverse, for which LX and XL are Hermitian, and the group inverse, for which
LX XL on the domain of L. To obtain the Moore-Penrose pseudo-inverse, L*, let E
be the orthogonal projection with range the range of L*, and let F be the orthogonal
projection with range the range of L. If (u 1, , Uk) is an orthonormal basis for the null
space of L, E I- P, where

k

Px , (x, ui)ui.
i=1

If (vl," , 1.)k’) is an orthonormal basis for the null space of L*, F I- Q, where

k

Ox E (x, v)v.
/=1

If L is any operator for which LL__L L; we have for any vector x

L*x ELFx (I P)L(I Q)x Lx PLx LQx +PLQx
(2.4)

k k’ k k’

"-tx- Z (tx, ui)u (x, vj)Zl.)j-Jl- Z Z (x,-l)j)(tt_l.)j, ui)ui.
i=1 j=l i=1 /=1

For the group inverse, L# to exist, we must have E F; which means that E and F
are each equal to the projection with range, the range of L, and null space, the null space
of L. This implies that k k’, and that the range and null space of L have no nontrivial
element in common. If (ul," , Uk) is a basis for the null space of L, a basis (Vl," , Vk)
can be found for the null space of L* such that

We then have for any vector x,

(ui, v)= 6ii.

k

Px Ox Z (x, vi)ui.
i=1

With these bases and with L as before we have

k k k k

(2.5) L#x Lx- (Lx, vi)ui- Z (x, vi)Lui + , Z (x, vi)(Lui, vi)ui.
i=1 j=l i=1 j=l

The question as to when the range ofX is contained in the range of L is of interest.
Since the range ofX is the same as the range of XL, this implies that the range of E must
be contained in the range of F, and since E and F are projections this gives FE E. If
we use P I-E and Q I- F, the requirement becomes QP Q. Introduce the bases
(rl, , rk) and (Sl, , Sk’) for the ranges of P* and Q used earlier. Formulas (2.1) and
(2.2) give

k’ k k’

QPx , _, (x, rj)(ui, l.)i)Si Qx Z (x, vi)si.
i=1 i=1 i=1

The linear independence of the s gives that OPx Ox implies

(x, vi)= Z (x, ri)(ui, /2i), i= 1,’’ ", k’,
j=l
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and since this holds for all x,
k

(2.6) vi Y. (re, uj)r, i= 1,..., k’.
j=l

This shows that the choice of the si is not significant, but that the rj must be properly
chosen.

Let M be the k’ k matrix of which the -/" element is (vi, u.). We claim that (2.6)
can be solved for the rj if and only if the rank of M is k’, so that the desired
(1-2)-generalized inverse with the range ofXcontained in the range ofL exists ifand only
if the rank ofM is k’.

If the rank ofM is less than k’, there is a nontrivial set of constants Cl, , Ck’ such
that the corresponding linear combination of the rows ofM is the zero row-vector. But
then (2.6) would imply

C Vl "-’" + Ck’Vk’--" 0

which contradicts the linear independence of the
If the rank of M is k’ and k’ < k, we can solve (2.6) for some set of k’ r’s, with the

and null space of L having no nontrivial element in common. In this case, the rj are
determined uniquely. The projections P and E I-P are then the same as P and E as
found for the group inverse.

If the rank of M is k’ and k’ < k, we can solve (2.6) for some set of k’ r’s, with the
remaining r’s arbitrary. In this case the projections P and E can be determined in many
ways so that the range ofX is contained in the range of L. The projection F is restricted
only by the requirement that the range of F be the range of L.

3. The matrix case. Let A be an m n matrix of rank r. In this case the generalized
inverse is an n m matrix whictt satisfies

AXA A, XAX X.

In this section we list the properties of (1-2)-generalized inverses of matrices needed in
the application to linear ordinary differential operators. All the results presented in this
section are either well-known or easily derived. The reader is referred to [1 or [10] for
comprehensive discussions of generalized inverses of matrices.

If E is an n n projection matrix of rank r, such that the null space of E is the same
as the null space of A, and if F is an m m projection matrix of rank r, such that the
range of F is the same as the range of A; there is a unique (1-2)-generalized inverse of A
for which AX F and XA E. Indeed, if A is any n m matrix such that AA__A A,
then X EA___F; the result being the same for every possible choice of A.

Other formulas for X can be obtained with the use of full-rank factorizations. Let
A have the full-rank factorization

(3.1) A HK*,

where H is an m r matrix of rank r whose columns span the range of A, which is also
the range of F, and where K is an n r matrix of rank r whose columns span the range of
A*, which is also the range of E*. Let Na be an n r matrix of rank r whose columns
span the range of E. Then K*N is a nonsingular r r matrix. If N NI(K*Nx)-, N is
also an n r matrix of rank r whose columns span the range of E with the additional
property that K*N L. We then have E NK*. Similarly letM be an m r matrix of
rank r whose columns span the range of F*. IfM Mx(H*M)-1, M is an m r matrix
of rank r whose columns span the range of F* and M*H L. We then have F HM*.
It is then readily verified that X NM* is the required (1-2)-generalized inverse of A
with XA E and AX F.



BIFURCATION AND GENERALIZED INVERSES 549

When X is the Moore-Penrose pseudo-inverse, E and F are Hermitian. Choose
N1 K and M1 H. The result is ([ 1, (1.25)])

A* K(K*K)-(H*H)-H*

When X is the group inverse, E F. This requires m n so that A is a square
matrix. The common value of E and F must be a projection with range the same as the
range of A, and null space the same as the null space of A. Such a projection will exist if
and only if the range and null space of A have no nontrivial vector in common, and this
is equivalent to A and A2 having the same rank, and also to K*H being a nonsingular
r r matrix. We select M K and N H and obtain ([1, (4.12)])

A# H(K*H)-2K*, AA# A#A H(K*H)-IK*.

The requirement that the range of X be the same as the range of A makes m n.
Also the range of X, which is the range of E, must also be the range of A, while the null
space of E must be the null space of A. We again must have K*H nonsingular and

E H(K*H)-IK*.

We may still use F HM*, so that

X =H(K*H)-M*.

A possible choice for M* is (K*H)-K*, which gives X A#.
For later applications we need the following lemma.
LEMMA 3.1. LetA be an m n matrix of rank r, and let 17. andFbe projections such

that the null space ofE is the null space ofA, and the range ofF is the range ofA. Then
there exists an n m matrix R, having full rank, such that RA E and AR F.

Proof. Let the four projections E, F, P In -E, and O I, -F have the full-rafik
factorizations

E NK*, F HM*, P N1K, O HIM*.
Here A HK*, M and N are as earlier, K*N In-r, M*H I,_, and, for example,
N is an n (n r) matrix whose columns span the range of P, which is the null space of
E. Then if G is any matrix of size (n r) (m r) having full rank, i.e. of rank equal to
min(n-r, m- r), we may choose

R NM* +NGM*.
Because K*NI and M*H are zero, it follows at once that RA E and AR F.

To show that R has full rank, i.e. rank equal to min(m,n), let G1 be an
(m r) (n r) matrix of full rank, chosen so that GG ln-r if n =< m, and GG I,-r
if m _<-n. Then if

R HK* +HGK’,
it is readily verified that RR In if n -< m, and RR I,, if m <= n. This shows that both
R and R have full rank and completes the proof.

Remarks. (1) If m n, R is a nonsingular n n matrix. (2) If A is of full rank, the
term with G is not present, R NM*, the (1-2)-generalized inverse found earlier, and
R =A.

4. Differential operators. In this section we apply the ideas of 2 to the case that L
is a differential operator. This leads to the notion of generalized Green’s functions and
generalized Green’s matrices (see [1], [10], [11], [12] [13]). In [9] the author gave a
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number of computational techniques for the case of the Moore-Penrose pseudo-
inverse. In this section these ideas are extended to the wider class of generalized
inverses discussed in 2.

Let x be an n-vector, and let

(4.1) lx x’-A(t)x

be a differential expression. In (4.1) A(t) is a continuous n x n matrix defined for
a _<- _<- b, and we consider x(t) as an element of L2(a, b). The Lagrange adjoint of (4.1)
is the expression

(4.2) l/x -x’-A(t)*x.

The domain of the operator L consists of all absolutely continuous functions in L2(a, b)
for which x’ is also in L2(a, b), and which satisfy the boundary conditions

(4.3) Ax(a)+Bx(b)=O.

In (4.3) A and B are m x n matrices (0 <_- m <- 2n) such that the m x 2n matrix A-B has
rank m. The domain of the adjoint operator L* will be the same set of functions, but
which satisfy the adjoint boundary conditions

(4.4) Mx(a + Nx(b O.

In (4.4) M and N are (2n- m) n matrices, and M"N has rank 2n- m. The two
boundary conditions are related by AM* BN*.

For each x in the domain of L, Lx lx, and for each x in the domain of L*,
L*x l/x. The inner product in L2(a, b) is given by

b

(x, y)= | y(t)*x(t) dt.
Ja

For each x in the domain of L and for each y in the domain of L*,

(Lx, y) (x, L’y).

Both of L and L* have finite-dimensional null spaces of dimensions k and k’ respec-
tively. The dimensions k and k’ are restricted by 0 -< k =< n, 0 =< k’ =< n, k k’= n m.
The range of L is the orthogonal complement of the null space of L*, and the range of
L* is the orthogonal complement of the null space of L. Thus both ranges are closed
subspaces with finite codimension.

A (1-2)-generalized inverse of L is an integral operatorX with kernel Gx(t, s). For
our case we let P and Q be arbitrary projections such that the range of P is the null space
of L and the range of Q* is the null space of L*. Finally let L be an integral operator with
kernel __G(t, s) such that LL_L L. From (2.3) we .have

X (I P)L(I 0),

and if Ge(t, s) and Go(t, s) are the kernels of the integral projection operators P and Q,
we have for Gx(t, s) the formula

(4.5)

b b

Gx(t, s)=G(t, s)- I Gp(t, u)G__(u, s)du-I. G_(t, v)GQ(v, S)dv

b b

-’l- la fa Gp(t, u)G__(u, v)Go(v, s) dv du.

This formula appears in [8] and [9] for the Moore-Penrose pseudo-inverse.
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Calculations with (4.5) are somewhat tedious but are quite straight-forward. As an
example of the result of such a calculation we give the kernel G#(t, s) for the group
inverse L# of L, provided that it exists. ForX to be the group inverse, we require P O.
This will imply that k k’ and tn n, so that L and L* each have n boundary
conditions. The range of P must be the null space of L and the range of P* must be the
null space of L*. For such a P to exist, L must satisfy the existence condition for a group
inverse, namely, that the range and null space of L have no nontrivial common element.

Let (t) be a fundamental matrix of x’=A(t)x. Let L0 denote the matrix
Acb(a)+Bcb(b), and let L denote the matrix M(a)*-1 +N(b)*-1. Each of L0 and
L is n x n and has rank n k. Let P0 denote the projection matrix of rank k with the
range of P0 being the null space of L0 and the range of P’ being the null space of L-.
The existence of P0 follows from the existence condition for L*. Finally, since the null
space of I-Po is the null space of L0, it follows from Lemma 1 that there exists a
nonsingular matrix R such that RLo I- Po.

It is then found that

1
Ge(t, s) (t)Po(S)-1

b-a

and

G#(t, s)= (t)(s)-l[,>- +
b

b(t)RB(b)(I Po)(s)-l.
As is shown in [9] for the Moore-Penrose pseudo-inverse, the Green’s matrix

Gx(t, s) can be found from a differential equation. In fact, considered as a function of t,
Gx(t, s) is determined by the following four conditions:

(4.6)

(i) IG(t,s)=-Go(t,s),(a<=t<s<=b,a<=s<t<=b).
(ii) As increases through s, Gx(t, s) has a jump discontinuity

equal to the identity matrix;
(iii) Gx(t, s) satisfies the boundary conditions of L,

(iv) Ge(t, u)Gx(u, s) du O.

Calculations with (4.6) are of the same order of complexity as with (4.5). It is not
difficult to verify that the kernel G#(t, s) given above satisfies (4.6) and is determined by
(4.6).

A similar discussion can be given when L is a scalar differential operator of order n
(see [9] for details).

5. Application to branching of solutions of boundary-value problems. In the
analysis of branching (or bifurcation) of solutions of boundary-value problems for
ordinary differential equations there always occurs a noninvertible linear differential
operator. The purpose of this section is to discuss the use of (1-2) generalized inverses in
this analysis. It turns out that allowing a wider choice of generalized inverses, rather
than restricting consideration to the Moore-Penrose pseudoinverse, allows for
simplification of the nonlinear determining equations.

We consider a boundary-value problem associated with the differential equation

(5.1) x’ F(t, x, tz),
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where x and F are n-vectors and/x is an m-vector. In (5.1) F is assumed sufficiently
regular in the sense that all partial derivatives of F needed in the discussion are assumed
to exist and be continuous in an open region containing all required values of the
variables. Associated with (5.1) we have the boundary condition

(5.2) Ax(a)+Bx(b)=k,

where A and B are n x n matrices such that the n 2n matrix A" B has rank n, and
where k is an n-vector. We do not consider cases in which the number of rows in A and
B is different from n.

For/x =0 let the problem (5.1), (5.2) have a solution Xo(t). We shall study the
solutions of (5.1), (5.2) for small/x which reduce to Xo(t) as Ix 0. The method is based
on the Lyapunov-Schmidt procedure as used by Cesari and Hale in a number of papers
(cf. [2], [3], [6]). The analysis is motivated by Hale’s paper [6].

If the change of variables x Xo(t)+ y is made, the problem (5.1), (5.2) becomes

(5.3) y’ F(t, Xo(t)/ y, tx)-F(t, Xo(t), 0),

(5.4) Ay(a)+By(b)=O,

and we seek solutions of (5.3), (5.4) for small/x which tend to zero as/z 0. We rewrite
(5.3) in the form

(5.5) y’= A(t)y +B(t, Ix)Ix +C(t,/x)/.ty +D(t, y,/x)y 2,
where

A(t) Fx(t, Xo(t), 0) is an n n matrix,

B(t, Ix)Ix -F(t, Xo(t), ix)-F(t, Xo(t), 0) is an n-vector

C(t, Ix)Ix Fx(t, Xo(t), tz)-Fx(t, Xo(t), 0) is an n n matrix,

D(t, y,/x)y2 =F(t, Xo(t)+ y, tz)-F(t, Xo(t), tz)-Fx(t, Xo(t), /x)y is an n-vector.

We note that B(t, 0)=F,(t, Xo(t), 0), C(t, O)=Fx,(t, Xo(t), 0) and D(t, O,
1/2Fxx(t, Xo(t), l).

Let L be the linear differential operator generated by the differential expression
y’-A(t)y with boundary conditions (5.4). We then have

(5.6) Ly=B(t, tx)tx+C(t, tx)txy+D(t, y, tx)y 2

to be solved for y, when/x is small, with y 0 as Ix 0.
When L is invertible, standard perturbation theory for ordinary differential

equations shows that for small/x there is a unique solution y y(t, ) of (5.6) with
y(t, 0)= 0. Thus branching of solutions will occur only when L is not invertible. When
branching is present, the number of small solutions y(t,/x) will depend on the value of
For some Ix there may be several; for other/x there may be none.

Equation (5.6) has the abstract form

(5.7) Ly N(y,/x),

where IINII o(llll/llllllyll/llyll) for small y and . If y is a solution of (5.7), and if X
is a (1-2)-generalized inverse of L as discussed in earlier sections, y also satisfies

(5.8) y XN( y, z + u,

where u is an element of the null space of L. Because X is given by the formula
X (I-P)L(I-Q), and because the range of P is the null space of L, the term



BIFURCATION AND GENERALIZED INVERSES 553

PL(I Q)N y, Ix is in the null space of L, and so can be included in the term u. Thus we
can write (5.8) as

(5.9) y L(I Q)N y, ix + u.

Now whether or not y is a solution of (5.7), (5.9) can be solved, when Ix and u are small,
for y as a function of Ix and u. If y(ix, u) is the solution of (5.9), it will be a solution of
(5.7) as well, provided that N(y(ix, u), Ix) is in the range of L, i.e. if

(5.10) ON(y(ix, u), Ix) 0.

Equation (5.10) is called the determining equation. If k is the common dimension
of the null spaces of L and L*, (5.10) is equivalent to a system of k nonlinear equations
for the unknown u, which in turn depends on k parameters. It is possible to determine
for which small Ix there exist solutions of (5.10) and how many solutions there are. For
each solution u u(ix) of (5.10), y(ix) y(ix, u(ix)) is a solution of (5.7).

In the computation just outlined, the form of (5.9) will depend on the choice of X,
or more precisely, on the choice of the projection Q. The form of (5.10) will also depend
on the choice of Q, but the values of Ix for which solutions exist, and the ultimate
solutions y(ix) of (5.7), will naturally be independent of the choice of Q. Hence the
choice of the projection Q may possibly simplify both the form and the solution process
of the determining equation.

We now apply this reasoning to the differential equation problem (5.6). In view of
the remark following (5.8) we can use for a (1-2) generalized inverse of L the operator
X L(I- Q) which is an integral operator with kernel

b

(5.11) Gx(t,s)=G(t,s)-Ia G___(t,v)Go(v,s)dv.

if U(t) is an n x k matrix, the columns of which span the null space of L, (5.9) takes the
form

b

y(t) Ia Gx(t, s)[B(s, Ix)ix +C(s, Ix)ixy(s)+D(s, y(s), Ix)y(s)2] ds + U(t)p,

where p is a k-vector and Gx(t, s) is given by (5.11). If Ix and p are sufficiently small,
(5.12) has a unique solution y(t, Ix, p). The function y(t, Ix, p) will be a solution of (5.6)
provided that

B(t, Ix)Ix +C(t, Ix)Ixy(t, Ix, p)+D(t, y(t, Ix, p), Ix)y (t, Ix, p)2
is irt the range of L. If V(t) is an n k matrix whose columns span the null space of L*,
this requirement is equivalent to

b

(5.13) Ia V(t)*[B(t, Ix)Ix +C(t, Ix)Ixy(t, Ix, p)+D(t, y(t, Ix, p), Ix)y(t, Ix, p)2] dt=O.

Equation (5.13) is the determining equation and is a system of k equations for the k
components of p in terms of the m-vector Ix. Note that if (5.13) is written in the form
K(Ix, p) 0, then K(0, 0)= 0 and Kp(O, 0)= 0. Equation (5.13) determines for small
nonzero Ix how many different small values of the vector p exist for which y(t, Ix, p) is a
solution of (5.6).

The following procedure can be used to obtain asymptotic expressions for small Ix
of the various branching solutions of (5.6) which reduce to zero as Ix tends to zero. First
determine an asymptotic expression for the solution of (5.12) in terms of Ix and p. Then
use (5.13) to determine asymptotic expressions for p in terms of Ix. Use this last result in
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the asymptotic expression for y(t,/x, p) to obtain the desired asymptotic expressions for
the solutions of (5.6).

6. Examples. In this section we give examples to illustrate the application of the
foregoing ideas to branching of solutions of boundary-value problems.

Example 1. The boundary-value problem in this example occurs in the calculus of
variations problem of minimal area of a surface of revolution.

(6.1) xx"= (1 -b/../,)2+X ’2, X’(0)’- 0, x(sC) cosh sc.
In (6.1) : is the unique positive root of the equation coth u u ( 1.20 approxi-
mately). When/z 0, (6.1) has the solution Xo(t)= cosh t.

The substitution x cosh + y transforms (6.1) to
2 yy,,cosh y 2 sinh y + cosh y 2/z +/x + y,2,

(6.2)
y’(0) 0, y() 0.

Let the linear differential operator L be defined by

Ly cosh y"- 2sinh y’ + cosh y

with domain determined by the boundary conditions y’(0)- 0, y(sc) 0. The problem
(6.2) is then

(6.3) Ly 2/x +/d, 2- yy"+ y,2.
The functions b(t) cosh sinh and O(t) sinh are a linearly independent set of
solutions of the differential equation Ly =0. Since b(t), but not 4,(t), satisfies the
boundary conditions, the null space of L is one-dimensional and is spanned by b(t).

The adjoint operator L* is given by

L*y cosh y" + 4 sinh y’ + 4 cosh y

with boundary conditions y’(0) 0, y() 0, the same as for L. A linearly independent
set of solutions of L*y =0 is sech3 tb(t) and sech3 t(t). The null space of L* is
one-dimensional, and is spanned by sech3 tqb(t). We need two kernels, __G(t, s) and
Go(t, s). These are given by

__G(t, s) [& (s)qt(t)- t(s)b (t)] sech3 sit>s,
Go(t, s)= (t)b(s) sech3 s,

where /3(t)is normalized by the requirement o/3(t)b(t)sech3 tdt= 1. Q is then a
projection operator with the range of Q* being the null space of L*. We leave/3(t)
arbitrary otherwise so that it can be chosen to simplify the calculations. Any solution of
(6.3) also satisfies

I0 2(6.4) y(t)= Gx(t,s)[2tx +lz -y(s)y"(s)+ y’(s)2]ds+pd(t)

for some constant p. In (6.4) Gx(t, s) is given by

Gx(t, s)= G_(t, s)- G_(t, v)Go(v, s) dv

[(s)(t)- (s) (t)] sech3 s[,>s

[d(v)O(t)-O(v)4)(t)]sechvB(v)rb(s)sechsdv.
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When t* and p are small, (6.4) has a unique solution given by

i0(6.5) y(t, x, p) p(t) + 2x Gx(t, s) ds + higher order terms.

The integral in the second term of (6.5) is found to be

[rb(s)O(t)- O(s)4)(t)] sech s 1- (s) ds.

Because the constant 2/: is an allowable choice for B(t), we may make this choice and
make the second term of (6.5) equal to zero so that

y(t, x, p) p4)(t) + higher order terms.

The function y (t, x, p) is a solution of (6.3) provided that

(6.6) (s) sech3 s[2x + x- y(s, x, p)y"(s, I, P) + y’(s, x, p)] ds O.

This is the determining equation. Using the asymptotic expression found above for
y (s, x, p), (6.6) becomes

(6.7) x: + 1/4p: + higher order terms 0.

We see from (6.7) that for small negative x there are two values of p, approximately
+ (2/:)/-x, while for small positive x there are no values of p. As a result, the problem
(6.1) has two solutions near xo(t) for small negative x and none for small positive

Because the differential equation in (6.1) can be solved by elementary means, we
may verify the above directly. The solutions of the differential equation for which
x’(0) 0 are given by

l+xx cosh ct,
c

where c is a constant. The boundary condition x(:)= cosh : gives

cosh : cosh c(1 +t),: c:
and since the function cosh u/u has a strict minimum at u :, we must have t --< 0 for
any solution of (6.1).

xample 2. We consider branching of periodic solutions of the system

(6.8) x" + g(x) lxf(t).

In (6.8) f(t) is a T-periodic continuous function, while g(x) is a "restoring force" term
such that xg(x) > 0 when x # 0. It is also assumed that g(x) is sufficiently regular in the
sense given earlier. The solutions of the unperturbed equation x"+g(x)=O are
periodic, and we assume that g(x) is such that the periods vary with amplitude. Note
that this excludes the case that g(x) is linear. Let there exist a nonconstant periodic
solution Xo(t) when/z 0 with least period L0, where Lo is a rational multiple of T, say
qLo pT, where p and q are relatively prime integers. To fix the phase of Xo(t), we
assume that at 0, x0 A > 0 and x 0. Since not only Xo(t) but also all translations
Xo(t +’) are L0-periodic solutions when =0, it is appropriate to seek periodic
solutions of (6.8) near to Xo(t + ’) of period L pT qLo for small nonzero/x. This
question is considered in [7].
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If (6.8) has a periodic solution near to Xo(t + ’), the modified equation

(6.9) x"+ g(x)= tzf(t- ’)

has a corresponding solution near to Xo(t). It is more convenient to study (6.9).
In (6.9) make the substitution x Xo(t)+ y. This gives

x(t) + y"+ g(xo(t) + y)= f(t--),

which we write as

(6.10)

where

y"+ g’(xo(t))y txf(t-’)+H(t, y)y2,

H(t, y)y2 -g(xo(t) + y) + g(xo(t)) + g’(xo(t))y.

Note that H(t, O)=-1/2g"(Xo(t)).
Let the linear differential operator L0 be defined by

Loy ly =- y"+ g’(xo(t))y

with boundary conditions y(0) y(L), y’(0) y’(L). The operator Lo is self-adjoint. Let
b(t) and (t) be those solutions of ly =0 with initial conditions 4(0)=’(0)= 1,
b’(0) q(0) 0. Since y x (t) is a solution of ly 0 with initial conditions x (0) 0,
x(0) -g(A); it follows that x (t) -g(A)(t). Therefore if(t) is L-periodic and so is
in the null space of Lo. We assume that g(x) is such that tb(t) is not periodic, and in
particular that b’(L) 0. The assumption that periods of solutions of x" + g(x) 0 vary
with amplitude will guarantee this (cf. [7]). Therefore the null space of Lo and the null
space of Lo* L0 are one-dimensional and are spanned by O(t).

The kernels needed for the (1-2)-generalized inverse of L0 are

G_(t, s) cb(s)d/(t)- 4,(s)4, (t)l,>,- t)4) (s
O’(L)

Go(t,s)=(t)(s),

where/3(t) is normalized by the requirement o (t)O(t) dt 1.
For the branching problem, we have that if y(t) is a solution of (6.10) of period L,

then y(t) satisfies

(6.11)

where

L

y(t) Io Gx(t, s)[lzf(s-’)+H(s, y(s))y(s)2] ds +pall(t),

L

Gx(t, s) G_(t, s)- Jo G_(t, v)Go(v, s) dr.

For small/x and p, (6.11) has a unique solution y(t,/x, p) given by

(6.12) y(t,/x, p)= txh(t)+pO(t)+higher order terms,

where we have written
L

h(t) Jo Gx(t, s)f(s-7") ds.

Now y(t,/x, p) will be a solution of (6.10) provided that

txf(t-r)+H(t, y(t,/x, p))y(t,/x, p)2
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is in the range of the differential operator L0. This means that
L

(6.13) o O(t)[lzf(t-’)+H(t, y(t, tx, p))y(t, , p)2]dt=O.

If the expression (6.12) is used for y(t, , p), the determining equation (6.13) has the
form

L L

(6.14) + higher order terms 0.

The character of the locus of (6.14) in/z-p space depends on whether or not the integral
in the first term is or is not zero. Suppose first that this integral is not zero. Then near

z =p 0 the locus consists of a single branch tangent to the line tz 0. Now when

z 0, (6.9) has a one-parameter family of periodic solutions, namely the translations of
Xo(t). This implies that the locus of (6.14) near the origin is in fact a portion of the axis

tx 0, and that there are no other L-periodic solutions of (6.9) near to Xo(t) for small
Now suppose that the first integral in (6.14) is zero. This implies that ’(t-r) is in

the range of L0, so that h(t) is an L-periodic solution of ly =’(t- r). Indeed it is that
periodic solution with initial value of the derivative equal to zero. It is found that in this
case h(t) does not depend on the choice of/3(t). The second term of (6.14), when
worked out gives

L L

g(A) tx (t-r)h’(t) dt + txp ](t-’)O’(t) d

If we assume that f(t-r)g/(t) dt O, these quadratic terms show that the locus of
(6.14) near the origin consists of two branches, one tangent to the line/x 0 (which is, of
course,/x 0 itself), and a second branch tangent at the origin to the line

L I"L

Jo f(t- r)h’(t) de + p J0 f(t- r)O’(t) dt O.

This shows that when -is such that f(t--)4,(t)dt=O and f(t--)O’(t)dtO,
there is a second one-parameter family of L-periodic solutions of (6.9) for small
nonzero/x. These are given using y(t,/x, p), where p is related to/x by the determining
equation (6.13).

In summary, if F(r)=f(t--)g#(t)dt, then if F(r)O, the only L-periodic
solutions of (6.8) near to Xo(t + r) are translations of Xo(t) with tx 0. If F(r)= 0 and
F’(r) O, then there is additionally a one-parameter family of L-periodic solutions of
(6.8) near Xo(t + r) for small nonzero

7. Concluding remarks. The ideas in this paper have been strongly influenced by
the paper of Hale [6], particularly his section V. It should be noted that the matrix K
found by Hale on p. 243 of [6] is exactly the group inverse of the matrix D. Hale’s
application of this group inverse to the question of periodic solutions of a periodic
vector system is similar to ours. We have been able to avoid the very complicated
quantity : introduced by Hale. In this paper we deal with more general boundary-value
problems and use a class of generalized inverses which includes the group inverse and
the Moore-Penrose inverse as special cases.

The ultimate calculations made in the method used here are naturally the same as
those which occur when construction is done by the implicit function theorem. The
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determining equation (6.14) in the second example of 6 was obtained in [7] using the
implicit function theorem. A possible advantage of the present method is that the
determining equation is obtained more directly, and some complicated calculations can
be avoided.

The technique used here can also be used to study other cases of branching,
including the Hopf bifurcation in autonomous systems where a nonconstant periodic
solution branches from an equilibrium.

REFERENCES

1] A. BEN-ISRAEL AND T. N. E. GREVILLE, Generalized Inverses, Theory and Applications, Wiley, New
York, 1974.

[2] L. CESARX, Functional Analysis and Periodic Solutions of Nonlinear Differential Equations, Contribu-
tions to Differential Equations, (1963), pp 149-187.

[3] S. N. CHOW, J. K. HALE AND J. MALLET-PARET, Applications of generic bifurcation L Arch. Rat.
Mech. Anal., (1975), pp. 159-188.

[4] M. J. ENGLEFIELD, The commuting inverses of a square matrix, Proc. Cambridge Philos. Soc., 62
(1966), pp. 667-671.

[5] I. ERDLYI, On the matrix equation Ax ABx, J. Math. Anal. Appl., 17 (1967), pp. 119-132.
[6] J. K. HALE, On differential equations containing a small parameter, Contributions to Differential

Equations, (1963), pp. 215-250.
[7] W. S. LOUD, Periodic solutions of x"+cx’+g(x)= el(t), Memoirs of the American Mathematical

Society No. 31, Providence, RI, 1959.
[8], Generalized inverses and generalized Green’s ]’unctions, SIAM J. Appl. Math., 14 (1966), pp.

342-369.
[9] Some examples of generalized Green’s ]’unctions and generalized Green’s matrices, SIAM Rev.,

12 (1970), pp. 194-210.
[10] M. Z. NASHF.D, Generalized Inverses and Applications, Academic Press, New York, 1976.
[11] W. T. REID, Generalized Green’s matrices ]:or compatible systems of differential equations, Amer. J.

Math., 53 (1931), pp. 443-459.
[12],Generalized Green’s matrices ]:or two-point boundary problems, SIAM J. Appl. Math., 15 (1967),

pp. 856-873.
[13], Generalized inverses of differential and integral operators, Theory and Application of General-

ized Inverses of Matrices: Symposium Proceedings, Texas Technological College Mathematics
Series, No. 4, Lubbock, TX, 1968, pp. 1-25.

[14], Ordinary Differential Equations, Wiley, New York, 1971.



SIAM J. MATH. ANAL.
Vol. 11, No. 3, May 1980

1980 Society for Industrial and Applied Mathematics
0036-1410/80/1103-0016 $01.00/0

NONEXISTENCE OF GLOBAL SOLUTIONS FOR AN
INTEGRODIFFERENTIAL SYSTEM IN

REACTOR DYNAMICS*

C. V. PAOt

Abstract. This paper is concerned with the instability behavior of an integrodifferential system arising in
nuclear reactor dynamics. The spatial domain under consideration can be either bounded, subject to certain
boundary conditions, or the whole space R". It is shown that if the physical parameter/3(x) is non-negative
and/3(x) # 0, which corresponds to positive feedback reactivity in the reactor system, then for certain classes
of initial functions the corresponding solution of the initial boundary-value problem (or the Cauchy problem)
grows unbounded in finite time. This blowing-up property holds for a large class of nonlinear functions,
including the physically most interesting one, and for very small initial perturbations from its equilibrium
solution. An explicit instability region as well as an upper bound for the finite escape time are obtained.

1. Introduction. In this paper we consider the following nonlinear integro-
differential system

p’(t) =p(t) fa (x)u(t, x) dx,

(1.1) (t>0, x f)

u-Lu =-u- Y’. a(x)u,,+ a(x)u, =f(t, x,p(t)-p*)
i,/=1 i=1

and the boundary and initial conditions

(1.2) B[u]o(x)Ou/Ov+o2(x)u =0 (t>O, x e 01)),

(1.3) u(0, x)= Uo(X) (x e f),

(1.4) p(0) =po,

where L is a uniformly elliptic operator on the bounded domain D, in R"; 0/0v is the
outward normal derivative on the boundary 0D,, ai(x)-> 0 with a l(x)+ c2(x) 0 on 0f,
p* => 0 is a constant andf is, in general, a nonlinear function of p. In addition to the initial
boundary-value problem (1.1)-(1.4) for a bounded domain fl, we also consider the
Cauchy problem (1.1), (1.3), (1.4), when f is the whole space R ". The system
(1.1)-(1.4) occurs in nuclear reactor dynamics in which u and p represent the incre-
mental temperature and instantaneous power from their corresponding steady-state 0,
p*, respectively, while f is given by (cf. [1], [2], [7], [9]-[13], [18])

(1.5) le(t, x, p(t)-p*) =- tz(x)(p(t)-p*) (/x (x) 0).

The term Ia8(x)u(t, x)dx measures the increment temperature feedback reactivity
which plays an important role in the existence and nonexistence of a global solution.

The coupled system for a one-dimensional model has been investigated in a series
of papers by Levin and Nobel [9]-[11] and by Miller 12], Bronikowski and Hall 1], [2],
Suhadolc 18] and Infante and Walker [7]. The principle interests of these works are the
global existence and the asymptotic behavior of the solution for the rod model, where lq

is considered either as a finite interval or as the whole real line. Particular attention has
been given to the function in (1.5). On the other hand, the existence of global solutions

* Received by the editors January 11, 1979.
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for a more general system in a multi-dimensional domain has been discussed by Pao
13]. In many of the above papers, it is assumed that the reactor system has "negative"
feedback reactivity (i.e.,/(x) =< 0). An interesting problem is to predict the behavior of
the solution when the reactor has positive feedback reactivity (/3(x)>-0). From a
physical point of view, if the feedback is positive then the reactor gains energy which
tends to destabilize the reactor system. The purpose of this paper is to show that if
/3(x) >_-0 but/3(x) 0, then for a certain class of functions f the system is not only
unstable but the solution also grows unbounded in finite time. We also give an upper
bound for the "finite escape time" and an explicit instability region for the equilibrium
solution (0, p*). in particular, these results hold for the function f in (1.5) and for very
small initial perturbations from its equilibrium state. This is in sharp contrast to the
asymptotic stability behavior obtained in [1], [2], [7], [9]-[12]. In terms of semi-group
theory, our conclusion demonstrates that the associated operator cannot generate a
nonlinear semi-group, at least not in the space of continuous functions.

The problem of nonexistence of global solutions for the traditional parabolic type
system has been investigated by a number of authors and various methods have been
developed (cf. [4]-[6], [15], [16]). In the present paper, we follow the approach of [16]
using the notion of a lower solution. A novelty of this approach is that the analysis is
elementary and the required conditions on f are simple. In 2 we state the main
theorems. Proofs of these theorems are given in 3.

2. The main results. Throughout the paper we assume that the coefficients of L and
the first partial derivatives of aij are H61der continuous (of exponent a (0, 1)) in f; the
matrix (aij) is symmetric positive definite in f,/(t, x, z) is H61der continuous in every
bounded subset of R / x x R/;/(x) is bounded continuous in I), and the boundary0
is of class C2/, where R/= [0, ) and is the closure of 1). We also assume that
al, a2 H/(OI), UoH2/() and Uo satisfies the boundary condition (1.2) at 0,
whereH+(fi) are the function spaces in the sense of [3], [8]. When f R" we assume
that u0, f are bounded as [x o and/ is integrable in R ". The above smoothness
assumption will only be used to insure the existence of a solution for the corresponding
linear problem (1.1)-(1.3), where f is replaced by a known function. In addition to the
above requirements we assume, for simplicity, that fz (t, x, z) exists and is bounded on
bounded subsets of R / x x R /.

By solving the first equation in (1.1) for p and then substituting it into the second
equation, we obtain

(2.1) ut-Lu=f(t,X, poexp( B(x)u(s,x)dxds-p* (t>0, xft),

where we have used (1.4). We shall study the problem (1.1)-(1.4) through the system
(2.1), (1.2), (1.3) by using the notion of a lower solution. We call a smooth function
v(t, x) in D (0, T] x f a lower solution if it satisfies the inequalities"

(2.2) B[v] <= 0 (t (0, T], x Oil),

v(o, x) <-_ uo(x) (x ),

where T is finite but arbitrary. In the case of lq R n, we replace the second condition
in (2.2) by "v is bounded as Here by a smooth function is meant a
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continuous function on D whose first derivative in and second derivative in xi are
continuous in D, and Ov/Ov exists on

When f is a bounded domain we need to consider the linear eigenvalue problem

Lb +
(2.3)

BIg,] 0 (x Of).

It is well-known that the least eigenvalue Ao of (2.3) is real nonnegative and its
corresponding eigenfunction 4 is positive in f (cf. [17]). In case a=(x)#0, then A0 is
positive and if a l(X) > 0, then 4 (x) is positive on f. We normalize 4 so that max {4’ (x);
x e f} 1. With this notation we now state our main results in the following two
theorems.

THEOREM 1. Let (x) >-- 0 ( (x) 0), Po > P* and Uo(X) >-_ 8qb (x) for some 3 > O.
Assume that for > O, x

(2.4) f(t, X, Zl--p*)>--f(t, X, z2--p*) when Zl -->z2->-0

and for some constant b > 0,

(2.5) f(t, x, z -p*) >- b(z -p*) when z >-_ p*.

Then there exists a finite To such that a unique solution (u, p) to (1.1)-(1.4) exists on
[0, To)x fl and [0, To), respectively, such that

(2.6) lim (max u(t, x)l oo and lim p(t)= o.
t- To \ fi / t-*To

In particular, the above blowing-up property holds for the function given by (1.5).
THEOREM 2. Let 12= R, (x)>-_O, po>p*, Uo(X)>-O and (X)Uo(x)O. Assume

that f satisfies the conditions (2.4), (2.5). Then there exists finite To such that a unique
solution (u, p) to (1.1), (1.3), (1.4) exists on [0, To) x R and [0, To), respectively, such
that

(2.7) lim ( sup u(t, x)) oo and lim p(t)=
t- To R t- To

In particular, (2.7) holds for the function f in (1.5).
Remarks. (a) The result in Theorem 1 implies that if f(t, x, 0) 0 (so that (0, p*) is

an equilibrium state) then an instability.region of (0, p*) is given by the set {(Uo, po);
Uo(X) >- &(x), po> p*}, where 8, (po-p*) can be arbitrarily small. Since/3 is required to
be nonnegative and not identically zero, this instability behavior holds even when
positive feedback occurs only in a small neighborhood of the reactor. (b) An upper
bound for the finite escape time To in Theorem I is y, where 3’0 is the largest positive
number satisfying

(2.8) yo(yo + A0) =< (b-’/2)(po-p*)

and a (x)6 (x) dx. Similarly the finite escape time To in Theorem 2 is bounded by
[(b*/2)(po-p*)]-/2, where/3* is given by (3.13).

3. ProoI oI ihe Theorems. In order to prove the theorems, we describe an iterative
process which leads to the existence of a (local) solution of (1.1)-(1.4) as well as a lower
bound of the solution. Suppose there exists a nonnegative lower solution v(t, x). Then
by using v as the initial iteration, we can construct a sequence {u (k)} successively from
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the linear system

Uk) -Lu (k) =f(t,x, Po exp (Io Ia (X)u(k-1)(S’ X)dx ds)-p*)
(t 6 (O, T], x 6 fl)

(3.1) B[u (k] 0 (t e (0, T], x Oa) k 1, 2,. ..
u((O, x)= uo(x) (x

When R this sequence is determined from the first and third equations in (3.1).
The existence of such a sequence follows from the hypothesis in 2. It can easily be
shown from the property of a lower solution and the monotone property of f that the
sequence {u(} is monotone nondecreasing (cf. [14], [16]). Thus if the sequence is
bounded from above then it converges to a function u such that u v on [0, T] x . In
fact, u is the unique solution of (2.1), (1.2), (1.3). Our first step is to construct a lower
solution from which the blowing-up property of the solution can be deduced.

Proo[ o[ Theorem 1. For the initial boundary-value problem (2.1), (1.2), (1.3) we
seek a lower solution in the form v q(t) (x), where is the positive eigenfunction of
(2.3) and q is a positive differentiable function with q(0)& Since B[&]=0 and
q(O)(x) Uo(X), v fulfills the requirements of a lower solution if q satisfies the
inequality

(3. q’-qLNfkt, x, poexp k q(sas

where =Ia(x)(x)&>0. In view of (2.3), (2.5) and the fact that (x)N1, it
suces to find q such that

(3.3) q’+ hoq N bkpo exp kg q(s) -p* (t (0, T]).

A convenient choice of q is given in the form

(3.4) q(t)=a(1-yt)-1 (t 6 [0,

where a, y are positive constants to be chosen. With this special form of q, (3.3) holds if
for some y > 0,

(3.5) ayE+hoa Nb[po(g/v -p*] for [1, m).

Let V a/2. Then (3.5) holds if

(3..6) Q()(bpo-ay)Z-hoa-bp*O for [1, m).

This is obviously the case when Q(1)bpo-a(y+ho)-bp*N0 and Q’()
2(bpo-ay)- boa 0 for N 1. Both requirements are satisfied if

(3.7) b(po-p*) a(y + ho) (2y/fl)(y + Ao).

Let To be the largest positive constant satisfying yoN Sfl/2 and (3.7) (or equivalently
(2.8)). Then (3.5) holds with To, a 2yo/fl and q(0) a N 6. With this choice of a,
o, v(t, x) q(t)(x) is a lower solution of (1.1)-(1.4) on [0, T] x for every T < y.

We next define, for any given constant M> 0, a function f(t, x, z -p*) such that
f coincides with f on [0, T] x when [zlNM and is uniformly bounded, monotone
nondecreasing for all [zl< m, where T < y-. For example, we may define f by
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fM(t,x,z-p*)=f(t,x,z-p*) when Iz[<-M and fu(t,x,z--p*)=f(t,x,+M--p*)
when z >M and z <-M, respectively. Consider the modified equation

together with the boundary and initial conditions (1.2), (1.3), where T < -/- is fixed and
M N a(1- yT)-. Since v(t, x) <=M on [0, T]x fi, we see that v is also a lower solution
for (3.8), (1.2), (1.3). Using v as the initial iteration, we construct a sequence {u (} from
(3.1) but with/ replaced by ’M. This sequence is again monotone nondecreasing since.fM
preserves the monotone property of fi In view of the unilorm boundedness of ’ we
conclude from the well-known estimate for linear parabolic system that the sequence
{u(} is also bounded (cf. [3], p. 146). This implies that {u(} converges monotonically
to a function u satisfying u(t, x) >- v(t, x) on [0, T]x 1. A regularity argument shows
that u is the unique solution of the modified problem (3.8), (1.2), (1.3) (cf. [14]). By the
definition of’, u is also a solution of the original system (2.1), (1.2), (1.3) for as long as

To show the blowing-up property (2.6) for u, we assume, by contradiction, that the
solutions of (2.1), (1.2), (1..3) were bounded on [0, y-]xfi (say, by K). Choose
T < ,/- but sufficiently close to y- such that v(T, x)>-_K + 1 for some x II. Define
the modified function’ withM -> K + 1, T T. Then from the above discussion, the
modified problem (3.8), (1.2), (1.3) has a unique solution u such that u(t, x) >- v(t, x) on
[0, T]xf. Since v(T,x)>-K+l, there exists To<-T such that u(t,x)<-K+l on
Do =- [0, To] x f and u (To, xo) K + 1 for some xo e 1". This shows that u is the
solution of the original problem on Do and u (To, xo) K + 1. This contradiction leads
to the conclusion in (2.6) for u. To show the result for p(t), we observed that for every
< To, u(t, x) is finite in [l. In view of (1.1), p(t) is also finite for < To. Now if p(t) were

bounded at To, then f(t, x, p(t)-p*) is bounded on Do. This implies that u is also
bounded on Do which is absurd. This completes the proof of the theorem.

Proo[of Theorem 2. For the Cauchy problem (1.1), (1.3), (1.4) we construct a lower
solution in the form v(t, x)= q(t)w(t, x), where q(t) is again a positive differential
function, 8 > 0 is a constant and w is the solution of the linear problem

(3.9)

In fact, w is given by

wt-Lw=O (t>O, x6R")

w(O, x) Uo(X) (x R").

(3.10) w(t, x)= | F(t, X; 0, y)uo(y) dy,
JR

where F is the fundamental solution of u, Lu 0. Since Uo _-> 0, (Uo 0) and is bounded
in R", the function w is positive, bounded in (0, m) x R n. We choose 6 such that 6w <= 1
on [0, oo) x R". By requiring q(0) <- 8 -1, the function v 6qw becomes a lower solution
of (1.1), (1.3), (1.4)if

(3.11) (q’w+qw-qLw)<-b p0exp 8 (x)q(s)w(s,x)dxds -p*

where we have used the hypothesis (2.5). Since w satisfies (3.9) and 8w <_- 1, the above
inequality holds if

(3.12) q’<_- b p0 exp /* q(s) ds -p* ( e (0, T]),
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where

(3.13) /3"-= t inf IR" (x)w(s,x)dx, O<-s<=T}
Notice from the positivity of w and the hypothesis (X)Uo(x)@O that /3*>0. By
choosing q as in the proof of Theorem 1 except with Ao 0 and fl replaced by/*, we see
that v is a lower solution. The remaining proof follows from the same argument as in the
proof of Theorem 1.

REFERENCES

[1] T. A. BRONIKOWSKI, J. E. HALL AND J. A. NOHEL, Quantitative estimates ]:or a nonlinear system of
integrodifferential equations arising in reactor dynamics, this Journal, 3 (1972), pp. 567-588.

[2] T. A. BRONIKOWSKI, An integrodifferential system which occurs in reactor dynamics, Arch. Rational
Mech. Anal., 37 (1970), pp. 363-380.

[3] A. FRIEDMAN, Partial Differential Equations ofParabolic Type, Preintice-Hall, Englewood Cliffs, NJ,
1964.

[4],Remarks on nonlinear parabolic equations, Symposium on Applied Mathematics, Proc. Amer.
Math. Soc., 17 (1965), pp. 3-23.

[5] H. FUJITA, On the blowing up of solutions of the Cauchy problem for ut Au + u 1+’, J. Fac. Sci. Univ.
Tokyo Sect. IA, 13 (1966), pp. 109-124.

[6] K. HAYAKAWA, On non-existence of global solutions of some semi-linear parabolic differential equa-
tions, Proc. Japan Acad., 49 (1973), pp. 503-505.

[7] E.F. INFANTEAND J. A. WALKER, On the stability properties ofan equation arising in reactor dynamics,
J. Math. Anal. Appl., 55 (1976), pp. 112-124.

[8] O. A. LADYZENSKAYA, V. A. SOLONNIKOV AND N. N. URALCERA, Linear and Quasilinear

Equations of Parabolic Type, American Mathematics Society, Providence, RI, 1968.
[9] J.J. LEVIN AND J. A. NOHEL, On a system ofintegrodifferential equations occurring in reactor dynamics,

J. Math. Mech., 9 (1960), pp. 347-368.
[10],A system of nonlinear integrodifferential equations, Michigan Math. J., 13 (1966), 257-270.
11],A nonlinear system of integrodifferential equations, Mathematical Theory of Control, Academic

Press, New York, 1967, pp. 398-405.
[12] R. K. MILLER, On the linearization of Volterra integral equations, J. Math. Anal. Appl., 23 (1968), pp.

198-208.
[13] C. V. PAO, Solution ofa nonlinear integrodifferential system arising in nuclear reactor dynamics, Ibid., 48

(1974), pp. 470-492.
[14] ., Positive solution of a nonlinear boundary-value problem of parabolic type, J. Differential

Equations, 22 (1976), pp. 145-163.
[15], Non-existence of global solutions and bifurcation analysis for a boundary-value problem of

parabolic type, Proc. Amer. Math. Soc., 65 (1977), pp. 245-251.
[16] Asymptticbehavirandnn-existencefglbalslutinsfraclassfnnlinearbundary-value

problems of parabolic type, J. Math. Anal. Appl., 65 (1978), pp. 616-637.
[17] M. H. PROTTER AND H. F. WEINBERGER, On the spectrum of general second order operators, Bull.

Amer. Math. Soc., 72 (1966), pp. 251-255.
[18] A. SUHADOLC, On a system of integro-differential equations, SIAM J. Appl. Math., 21 (1971), pp.

195-206.



SIAM J. MATH. ANAL.
Vol. 11, No. 3, May 1980

1980 Society for Industrial and Applied Mathematics
0036-1410/80/1103-0017 $01.00/0

A MIXED BOUNDARY VALUE PROBLEM VIEWED
AS A TYPE V PROBLEM*

H. L. JOHNSONt

Abstract. This paper formulates a mixed boundary value problem for Laplace’s equation in an axial
symmetric domain in E as a type V boundary value problem. This formulation enables the boundary value
problem to be transformed into a singular integral equation. The paper also considers the necessity of
imposing an orthogonality condition on the boundary data to insure the existence of a solution. The principal
theorem of the paper is that when the domain is a sphere no orthogonality condition is necessary.

1. Introduction. Mixed boundary value problems for elliptic partial differ-
ential equations occur frequently in mathematical physics. Examples of such problems
are contained in the book by Sneddon [8] and in the papers of W. D. Collins [1], [2] and
[3]. Compared with our knowledge of the Dirichlet and the Neumann boundary value
problems, our knowledge of mixed boundary value problems is meager. Martin
Schechter [7] has proven a Fredholm alternative theorem for quite general elliptic
mixed boundary value problems. This theorem implies that a solution will exist if a finite
number of orthogonality conditions is placed on the boundary data. For Laplace’s
equation, V2u 0, it is well known that the Dirichlet problem requires no orthogonality
condition on the boundary data and that the Neumann problem requires one ortho-
gonality condition. A basic question in potential theory that, to the author’s knowledge,
has not been answered is the necessity of orthogonality conditions on the boundary data
for a mixed boundary value problem for Laplace’s equation. In a previous paper [5], the
author showed that a Dirichlet-Neumann type mixed boundary value problem for
Laplace’s equation on a sphere could be transformed into a Fredholm integral equation
of the second kind with a weakly singular kernel. The mathematics used in [5] required
an orthogonality condition to be placed on the boundary data.

This paper extends in two ways the analysis of [5]. First, the mixed boundary value
problem is posed on a quite general axial symmetric, bounded domain in E3, and it is
shown that this problem can be transformed, into type V boundary value problem. The
solvability of type V boundary value problems and their representation as singular
integral equations is the topic of Chapter 9 in the classical text [6] by I. N. Muskhelish-
viii. Secondly, we are able to use one form of the solvability conditions stated in [6] to
prove the following theorem.

THEOREM. No orthogonality condition need be placed on the boundary data to insure
the existence of a solution of the mixed boundary value problem 2w 0 in a solid sphere
O<-_p<R with the axial symmetric boundary conditions w(R,c)=Hl(C), O<-_p<a,
(W/Op)(R, cb H2(c), a < c <

2. The mixed boundary value problem. Let D: 0 <- p < R (4), 0 <- b <- zr, 0 <- 0 <-
27r, where p, 4, and 0 denote spherical variables. Let P.C.(")(S) denote the class of
functions with piecewise continuous ruth partial derivatives on a set S. Let w
w(p, c) C2(D)fq P.C.(1)(E3). We consider the boundary value problem

(1) 72w -[(c3p2 0) 1 0 (sin(b)0_)]\p sin(b) 04
=0, 0-<_p<R(b), 0<-b<-zr,

(2) w(R (&), &) Hx(&), & L, {O" 0 <_- & < a},

* Received by the editors January 29, 1979, and in revised form July 12, 1979.
r Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia

24061.
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(3)
On

(R (), ) Hz(), eL={" a< <_- 7r},

where H1 e CZ(L9), Hz e CI(Lv).
Let R R () 6 P.C.(3)(L LI +Lr), and R > 0 on 0 -< -< 7r. We continue R into

7r <= < 0 as an even function and without loss of generality, assume that

R () R (cos ()), -zr<-<r.
In addition, we continue the boundary conditions (2) and (3) into 7r <= < 0 by

w(R (), ) H(- ), -c<<0,

0___w
on (R (&), ) H2(- b), -zr_<- <-c.

Let S+= {(p, ): 0<_-p </ (cos ()), -7r -< -<_ 7r},L {(R (), ), -7r _-< <_- 7r},LD
{(R (), ) a < < a}, and LN {(R (0), b), 7r -< & < -a, a < O _-< 7r}. Let f f(8)
be an analytic function of 8 in S/ subject to the symmetry condition

(4) f(ff) f(8).

Let 6 =p cos ()+ ip sin () cos(0). It is well-known [4] that

(5) w(p, O) =Re .f(8) dO =--1 f(8) dO

is a solution of (1). For fixed (p, ), it follows that

d6 Isin ()1 d6
dO= =i

ip sin () sin (0) sin () /(6 z)(6 5)’

where z =p e i’. As a function of 6, /(- z)(6- 5) has branch cuts along the vertical
segments" 6=pcos()+iy, lyl>psin(), and /(-z)(-5)=lzl_->0. Equation (5)
becomes

(6) w(p, )=/[sin ()1 f f() d6
sn ()r z x/(8 z)(6 5)

Letting p--> R (), deforming the path of integration into the portion of LD between
z R ()ei and 5 R ()e -i’, and using property (4), one obtains

sin() (2 Io f(6)6’drt ](7)
[sin ()1

w(R(), )= Re
7re

where 6 R (rt)e " d6/drt.
The normal derivative of w on the surface aD" p-R()= 0 is

Ow R()(Ow/Op)-R’()/R()(Ow/O)

On /R() + (R’())2

The derivatives Ow/Op and Ow/O for p < R () can be obtained by differentiating (5).
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This leads to

(8)

R()
sin(C) Iz =--I,lOw 1 f’(8)(R()l’(cos (&))-8(R()+cos ()R’ (cos ()))) d8

[sin()l On "rri e x/(’i z)(8-e)

where z R()ei and z’ dz/d.
A type V boundary value problem is in the problem of finding an analytic function

(z), z S+ which satisfies the boundary condition

(9) Re(L(d))(to) Re aj(to)rb(J)(to) + Ki(to, t)rb(J)(t) ds F(to), to OS+,

where s denotes arclength along OS/ and F(to) is a prescribed function. It is necessary
that a,, (to) 0, to OS/.

Our next goal is to transform the boundary conditions as given by (7) and (8) into
the form of (9). In doing this, we shall follow the notation, when possible, of Chapter 9
of [6] and evaluate all of the important parameters and coefficient functions pertinent to
our problem. The reader who is unfamiliar with the properties of type V problems
should consult [6] before proceeding further with this paper.

For our boundary value problem m 1. In this case, it is known that (z) should
have the form

(10) d(z)= f.ln (1-z/t)tx(t) ds + Iilx(t) ds + iC,

where is a complex variable on L,/z is a real-valued function, C is a real constant, and s
denotes arclength along L. The form of (10) and the natural symmetry condition
f(2) f(z) imposed on f lead one to relate and f by

(11) p(z)= if(z),

and to ask that/z(t) =-/z(t). In addition, it is convenient to use the angle r/instead of
the arclength s to parameterize L. With these changes, (10) becomes

(12) (z)= ln(1-z/6)Iz(rl)drt+iC, 6=R(rt) e in.

We need to modify (7) and (8) so they take the form (9) with al(to) O. To do this, we
first note the following lemma.

LEMMA 1. For 6 R(l)e i’, z R(O)e,
(cos (n)-cos ())

G (cos (), r/),
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where

G(x, n)=4R(r)en+4R(r)(xe-l) R’(y) do’+2(cos(r)-x) R’(y) d

0,

y (1 o’)x +or cos (r/).

Letting K(b, B)= if[sin2 ($/2) si (/2)1 and using the identity

(fo sin (t) 1 Iot U(s) ds)2K(O, t) - K(t,
U(&),

(7) can be transformed into

(13) Re a()’(z)+ao()(z)+ (8)(O, r) drl =F(O),

where

dz
(14) ai()=(-iz’)3/2, Z’=d, -a<<a,

(15) ao(&) Ko(&,&)-

(16)

Z

2,/-iz

Ko(O, rl)=
-sin () x2G’(y, r/) dx6’R (&)

ffl-x 2 (G(y, "0))3/2,

y =cos (r/)(1 -x=) + cos (&)x 2, 0G
G’(y, r/) --y (y, r/),

d 4Ri&i d Io*lSin(t)! Hl(t) dt(17) Fo(O) - - 2 K(&,

Setting & r/in (8), multiplying both sides of (8) by sin (r/)/2K(r/, &) for -Tr <
-a, using the above lemma and the identity

_d (1 I) sin (r/) (I
n U(s)ds

d& r 2K(rt, &) K(s, n) dn) U(),

and integrating by parts yields

( I P(6) c32KN
(b, r/)dr/)=Fv(O),(18) Re ax(b)’(z)+ a0(O)(z)+

/R(&) 0&0r/

where

(19) al(b) i(iz’)3/2, ao(&)
1 OKN (ok,

,/R(,/,)
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(20)

(21)

Finally,

(22)

KN(O, r/) 8’--4 Io (/(Y)/’(Y)- 8(/(Y) + Y/’(Y)))
zr 41-x4-G(y, )

y cos () 2K(n, )x,
1 d f sin ()R()[8’[

F(&)
R(&) d6 j-, 2K(n, )

dn

I_t, Ip() 02KN
Re al($)dP’(z)+ao($)dP(z) /e(4,) ockort

where al(b) and ao(b) are given by (19) and

(ck, n) dn) FN(4),

1 d _I’sin (r/) R(7)[6’[Hz(rl)
(23) Fu(b) x/R (b)db

It can be shown from (17), (21) and (23) that if H1 C:Z(o), then Fo C(ff-,o), and
if Hz C (N), then FN C (/SN).

The function aa as given by (14) and (19) is nonzero on -Tr=<4-<r, and it is
continuous on -r < b < zr. Moreover, the change in the argument of al around the
contour L is AL(arg (a1))= 3r. Thus, the parameter

1 3
(24) n ---- AL(arg (a))= 2’
and the index

(25) K 2(m +n) =-1.

Muskhelishvili requires that n be integer-valued, but this assumption is unnecessary
and too restrictive for our problem,

Setting
1 OZKN (O, rt), --r < rt < , --zr < <--a,

/R (O) OcOrt
0,
OKD 0<

(26) ho(b, r) - (b, rt),

o,
1 02KN (, rt), < ’1 < zr, a << ,r,

.,/R (ek) OOrt

0,

Fr(b),
(27) F(6)=

FD(Ck),

Equations (13), (18), and (23) can, under the above notation, be written as

ho(ck,(28)
\

again z R(ck)e ’, 6 R (r)e ’.
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The singular integral equation form of (28) is given in [6]. Correlating the
notation of [6] and our own, we set to z R()e i’, t’o dto/ds z’/Iz’l, z’= dz/d;

(29) A o A z Re r -s a o Re r z-[ a

(30) No(z, 8) -log(1-) +1,

-1
(31) NI(Z, t)

(32)

(33)

(34)

N(z, 3) Re(ao()No(z, 8)+ ho(z, t)No(t, ) dtp + al()N(z,

o’().= Re(iao() + ho(, n) dr/

A(z)lx(O)+ N(z, 3)lS’ll(rl)drt F(O)- Co’(&),

The standard Green’s identity

t=R(O)e i*,

3 R(rt)e in, [1<

3. (tr, v) when R() = constant. When R R() constant,

G(cos (), r) 4R2e

a() R3/Ze(i3/24’,

where u (x) 1, x > 0, 0, x < 0,

(36)

and

tr() Re(iao())= -’-- sin (/2)u (a

Wo() Re(ao()) cos(/2)u (a

ho(, r/) - 0,

ao() ei*/u(a 11),

wi(4,) L(z) a() -d-z + ao()z= ] + u(a -I1 e(i+(/2’.

We proceed to investigate condition (35) when D is a solid sphere.

OD D

applied to a harmonic function w in P.C.(1 (3) implies that the number of linearly in-
dependent solutions of Re(L()) 0 as given by (28) is k 0. Therefore, k’ k K 1.
Hence, there is one linearly independent real eigenfunction v v() of an adjoint
homogeneous, singular integral equation N’(v)=0 of (34). Our boundary value
problem is solvable for arbitrary functions H1 e C2(/2o) and H2 e Cl(/-Sr) if and only if

(35) (o’, v)= o’()v() de e O.
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It is known, again see [6], that the eigenfunction v is characterized by the orthogonality
conditions

(37) (w., v) 0, /’=0, 1, 2,....

In the special case of a r, the Dirichlet problem,

(38) v(4) sin(b/2), 14 < 7r

and hence (r, v)=-1/24_,(sin (4/2)): d4 =-(4/2)rr. For a general value of c,
0 < a < r, we seek v in the form

(39) v(b)=sin(b/2)+ v sin k+ b
k=l

The orthogonality conditions (37) imply that

(40) Vk Ck -1- n=12 ak,nI)n

nk

where

k=l,2,...,

(41) Dk rr +- 1-
sin ((2k + 1)a)) >(2k + 1)c

=r,

-1 (sin (ka) sin ((k+l)a),)(42) Ck =-- -- k + 1

1 (sin ((n k)c) sin ((n + k + 1)a))(43) ak’" =--2- n -k n+k+l .’ n C k.

Let u k:vk, gk (1/Dk)k2Ck, Ak.,, k:ak.,/n:Dk, n k, A. O, u (u, u:, .)’,
g (gl, g2,’" ")’, e ek, Ilull- sup lull, Ilell- SUpk (Y’.=x Ie.,I).

The infinite system of equations (40) can, under the above notation, be put in the
form

(44) u =g+Au.

One can prove the following lemma.
LEMMA 2. IIAII--< .5681.
Proof. It immediately follows from the definitions of Ak., and Dk that

E IAk,,[ < k 1 1 1
,,= -- n--kl+,,=1 n+k+l

nk

First observe that

1 k-1 1 1 )2 ,,=1 n2(n + k + 1) ,= n2(k n) n=k+l n (n k)

hence

( 1) 11 1___ 1 -- +
n(n + k + 1)- (k + 1)2 (n + k + 1) (k + 1)n 2,

’ n:(n + k + 1)n=l

1
lim ( 1 .11) 1 ( nl_)(k+l)2t-.oo ,,=ln+k+l- - +(k+l).=1



572 n.L. JOHYSOY

The term

M 1
(n +k+l)n=l n=l F/ n=k+2 n n=l F/ n=l /’/ n=l /’/ n=l n

Using the fact that

(45) lim ( l-log(M)) 3’ .55721.
Moo n

and that En__l 1/na= ra/6, it follows that

(46)
1 1 1 k+l 1

na(n + k + 1)= (k + 1---- "rra/6-(k + 1)----- =1 -\n

Next, the term 1/na(k-n)=(1/ka)(1/n + 1/(k-n))+ 1/kn a.
It follows that

k-1 1 2k11 1 1
(47) E 2( -+ --.

n=l n k-n)--’--n=l n ’n=l n

The term 1/na(n k) (1/ka)(1/(n k)- 1/n)-(1/k)(1/na), and hence

(48)

1 1 1 1 (Mkl nl_)n=k+lna(n-k) k =+1-+- lim
Mco n=l n n=k+l

k 6 n=l - n=l

where we have again used (45). Adding the expressions (46), (47), and (48) together,
multiplying by k/2"tr, and rearranging some terms gives

(49) E IA,.I-<_B(k),
n=l

where

(5O)

1
P(k + 1)+ (P(k)-P(k + 1))+B(k)= P(k)+2(k -" 1---- n=l -- 12(k + 1)’

P(k) - nn=l
(51)

Equation (45) implies that limk-, P(k)= 0, and it follows that

limB(k)=l 1 r-- =--= .52359 .
k-eo 7r n=l F/

We have numerically calculated the values of B(k), 1 =< k -< 60. A partial listing of
these values are given in Table 1.

The values of B(k), 11 <-k <= 60 are monotone decreasing with

.5391015 =< B(k) <= .5634350.
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TABLE

k B(k)

.1078327
2 .4786178
3 .5418810
4 .5602098
5 .5662986
6 .5680313
7 .5679856
8 .5671676
9 .5660166
10 .5647388

Moreover, one can show that

(52) B(k)<-.1(k)=(-k (l +log (k))) +-.
The sequence/(k) is monotone decreasing as k increases and/(56) .56643 -< B(6).
Hence, it follows that

Y’, IAk., 1<= B (6), 1 =< k.
n=l

This completes the proof of Lemma 2.
From the definition

1 (sin ((k + 1)a)
gk =- k2Ck k+l

sin (ka))k

2Dk ki (sin ((k + i)a)-sin (ka))-
1

sin (ka))k+l

2D k + 1 sin (kce)2 sin +cos (kce) sin (ce) +
ka sin (ka).)k+l ka

and the inequalities ]sin (x)/xl <= 1, Dk >= "rr, it follows that

( ) O<--a-<- zr.(53) Igl <- 2/
2,’

Lemma 2 and the inequalities (53) imply that there is a unique solution u of (44) and

(54) Ilull
The inequalities (53) and (54) imply that

.3685(2 + (1/2)a)a
(55) Ivl < 0< <r.k2

An immediate consequence of (36) and (39) is

(56) I(a)= (g,v)( )a-sin(a)+ Vkbk(a)
k=l
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where

(57) bk(a)
sin (ka) sin ((k + 1)a)

k+l

For 0 < a < 1,

(58)

The inequalities (55) imply that

( 1)((59) -IVlb(a)l_->-.3685 2+a a sin (a)-
sin (2a) >_.3685(2 + (1/2)O)O 4

2 ] 2

(60)

.3685(2 +(1/2)a)a/’sin (2a)
4 k 2

sin (3a))3

2

-.3685 2+a a
24

0<=a<=l.

For general k,

[b(a)l - 2(k + 1) sinka(koe),,(sin_(a/2)) cos (ka)(1-sin (a)/c.))k+l c

5/2 k 1 (sin (ks)
k 4-1 ((ak)3/2 \ -k- -cos (k-)))

By considering the maximum values of the functions hi(x) (1-sin (x)/x/x 2) and
h2(x) (1/x3/2)(sin (x)/x-cos (x)), 0<x < 00, one can show that

__1 Ib, ()I-<- _1 (1 + a)a/,(62) 4 3
k__>3, 0_-<c_-< 1.

Moreover

3-3/2 f3(63) k -3/2 <= + x -3/2 dx (7)3.3/2
k=3

The inequalities (59), (60), (62) and (63) yield

(or, v)
> la___3 C(a),(64) I(a)=

12

where

(65) C(a) 1 -.05a2-.36854 2 +]a 4+7-- (1 + a)

C(a) is monotone decreasing and C(.095)=.008829. Hence, we now know that
(m v)< 0 for 0 < a =< .095. To show that (o-, v)< 0 for .095 < c -< rr, we first obtain an
upper bound for ]dI/da I.
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To obtain an expression for dI/da, we proceed as follows. Equation (40) is formally
differentiated with respect to a. We set

U (U U1, 2, "), U’k kV’k k
dv____k
da

E (El, E2,"" ")’,

E --- sin ((k + 1/2)a) + sin sin, k

+ 1/2 (cos ((n k)a) cos ((n + k + 1)a))Vn (a
n=l
nk

A k.,; --2Dknl (sin ((nn--kk)a) sin ((nn++kk++ll)a)) n # k, A,k 0,

A’= [A,.n] to write the differentiated form of (40) as

(66) u’=E+A’u’.

In a manner similar to that used to obtain an upper bound for [[AII, one can show that

(67) . iAk,,i <
1 2

,,= =---- 3P(k)-P(k + 1)- <_-.4.

Using the bound (55) and the above definition of Ek, one obtains

(68) levi IIEII  (.78 +.156a).

Hence,

(69) lu l llu’ll <a(1 3+.26a)
1 I[A’[[

and

(1.3 +.26a)
(70)

k

By formally differentiating (56), one obtains

dI 2 () 1 ( db,(71) d--- sin + v,b + v
k= da ]

It is easy to show that

(72) Ibk(a)[ [sin
k

sin ((k + 1)a)] <...
a

k + 1 k + 1
(2 + a/2),

(73)
da Icos (ka)- cos ((k + 1)a) _<-]2 sin (a/2)l.

Using the bounds (55), (70), (72) and (73), equation (71) yields

(74) - <-J()=.6062sin (a/2)o(2+/2)+sin (o/2)+a2(l +/4)(1.3+.26).
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Finally, we compute I(a) at a finite number of points an, 1 _-< n _-<M with O .095,
an+x=an+min (.05, I(an)/1.1J(an+.05)), aM>-’n". The computation of I(an) is
carried out by truncating system (40) to thirty equations in thirty unknowns and

30
approximating I(a) by (a -sin (a)+k=l Vkbk).

The above described algorithm shows that

(75) .59(lO-4)<-I(ol)<=I(On)<I(on+l)<= 1.57.

The mean value theorem applied to I(a) over the subinterval [an, On+l] yields

() z(..)+ 2-d ()(.- .)_>- (..)-((. +.05)( -..) -> (.) ]--.-j > 0,

(76)
O -- O On+l.

Hence ((r, v) x/ I(a) ->_ 0, .095 -<_ a -<_ 7r. This completes the proof of the theorem
stated in 1.

Whether these arguments can be extended to cover the case of a general axial
symmetric body and a general setting of the angle a remains an open question.
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SADDLE POINTS AND RITZ-GALERKIN APPROXIMATIONS*

VICTOR L. SHAPIRO’

Abstract. This paper establishes a theorem for Ritz-Galerkin approximations to a unique saddle point of
a function defined on a reflexive Banach space. The functional value at the saddle point is given in terms of an
infimum and supremum over two closed, possibly infinite dimensional subspaces whose direct sum determines
the original Banach space. Also, an application is given to a nonlinear boundary value problem involving the
biharmonic operator.

1. Introduction. It is the purpose of this paper to extend the results obtained by
Landesman, Lazer and Meyers in [5]. In particular, we intend to establish theorems
concerning saddle points similar to those in [5], having the same (or similar) conclusions
but under considerably weaker hypotheses. In the final section of the paper, we apply
the results established to obtain Ritz-Galerkin approximations to a nonlinear boundary
value problem involving the biharmonic operator (a type of problem which arises in
elasticity theory, e.g., [4, p. 288]).

Before proceeding, the author would like to acknowledge past conversations on
subject matter related to the material in [51 with E. Landesman and his Ph.D. student,
I. Walton.

In the sequel, W (and V) will be a real reflexive Banach space and (W, R 1) will
be its dual, i.e., the set of real bounded linear functionals defined on W (see [7]). We
shall say the real-valued function f defined on W has a if- derivative at the point w if
there exists a functional Vf(w) in (W, R 1) such that

(1.0) lim [f(w + twx)-f(w)]t-1 Vf(w)(wx)
tO

for every w in W. In the sequel, we shall designate the d- derivative of f at w by
Vf(w).

The - derivative lies midway between the Fr6chet derivative and the Gateaux
derivative (and hence the symbol qd- -). In particular, if f has a Fr6chet derivative at w,
f has a qd- derivative at w. Also, if the latter holds, then f has a Gateaux derivative at
w (see [3, p. 117]).

The first theorem we prove is the following
THEOREM 1. Let Wbe a reflexive Banach space with W XO) YwhereXand Yare

closed subspaces of W. Suppose that f is a real-valued function defined on W which is
continuous in the norm topology of Wand has a c_ derivative, designated by Vf(w), at
each point w of W. Suppose furthermore that

(i) for each x in X, f(x + y) is strictly convex on Y;
(ii) for each y in Y, f(x + y) is strictly concave on X;
(iii) for each x in X, limllyll_, f(x + y) +c;
(iv) there is a in Y such that limllxll_,oo f(x + )=-o.

Then the following holds"
(a) there exists one and only one Wo such that f(wo)= 0;
(b) f(wo)=SUpxinx[infi, yf(x + y)]

infy i. y[SUpxinXf(X + y)];

*Received by the editors February 28, 1979, and in revised form October 2, 1979.
’Department of Mathematics, University of California, Riverside, Riverside, California 92521. This work

was supported in part by the National Science Foundation under Grant MCS 76-02163-01.
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(c) with Wo= xo+ Yo, f(x + yo) < f(xo+ Yo) <f(xo+ y) for x in X-{xo} and y in
Y-{y0}.

It is clear that Theorem 1 above is an extension of Theorem 1 in [5] in a number of
different ways. In particular, we note that in our Theorem 1 we do not require X to be
finite dimensional.

To be explicit about the concept of strict convexity, (i) above means that if a > 0,
/3 > 0, a +/3 1, and y and y2 are in Y, then f(x + (Xyl + flY2) ( of(x + Yl) + if(x -b Y2)
(i.e., the inequality is strict). For the definition of X Y, see [7, p. 100].

To prove the theorem, we set

(1.1) K(x,y)=f(x+y)

and observe that

(1.2) K is strongly continuous on X x Y,

i.e., if IIx.-xll- 0 and [ly- yll- 0 as n o, then K(x,, y,)-* K(x, y).
Also, we see from (i) and (ii) that

(1.3) K(x, y) is strictly convex on Y for each x in X

and

(1.4) K(x, y) is strictly concave on X for each y in Y.

Next, we intend to establish the following result.

For each y in Y, K(x, y) is upper semi-continuous on X with respect to the
(1.5) weak topology of X.

Let 3’ be a fixed but arbitrary real number. It follows from [6, p. 140] that (1.5) will
be established if we can show

(1.6) {x: K(x, y)-> y} is a closed set in the weak topology of X.

In order to establish (1.6) and other results in the sequel, we shall need the
following fact (see [6, p. 178] or [7, p. 641]).

If A is a convex set in the real Banach space Z, then A is closed in the norm
(1.7)

topology of Z if and only if A is closed in the weak topology of Z.

It follows from (1.2) that the set in (1.6) is closed in the norm topology of X. It
follows from (1.4) that this same set is a convex set in X. So (1.6), and hence (1.5),
follows from (1.7).

In a similar manner using (1.3) instead of (1.4), we see also that the following fact
holds.

For each x in X, K(x, y) is lower semi-continuous on Y with respect to the
(1.8) weak toplogy of Y.

Next we define

(1.9) G(x) =inf {K(x, y): y in Y}.

We propose to show

for each x’ in X, there is a unique y’, designated by y’ b (x’), in Y such that
(i.I0)

G(x’) K(x’, y’). (Hence, K(x’, y’)< K(x’, y) for y in Y and y y’.)

To establish (1.10), we fix x’ in X and see from (iii) and (1.1) that
limllyll-,oo g(x’, y) +o. Therefore there exists an r > 0 such that if Ilyll >-- r then



RITZ-GALERKIN APPROXIMATIONS 579

K(x’, O)< K(x’, y). Consequently, it follows from (1.9) that there is a sequence
with Ilyll_-< r such that lim_, K(x’, y) G(x’). But then it follows from the Eberlein-
Smulyan theorem (see [8, p. 141] or [7, p. 86]) that there is a subsequence {y} and a
y’ such that y,, y’ (i.e., in the weak topology of Y). We consequently obtain from (1.8)
that lim_. K(x’, y,)_->K(x’, y’), and therefore that K(x’, y’)<-G(x’). We conclude
from (1.9) that G(x’)= K(x’, y’). It follows immediately from (1.3) and (1.9) that y’ is
unique, and (1.10) is therefore established.

We next show that

(1.11) G(x) is upper semi-continuous on X with respect to the weak topology of X.

To establish this fact, let 3’ be a real number, and set A {x: G(x)>= y}. It then
follows from (1.9) that

Av= (q {x" K(x, y) ->_ 3,}.
yin Y

From (1.2), we see that each set in the intersection above is closed in the norm topology
of X. Consequently, it follows that Av is closed in the norm topology of X. Also, we see
that if Xx and x are in Av and a +/3 1 and a and/ > 0, then

G(ax +/3x2) K[axx + x.2, t (OXx + X2)]
>-_ag[xx, (aXx +/x)] + BK[x:, (Xl q" X2)]

(1.12) >- aG(xx) +/3G(x2)

from (1.10), (1.4), and (1.9). Consequently, Av is a convex set in X. We conclude
therefore from (1.7) that Av is closed in the weak topology of X, and (1.11) is
established.

Next for p > 0, we define

(1.13) Ho (y sup {K(x, y)"

It follows immediately from the Eberlein-Smulyan theorem, from (1.5), and from (1.4)
that

for each y’ in Y and p > 0, there is a unique x’, designated by x’ @(y’), in
(1.14) the set {x" Ilxll <- p), such thatH,(y’)=K(x’, y’). (Hence K(x, y’) <K(x’, y’)

Ilxll-<-p and x # x’.)

Also, using a proof very similar to that used to establish (1.11), we see that the following
fact obtains"

for every p > 0, Ho(y) is lower semi-continuous on Y with respect to the
(1.15) weak topology of Y.

Next, we note from (1.9) that G(x) <-K(x, ) for x inX. From (iv) in the hypothesis
of the theorem in conjunction with (1.1), we see that limllll_o K(x, 7) -oo. Therefore,
limllll_oo G(x) -oo. Consequently, we see that there is an r* > 0 such that G(x) < G(O)

IIxll >- r*. We conclude that

(1.16) sup G(x)= sup G(x).
in X Ilxll--<_r

Next, we see from (1.13) that K(0, y)-</-/o(y) for O>0 and y in Y. We
consequently obtain from (iii) in the hypothesis of the theorem that limllyll-,oo Ho(y)=
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for O > 0. Therefore, there is an ro > 0 such that

(1.17) inf Ho(y)= inf Ho(y).
y in Y

Returning to the r* in (1.16), we set

(1.18)

and observe (since X is a reflexive Banach space) from [6, p. 174] (or [7, p. 105]) that

(1.19) O1 is a compact Hausdortt space with respect to the weak topology of X.

We consequently conclude from this last fact, (1.11) and [6, p. 140] that there is an xo in
O1 such that G(x)<- G(xo) for x in Ol. But then it follows from (1.16) and (1.18) that
sup,,inxG(x) G(xo). Using (1.9) and (1.10), we record this as follows:

xinX yin Y xin

where Xo is Q1 and yo (xo).

Next, we define the set E as follows:

(1.21) E={x: K(xo, yo)<-K(xo+x, yo) and x #0}.

Also, we define

(1.22) r** inf {[Ix[[: x in E},

and observe that r** is a finite real number. In particular, we note that if E is the empty
set, r** 0.

Continuing with our definitions, we set

r* + r** + 1,(1.23)

and define

(1.24) o {x: Ilxll

From (1.18), we see that Q1 c Q and conclude in particular from (1.20) that

sup [ inf K(x, y)] =K(xo, yo).(1.25)
in 0 k in Y .I

From a theorem of Fan, [2, Thm. 2], we next obtain from (1.3), (1.4), (1.5), and
(1.19) with O instead of O1 that

(1.26)
in Q y in Y y in Y in O

Using the same : as in (1.23), we see from (1.17) that there is an r’> 0 such that

(1.27) inf He(y) inf He(y).
in Y Ilyll_-<r

Now using [6, p. 174] (or [7, p. 105]) once again, we see that {y: liyll - r’} is a compact
Hausdorff space in the weak topology of Y. Since He(y) is lower semi-continuous on Y
[see (1.15)], we conclude from [6, p. 140] that there is a yx with Ilyll_-<r such that
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infllyll<_-r’ He(y)= H,(yl). Using (1.14) and (1.17), we record this as follows:

inf He(y)=K(xl, yl), where Xl=e(yl) and Ilxlll<-_s.
yin Y

From (1.13) and (1.24), we see that the right-hand side of (1.26) is infy in yH(y).
Consequently, we see from (1.28) that the right-hand side of (1.26) is equal to K(Xl, yx).
But from (1.25), we see that the left-hand side of (1.26) is equal to K(xo, yo); we
conclude

(1.29) K(Xo, yo) K(x 1, y 1).

Now Yo b(Xo) and xl O(yl). We therefore obtain from (1.10) that K(xo, yo) <--
K(xo, Yl) with equality if and only if yo yl. From (1.20), we see that xo is in O1 c Q,
and therefore Ilxoll <-- ’. Consequently, we obtain from (1.14) that g(Xo, y 1) -< g(x 1, y 1).
We conclude that

K(xo, yo)<-K(xo, yl)<-K(xl,

Using (1.29), we see from this last fact that K(xo, yo) K(xo, yl). But then, as
stated in the preceding paragraph, this implies that yo-

From the fact that yo y 1, we obtain from (1.29) that K(Xo, y 1) K(x 1, y 1). But
x 4’e(Y 1) and IlXo[[ -< :. So using (1.14) once again, we conclude also that Xo x 1. We
record this fact as follows"

(1.30) K(x, yo)< K(xo, yo) for [Ixll and x Xo.

Also, using (1.20) and (1.10), we record the following fact:

K(xo, yo)<K(xo, y) for y in Y-{yo}.
(1.31)

Also Ilxoll --< r*.

Next, we set wo xo + yo. By hypothesis, the -o derivative of f exists at Wo. We
consequently conclude from (1.31) and (1.1) that

(1.32) lim [/(Wo + ty)-f(wo)]t-1 0 for y in Y.
toO

From (1.23), we see that 5->r*+ 1. From (1.31), we also see that IlXoll-<r*.
Therefore given any x in X, we conclude that Ilxo / txll <- for It[ sufficiently small
(depending on x). Consequently, we obtain from (1.30) that

lim [f(wo + tx)-f(wo)]t-1 0 for x in X.
t0

From this last fact and (1.0), we obtain Vf(wo)(X) 0 for x in X. From (1.32) and
(1.0), we obtain Vf(wo)(y) 0 for y in Y. Since W =X@ Y and Vf(wo) is in 3(W, R1),
we conclude from these last two facts that Vf(wo)(W) 0 for w in W. We record this as
follows:

(1.33) Vf(wo) 0, where Wo Xo + yo.

Suppose

(1.34) Vf(w2) 0, where w2 x2 + y..

We see from (1.33) that the proof of (a) in the conclusion of the theorem will be
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complete, once we show

(1.35) Wo W2.

To establish this last fact, we next show that the set E defined in (1.21) satisfies the
following:

(1.36) E is the empty set.

Suppose not. Then from (1.22), we see there exists an x3 in E with 0<llx311=<r** +1/2.
Since IlXoll<-_r*, we see from (1.23) that IlXo+X311<=:. We obtain, consequently, from
(1.30) that K(xo + x3, yo) < K(xo, yo). Therefore x3 is not in E, and (1.36) is established.

Using (1.36) in conjunction with (1.1), (1.21), and (1.31), we obtain that Wo
Xo + yo is a strict global saddle point for f, i.e.,

f(xo+Yo)<f(xo+y) foryin Yandyyo

(1.37) and

f(x + yo) <f(Xo + yo) for x in X and x Xo.

We propose to show that wz xz + yz, defined in (1.34), is a strict global saddle
point for f of the same nature, i.e.,

f(x + yz) <f(xz + y) for y in Y and y y2

(1.38) and

f(x + yz) <f(xz + yz) for x in X and x xz.
To establish the first inequality in (1.38), we suppose there exists a y such that

(1.39) f(xz + ya) <= f(x2 + Ya), where ya yz.

Next, we set

(1.40) q(t) fix2 + yz + t(ya- y2)].

From condition (i) in the hypothesis of the theorem, it follows that q is a convex
function for -oo < < oo. From the fact that f has a qd- o derivative everywhere in W, it
follows from (1.0) and (1.40) that dq/dt exist for all in (-oo, oo) and furthermore that

(1.41) dq (t)/dt 7f[w2 + t(y3- yz)](y3- y2).

Since q is convex on (-oo, oo), we obtain that dq/dt is a nondeereasing function on
(-0o, oo) (see [9, p. 22]). From (1.34) and (1.41), we see that dq(t)/dt evaluated at 0
is itself 0. Consequently, dq(t)/dt >=0 for 0<= < oo, and therefore q(t) is a nondecreas-
ing function for 0 <= < oo. In particular, q(0) <= q(1/2) <= q(1), and we obtain from (1.40)
and (1.39) that

f(xz + y2) =< f[x2 + (yz + ya)/2] =< f(xz + y) _<- f(x2 + yz).

Consequently,

f[x2 + (yz + y3)/2] 2-1[f(xz + Yz)+f(xz + y3)].

But this last contradicts condition (i) in the hypothesis of the theorem. We conclude that
(1.39) does not hold, and consequently the first inequality in (1.38) is established. A
similar proof using condition (ii) in the hypothesis of the theorem establishes the second
inequality in (1.38).
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It is a simple matter to conclude from (1.37) and (1.38) that Xo x2 and yo y2.

(See [5, p. 595].) Equation (1.35) is therefore established, and the proof of (a) in the
conclusion of the theorem is complete.

Inequality (1.37) gives part (c) in the conclusion of the theorem. It remains to prove
part (b). To do this, we set

(1.42) n(y) sup f(x + y).
xinX

It follows from (1.37) that H(yo)=f(Wo). Suppose there exists y3 such that n(y3)<
f(wo). Then from (1.42) and (1.37), we have f(xo + Y3) -< H(y3) <f(Xo + yo) <f(Xo + y3).
This is a clear contradiction, and we conclude H(y)>=f(Wo) for all y in Y with equality
when y y0. This fact, coupled with (1.1) and (1.20) gives part (b) in the conclusion of
the theorem, and the proof of the theorem is complete.

2. A iunflamentai lemma. For a real-valued function g defined on a reflexive
Banach space V, we shall set

(2.1) l2g(v, Vl)= lim sup [g(v + tv)+ g(v tVl)-2g(v)]t-2.
t-O

D__2g(v, v) will be defined analogously using lim inf.
In the sequel, we shall need the following lemma.
LEMMA 1. Let V be a reflexive Banach space, and let g be a real-valued-differentiable function on Vwhich is continuous in the norm topology of V. Suppose there is

a positive constant k such that for every v and vl in V,/2g(v,/)1) >- kll/)l[I2. Then the
following holds"

(a) g is strictly convex on V;
(b) Vg(v + Vl)(/)l)-Vg(v)(D1) kllVlll2 for v and I) in V;
(c) limlloll-, g(v)= +.
To prove part (a) of the lemma, let v2 and v3 be arbitrary but fixed points in V with

v_ v3. Set

(2.2) q(t) g[v2 + t(v3 v2)]- kilv3- v2[lt2/2.
Then from the hypothesis of the lemma and (1.0), we see that q(t) is a ditterentiable and
continuous function for in the infinite interval (-, ), and

(2.3) Dq(t) Vg[v2 + t(v3 v2)](v3 v2)- k[[v3 v2112t
where Dq dq/dt.

Following the notation in [9, p. 23], we set

/2q (t) lim sup [q(t + s) + q(t- s)- 2q(t)]s -2
s--0

with D2q(t) defined similarly using lim inf. An easy computation from (2.1) and (2.2)
shows that

/2q(t)=/2g[v2 + t(v3-v2), v3- v2]- kllv -v2[I
Consequently, it follows from the hypothesis of the lemma that E32q (t) -> 0 for -oo < <. But then it follows from [9, p. 23] that q(t) is a convex function for -oo < <
Therefore if a > 0,/3 > 0, and a +/3 1, we have q (a 0 +/3 1) -< aq (0) +/3q (1). From
(2.2), we see this is the same as g(a)2 + flt3) k[lv3 v2112t3 22-a <-

.22-1ag(v2) +/3g(v3)- k[lv3- v211 Since 0 </3 < 1, we conclude that g(av2 +/3v3) <
ag(v2) +/3g(v3), and (a) of the lemma is established.
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To show that (b) holds, we assume without loss of generality that vx 0, and take
v2 v and v3 vl + v2 in (2.2). Since q(t) is convex on (-, ), we see from [9, p. 22]
that Dq(t) is a nondecreasing function. In particular, Dq(O)<-Dq(1). We obtain
therefore from (2.3) that

Vg(V)(Vl) < Vg(v + v 1)(v 1)- kllVlll.
Condition (b) follows immediately from this fact.

To establish (c), we take v2 0 and v3 v in (2.2). Since q(t) is convex on (-oo, oo),
we have once again from [9, p. 22] that Dq(t) is nondecreasing. In particular,
Dq(O)<=Dq(t) for t>-0. Consequently, we see from (2.3) that Dq(t)=
Vg(tv)(v)-kllvll2t and therefore that

(2.4) Vg(0)(v) <= Vg(tv)(v)- kllvllt.
Next, we set p(t)=g(tv). Then p(t) is a differentiable and continuous function on
(-eo, oo), and using (1.0) we obtain that Dp(t) Vg(tv)(v). Also, from (2.4), we see that
p(1)-p(0) Dp(t) dt >- [Vg(0)(v) + kllvll=t] dt, Consequently,

g(0) + Vg(0)(v)+ kllvll2-* _-< g(v)

for v in V. Since Vg(0) is in (V,R) and k is a positive constant, (c) follows
immediately from this last inequality. The proof of the lemma is therefore complete.

3. Monotone convergence and convergence. Let W X) Y be as in Theorem 1
and suppose that f is c_ differentiable on W. We shall say Vf(x + y) is locally
pointwise Lipschitz in X for each y in Y if the following prevails:

(3.1)
for every x inX and y in Y, positive constantsM(x, y) and 8 (x, y) exist such
that if IIx ll -< (x, y), then

IIVf(x + X + y) Vf(x + y)ll <=M(x, y)llx

We next intend to prove the following theorem, which is to be compared with [5, Thm.
2].

THEOREM 2. Let Wbe a reflexive Banach space with W X9 YwhereXand Yare
closed subspaces of W. Suppose that f is a real-valued function defined on W which is
continuous in the norm topology of Wand has a - derivative, designated by Vf(w),
at each point w of W. Suppose, furthermore, that

(i) there is a positive constant k such that2f(w, yl) kllyl[I ]’or every w in Wand
yl in Y;

(ii) for each y in Y, f(x + y) is strictly concave on X;
(iii) there is a in Y such that limllxll_,oo f(x + ) =-oo;
(iv) Vf(x + y) is locally pointwise Lipschitz in Xfor each y in Y;
(v) there is an increasing sequence {Xn} offinite dimensional subspaces ofXsuch

that [.J o,,_._ 1X,, is dense in X.
Set Wn Xn Y. Then the following prevails:

(a) there is a unique wn in W, such that Vf(w,)(w)= 0 for w in W,;
(b) there is a unique Wo in Wsuch that Vf(wo)(W)= 0 for w in W;
(c) f(w)<-_f(w,,+) for n 1, 2,...
(d) lim_, f(w,)= f(Wo).
It follows from Lemma 1 and condition (i) in the hypothesis of the above theorem

that f(x + y) is strictly convex on Y for each x in X and also that limllyll_oof(x -t- y) -t-co
for each x in X. Consequently, it follows from Theorem 1 and the hypothesis of
Theorem 2 that both (a) and (b) in the conclusion of Theorem 2 hold. In particular, with
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K(x, y), G(x), and b(x) as in (1.1), (1.9), and (1.10) respectively, we see from (b) and (c)
in Theorem 1 that

(3.2) f(w,,) sup G(x)= G(x,,)
in X,

and

(3.3) w, x, + 4(x,), where G(x,) K[x,, b(x,)],

n 0, 1, 2,.. , where for convenience we are now callingX Xo. Since X, c X,+I for
n 1, 2,. , conclusion (c) in Theorem 2 follows immediately from (3.2).

It remains to establish (d) in the conclusion of Theorem 2. To accomplish this, we
use the finite-dimensionality of Xn and select a sequence of points {x’,}= with x’, in X,
such that [Ix’,[] inf {[Ix-x0[[" x in X}. Then, it follows from condition (v) that

(3.4) lim Ilx’, -x0[[ o.

Next, we observe from (3.2) that G(x’ < G(x,,) < G(xo) for n 1 2 From (1 1)
(3.2) and (3.3), we see therefore that

(3.5) [[x’,, + ck(x’,,)]<=f(wo)=/[x0 + b (x0)].

If we can show, using the norm topology in X and Y, respectively, that

(3.6) b is a continuous mapping of X into Y,

then (d) in the conclusion of Theorem 2 will follow immediately from (3.4), (3.5) and the
fact that f.is continuous in the norm topology on W.

We now establish (3.6) by fixing a point x’ in X and showing that b is continuous at
x’. We recall from (1.1), (1.9), and (1.10) that b (x’) is the unique point y’ in Y such that
infyinYf(x’+y)=f[x’+ck(x’)]. Since f[x’+ck(x’)]<=f(x’+y) for y in Y, we see from
(1.0) that

Vf[x’+b(x’)](y) 0 for y in Y.

In particular, we obtain from this last stated fact that for x in X,

0 V/[x’ + x + 6(x’+ x)][6 (x’ + x)- 6 (x’)]

V/[x’ + 6 (x’)][6 (x’ + x)- 6 (x’)].

This in turn tells us with y’= b(x’) and

(3.7)

that

a6(x’, x) 6(x’+ x)- 6(x’)

(V/Ix’ + y’]--V/Ix’ + x + y’]}[a6 (x’, x)]

{V[[x’ + x + y’+ 4,(x’+ x)-,(x’)]--V[[x’+ x + y’]}[a6 (x’, x)].

Let I[xll<=6(x ’, y’). Then we conclude from this last computation, (3.1), and
condition (iv) that

{V/Ix’ + x + y’+a(x’, x)]-Vf[x’+ x + y’]}[A (x’, x)]
(3.8)

<-m(x’, y’)[Ixll [IA6(x ’, x)ll.
Next, using Lemma 1, we identify V with Y, g(. with f(x’ + x + .), and conclude
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from condition (i) in the hypothesis of Theorem 2 and (3.8) that

kl[a4,(x’, x)ll2 <=M(x’, y’)[lxll IlA4(x ’, x)ll.
We consequently obtain from this last fact and (3.7) that

(3.9) II(x’ / x)-(x’)ll<-M(x ’, y’)k-llxll
for I[x][ =< 8(x’, y’). Since M(x’, y’) and k are positive constants, we conclude that b is
continuous at x’. Condition (3.6) is therefore established, and the proof of Theorem 2 is
complete.

Let W be as in Theorem 1 and suppose " is - ditterentiable in W. We shall say
Vf is locally pointwise Lipschitz in W if the following prevails.

(3.10)
for each w in W, there are positive constants M(w) and 8(w) such that if
IIwll<_-(w) then

[IV/(w + w)-Vf(w)llM(w)llwll.

It is clear that if f is twice Fr6chet differentiable in W, then Vf is locally pointwise
Lipschitz on W. (See [3, p. 129].) Also, it is clear that this latter condition implies
Vf(x + y) is pointwise Lipschitz on X for each y in Y, i.e., (3.10) implies (3.1).

Using Theorem 2, we shall next establish the following theorem.
THEOREM 3. Let Wbe a reflexive Banach space with W X( Y, whereXand Yare

closed subspaces of W. Suppose that f is a real-valued function defined on W which is
continuous in the norm topology ofWand has a - derivative, designated by Vf(w), at
each point w of W. Suppose, furthermore, that

(i) there is a positive constant kl such that l2f(w, yl)->_ klllylll2 for every w in W
and y in Y;

(ii) there is a positive constant k2 such that D2f(w, x) <- -k=llxlll= for every w in W
and x in X;

(iii) Vf(w) is locally pointwise Lipschitz in W;
(iv) there are two increasing sequences {X,} and {y,}]o of finite dimensional

subspaces ofXand Yrespectively such that U n=xXn is dense in Xand U oon=l y
is dense in Y.

Set W, X, X, ( Y,. Then the following prevails"
(a) there ts a unique w, in W, such that Vf(wn)(w)= 0 for w in W,;
(b) there is a unique Wo in Wsuch that Vf(wo)(W)= 0 for w in W;
(c) lim,_.o f(w,)= f(wo).
To establish Theorem 3, we set

(3.11) W* =X,Y and W** =XY,.

Next, we notice that (i) in Theorem 3 is the same as (i) in Theorem 2; that (ii) in Theorem
3 and (a) and (c) of Lemma 1 imply that (ii) and (iii) of Theorem 2 holds; and that (iii)
and (iv) of Theorem 3 imply that (iv) and (v) of Theorem 2 hold. Consequently, we see

from Theorem 2 that

there is a unique w,* in W* such that
(3.12)

f(w*)(w)=O for w in W,*.

Since (ii) in Theorem 3 and (c) of Lemma I imply limllxll-. f(x + y) -o for every y
in Y, we see also from Theorem 2 that both (a) and (b) of Theorem 3 hold. Also, we see
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from Theorem 2 that

there is a unique w,** in W,** such that
(3.13)

Vf(w**)(w)=O for every w in W,**.

Furthermore, we obtain from (d) in Theorem 2 that

(3.14) lim f(w,*) lim f(w*,*)=f(wo).

To establish (c) of Theorem 3, we see from (3.11) and (b) of Theorem 1 that
f(W*n)=SUpxinx.[infyinYf(x+y)], f(wn)=SUpxinx.[infyinY, f(x+y)]=infyinY.
[supix.f(x + y)], and f(w,**) infy i, y. [supxixf(X + y)]. Consequently,

(3.15) f(w* <=f(w,) <-f(w**).
But then (c) of Theorem 3 follows immediately from this last fact and (3.14), and the
proof of Theorem 3 is complete.

4. Convergence ot the Ritz-Galerkin approximations. In this section, we intend to
extend Theorem 4 in [5]. The first theorem we prove in this direction is the following:

THEOREM 4. Let Wbe a reflexive Banach space with W XO) Y, whereXand Yare
closed subspaces of W. Suppose that f is a real-valued function defined on W which is
continuous in the norm topology of W with a f- derivative at each point w of W.
Suppose, furthermore, that

(i) there is a positive constant kl such that l2f(w, yl)>= kllyll[2 for every w in W
and y in Y;

(ii) there is a positive constant k2 such that D2f(w, Xl) -< -k211xlll for every w in W
and Xl in X;

(iii) f(w) is locally pointwise Lipschitz in W;
(iv) there is an increasing sequence {Xn}] oflinite-dimensional subspaces ofXsuch

that On= 1Xn is dense in X.
Set W. X. Y. Then the following prevails:

(a) there is a sequence {w,,} and a Wo Xo + yo satisfying conditions (a), (b), (c),
and (d) in the conclusion of Theorem 2;

(b) for each n, choose x’ in X. such that

I[x’- Xoll inf {llx- xoll" x in X}.

Then there exist constants c1 0 and cz > 0 such that

c llxo- x’.ll <= llwo w.ll--< c=llxo- x’.ll
for all n.

From conditions (i) and (ii) in the hypothesis of the above theorem and from (a) and
(c) of Lemma 1, we see that

(4 1) f(x + y) is strictly concave in X (convex in Y) for each y in Y (for
each x in X);

(4.2)
lim f(x + y -Ilxll--’

lim f(x+y)=+

for each y in Y,

for each x in X.

In particular, we see that all the conditions in the hypothesis of Theorem 2 are met and
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consequently (a) above in the conclusion of Theorem 4 holds. It remains to establish (b).
To accomplish this fact, we first of all see from (4.1), (4.2), and (b) of Theorem 1

that

(4.3)

and for n 1, 2,..

f(Wo) sup [yiinnfvf(x + y)]
inX

(4.4) f(wn) inf sup [f(x +y)].
in Y in Xn

Next, with wn xn + y, we write

(4.5) f(Wo)-f(w,) [/(Xo + yo) -/(x, + yo)] + [/(x, + yo)-/(x, +
and set

(4.6) ql(t) f[xn + y. + t(yo- y.)]- kll[y. yo[lZtz2-.
It follows from the hypothesis of Theorem 4 that ql(t) is a differentiable function for
-oo< < oo. Setting Dqa(t) dqx(t)/dt, we see that

(4.7) Vqx(t) Vf[x, + y + t(yo- y)](yo- y,,)- kx[lYn yol[2t.
Also, we see from (2.1) and (4.6) that

/2q(t) l2f[xn + y, + t(yo- yn), yo- y,]- kxlly yoll2.

Consequently, we see from condition (i) in the hypothesis of the current theorem that
/2ql(t) -> 0 for -o < < c. Since q is also a continuous function of t, it follows from [9,
p. 23] that ql is a convex function on (-o, o) and, therefore, from [9, p. 22] that Dq(t)
is a nondecreasing function. In particular,

(4.8) Dql(O)<=Dql(t) for 0=<t<c.

From (4.7), we see that Dql(0)= Vf(x, + y,)(yo-y,). Now, y,- yo is in Y, and
therefore in W, for each n. Consequently, it follows from (a) of Theorems 2 and 4
that Dql(0) 0. We obtain, therefore, from (4.8) that q(0) -< ql(1). This implies in turn
from (4.6) that

(4.9) f(x, / y)/ kx[ly,- yoll=2- --< f(x / yo).

Next, we set

(4.10) q2(t) f[xo + Yo + t(x. Xo)]+ k2[lx. xol12t22-1

and observe that Dq2(t)= Vf[Xo+ yo+ t(x,-Xo)](x,-Xo)+ k=llx-xoll2t, D2q2(t)=
o__Z[xo + yo + t(x xo), x xo] / kzllx Xoll=, and Dq2(0) V/(Wo)(X, Xo). We
conclude from condition (ii) in the hypothesis of Theorem 4 that q2(t) is concave on
(-o, c) and from (b) in Theorem 2 that Dq2(0) 0. Therefore (in a manner similar to
that involving qx) we obtain q2(0)=> q2(1). Consequently, we see from (4.10) that

f(x. + yo) + k2[lx. xo[122- -< f(xo + yo).

From (4.5), (4.9) and this last fact, we obtain that

(4.11) [kllx-xoll=/ klly yoll=]2- <-_l(wo)-(w).
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We conclude from (a) of Theorem 4, (d) of Theorem 2 and (4.11) that

(4.12) lim llx xoll / Ily yol[] 0.

Next, we notice from (4.1), (4.2), (4.4) and (c) of Theorem 1 applied to Wn that

(4.13) f(x’,, + y,,)<-f(x, + yn)

since x’, is in X,. Likewise from (c) of Theorem 1 applied to W we have f(xo + yo)<--
f(xo + y,). We consequently conclude from this last fact and (4.13) and (4.11) that

(4.14) O <= f(wo)-f(w,) <- f(xo + y,)-f(x’,
Now f(x’,+yn)=f[xo+y,+(x’,-Xo)], and we obtain from the mean-value

theorem applied to f[xo + y, + t(x’, Xo)], that there exists an s in the interval (0, 1) such
that the right-hand side of the last inequality in (4.14) is equal to

V/[xo + y. + s(x’,, -xo)](xo-x).

Now Vf(Xo + yo)(Xo-x’)= 0 and we obtain, therefore, that

(4.15) f(wo)-f(w) <= sup IIV(wo)- VEwo / (y yo) / s(x’. xo)]ll Ilxo- x’.ll.
0_<s__<l

From condition (iii) in the hypothesis of Theorem 4, we next see that there are
positive constants M(wo) and 8(Wo) such that

(4.16) [IVf(wo+w)-Vf(wo)ll<-_M(wo)llwll for[Iw[[-<8(Wo).
Using (4.12), we choose N such that

(4.17) IIx-xoll/lly-yoll<-_(wo) for n_->N.

It follows from the definition of x’, (given in (b) of Theorem 4) that IIx’. xoll-< IIx xoll.
We conclude consequently from (4.15), (4.16), and (4.17) that for n -> N,

(4.18) f(wo) f(w.) -< M(wo)[llx ’ xoll + Ily yoll]llxo x ’. II.
Equation (4.11) in conjunction with this last inequality gives

(4.19) k=llx.-xoll=+ klly. yoll= <=2M(wo)EIIx’.-xoll/lly yoll311x’. -xoll
for n ->N. Set k3 =min (k, k). Then it follows from (4.19) that

IIx xoll / Ily yoll-<- 8M(wo)k [Ix’ xoll
for n >___ N. This establishes the second inequality in (b) of Theorem 4.

To establish the first inequality in (b), we note that each w in W is uniquely
representable in the form w x + y, where x is in X and y is in Y. Consequently, it
follows from the closed graph theorem, [6, p. 171], that the mapping A(w) x defines a
bounded linear transformation of W into X. It is apparent, therefore, that there is a
positive constant c4 such that Ilxo- x.l[_<- 411(X0-- Xn) q- (Yo-- y.)ll, But from the definition
oex,’llxo x’ <Ilxo x, II. Therefore,

--1
c4 Ilxo-

The first inequality in (b) is established (with Cl c), and the proof of Theorem 4 is
therefore complete.

At this point, we would like to make two remarks concerning facts established in
the.proof of the above theorem.
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Remark 1. With kl and k2 the positive constants given in (i) and (ii) of Theorem 4
respectively, and with wn xn + y and Wo Xo + yo defined in (a) of Theorem 4 the
following fact was established (see 4.11)"

[k2llx. xo]l2 / kllly yo11212-1 --< f(wo)-f(w,)
for n=l,2,....

Remark 2. With M(wo) the Lipschitz constant associated with Vf at Wo given by
(iii) of Theorem 4, with w, x, + y and Wo Xo + yo given in (a) of Theorem 4, and with
x’ defined in (b) of Theorem 4 the following fact holds (see (4.18))" there is a positive
integer N such that for n -> N,

f(wo) f(w,) <-_ M(wo)[llx ’ xoll + I[y yo[l]llxo x ’ II.
Using these remarks, we next establish the following theorem.
TIaEOREM 5. Let Wbe a reflexive Banach space with W XO) Y, whereXand Yare

closed subspaces of W. Suppose that f is a real-valued function defined on W which is
continuous in the norm topology of W, and has a f- derivative at each point w of W.
Suppose furthermore that conditions (i), (ii), (iii), and (iv) in the hypothesis of Theorem 3
hold. Set Wn X O) Y. Then the following prevails:

(a) There is a sequence {w,,} and Wo Xo+ yo satisfying (a), (b), and (c) of
Theorem 3.

(b) For each n, choose x’ in X, and y’ in Y, such that

IIx’ xoll inf (llx xoll" x in X,},

[ly’ yoll- inf (Ity Yol[" Y in Yn}.

Then there are constants cl > 0 and c2 > 0 such that ]’or all n,

cEIIxo- x’ll + llyo- y’ll] --< Ilwo- wll <-- c=EIIxo- x’ll + Ilyo- y’ II].
Since the hypothesis of Theorem 5 is identical with the hypothesis of Theorem 3,

(a) in the conclusion of Theorem 5 is immediate. It remains to prove (b). To do this we
proceed as in the proof of Theorem 3 and define W* and W** as in (3.11). Next, we

* * * **+y in W, having the propertiesobtain w=x,+y, in W* and w** ** **
enumerated in (3.12) and (3.13) respectively. Also, it follows from Remark 1 that

(4.20) [kEIIX*, -Xo[I2 + klly,* -yoll2]2-1 -f(wo)-f(w*)
and

(4.21) [k=llx** xoll= + kxl[y ** yoll=]2- _-< f(w**)-f(wo),

where k and k2 are the positive constants in (i) and (ii) of Theorem 3.
Next, with w, as in (a) of Theorem 3 we see that (3.15) holds. Furthermore, we see

from Remark 1 that

(4.22) [kllx x** = / klly, y** Ila]2- <-_f(w**)-d(w)
and

(4.23) [kEilX,-X*,ll2+ kllly, y * I1212- <-f(w,)-f(w*).
From Remark 2, we see that there is a positive integer N such that

(4.24) f(wo) f(w* <- M(wo)[llx ’ Xol] + ][y * yoll]llxo x’ II,
(4.25) f(w**) f(Wo) <=M(wo)[lly ’ yoll + llx*, * -xoll]llyo-y’ll



RITZ-GALERKIN APPROXIMATIONS 591

for n _->N, where M(wo) is the Lipschitz constant associated with Vf at w0.
Next, we set k min (kl, k2), and obtain from (4.20), (4.24) and the definition of x’

that

IIx* xoll= + Ily* yoll= 2k-M(wo)[llx’ xoll + IlY* Yoll]llXo- x’ll
<- 2k-M(wo)[llx*. xoll / IIY.* yoll]llxo- x’.ll

for n => N, since x,* is also in Xn. We conclude in particular from this inequality that

(4.26)

for n ->_ N. In a similar manner, we obtain from (4.21) and (4.25) that

(4.27)

for n >-_N.

Next, we see that IIw,,-woll=<-allw*.-wll=/allw*.-woll=<_x6[llx*.-x=llZ/
Ily.* y.II +llx.* -xoll= +lly.* yollZ]. Consequently, we obtain from (4.20) and (4.23)
that

(4.28) IIw- wollZ <- 32k-[l(w)-l(w*. )/(Wo)-l(w*. )].

From (3.15), we have that .[(w,,)-.f(w*)<=.t’(w*,*)-.f(w*,). Using this fact in
conjunction with (4.28), we in turn obtain

(4.29) IIw Woll2 <- 32k-{f(w** f(Wo) + 2[f(Wo) [(w*)]}.

Next, we observe from (4.26) and (4.27) that the right-hand side of the inequalities
in (4.24) and (4.25) are majorized by M(wo)[1 + 8k-M(wo)]llx’. -xoll= and M(wo)[1 +
8k-lM(wo)]lly’,,- yol[2, respectively. This is conjunction with (4.24), (4.25), and (4.29)
tells us that

(4.30) IIw,, WollZ <= 64k-M(wo)[1 + 8k-M(wo)][llx’,, xoll2 + lly’,, yoll2]

for n -> N. The second inequality in (b) of Theorem 5 follows immediately from (4.30).
To establish the first inequality in (b) of Theorem 5, we note that every w in W is

uniquely expressible in the form w x + y, where x is in X and y is in Y. Consequently,
it follows from the closed graph theorem (as in the proof of Theorem 4) that there is a
positive constant c5 such that Ilxo-x’.ll<-Ilxo-x.ll<-cll(xo-x)+(yo-y.)ll for n=
1, 2,. .. Likewise, there is a positive constant c6 such that Ilyo- y’.ll <- c611wo- wll for

ill < (5 q- 6)11W0 Wnll for n 1 2,...n 1, 2,.. Consequently, IIx0- xll / IlYo Y
The first inequality in (b) of Theorem 5 is therefore established, and the proof of
Theorem 5 is complete.

5. An example. As an example of a nonlinear functional that satisfies the condi-
tions in the hypothesis of Theorem 5, we use one associated with the generalized
nonhomogeneous Dirichlet problem for the biharmonic operator (i.e., A2w g(, w)
where A is the usual Laplace operator) under zero boundary conditions (a type of
problem which arises in the theory of elasticity, see [4, p. 288]). To be specific, let f be a
bounded open set in real Euclidean space R", and let W-- W’2 ("), where the inner
product (wl, W2)2, in W is given by

(w, wh I aw()Aw() d:.

(We use the standard notation of Sobolev spaces, e.g., see [1]). We shall designate the
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usual inner product in L2(f) by <Ul, U2>0; thus for Ul and U2 in L2(’),

(Ul, U2)0"- It) Ul()U2() d:.

Using Sobolev space theory, it is an easy matter to show that the operator T, with
range in Wg’z (f) defined by

(Tu, b)2 (u, 4)o for b in W2o"z (fl),

is a linear bounded, self-adjoint, completely continuous operator mapping L2(’) into
L2(’). It is also an easy matter to show, using the standard Fredholm-Riesz-Schauder
theory, that there exists a sequence of positive numbers {hk}] such that hk -< 1k+a and
limk_,oo 1k +oo and a corresponding sequence {pk} in Woz’) (fl) such that AZ(/k k(Dk
in the distribution sense in fl and such that (bi, bk)O=6 (the Kronecker-delta).
Furthermore, {bk}] is complete in L2(f) and {bk1 a/2}]o is a complete orthonormal
system in W2o"z (fl). Also, the following two facts hold for w in W2o’2

(5.1) (w, wh= Z ,(6, w),;
k=l

(5.2) (w, W)o E (6k, W)o2.
k=l

We shall suppose that g(:, t) is a continuous function defined in fix (-, c).
Furthermore, we shall suppose that there are two positive constants ya and 3’2 and a
positive integer N such that the following holds:

(5.3)

(5.4) yas <= g(, + s)- g(, t) <= ]/2S for in 1, in (-m, m), and s in (0, c).

For each : in fl, we shall set

for in (-,

G(, t)= g(, r) dr

The functional f on W that we shall deal with is the following"

(5.6) f(w) 2-1<w, w>2- Isa G[, w(s:)] d.

We propose to show that f so defined on W meets the conditions in the hypothesis of
Theorem 5. Also, we propose to show that the unique point w0 in W with the property
that 7f(Wo)(W) 0 for every w in W is a distribution solution of A2w(:) g[:, w (:)] in
fl. (The results that we obtain in this section are to be compared with [5, {}7]. The results
in this latter reference concerning the Laplace operator can be extended along the lines
presented here.)

To accomplish this, we set

(5.7) sup Ig(:, 0)1-- gl
infl

and observe that K1 is finite (since g is in C[fl (-ec, )]). Next, we observe from (5.3),
(5.4) and the fact that AN > 0 that

(5.8) Ig(, t)] 3,2ltl + gl
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for s in i’l and in (-, oo). This inequality in conjunction with (5.5) gives that

(5.9) [G(s, t)[ _-< /2t2/2 + Kilt[ for s in and tin (-c, c).

If w is in W, then w in particular is in L2(’) and, therefore, in Ll(f) since f is a bounded
open set. We consequently conclude from (5.6) and (5.9) that f(w) is indeed well-
defined for w in W.

To show that f is continuous in the norm topology on W, we observe from (5.4) and
(5.5) that

(5.10) [G(:, t2)- G(:, t)[ <_- 2-3,21t2 tl[ 2 -b [g(, tx)l [tz- tl[
for : in f and t, t in (-, c). We consequently obtain from this fact in conjunction
with (5.8) that

is dominated by

f. lG[, w() + w()]-G[, Wl(:)][ d:

(5.11) Ia [3’2lw()12 + 2lWl()l Iw()l+Kllw()l] d.

Now, as is well-known, there is a positive constant K such that

(5.12) <w, W>o <- g2<w, w>2-- g=llwll2.
Consequently, the integral in (5.11) goes to zero as Ilwll- 0, and we obtain from (5.6)
that

lim f(w + w)=f(wl)
Ilwll-,o

for Wl in W. f is indeed continuous on W.
Next, we compute f(wl)(wa) for W1 and w in W. From (5.6), we see that

f(Wl + tw2)--f(Wl) t(Wl, W2)2 + t2(w2, W2)22-1
(5.13)

J {G[s, wx + twz]-O[sc, w1]} d:.

From (5.10), we see the absolute value of the integrand in this last expression is
dominated by e2t2lwzl / Itl Ig(:, w)l Iw=l. We consequently see from (5.5), (5.8), (5.13)
and the Lebesgue dominated convergence theorem that

Vf(wl)(wz) lim [f(wl + tw2)-f(wl)]t-t0

(5.14)
(W1, W2)2-- JO g(:’ W1)W2

for w and w in W.
To show that xTf is locally pointwise Lipschitz in W, we use (5.14) and observe that

(5.15) Vf(w "b W1)(W2)--Vf(w)(w2) (W1, W2)2-- Ii [g(:, W + w1)- g(, w)]w2

for w, w2 and w in W. We consequently obtain from (5.4) and Schwarz’s inequality that
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the absolute value of the left-hand side of (5.15) is majorized by

Ilwxll IIw=ll/  ,2<lw l, Iw21>o.
We conclude from this fact and (5.12) that

K1/:z= )llwxll
for w and w in W. Condition (iii) in the hypothesis of Theorem 5 (or 3) is therefore
established.

NNext, we define X {x" x i=1 cdi}, Y, {Y" Y i--1 cibi+N}, and Y
(t.J _-1 Y,)-, i.e., Y is the closure in W of ,--1 Y.. Since {b/A-l/2} is a complete
orthonormal system in W, it follows that W X Y. Furthermore with X, X for
n 1, 2,. , it is clear that condition (iv) in the hypothesis of Theorem 5 (or 3) is met. It
remains to show that conditions (i) and (ii) are also met.

To accomplish this, we first observe from (5.5) that

G(, + s) + G(sc, s) 2G(c, t) [g (:, + r)- g(, t- r)] dr

for in (-c, ) and s in (0, ). Consequently, we see from (5.4) that

(5.16) yls2-< G(:, t+s)+G(, t-s)-2G(, t)-< y2s2

for in (-,) and s in (0, c).
Next, we use (5.6) and observe from the second inequality in (5.16) that

f(w + twl)+f(w- twl)-2f(w)-t2(Wl, wl)2

=-In [G(, w+twl)+G(, w-twl)-2G(, w)]d

>--y2t2 In w21 d.

We consequently obtain from (2.1) that
2(5.17) __D f(w, Wl) =>(w, Wl)2-y2(w, W)o

for w and Wl in W. In a similar manner, we obtain from (5.6) and the first inequality in
(5.16) that

(5.18) /2f(w, W1)(W1, W1>2--1(W1, WI>0
for w and w in W.

From the definition of X and from (5.1) and (5.2) we see that for x in X,
(x, x)o Y.I (x, bi)2o and (x, x)2 Y.v--1 hi(x, bj)o2. Consequently, we obtain from (5.18)
[since D2f(w, wl)=< J2f(w, wl)] that _D2f(w, x)<_.N_,=1 (hi Vl)(X, cbi). But then

(5.19) -DE/(w, x) -> (yh
=1

Setting k2 (ylh -1), we see from (5.3) that k2 >0 and from the monotonicity of
{hi} in conjunction with (5.19) that

N

-D2f(w, x) - k2 Z A(x,
j=l

But the sum on the right-hand side of the above inequality is equal to [Ix]]. Therefore,
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-D=(w, x) k=llxll=, i.e., DEf(w, x)-k=llxll=, and condition (ii) in the hypothesis of
Theorem 5 (or 3) is established.

To show that condition (i) holds, we observe from (5.1), (5.2), and the definition of
Y that

(Y, Y)o E (Y, 6+)o,
(5.20)

j=l

(Y, Y)2 E Am+j(y, 6+i)o
j=l

for y in Y. We then obtain from (5.17) [since Df(w, y)D2f(w, y)] that for w in W
and y in Y,

D2f(w, y)(y, y)2-y2(y, y)o

E
-1Setting kx (1-A+xy), we see from (5.3) that x>0 and from the last inequality

established that Df(w, y) kx Ex A+(y, +)g. But then from (5.20) we have that
Df(w, y)x[y[, and condition (i) in the hypothesis of Theorem 5 (or 3) is
established. Therefore, all the conditions in the hypothesis of Theorem 5 are
established and we conclude that there exists a unique Wo in Wo such that Vf(wo)= O.
Also this Wo can be found via the Ritz-Galerkin approximations in Theorem 5.

Let be a function in C (). Then is in W, and we have from (5.14) (since
V/(Wo)() 0) that

But ia AWo()AO()d= Wo()A2()d. This equality in conjunction with (5.21)
tells that AWo is indeed equal to g(, Wo) in the distribution sense in , and
consequently, all assertions made in this section about the functional f(w) in (5.6) are
established.
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Abstract. The class of equations alSf+ bKSf-- g is analyzed for data g and solutions f belonging to the
space ’() of Schwartz distributions, f has compact support contained in [-1, 1], and g is known only on
(- 1, 1). I and K are the usual operators of fractional integration defined as convolutions. The equation is to
be satisfied as an identity between distributions on the open interval (-1, 1). The coefficients a and b are
infinitely differentiable functions on (-1, 1) subject to certain growth conditions at the endpoints.

It is shown that in this setting the equation aISf+ bKSf g is equivalent to a boundary value problem for
functions analytic off the real axis. The class of analytic functions furnishing the solutions is characterized in
terms of its growth rate at infinity and its limiting behavior at the real axis. Solutions to the generalized
Abel equations are found explicitly for arbitrary distribution data and all complex values of a.

1. Introduction. Various generalizations of Abel’s integral equation have been
studied in the past. Among them are the integral equations

(1.1) S’f =g

involving the operator

(1.2)
1

(x t)-lf(t) dt + b(x) r’(a) (t- x)-lf(t) dtS[ a (x) F(c)

on an interval (c, d) with -c <_ c < d -<_ c. The class of integral operators S defined by
(1.2) includes the operators of fractional integration

(1.3)

(1.4)

1 (x_t)_lf(t)dIf r(a)

1 Ix )Kf F(a (t- x -if(t) dt;

the Riesz potentials

1 fc
and the generalized Hilbert transforms

[t-xl-f(t) dt;

(1.6) H’f 1/2 csc (azr) F(a) It xl- sgn (x t)f(t) dt.

A further generalization of Abel’s equation which includes (1.1) is defined by taking

(1.7) Tf =-7-7 k(x, t)lt-x f(t) dt

in place of Sf, where k (x, t) may be discontinuous along the diagonal x t.

* Received by the editors December 6, 1978.
? Department of Mathematics, University of California, Irvine, California. Now at Schlumberger-Doll

Research, Ridgefield, Connecticut 06877.
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if neither a nor b is identically zero, then solutions of (1.1) can often be found using
Cauchy integrals in terms of which (1.1) is transformed into a Hilbert boundary value
problem for analytic functions. This method was first employed by Carleman [3], who
inverted the operator R on [0, 1] in this manner. It establishes a connection between
operators of fractional integration and singular integral operators which has been used
most successfully in the analysis of the operators Ss, R s, H and T on L"-spaces,
especially in determining their ranges and indices. For L"-spaces over bounded
intervals results for S are found in [26], [36]-[38]; for S + A, A compact, in [4], [27].
The operator Ss on LP(-, c) is discussed in [29], [30]; T and its range are
examined in [24], [25], [31], [32]. The properties of the particular operators R andH
on L (-o, c) are discussed in [3], [9], [10], [15], [19], [20], [34]. The L-theory for the
operators of fractional integration, I and Ks, is discussed in 1] and 11], for example.

In this article we consider equation (1.1) over a bounded interval with data in
’(), the space of Schwartz distributions on the real line. In particular, and without
loss of generality, we take (-1, 1) for the interval (c, d). We take the coefficients a and b
to be infinitely differentiable on (-1, 1), and interpret the integrals ISf and KSf as
convolutions of distributions. Equation (1.1) can then be viewed as an equality between
the restrictions of distributions to an open set" given data g’() we seek
f ’() with support in [-1, 1] such that alSf+ bKSf= g on (-1, 1).

It will be shown that equation (1.1) as formulated for distributions is equivalent to a
Hilbert boundary value problem for analytic functions. We give a complete proof of this
fact which follows from a Paley-Wiener type theorem for analytic representations of
fractional integrals of compactly supported distributions. (No analogous result for
fractional integrals of L"- functions appears to be known).

Hilbert boundary value problems which involve analytic functions with boundary
values in ’() were treated in [22] in a general setting. We apply those results to prove
the existence of distribution solutions to (1.1) for a large class of coefficients a and b, and
arbitrary data g @’().

In preparation for our main result we discuss the extensions of the operators I and
K from L"(-1, 1) to the space of Schwartz distributions with support in [-1, 1].
(Extensions of the operators I and K from L () to subspaces of ’() containing
L"() are treated in [5], [6], [17]). Following that we consider the analytic represen-
tations of fractional integrals.

2. Formulation of the problem and statement of the results. Let () denote the
space of infinitely differentiable complex-valued functions with compact support
defined on the real line . Its dual ’() is the space of Schwartz distributions. ()
and ’() carry the usual topologies [33]. Forf’() and q () we write (f, p)
for the value of f at q. Two distributions f and g agree on an open set f c , if
(f, q) (g, p) for all q () with support in 1). For the details of the theory we refer
the reader to [8], [33].

Let and ’r denote the subsets of distributions in ’() whose supports are
bounded on the left, and on the right, respectively. and ’r are algebras under
convolution, with the Dirac delta distribution 8 as the identity element and no divisors
of zeros [33]. For f and g ’r the convolutions

--1 s--1

(2.1) is/ x+ x_
=*f, K g=.g

define the operators I and K of fractional integration. Here x_-/F(a) and



598 MARION ORTON

x-l/F(a) are the distributions defined, for Re a > 0, by the locally integrable functions

xS-1

5 x>0X+

[0, x(O,
(.)

x_-I /O, x>O,

For Re a <-0, x.-1/F(a) and x_-l/F(a) are defined by analytic continuation in the
parameter a. This is possible, since they are entire functions of a [8]. For n 0, 1, 2,
analytic continuation yields

(2.3) x+
r( i

For , B e C one obtains

(2.4) IIf=I+f,

x_
(_1),8(,)(x)"

KKtg K+Og
so that I and K are invertible in and ’, with inverses I and K-s, respectively.

The domain on which the operators I and K will be studied here is the subspace
of distributions which are zero on \[-1, 1]. We will denote that space by ’([-1, 1]).
On ’([-1, 1])I and K are extensions of the integral operators given by

1
(x t)s-

1 )s-aq(t) dt, KSq =F(a) (t-x (t) dt(2.5) IS F(a)

for p () and Re a > 0.
Traditionally, equations (2.5) have been used as the defining equations for integral

operators on L"(-1, 1). In particular, if 0<a < 1, and 1 <=p <= 1/a then the integrals
(2.5) define bounded operators mapping L"(-1, 1) into itself. Every function f
Lo(-1, 1), p => 1, is associated with a unique distribution in ’([-1, 1]) by means of the
assignment

([, | dx
J_

for 0 (Yt). Identifying fL"(-1, 1) with the associated distribution in ’([-1, 1])
the convolutions ISf and KSf given by (2.1) are defined and yield elements in ’(gt).
The restrictions of ISf and Ksf to the interval (-1, 1) belong to ’((-1, 1)), which is the
dual of ((-1, 1)), the subset of (gt) of functions with support in (-1, 1). On the other
hand, the integrals (2.5) belong to L"(-1, 1) and thus define, in the obvious way,
distributions in ’((-1, 1)) which agree with the restrictions of ISf and KSf. We
conclude, that the maps from L" (- 1, 1) into L"(- 1, 1) defined by the integral operators
(2.5) lift to maps from ’([-1, 1]) into ’((-1, 1)). The latter are given by the
convolution operators IS, KS :’([-1, 1])’(gt), followed by the restriction map

x)).
In light of these remarks, it is to be expected that many identities in Lo(-1, 1)

involving the integrals ISf, KSf for f eL(-1, 1), are special cases of more general
statements for the restrictions to (-1, 1) of the convolutions lf, KSffor/ ’([-1, 1]).
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That this is indeed so is demonstrated in [23], where we discuss a number of
important identities relating fractional integrals and Hilbert transforms of distributions.
Therefore, we conclude that the generalized Abel equation (1.1) is properly refor-
mulated as a problem in ’([-1, 1]) when stated as follows:

Problem I. Given data g ’(g) and coefficients a and b which are infinitely
differentiable on the interval (- 1, 1), find ’([- 1, 1 ]) which on (- 1, 1) satisfies

(2.6) aI’f+ bK’f g.

Remarks. 1. It is easily seen that every solution of (2.6) in the LP-sense is a solution
of Problem I in the distribution sense.

2. Problem I could be generalized by considering data g ’((-1, 1)). This class of
distributions contains elements which cannot be extended to distributions on the line
and thus our methods below would have to be modified.

3. There is no loss of generality in assuming, as we shall do below, that g 0 on
Ix[> 1. Given any g ’(), it is always possible to find go ’() with go g on Ix[< 1
and g0 0 on Ix[> 1. To see this, recall that we can find an integer n and a continuous
function G with support on an arbitrary neighborhood of [-1, 1] such that g d"G/dx
on (-1, 1). Let Go be the locally integrable function 0(1-x)0(1 + x)G(x) where 0 is
Heaviside’s unit step function. Define go d"Go/dx. Then go has the desired proper-
ties.

The connection between Problem I and a boundary value problem for analytic
functions is established in the LP-case by the use of Cauchy integrals. In the case of
distributions, Cauchy integrals are replaced by analytic representations. With every
distribution f ’() there is associated such an analytic representation; that is there
exists a function F(z), defined and analytic for Im z 0 for which the limits

(2.7) F(x + iO) li F(x + ie ), F(x i0) lim+o F(x ie

exist in the sense of convergence in ’(Y) and satisfy

(2.8) f(x) F(x + iO)-F(x -iO).

Thus for o @(9), (f, q) can be represented as

(2.9) (f, q) 1 [F(x +ie)-F(x-ie)]o(x)dx.

Iff has compact support, then f extends to a continuous linear functional on the space of
C-functions on and we may take for its analytic representation the Cauchy
"integral"

1
(2.10) F(z) -i (f(t), (t- z)-l), Im z # 0.

The theory of analytic representations is developed in [2], [16], [35], among others.
It will be shown below that for distributions f of compact support there exists an

analytic representation F(z) of If, a # 1, 2, , with boundary values F(x + iO) and
F(x- iO) in ’(9) such that

F(x + iO)-F(x iO) If,

(2.11) e’F(x + iO)-e-F(x -i0)- Kf,

IF(z)z-l-- O(Izl-) as Iz[-->.
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We now recall that for a distribution f g’() and g :’()

(2.12) supp (f g) c supp f+ supp g.

Thus the supports of If and Kf are contained in the intervals [-1, oo) and (-oo, 1],
respectively. Thus we derive from Problem I the following Hilbert boundary value
problem for F (z), a 1, 2,..

Problem II. Given data g e ’() and coefficients a and b which are infinitely
differentiable on (-1, 1), find the function F (z) analytic for Im z # 0 such that

(i) the limits F (x + i0) and F (x -i0) exist in the sense of convergence in ’()
and satisfy

F,(x + iO)-F,(x i0) 0 on (-oo, -1),

(a+be’’)F,,(x+iO)-(a+be-’’)F(x-iO)=g on(-1, 1),

ei’F,(x +iO)-e-i"F,(x-iO)=O on (1, oo);

(ii) IF(z)z-l-" O(IZ1-1) as

Remark. Choosing 0 < arg z < 2rr, F (z)z will be shown to be analytic for [z[ > 1.
Thus condition (ii) is well-posed.

Our aim is to prove the following"
THEOREM 2.1. Problems I and H are equivalent. For a # 1, 2,. ., a one-to-one

correspondence between their solutions is established by the equations

(2.13)
f(x) ,-’[F(x + iO)-F(z i0)],

F(z)=F(1-a)(f(t), (t- z)’-’}.
2rri

Once, Theorem 2.1 is established we find all solutions of the generalized Abel
equation (1.1)--under certain restrictions on the growth of a and b at the endpoints of
the interval (-1, 1)--in terms of the solutions of the Hilbert boundary value problem.
Thus the question of existence and construction of solutions to Problem I is answered
for a large class of coefficients a and b.

3. Analytic representations of l’f and K’f. Forf e Lp (- 1, 1) with 1 -< p <- 1 / a, 0 <
a < 1, let F,,(z) denote the usual Cauchy integral of the convolution If LP(). The
limits F (x + i0) and F (x i0) exist in L () and satisfy the Plemelj relations

(3.1)
F(x + iO)-F(x iO) If,

i[F, (x + iO) +F (x i0)] H(I"f)

where H denotes the Hilbert transform, that is convolution with the Cauchy principal
value distribution -(1 / rr) Pv 1 /x ). The following identities in L () are known to hold
for fL’() (and thus for fL’(-1, 1) f3 ’([-1, 1])) 1 <=p <= l/a, O< a < 1:

(3.2)
I’f cos (crr)Kf- sin (arr)H(Kf),

Kf cos (arr)If+sin (arr)H(Kf).

(For these and other identities relating operators of fractional integration and singular
integral operators see [12]-[14], [28], [35].) Equations (3.2) establish the connec-
tion between the generalized Abel equation and a singular integral equation which can
be treated as a boundary value problem for the analytic function F,,(z) by the methods
of [7] or [18].
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In this section we define and study functionsF (z) for complex values a # 1, 2,
which are analytic representations of the distributions If, for f @’([-1, 1]). F(z)
agrees with the usual Cauchy integral of If if If Lp(), p => 1. The boundary values
F, (x + i0) and F (x i0), defined as limits in @’(), are linear combinations of If and
Kf, as are obtained by combining (3.1) and (3.2). Thereby the generalized Abel
equation in its new setting, Problem I, again gives rise to a Hilbert boundary value
problem for F, (z).

Let /@’([-1, 1]). For Imz0 and t9 define (t-z)-1 by requiring that
-zr<arg(t-z)<0 for Im z >0 and 0<arg(t-z)<Tr for Im z <0. For fixed z with
Im z # 0, (t- z)-I is an infinitely differentiable function of t, and thus belongs to the
space f() of C-functions on . Since f @’() and has compact support, f can .be
viewed as an element in ’(). Thus, for a 1, 2, 3, and Im z # 0

(3.3) F(z) a-------’ (f(t), (t- z)-1)
2ri

is well-defined. It is a simple exercise to show thatF (z) extends to an analytic function
in the complex plane minus the real interval [a, co) where a inf {x ^ x supp f}.
Let y Im z. Viewed as a distribution in the variable x, F,, (x + iy) is the convolution of a
distribution f of compact support and the infinitely differentiable function (-x
As y --> 0 for y > 0, and y < 0 respectively, the corresponding limits for F, (x + iy) exist in
the sense of convergence in ’(). Making use of the continuity of convolution with a
distribution of compact support these limits are computed as

Fo,(x + i0)
r(1 )r’()

[Kf+
27ri

(3.4a)
F,(x-iO) F(1-a)F(a)[K’f+e(’-I)If]

2ri

for a 0, :t: 1, +/-2, . For a -n, n 0, 1, 2, we find

(3.4b)

F_, (x + iO) 1/2f()_l Pv -,1 f(,)
2ri x

F_(x-iO) -f("}- -,1
2ri x

where Pv (l/x) is the Cauchy principal value distribution. Using the identity F(a)F(1-
a) 7r/sin (cr) we obtain for a 1, 2, 3,.. the analogue of (3.1) and (3.2)

F,(x + iO)-F,(x iO) I’f,
(3.5)

iczr], --icTr7,e .(x+iO)-e .(x-iO)=Kf.

LEMMA 3.1. Let f s @’([-1, 1]) and F(z) be defined by (3.3) for a # 1, 2, 3,....
Define z by taking 0<arg z <27r. Then F(z)z extends to an analytic function on

Izl> 1 and

(3.6) IF (z)z- l- O(Izl as Izl-  .
Proof. The analyticity of F (z)z follows from the observation that the boundary

values of F,, (x + iy)(x + iy)- satisfy

+ iO)(x + iO) -F(x iO)(x i0) / O,
e i’ F, x

X

Ixl- g f --O,
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so that F,(z)z -’, as defined for Im z < 0, is the analytic continuation F,(z)z -, as
defined for Im z > 0, across the real intervals (-,-1) and (1, c) [21].

To derive (3.6), we note that f has compact support, so that there exist an interval
I-a, a ], a constant M and an integer n -> 0, such that for [zl >= 2a

Z)a-l) _<-M sup -(t- z)- "It[-< a

Ml(c 1)( 2)...

a--n--1

Z

for some constant C.
COROLLAr 3.1. If Re a < 1, then F(z) as defined by (3.3) is the only analytic

representation ofIf which satisfies (3.6).
Proof. Analytic representations are unique up to addition of an arbitrary entire

analytic function. Any entire function satisfying (3.6) must be identically zero.
THEOREM 3.1. Letf e @’([- 1, 1]). For a e C with a 1, 2,... letF(z) be defined

by (3.3). Then
(a) F,,(z) is analytic on the complement of {z C: Im z 0 ^ Re z e supp If}. As

y--, 0 in the upper or lower half-plane, respectively, F(x + iy) has boundary values in
’(9) satisfying (3.5) and

(i) F(x + iO)-F(x iO) 0 on (-, -1)
(ii) ei’F(x+iO)-e-i=F(x-iO)=O on (1, c)
(iii) IF=(z)l O(Izl as Izl- o .
(b) If G(z) is any other analytic representation of If satisfying (i)-(iii), then

G(z) F(z). If a O, +/-1,... then conditions (i)-(iii) are equivalent to (i)-(ii). If
a O, -1,. then conditions (i)-(iii) are equivalent to (i) and (iii).

Proof. (a) Equations (i) and (ii) follow from (3.5) and the facts that by (2.4) If 0
on (-,-1) and Kf 0 on (1, o). (iii) was proved in Lemma 3.1.

(b) Let E G, -F. Then E is an entire analytic function, since G and F are
analytic representations of the same distributions.

For a 0, :t:l,. suppose G also satisfies (ii). Then we have for E(x) (as a
distribution in ’(9))

ei’’E(x)-e-i’’E(x)=2sin (ar)E(x)=0 on (1, ).

Since sin (art) 0, this implies that E(x) 0 on (1, o). Since E is entire, E-0.
If a 0, -1,. ., and G satisfies (iii), then IE(z)[ O([z[-), so that again, E -0.

This completes the proof.
Theorem 3.1 states that for a 1, 2,... every solution f of the convolution

equation in Problem I defines a solution F,(z), given by (3.2), of the Hilbert boundary
value problem, Problem II. The converse is also true as we shall see in the next section.

4. The equivalence of the integral equation and the Hilbert problem. In order to
establish that every solution of the Hilbert Problem II yields a solution of the integral
equation Problem I, we first characterize the class of analytic representations within
which solutions of the Hilbert problem are sought, by means of a Paley-Wiener type
theorem.
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THEOREM 4.1. Suppose a C and F(z) is an analytic representation of a
distribution in ’( such that

(i) if f F(x + iO)-F(x i0), then f 0 on (-c, -1)
(4.1) (ii) if g eiF(x + iO)-e-iF(x iO), then g 0 on (1, )

(iii) [F(z)z-[ O([Z[-11 as [z[.
Then I-[ K-g and has compact support contained in [-1, 1].

Proof. We distinguish three cases: (1) a n, n 0, 1, 2,. , (2) a -n, n
1,2, 3,. and (3) a n, n =0, 1,2,. .

(1) a n, n 0, 1, 2, In this case, g, (-1)"f,, so that by definition

I-f =f) (-1)g) =K-g.

Clearly, supp I-f, supp f) supp g) [- 1, 1].
(2) -n, n 1, 2, 3, Again, g, (-1)"f, andhas compact support. Thus

d d d
f. dx(I%) (-1t" dx(K%) dx(K"g,)

which implies that for some polynomial p,_ of degree n 1,

If we can show that there exists f ’([-1, 1]) with f(") =f., we are done, since in that
case, K"g. f+ q.-1, where q.-1 is a polynomial of degree n- 1, which vanishes for
x > 1, i.e.q.-1 0, and K"g. =f. It follows that p.-x I"f. -f=O for x <-1, and thus
p._ 0 as well, so that

I"f, =K"g, =re ’([-1, 1]).

The existence of f, however, is an immediate consequence of the following argument:
F_,(z) is analytic for ]z}> 1 and IF_.(z)l=O(Izl-"-*) as Izl+m. Thus there exists
F(z) analytic for ]z]> 1 and of order O(]z1-1) as ]z]+m, such that F"(z)=F_,(z).
Taking f= F(x + iO)-F(x- iO), we obtain the distribution f as desired.

(3) a # 0, ml, m2, Let us first prove that if I-f has compact support in
[-1, 1], then I-f =K-g. To do so, let h =I-f, and let H(z) be the analytic
representation of Ih defined by (3.12). Then H-F E for some entire analytic
function E. It suffices to show that E 0. Now (ii) and (3.5) imply that

e=E(x)-e-=E(x) 2i sin (a)E(x) 0 for x > 1.

Thus E 0 since a # 0, m 1, m2, .
It remains to be shown that I-f has compact support in [-1, 1]. Since I-f

x+ /F(-a).f, and suppfc[-1, m), it follows that supp(I-f)c[-1, m)+
[0, m)= [-1, m). Therefore the proof is completed, if we can show that I-f 0 on
(1, m), or, equivalently, that (I-f, }=0 for all e () with supp c (1, m).

Using the definition of the convolution of two distributions we have for with
supp c (1, m)

(4.2) (-"f., ) (L, K-").

For Im z 0, equation (3.3) reads, with f replaced by and a by -a"

(4 31 _.(z)
r( + [ )-.-1
2i

_ (t)(t-z dt.

Then [_,(z)[=O([z[--) as ]z[. -,(x+ie) and _,(x-ie)converge to
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infinitely differentiable limits _,(x +i0) and _.(x-iO) and the convergence is
uniform on compact subsets of

Let a 6 , a > 1 be sufficiently large so that supp o c [-a, a]. Then using the
analytic representation F. (z) of f. we have

(4.4) ([., K-q li IF. (x + ie F. (x ie)]K-"c (x) dx.

Choose 6 > 0 so that supp r c (1 + 3, oo). Define

(4.5)

[F. (x + ie F. (x ie )]K-"o (x) dx

1+6

[ [F.(x +ie)-F,(x-ie)][e-i"_.(x +iO)-ei"cb_.(x-iO)]dx.

On (-oo, 1 + 3], I-"r 0, i.e. _.(x + i0) _.(x i0). Thus

1+6

Ii(e) F.(x + ie)_.(x + iO)[e-i""-e dx

Define

(4.6)

and

(4.7)

1+8
ia-rr+ F,(x-ie)_.(x-iO)[e-i"-e dx.

I2(e) [F.(x +ie)-F.(x-ie)]K-’o(x) dx
+

[F.(x + ie)-F.(x ie)] e-i"’_. (x + iO) dx
+

[F.(x+ie)-F.(x-ie)]ei"d_.(x-iO)dx
+,5

[2(e F. (x + ie )dO_. (x + iO)[e -i"’ e i"r dx
+

F.(x-ie)_.(x-iO)[e-i’-ei"’]dx.
+

Then

I2(e I2(e [F. (x + ie e -F,(x ie) e-i"]dP_a(x + iO) dx

[F.(x + ie) e
+8

-F.(x-ie) e-’""]_,(x-iO) dx

and so

(4.8) lim [I2(e) [2(e)] O.
e,l,O



THE GENERALIZED ABEL EQUATIONS 605

Substitution of (4.5), (4.6) into (4.4) and application of (4.8) yields

! F(x + ie)_(x + iO)[e-’ e’] dx

F(x-ie)_(x-iO)[e-i’-e ]dx

Now let i (x)= 1 on [-a, a], , e @(). Using the same arguments as above we obtain

li p [e I_
[F(x + ie)_(x + iO)-F(x-ie)_(x -i0)] dx

[e -’’ ei’=](Fo,(x + iO)_,(x + iO)-F,(x iO)_,(x i0), h (x))

[e -ia" ei](G, A

where the products are well-defined, since q_ (x + i0) and q_(x- i0) are infinitely
differentiable. The distribution G thus defined has F(z)Cb_(z) as an analytic
representation [21]. Therefore

(I f, q lim h (x)[e -iw e
e$0

[F(x + ie)_(x + ie)-F(x-ie)c_,(x-ie)] dx

for every such h. Thus the proof is completed if we can show that for e > 0

(4.9) | F(x + ie )dP_ (x + ie dx 0

and

(4.10) | F(x is )cb_ (x is dx O.

To prove this, let + denote the contour

c+={z: (y e ^ [x[<a)v (Izl2= e2+a, y >e)}.

Since F(z)_(z) is analytic on the interior of + we have

O= F(z)_(z) dz F(x + ie)_(x + ie) dx

0
iO+ F(R ei)_(R ei)R e dO

0= Oo

where R=x/a2+e2,0o=tan-l(e/a). If a is sufficiently large, then [_aF(x+
ie)_(x + ie dx <= Crra -1 for some constant C such that IF (R e)/
R- c_(R e)/R-- <= C. Since a was arbitrarily large (4.9) follows. Similarly, we
prove (4.10). This completes the proof.

DEFINITION 4.1. For a C, let 4 denote the set of functions F(z) analytic for
Im z 0 with boundary values in ’() satisfying

(i) F,(x +iO)-F,(x-iO)=O on (-,-1);
(ii) e’’F,(x +iO)-e-’’F,(x-iO)=O on (1, c);
(iii) [F,(z)z-’[ O([z[-) as [z[c.
From Theorems 3.1 and 4.1 follows



606 MARION ORTON

COROLLARY 4.1. For each a C, a 1, 2, 3, , the map

(4.11) f --,r(1------) (f(t), (t-z)-)
2ri

establishes a one-to-one correspondence between ’([-1, 1]) and sg. The inverse of
(4.11) given by

(4.12) F I-[F(x + iO)-F(x i0)].

Corollary 4.1 is equivalent to Theorem 2.1"
COROLLARY 4.2. For a C, a 1, 2, 3,. , Problems I and H are equivalent. A

one-to-one correspondence between their solutions is given by (4.11) and (4.12).
If a 1, 2, 3, Theorem 2.1, or, equivalently, Corollary 4.1 are no longer true.

However, a relationship between Problems I and II can still be exhibited.
DEFINITION 4.2. Let , denote the set of analytic representations Fn(z) of

distributions in ’(gt) whose boundary values satisfy
(i) F,(x +iO)-F,,(x-iO)=O onx <-1;

(4.13) (ii) (-1)n[Fn(x+iO)-F,(x-iO)]+q_=O onx>l;
(iii) [F,(z)l O(Izl-);

for some polynomial q,-l(X) of degree _<-n 1.
If F, ,, it follows immediately that (d"/dx")[F,,(x + iO)-Fn(x i0)J belongs to

’([- 1, 1]) and yields the zero element in ’([-1, 1]) if and only ifF (z) is a polynomial
of degree =<n 1. Thus, let 9a_1 denote the space of polynomials in z (over C) of degree
=<n 1. Form the quotient space mod ,_ whose elements we write as F, + ,-1.
Then the map

d
F, + ,,-x -- IF, (x + i0) F, (x i0)]

dx

is well-defined and maps n mod ,-1 into ’([-1, 1]). As we shall see, this map is 1-1
and onto.

Let C* be the complex plane with the real interval [-1, 1] removed. Given
Zo, z C* let Fo be any path in C* beginning at Zo and ending at z which does not
intersect the positive real axis. Let C(Zo, z) be the family of all paths in C* beginning at
z0 and ending at z which are equivalent in C* to Fo. For f ’([-1, 1]) let Fo(z) be its
Cauehy "Integral" given by (2.10) and define

fr Vo()(z- )"- d(.(4.14) A,[f; Zo](Z)=
(n1)--

LEMMA 4.1. The map

(4.15) f--An[f zo] + n-1

defines a one-to-one correspondence between ’([- 1, 1 ]) andn mod n-a whose inverse
is given by

(4.16) Fn + n-a -- [Fn (x + i0)- Fn (x i0)].
dx

Proof. Let Gn(z)=An[f;Zo](z)+p,_x(z), where Pn-lGn-1. From Definition
(4.14) it follows that G,(x + iO)-G,(x iO) In[ and that ]G, (z)l O([z [n-). Thus G,
satisfies (4.13) (i) and (iii). To prove (ii), let F be any closed path in C* which encircles
the interval [-1, 1] once clockwise, and let F F+ + F_, where F+ {z F" Im z _-> 0} and
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F_ {z F" Im z -<_ 0}. It is a simple exercise to show that

1 [ F0(’)(r-z)"-1 dr for Im z > 0,(-1)"G. (z) +
(n 1)-----

H.(z) r+
1 Iv F(r)("- z)"-I d" for Im z < 0(-1)"6" (z

(n 1)------
defines an analytic representation of K"f. Now for z C

1 Iv Fo(()((- z)"- d( (f(t) (t- z)"-X/(n 1)!)
(n- 1)!

is a polynomial of degree _-<n- 1. Thus we find that

(-1)"[G.(x + i0)-G.(x- iO)]+<f(t), (t-x)"-’/(n- 1)!)=

which shows that G. e ag.. Since (d"/dx")[G.(x + iO)-G.(x i0)]= (d"/dx")(I"f) =f,
the assertion is proved.

Lemma 4.2 relates Problems I and II in the following way"
COROLLARY 4.3. For a n, n 1, 2, 3, every solution f of Problem I is of the

form
d"

f= dx----7[F.(x + iO)-F.(x i0)]

for some F. ag. such that

F.(x + iO)-F.(x iO) O on x < -l,

(a+(-1)"b)[F.(x+iO)-F.(x-iO)]=g+q._l on Ix[<1,

(-1)"[F.(x + iO)-F.(x i0)]= q._x on x > 1

where q._ is some polynomial of degree <-n 1.
Conversely, every solution F. (z) of Problem II is of the form

F. (z) a.[f; Zo](Z) + p.-1 (z)

for some Zoe C*, p._x .-1 and f e ’([-1, 1]) which is a solution of Problem I and
satisfies, in addition,

(f(t), k) O for k O, 1, 2, n -1.

5. Solution of the Hilbert problem. We present here without proof an existence
theorem for solutions of the Hilbert boundary value problem, Problem II. Formal
proofs of all statements nd results are contained in [22] where Hilbert problems for
analytic representations of distributions are defined and discussed in detail. It is
wothwhile, however, to repeat here the general arguments and definitions.

DEFINITION 5.1. The coefficients a and b for the generalized Abel equation are
called proper, if

(i) a and b are infinitely differentiable on (-1, 1);
(ii) cx a + b e i’ and c2 a + b e-i’ are nonzero on (-1, 1);
(iii) there exist/3j, yj such that the limits

d k d k

lim [G(x)(1 + x)i [ci(x)(1 -x)viix-d- and lid---exist for k 0, 1, 2,. ,/" 1, 2 are are nonzero for k 0.
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(5.1)

Let a and b be proper coefficients. Define
-i2’n"e

a(x)+b(x)e-i=
x(x)

a(x)+b(x)e
1,

x>l,

Ixl<l,

and

1
(5.4) Vo(z) 7. (Vo(t), (t- z)- ), Im z 0,

(5.3) X(x) e() on ]xl < 1.

Define

on Y2\{-1, 1}. The assumption that a and b are proper coefficients, assures us that there
exists a distribution v0 with support on [-1, 1], which is infinitely differentiable on
(-1, 1) and yields

icz’rr Vo(z)
(5 5) M(z)=

e (z-l) e Imz>0,
io’rr )o Vo(z)e (z-1 e Imz<0.

Then M(z) and 1/M(z) are analytic representations of distributions in D’(Yg) and have
infinitely differentiable boundary values on \{-1, 1}. Furthermore IM(z)l O(]z[) as
[z[--> oo. We can now factor X:

(5.6) X(x)[1/M(x + i0)] 1/M(x iO) for Ixl 1,

Let k ’([-1, 1]) such that on (-1, 1)

(5.7) k(x)M(x + iO)= g(x)/[a(x)+ b(x) eiz"].
Such k exists, if a and b are proper [22]. Let

1 ( 1 } Imz #0.(5.8) K(z) i k(t), i- z

Then every solution of Problem II is of the form

(5.9) F(z)=M(z) g(z)+ 2 [a(z-1)--+b(z + 1)--]
/’=0

We thus summarize as follows"
TORM 5.1. For {2, let a and b be proper coefficients or the generalized Abel

equation (1.1). Then Problem I and II have solutions .for every g e @’([- 1, 1]).
Every solution o the Hilbert boundary value problem is of the orm (5.9) or some

constants a, b, ] 0, 1, , N and integer N >- O. If o 1, 2, then every solution o[
the Abel equation is otheform f I-[F(x + iO)-F(x iO)]orsome solution F(z) of
the corresponding Hilbertproblem. Ifa 1, 2, then Problem Ihas particular solutions
fp (dn/dx")[F,(x + iO)-F,(x iO)] which satisfy (fp(X), xk)= o for k
O, 1,. ., n 1; the general solution in this case is f f + Y.5_o di 6 ()(1 x) for arbitrary
constants di, ] O, 1,. ., n 1.

Then Problem II is equivalent to that of finding F,(z) of order O([z[-1) such that, for
g e ’([-1, 1])

(5.2) F(x + iO)-x(x)F,(x- iO)= g(x)/[a(x)+ b(x) e i’r]

x<-l.
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6. Examples. Let us consider here the general solution of Problem I in some
special cases. The formulae in examples 1 and 2 are easily checked. The results in
examples 3 and 4 are obtained following the technique outlined in the previous section.
The computations are elementary, but cumbersome, and thus omitted.

As before, we shall take g ’([-1, 1]), and seek solutionsf ’([-1, 1]), satisfy-
ing Saj: g on (- 1, 1).

(a) S Ia; a C: (Abel’s equation). The general solution of Iaf g is

(6.1) f(x)=dx----[O(1-x)I-a+"g]+
i=0

aft(l-x) (Xr(_a+ 1)+_j)-i-1 + bfi(i)(x 1)

where (x + 1)+-l/F(/3)l=_k =8(k)(x + 1) for k --0, 1,..., n ->0 is an integer such that
I-a/"g is integrable in a neighborhood of x 1.

(b) S Ka; a C. The general solution of Kaf g is

dn [(6.2) f(x) (-1)" dx---[O(1 + x)K-a/g]+ aft(1 + x)
i=0

(x 1)-a-i-1 ]F(-a -j)
+ bfi(i)(x + 1)

where (x 1)_-l/F(/3)la=_k (--1)k 8(k3(x 1) for k 0, 1,. , n >- 0 is an integer such
that K-a/"g is integrable near x =-1.

(c) Sa=Ra,aC,a#0,+l,+2,...(Riesz potential). By definition Ra=
K1/2sec(aTr)(Ia+ Everydistributionf’([-1 1]) satisfying Raf g on (-1 1) is

of the form

(6.3) f =I-afa

where fa(x) Fa(x + iO)-Fa(x iO) for some Fa(z) given by

=t=ia" __l)(1/2)a{(1--Z2)Fa(z)=e (z 2

2ri
(g(t)(1--t2)n-(1/2)a’ (t-- Z)-I)

(6.4)
+ , [ai(z 1)-i-1 + bi(z + 1)-i-a]
i=0

for Im z-<> 0.

Here (z 2 1)(1/2)a is defined by taking that branch which is analytic in the complex plane
with the real interval [x[< 1 removed and 0<arg (z2-1)< zr for Im z >0 and -zr<
arg (z 2-1) < 0 for Im z < 0. On (-1, 1) fa is given by

(6.5)
2)(1/2)a-,H[ X2)n-(1/2)ag]f(x) cos (1/2ar)g(x)-sin (ar)(1 -x 1

N

2i sin (1 x Y. [ai(x 1 + bi(x + 1 ].(1/20q7") 2)(1/2)a )-i-1 )-i--1
i=0

Here n is an integer such that n -> 0 and Re (n 1/2a) > max (n 1, n2), where n l, n2 are the
orders of g at -1 and 1, respectively. H stands for the Hilbert transform" if k
fi’([-1, 1]), then Hk =-(1/r) Pv 1/x k.

Let us note that if the integral makes sense, particular solutions/’a in (6.5) are given
by

1 I/ (1--X2 (1/2)a g(t)dt.(6.6) fa (x) cos (azr)g(x) + sin (azr)-- Pv
1 ] x71"

(d) S H; a C, a # 0, + 1, +2, (generalized Hilbert transform). The
operator H is defined as H 1/2 csc (azr)(I K ). Note that for a 0, H reduces
to the Hilbert transform in the sense that for o(),Ha0 converges to Hq
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uniformly on compact subsets g. (In fact, H0 converges to Hq in the topology of
g’()). Every distribution ]e N’([-1, 1]) satisfying Hf g on (-1, 1) is given by

(6.7) f=
where f(x) F(x + iO)-F(x iO) with F(z) of the form

F(z) e:ia’r(Z2- 1)(1/2)-1/2{ (1-Z2)-n2zri
(g(t)(1-- t2) n-(1/2)+1/2,

(6.8)
+ Y’. [ai(z 1)--1 + bj(z + 1)-J-]} for Im <> 0
=0

with branch cuts as in example (c). On (, 1, 1), f is given by

x2)(/2-/2-nH[(1 t2)n-(I/2,,+/2g](x)
(6.9

(x) sin (1/2azr)g(x)-cos (azr)(1-
N

2(1/2)c--1/2-cos (gar)(1- x E [ai(x- 1)-i- + bi(x + 1)-j-]
1=0

where n _->0 is an integer such that Re (n-a +)> max (nl, n2), nl, rt2 and H are as in
(c). If we may take n 0, and if the integral below makes sense, then particular solutions
are given by

(OI’B" 1 I I 1 X2 (1/2)a-1/2 g(t)
dt.(6.10) f(x) sin )g(x)+cos (gazr)-’Pv \ l ,’tz ] x---
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MULTIPLE SOLUTIONS OF
TWO-POINT BOUNDARY VALUE PROBLEMS

OF NEUMANN TYPE WITH A SMALL PARAMETER*

MASAYASU MIMURA,5 MASAHISA TABATA AND YUZO HOSONO

Abstract. This paper studies two-point boundary value problems for two-component systems with a

small parameter e. The boundary conditions are of Neumann type. First it is shown that the reduced problem
( =0) has multiple solutions. With the aid of this result, the singular perturbation method is used for

constructing large amplitude solutions of the original problem (e > 0), which possess transition layers. As an

application, a model system of prey-predator interaction with diffusion is considered.

1. Introduction. For asymptotic behaviors of solutions of interaction-diffusion
equations, there are several interesting phenomena such as oscillation, wave pro-
pagation, stationary states and so on (see Fife [5] and its bibliography, for instance). By
putting a restriction on systems in a bounded domain under zero flux boundary
conditions, the asymptotic states may be classified into four categories; "spatially
homogeneous stationary state or oscillation", "spatially inhomogeneous stationary
state", "spatially inhomogeneous oscillation" and "spatio-temporal chaos" ([1], [15],
[2], [8], for instance).

In this paper, we are interested in the second asymptotic state of a two component
interaction-diffusion system in one dimensional space. The system considered here is of
the form

2 d2
0= -xu +/(u, v),

(1.1a)
d2

(x e I (0, l)),

o=-x V + g(u, v)

subject to zero flux boundary conditions

d d d d
(1.1b) d-U(O)=-xU(l)=O and xV(O)=-xV(l)=O.

It is known that the bifurcation theory can be used to study small amplitude
solutions branching from constant solutions. On the other hand, when large amplitude
solutions are studied, the asymptotic analysis is useful when e is small or large enough
(see, for instance, [4], [7], [14]). We consider here the problem (1.1) when e is zero or a

sufficiently small number.
The nonlinearities of f and g are assumed to be
(i) f(u, v)= 0 has at least two different solutions u h(v) for some intervals J/*

for 0, 1 such that ho(v) < h (v) in J0* f) J* ), and
(ii) there exist Jg c J* for 0, 1 such that g(h(v), v) > 0 > g(ho(v), v) in J0 tA J1

and (d/dv)g(hi(v), v)< in Ji.
The motivation of studying the problem (1.1) lies in the analysis of spatial patterns

in morphogenetic and population dynamics models (for instance, [6], [13]). For an

* Received by the editors March 9, 1979.
+ Department of Applied Mathematics, Konan University, Kobe, Japan.
Department of Mathematics, Kyoto University, Kyoto, Japan.
Department of Computer Sciences, Kyoto Sangyo University, Kyoto, Japan.
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illustrative example, let us show a model system of prey-predator interaction with
diffusion,

2 d2o= +{fo(u)-kvIu,
(1.2)

d2
O V -{go(V)- ku}v,

where k is a positive constant. This system models a "plant-herbivore" like interaction.
The variables u and v are the population densities of a prey and its predator,
respectively. The functional forms of fo and go are drawn in Fig. 1. It is shown in [13]

v
k u go(v)

kv- fo(U)
u=h0

2_u
C

FIG. 1. Functional forms of (fo(u)-kv)u=O and (go(v)-ku)v=O in (1.2).

that (1.2) exhibits striking patchiness under suitable fo and go when e is sufficiently
small.

When e is zero, the problem (1.1)o reduces to a boundary value problem for a
single equation involving discontinuous nonlinearities, according to circumstances. To
give an example we consider the system (1.2)o. From the first equation, three different
relations, say u ho(v), ha(v) and hz(v), are obtained (we assume ho<hz<hx, for
simplicity). Using the function hi(v), we have the boundary value problem from (1.2)o,

d2

(1.3) dx2V+G(v)=O,
where G(v) {go(v)- khi(v)}v. If two functions ho and ha are used, G(v) is constructed
as a discontinuous function as follows" Taking one separating point, say/3, in J0 J1, we
can define G(v) by

l-{go(V)-kh(v)}v (v e]oCq{v<fl}),
G(v)

{go(v)- kh(v)}v (v e J 71 {v >/3}).

Thus, we find that the function G(v) has a point of discontinuity/3. For this reason, we
must seek a weak solution of (1.1)o, (U, V)eLZ(I)x Ha(I) which satisfies

f(U, V) 0 almost everywhere in/,

(V,,,)=(g(U, Y),) foralleeHa(I),
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where , denotes the inner product in L2(I). The nonlinearity considered here is not
included in ones treated by the monotone operator theory (see [10]). Stuart [18] has
discussed an equation like (1.3) under Dirichlet boundary conditions. His nonlinearities
are also different from ours.

When e is not zero, Fife [3] argued the system (1.1a) subject to Dirichlet boundary
conditions under the assumption that a solution of the reduced problem (1.1a)0 exists,
showing that this system exhibits boundary and interior transition layer phenomena. A
solution of (1.1a)0 plays a lowest order approximation to a solution of (1.1a) with
sufficiently small e.

In 2, our main results will be shown. One result concerns the existence of
countably infinite number of nontrivial solutions of the problem (1.1)0. It is seen that the
first component of the solution is discontinuous, that is, it shows striking heterogeneity.
The other is the existence of solutions of the problem (1.1). For this purpose, we follow
File’s arguments [3]. The result shows that interior transition layers appear in the first
component. We shall apply these results to the specific ecological model (1.2) and
prove the existence of nonnegative solutions of (1.2) subject to zero flux boundary
conditions. Proofs are stated in 3, 4 and 5. In 6, we conclude with some remarks on
the results obtained here.

We shall use the following notation throughout the paper"
Cp(I) the space of p-times continuously differentiable functions on I with the

norm

[[U[[c, max u(x)
k=0

C (I) the subspace of CP(I) with (d/dx)u(O) u(l) O, (p 1).
H (I)= the Sobolev space with the norm

[’U[[H(I) (kO I(]()kg2dx) 1/2"
H(I) is usually denoted by L2(I).
(X, Y) the totality of continuous linear operators fromX into Y equipped with

the usual norm, where X and Y are Banach spaces.
For a positive number e,

C (I)= the space of p-times continuously differentiable functions on I with the
norm

Ilullc= k2= maXxr e u(x)

C0 (I) the subspace of C (I) with (d/dx)u(O) u(1) O, (p 1).

2. Main results. We study the boundary value problem for (u, v)
(u(x; e), v(x; e)) in x 61=(0, 1)

2 d2
0 s u +f(u, v),

(2.1a)
1 d2

0=zv+g(u,v)

Part of them was reported at the meeting on Mathematics in Biology, at RIMS, Kyoto University, 1977,
[12], [19].
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with zero flux boundary conditions

d d d d
(2.1b) d-U(O)=-xU(1)=O and xxV(0)=xxV(1)=0,
where e and r are both positive constants. The length of the interval is normalized as
unity. We shall consider two cases where (1) e is zero and (2) e and cr are both
sufficiently small. We first impose the following assumptions on the nonlinearities of f
and g:
(A1) (i) The equation f(u, v) has at least two real distinct roots u hi(v) defined in

intervals J*, (i 0, 1).
(ii) hi(v)E C2(j/*) satisfies ho(v)<hl(V) in Y0* Yl* , (i=0, 1).

(A2) There exist two subintervals Ji [ci, di] J* (i 0, 1) such that
(i) Gi(v) Cl(Ji) and (d/dv)Gi(v) < 0 in Ji, (i 0, 1),

(ii) Gl(V)>0> Go(v) in (Co, dl),
where J0 J1 and Gi(v) g (hi(v), v), (i O, 1).

As seen in the introduction, from (2.1)o, we have a boundary value problem with
discontinuous nonlinearities. Accordingly, in the case when e is zero, we need to define
the solution in a weak sense. We call (U(x), V(x)) a solution of the problem (2.1)o if
(U, V) satisfies

U, V) L2(I) HI (I),

f(U, V) 0 almost everywhere in I, and

V, xx (rg(U, V), ) for all H (I).

For an arbitrarily fixed number fl EJo(’]J1, we define G(v) by

Gt (v) { G(v)G(v)
for v e {v <} fl Jo,
for v E {v > fl} 71J1.

Here Go (/3) remains undefined. As will be seen, however, this does not affect the
construction of solutions except the trivial one (see Theorem 1). It is found that Go (v)
has a discontinuity of the first kind at v =/3. Thus, the problem (2.1)o can be reduced to
the two-point boundary value problem for a single equation:

d2

(2.2a)
dxz V + o-Gt (V) 0 (x I),

(2.2b)
d

V(O)=
d

d- xx V(1)= O.

For this problem, a solution V is defined by

(2.3a)

(2.3b)

(2.3c)

VeHX(I),

v, =(G(V), )

Co < V(x) < dx (x I).

for all e H(I),
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We now have
THEOREM 1. Suppose the assumption (A2) andfix Jo (-1 J1 arbitrarily. Then them

exists a positive integer no depending on o’G V) such that a family ofperiodic solutions

{v,, (x)}-__o,-_o, c(r)

of the problem (2.2) exists, where n is the mode number.2 When Go (B) # B, there is no
other solutions except the above, and when G(B)= , V must be added to the
solutions.

Remark 2.1. Vi(x), crosses the line V=/3 at n points 0<xil<x3<...<i
X2n-1 < 1. V,, (x) is an appropriate reflection version of V,o (x). These properties
become clear in the proof of Theorem 1.

Thus, we find that there exists a countably infinite number of solutions
(U,i(x), VO,,i(x)) of the problem (2.1)o, where

U, (x) h(V,(x))
for V,i (x) < ,
for V.i(x) > .

Remark 2.2. If Jo fq J # QS, we can show that there exist other solutions except
(U.i(x), V.i(x)) for the full problem (2.1)o (see [14]).

For treating the problem (2.1)8 with e # 0, we make the following assumption in
addition to (A1) and (A2):
(A3) (i) (0/0 u)f(h,(v), v)< 0 in J,, (i 0, 1).

ehl(B)(ii) Define (/3) by (/3) Jho(O)1tS, B) ds for/3 J0 Jx. o(/3) has a zero at
/3 =/3* and (d/d)(*) # O.

(iii) There exists a constant , (h0(/3*), h1(/3")) such that

k

f(s, B*) ds < 0
0(0*)

for all k e (h0(/3*), y),

k

Ih f(s, fl*) ds < 0
(O*)

for all k (% h1(/3")).

Remark 2.3. It is easily checked that conditons (i) and (iii) of (A3) imply (ii) when
the curve f(u, v)= 0 is of $ or S-like shaped (see, for example, Fig. 1).

The assumption (A3) is the one introduced by Fife [3]. Under (A1) (A3), we have
THEOREM 2. Suppose (A1)-(A3). Let (U(x),V(x)) be any solution

U, (x), V,, (x)) o]’ the reducedproblem (2.2). Then there exist some positive constant eo
and tro such that]or each fixed r (0, ro) a family of solutions (u(x; e), v(x; e)) of the
problem (2.1)8 exists ]’or 0 < e < eo, which satisfies

lim u(x; e)= U(x) uniformlyinx:- [xaj-l-K, x2-l+],
eO /=1

(2.4)
lim v(x; e)= V(x) uniformly in x I,
0

for any t > O, where xaj- are the points stated in Remark 2.1.

We call a function u(x)e C[0, 1] a periodic function with n (=> 1) mode if u(x) satisfies the following
conditions: (i) (d/dx)u(O)=(d/dx)u(1/n)=O, (ii) u(x) is monotone on [0, 1 (iii) u(x)= u((2/n)-x) on
[1/n, 2/n], (iv) u(x +(2/n)) u(x) on [2/n, 1].
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As an application, we consider the prey-predator model system exemplified in the
introduction:

2 d2
0= -jx U +fo(u)- kv}u,

(.5)
1 d2

o- v -{e,o(v)- lu}v.
o" dx2

We impose the following assumptions on the nonlinearities of fo and go from an
ecological viewpoint (see, for instance, 11 ], 17]).

(A4) fo(U) C2(R /) satisfies

(i) fo(O) => 0 and

(ii)

>0 (0<-u<c),

-ufo(u) =0 (u c),

<0 (u > c),

where c is a positive constant.
Remark 2.4. Such a nonlinearity as (ii) is usually called the Allee effect in ecology.
Then it is found that f(u, v)={fo(u)-kv}u =0 has triple roots, say u ho(v)=O,

U=hl(V) for u>c and u=h2(v) for 0<u<c (see Fig. 1).

(A5) go(v) C2(R /) satisfies

(i) go(0)> 0,
d

(ii) -v go(v) >= 0 (v _-> 0) and

(iii) GGI(V) < 0 (t3", f(c)]
where Gl(v)={go(v)-khl(v)}v and/3* (fo(O)/k, fo(c)/k) is given by

Iohl(O*){fo(U)- k*}u du O.

v(x)
u(x)

0
FIG. 2. Spatial patterns of (U(x), V(x)) of (2.5)0 where the mode number is 3.
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Thus we have
THEOREM 3. Under (A4) and (A5), them exist some positive constant eo and tro such

thatforeach fixedtr (0, tro) a family ofnonnegativesolutions {(u(x; e), v(x; e))}(o, o)

exists, which satisfies the same limiting process as (2.4) in Theorem 2.
From this theorem, it turns out that the habitat of the prey and its predator is

composed of two quantitatively different regions, in one region the prey is alive
(u hi(v)> 0) and in the other it is dead (u ho(v)=-O) (see Figs. 2 and 3).

v(x;E)

u(x;E)

0

FIG. 3. Spatial patterns of (u(x" e), v(x" e)) of (2.5) with sufficiently small e >0.

3. Proof of Theorem 1. Here we give the proof of Theorem 1. We begin by
considering an initial value problem

d2

dx2 V -O’Go( V) (x > 0),

d
(3.) v(o) o,

V(0) k,

where k (Co, do) and (o Cl(co, +) is an extension of Go( Cl(co, do)) in a way that
t’o( (d/dV)o)< 0 in (Co, +). By the general theory of ordinarydifferential equa-
tions, we obtain the following result.

LEMMA 3.1. (i) The problem (3.1) has a unique solution V(x; k) which is strictly
increasing in x and satisfies that V(x; k)+o as x+c. The derivatives, (O/3x)V,
(O/Ok) V, (02/3x Ok) V and (32/OkOx) V are continuous in (0, +) x (Co, do).

(ii) (x; k) (O/Ox) V(x; k) is a solution of the problem

d2

/x = -o-(V(x; k)) (x >o),

d
(3.2) d-- :(0)- o-to(k),

(o) o,
and (x k) > 0 for all (x, k) (0, +o) (Co, do).
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(iii) ’O(x; k)= (0/0k)V(x; k) is a solution of the problem

d2

dx2 q -rGo V(x; k)),l (x > 0),

d
(3.3) d- r (0) 0,

(0) 1,

and r (x k) > 1 ]’or all (x, k) (0, +oo) x (Co, do).
We omit the proof of Lemma 3.1 since it is easily obtained by using the property of

o.
Now we define a mapping from D={(k,/); co<k</<do} into R1 by

V(l;k)=fl. The mapping is well-defined since V(0;k)<fl and V(x;k)+c as
x ]’ +oe by (iii) of Lemma 3.1. Letting lo(/) lim supk+co l(k, ), we have

LEMMA 3.2. For every fixed (co, do), is a diffeomorphism of class C of (co,/)
onto (0, lo(B)) and satisfies

(3.4) O__l(k, fl)= _rl(l(k, /3); k)
Ok (l(k,);k)"

Proof. By differentiating V(l(k,/3); k) =/3 with respect to k, (3.4) is obtained. Since
the right-hand side is negative by Lemma 3.1, we find that is monotone decreasing in k.
This property yields the diffeomorphism of I. Q.E.D.

For every fixed/3 (Co, do), we denote the inverse of l(k, ) by k(l, ). Obviously it
holds that

o :(; k(t, ))
(3.5) o- k(t, t)= -n(; k(t, t))’

0 ok ol 1
(3.6) k(1, )0-- Ol O ?(l(k, /3); k)"

LEMMA 3.3. Fix (Co, do) and (0, lo(fl)) arbitrarily. Then, Vo(x; l,/3)
V(x; k(l, )) is a unique solution of

d2

z V rGo(V) (0 < x < l),
dx

d
(3.7)

dx
V(O) O,

v()= [,

co < V(x) <- [ (0 <- x <- l).

And, Vo and 0__ Vo are continuously differentiable with respect to and .Ox

Proof. It is easy to check that V0 is a unique solution of (3.7). We prove that
(O/Ox) Vo is continuously differentiable with respect to/3. By definition, it holds that

O
Vo(x; I,/)=

O

0-- -x V(x; k(l, fl))= :(x; k(l, fl)).
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Differentiating both sides by fl, we have from (3.6)

which implies that (02/OflOx)Vo is continuous. The others are obtained
similarly. Q.E.D.

Hitherto we considered about Go. Repeating the same argument about G1, we
obtain the following result, where -1 is the counterpart of l-o.

LEMMA 3.4. Fix (cl, dl) and (0, l()) arbitrarily. Then, the problem

d2

dx
V= rrG V) (0<x </),

d
v(o)=o,

(3.8) x

[ = V(x) < dl (0 - x = I),

has a unique solution V1 (x l, ). V1 and (O/Ox) V1 are continuously differentiable with
respect to and .

LEMMA 3.5. Fix 6JoYlJ arbitrarily. Then Oi(l)=(O/Ox)Vi(l;l,), (i=0,1),
satisfy

(3.9) 0 < o(/)_<- -o’Go(fl-O)l (0</< lo(fl)),

(3.10)

(3.11)

-a’G(fl +O)l<-_h(l)<O (O<l< "[(fl)),
d

(-- 1)i-77, Oi(/)> 0 (0</< l(fl),i=O, 1).

Proof. We prove the results only for =0. By definition we have Oo(/)
(O/Ox) Vo(/; k(1, fl)). Integrating the first equation of (3.7) from x 0 to l, we obtain
(3.9) immediately.

Now we prove (3.11). Noting /o(1) :(/; k(l, fl)) and using (3.5) and Lemma 3.1,
we have

d O O Ok
d- Oo(l) x + 0-- 0-’[

Here we used the fact that the Wronskian (O/Ox)- (Oq/Ox) is constant. Q.E.D.
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Proof of Theorem 1. Set ffi(/3)= limz_.,.(0 @i(l), (i =0, 1). Lemma 3.5 implies that
t/,o is a diffeomorphism of (0, lo(/3)) onto (0, o(/3)) and that t is also a diffeomorphism
of (O,-(B)) onto (4Sa(B),O). By putting s(c;/3)=qx(c)+-(-a),
min(4o(fl),-@l(/3)) and l()=lim-.(o)s(a;B), the function s is obviously a

homeomorphism of (0, (/3)) onto (0, (/3)). Let no(/3) be the smallest positive integer
greater than 1/-(B). Choosing an as s(cn ;/3)= l/n, (n >= no(B)), we construct periodic
functions V. C1[0, 1], (i O, 1) with period 2s(an) by

Vi(x; 4,7,. (( 1)iogn), fl) (O <-- x <//t-1 (( 1)ion)),
-1 )i+1(3.12) Vl+l(S(On)--X; 4’i+ ((-- 1 a),/3) (oTl((--1)iCen)<X<=S(On)),

V,,i(Zs(an)-x) (s(an)<x -< 2s(an)),

where V2 Vo and $]a 4,1. It is not difficult to observe that V,l (x) satisfy (2.3) for
0, 1 and n => no(B). To complete the proof of Theorem 1, it suffices to show that there

exist no other solutions of (2.3). Let V(/3) be a solution of (2.3). Substituting $ 1
into (2.3b), we have

(3.13) Jo Gt3(V(x)) dx =0.

We first show that there exists a point ao (0, 1) such that

d
(3.14) V(ao) =/3 and x V(ao)# O.

Taking a point Zo such that V(zo) #/3, we let ao be the nearest point to Zo satisfying
V(ao) =/3. Such a point ao is well-defined since the closed set {x; x [0, 1], V(x) =/3} is
not empty by (3.13). Without loss of generality, we may assume that

ao<zo and V(zo)<V(ao)(=fl).

From (2.3a) and (2.3b) we observe V satisfies (2.2a) in (ao, Zo). Choose a point
yo (ao, Zo) satisfying (d/dx)V(yo)< 0. Integrating (2.2a) from ao to yo, we have

d
V(ao)=

d IY- V(yo)+ (’(V(s)) ds

d
-< V(yo)
dx

Hence ao satisfies (3.14). Now we set c (d/dx) V(ao) > 0. While V is lying in (Co,/3),
V satisfies (2.2a). There V can be extended until the graph (x, V(x)) reaches V =/3 or
x 1. In the former case there exists a point al( ao+ 26 (c)) 6 (0, 1) where it holds
that

d
V(ax) =/3 and xV(al) o.

Since V C1(0, 1) and a >0, V(x) traverses the line V =/3. While V is lying in
(/3, dl), V satisfies (2.2a). Hence V can be extended until the graph (x, V(x)) reaches
V=/3 or z 1. In the former case there exists a point az(= a1+24-l(-a)) (0, 1),
where it holds that

d
V(a2)=/ and xxV(a2)=-ce.
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Repeating this process on both sides of a0, and noting the boundary condition, we find
that a must be equal to some an and that V V, 0 or V. 1. This completes the proof on
Theorem 1.

Remark 3.6. The estimate (3.11) of Lemma 3.5 plays an important role in proving
Theorem 2. To obtain this estimate we assumed that Gi are continuously differentiable.
Theorem 1, however, can be proved under the weaker condition that Gi are Lipschitz
continuous (cf. 19]).

4. Proot ot Theorem 2. We construct solutions of the problem (2.1) with the aid
of solutions of the reduced problem (2.2) obtained in the previous section. The method
used here is almost the same as the one for the Dirichlet boundary conditions studied by
P. C. Fife [3]. Therefore, we only state the outline.

We choose a solution (U,. (x), V,. (x)) of the problem (2.1)0 for an arbitrarily
fixed mode number n. Here, omitting the superscript and the subscripts, we denote it
simply by (U(x), V(x)). For simplicity we consider the problem (2.1) only on the
subinterval [Xo(=0),x2] such that V(x) satisfies Co< V(x)<fl* on [Xo, Xl], fl*<
V(x)<dl on (Xl, x2], (d/dx)V(xo) O, (d/dx)V(x2) 0, and V(Xl) =fl*. Let
Vo(x; 6, to) be a solution of the boundary value problem

(4.1)

d2

dx 2 V + erGo(V) 0 (x (xo, x + )),

where 6 and to are small parameters to be determined later. Also, let Vl(x; 6, to) be a
solution of

(4.2)

d2

2 V-berGl(V)--O (x(x1.-l-6, x2)),
dx

V(x + a) t* +o.

LEMMA 4.1. Let V(x) be defined as above. Under (A2), there existpositive constants
6o andtoo such that, forall I1 < 0 and [to[ < too, (4.1) (resp. (4.2)) has a unique monotone
solution V0(x; 6, to) (resp. Vl(x; 6, to)) which satisfies

(i) (O/Ox) V(x; ,) is continuous uniformly in 6 and to (i=0, 1),

as 6 and to tend to zero, and

d (-x Vo(xl + 6 6, to))>0,d6

(iii) (lal< ao, I<o I< oo).

(x V(x+a; a,,o)) <o,
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This lemma is a direct consequence of Lemma 3.5, so we omit the proof. Here, we
consider two problems"

2 d2
uo +f(uo, vo) o,

(4.3a)
d2

(x 6 (Xo, x + 6)),

dx2 Vo + crg(uo, Vo) O,

with the boundary conditions

(4.3b)

d
-7- uo(xo) o, uo(x + ,) *,
ax

d
vo(xo) o,

and

2 d2
u +f(u, v)= o,

(4.4a)
dZ

(x (Xl q" ,
dx2 v + trg(ux, vx) O,

with

d
dx

Ul(X2) 0, u(xl + 6) Y*,
(4.4b)

d
dx

Vl(X2) 0, /.)l(Xl "4" ) #* -1- (.O,

where /* 1/2(ho(fl*) + h(fl*)).
To solve these problems, we first consider the boundary layer equations derived

from the first of (4.3a) and (4.4a)

d2

(4.5a) 2 +/(h(fl) + , fl) 0 (0< rt < +, =0, 1).
dr/

The boundary conditions are assumed to be

(4.5b) z?i(0) y hi(fl) and (+ oo) 0,

where 3’ 3,(/3)= (ho(fl) + h1(/3)).
LZMMA 4.2 (Fife [3]). Consider the problem (4.5) under (i) and (iii) of (A3); there

exists a positive constant tol such that for all I/3-/3*[ <tox (4.5) has a unique monotone

solution i(r/;/3) satisfying

(4.6) I,(n;/3)I, (r/;/3) <- Ce-"

for some positive constants and C independent of.
Let 181< 3o and [o]-<_min (wo, wx). Then, by Lemma 4.2 we obtain a correction

term zi(x; e, 6, oo) to hi(Vi(x; 6, oo)). Zo(X; e, 6, w)is constructed by sr((x + 8-x)/(Xl +
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6)2o((xl +6-x)/s,* +to), where ’(x) is a C-cutoff function defined by

1 (xe[0,1/41),
r(x)

0 (x e [-}, 1]).

ZI(X; e, 6, (.0) is also constructed in a similar way. We set

(4.7) Ui(x;e, 6, to)=hi(Vi(x;6, to))+zi(x;e, 6, to) (i 0, 1).

Hereafter we restrict our argument to the case only for 0, so we omit the subscript i.
Let us seek a solution (u(x; e, 6, to), v(x; e, 6, to)) of the problem (4.3) which takes the
form

u(x; e, 6, to)= U(x; e, 6, to)+ r(x; e, 6, to),
(4.8)

v(x; e, a, o)= V(x; , to)+ s(x; e, , o),

where (r, s) is an unknown remainder. Since (U, V) satisfies the boundary condition
(4.3b), the solvability of the problem (4.3) is reduced to finding a solution t(e)(=
(r(e), s(e)))6X (Co (H2f-I Co))[O, x,] of

T(t; e 6, to, r) (R (r, s; e 6, to, r), S(r, s; e 6, to, r)) O,

2 d2
R(r, s; e; 6, to, o)- e ---x2 (U+ r)/p(6)f(U+ r,V/ s),

(4.10)
d2

S(r,s; e; 6, to, o’)=--xZxz (V+s)+o’p(6)g(U+r, V+s)

for p(6)=(l+(6/xl))2. Here, we transformed x into (Xl/(Xl+6))x. We notice that
U(x; e, 6, to) and V(x; 6, to) also depend on a parameter r.

LEMMA 4.3. Let o" be a sufficiently small positive number. Under (A1) (A3), there
existpositive constants 60, too and eo such that, ]’or each [6[ < 60, Ito[ < too, and 0 < e < co,
it follows"

(i) T(t; e; 6, to) is a continuously differentiable mapping from X, into Y=
C[0, Xl] X L2(0, Xl). Moreover, there exists a constantK independent ore, 6 and to such
that

IIT,(t2; e; 6, to)-T,(tl; e; 6, o)llx.. <- Kllt2 tll.lx,

for tl, t2 x,, where Tt is the Frchet derivative of T,
(ii) Tt(0; e;6, to) has an inverse satisfying

IIZT (o; e ;, o)[I.Y,,-<K2,
where Kg. is a constant independent of e, 6 and to, and

(iii) liT(0; e; , ,o)llv - 0, (e - 0) uniformly in 6 and to.

Proof. Noting that every function t(x) of (4.10) is extended to (x) by reflection,
namely

t(x) (x 6 [0, xl]),
?(x)=

t(-x) (x e [-xl, 0]),

which is also twice continuously differentiable; we find that the problem (4.9) is reduced
to the zero Dirichlet boundary value problem. Then, the statement (i) and (ii) are
verified by similar arguments to [3, Lemma 3.2].

(4.9)

where
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For the proof of (iii), we first show that

liT(0; ; 0, 0)[Iv - 0

From (4.10) it holds that

2 d2

R(0, 0; ; 0, 0)= x U()+(U(), V)

and

as e-0.

d2 d2
2 2

e -xz h(V(x))+e --x Z(x; el+f(h(V(xll+z(x; el, V(xl),

d2

s(o, o; e; o, 0) =-z-- v+ g(u(e), v)
X

d2

z V(x)+o’g(h(V(x))+z(x; e), V(x)).
dx

We divide [0, X1] into two intervals [0, X1--4] and [x1-4, x1]. On the first interval
we have

and

R (0, 0; E 0, 0) O(E 2) - O(E)-( X1, X f(h([:)-[- z(x; E), *)
\X1 XO/

+f(h(V(x))+ z(x; e), V(x))

-0 uniformly on [0, Xl-/], (e0),

S(0, 0; e; 0, 0)= -o’g(h(V(x)), V(x))+o’g(h(V(x))+z(x; e), V(x))

0 uniformly on [0, xl-x/-e], (e 0),

since z(x; e) converge to 0 uniformly on [0, xl-/] as e 0 by (4.6). On the second
interval we have

R(O, 0; e; O, O)=O(eZ)-f(h(*)+z(x; e),*)+f(h(V(x))+z(x; s), V(x))

O(e)+ --uf(h(O)+z(x; e), O)-h(O)+-O-v(h(O)+z(x; e), O)

x (V(x)-t*)

0 uniformly on [xl-x/, Xl], (8 --)0),

where 0 is an intermediate value between fl* and V(x). Since S(0, 0; e; 0, 0) are
bounded uniformly in e, we have

X1

IS(0, 0; e;0,--> as e --> 0.0)12(X) dx 0
4"-e

Thus we obtain

[IR (0, 0; e 0, O)llcOcxo,,l], I[S(0, 0; e 0, O)l[L2(xo,xl)--> 0 as e -> 0.

A slight modification of the above arguments leads to (iii). Q.E.D.
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By the above lemma, we have the following
LEMMA 4.4. Under (A1) (A3), there exist some positive constants eo and ro such

that the problem (4.3) has a solution (Uo, Vo) ]’or 0 < e < eo and 0 < r < ro, which satisfies
(i) IlUo(e, 6, to)-ho(Vo)llcOtO.Xl+_,jO, (e 0),

(ii) IlVo(e, 3, to)- Vollclo,xl+j O, (e 0), , f,(t3*+to)(iii) lim_,o(e(d/dx)uo(xl+8; e, 8, to))z ,-JhoO,+to)ftS, /3* + to) ds,
uni]’ormly [or 8 and to small enough, where K’ is an arbitrarily fixed positive constant.
Similar results hold for the solution (ul, Vl) of (4.4).

Proo] Consider the nonlinear operator T fromX into Y. Then, by Lemma 4.3, we
can apply to the equation T(t; e 3, to) 0 the implicit function theorem [3, Thm. 3.4].
Thus, we find the existence of a solution (r(e ;8, to), s(e ;3, to))X of (4.9) such that
IIr(e ;3, to)llCo + )Is(e. ;3, to)lln 0 as e. - o. From this result, (i) and (ii) are proved at the
same time. Condition (iii) is easily obtained by integrating the equation (4.5). Q.E.D.

Thus, we find that a solution of the problem (4.3) (resp. (4.4)) exists for [0, xl + 3]
(resp. Ix1 + 3, x:]). Here, we must notice that these two solutions (Uo, Vo) and (u, v) do
not match at x xx + 8 in the C-sense. Therefore, in order to complete the proof of
Theorem 2, we determine two parameters 8 and to depending on e so that
(d/dx)uo(x+6;e, 8, to)=(d/dx)Ul(X+6;e,,to) and (d/dx)vo(x+6;e, 8, to)=
(d/dx)v(xa + 8; e, t, to).

Following the arguments in the proof of [3, Thm. 4.1], we define (e, 3, to) and
(e, 6, to) by

(e, 8, to)= e---xxU(X+8;e, 8, to) e-[t--xxxUO(X+8;e, 8, to)

(4.
d d

X’II(/, 3, to) ---X-X/.)l(Xl -’- 8 e, t, to)-----X U0(Xl +3; e, 3, to).

Noting that (e(d/dx)u)z and (d/dx)v, (i 0, 1) are uniformly continuous in e, 8 and to,

we can extend them continuously to be defined for e 0. Setting e 0 in (4.11), we have

v(t3*+to) /. v(t3*+to)

(o..,o)=2 t(s,t*+,o)s-2| fs,*+,o)s=Zp(*+,o,
aho(13*+to)" ah.x(13 +to)

d d
.(o,a, ,ol= V(x +a; a, ,o)- Vo(Xl +a; a, o),

and, from (ii) of (A3) and Lemma 4.1, we know that

(0, 0, 0)= ,(0, 0, 0)= 0,

0
(0,0 to)l =2

d
(4.12) -- to=o

(/3") 0 and

)O- =o d8
Vl(Xl 0,0) Vo(xa 0,0) 0.

Therefore, it is shown that (0, 0, o) and (0, 6, 0) have an isolated zero at w 0 and

6 0, respectively. Moreover, it is easily found that

(4.13) (0, 6, w) (0, 0, w).

In view of (4.12) and (4.13), we can apply another implicit function theorem (see [3,
Thm. 4.3]) to 0. We conclude that for sufficiently small e(> 0) there exist 6(e)
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and to (e) such that

and

(e, (e), o (e)) =’I’(e, (e), o (e)) o,

lim 6 (e) lim to (e) 0.
eO e-0

Now, defining (u(x; e), v(x; e)) by

/ uo(x; , (e),
U(X;

u(x; , ,(s), o(e))

and

Vo(x; e, (e),
V(X; E)=

1)1(X; E, t(E), to(E))

(x [Xo, x + (e)]),
(x [x + (e), x2])

(x [Xo, x, + (e)]),
(x e Ix, + a(e), x=])

we find that it matches at x x1 + (e) in the C-sense, which leads to a solution of (2.1).
This completes the proof of Theorem 2.

5. Proof of Theorem 3. In order to prove the existence of solutions of the problem
(2.5) under zero flux boundary conditions, except their nonnegativity, it suffices to show
that the nonlinearities of f and g satisfy the assumptions (A1)---(A3).

We consider two distinct roots of f(u, v)=0, that is, u ho(v)(=0) defined in
J =(0, +oo) and u=h(v)>-_c defined in J*-(O, fo(c)/k) which satisfies kv-
fo(h(v))- 0 (see Fig. 1). Then, the assumption (A1) is obviously satisfied.

We note that

hl(/)

I0
hl()

o(fl)
Jho(t

f(S, t3) ds (fo(s)- kfl)s ds

is defined in (fo(O)/k, fo(c)/k) and satisfies the inequalities (fo(0)/k)< O<(fo(c)/k)
by (A4). Using the fact

d
h(fl)- IOhl(/3)-- (fo(h (fl))- kfl)h(fl) ddv ks ds

--k2 (h(/3))2<= -1/2kc2<0,
we find that (/3) has a unique zero /3* (fo(O)/k, fo(c)/k) which implies that the
assumption (ii) of (A3) is satisfied.

Next, we consider whether or not (A2) is satisfied. From (i) and (ii) of (A5), it
follows

g(ho(v), v) go(v)v <-_ -go(O)v < 0 (v (0, +o)),

(g(ha(v), v) -(go(v)- khx(v))v > 0 v O, k ]]

and

d-- vv g(h(v), v go(v v go(v < 0

From (iii) of (AS), we also have

d
G(v)=

d
d-- -v g(h(v), v)< 0

(v [0, +o)).
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Taking Jo and J as Jo (fo(O)/k, fl* + Ix) and 11 (/3*-/z, fo(c)/k) for a positive
constant/z respectively, we know that (A2) is satisfied,

Finally, we show that (i) and (iii) of (A3) are satisfied; we have

0
f(ho(v), v)

0

0G ud(o, v) o(O) kv < o on Jo,

and

0-- f(hl(v), v)= fo(hl(V))- kv + fo(hl(v)) hi(v)

(u fO(hl(v)))hl(v)<O on J1.

This implies (i) of (A3). By setting 5i(y)= Y *)h,(O*) f(s, ds, it follows that

d
d--’ f(y’ fl*) fro(y)- kfl*)y (i O, 1)

has only one zero in (ho(fl*), hl(fl*)) and that

(ho(fl*)) (h (fl*)) 0 (i =0, 1).

Hence, we obtain fii(y)>0 for all y (ho(fl*), hx(fl*)), (i =0, 1), which implies that
(iii) of (A3) is satisfied. Therefore we find that (A1)---(A3) are all satisfied, so we can
construct solutions (u(x; e), v(x; e)) of (2.5), from Theorem 2.

Now, from an ecological viewpoint, we must verify the nonnegativity of the
solution since u and v represent the population densities of two spacies, a prey and its
predator. According to 4, we set U(x) ho(V(x)) on [Xo, xl] and U(x) hl(V(x)) on
Ix1, x2]. From Theorem 1, there exists a positive constant ql such that

jo(0) fo(c)
-bql W(x) <--- ql (x [Xo, x2]).
k k

Similarly, from Theorem 2, there exists a sufficiently small positive constant e such that
[Iv(" ;e)- V[Ic%o.,3<q/2 for all 0<e <el. Therefore, we have

(5.1) 0 <fo(O) + ql fo(c) q
(x [Xo, x2]).

k <v(x;e)<-- 2

In the proof of Theorem 2, we obtained u (x; e) as

u(x" e)= {ho(V(x))+Zo(X; E)
thl(V(x))+Zl(X; e)-brl(X; e)

(x e [xo, x + (e)]),
(x e [x + (e), xa]),

where z, (i 0, 1) are the boundary layer correction terms satisfying 0 Zo(X; e) 37
=h(fl*). Noting that r(x; e),and qS<z(x; e)<O where 35 (hl(fl*) ho(/3*))

(i 0, 1) converge to zero uniformly on each interval as e tends to zero and that they are
equal to zero at the end point of each interval, we find that, for any positive q2, there
exists a positive constant e2 such that u(x; e) > q2 on [Xo, Xl + t(e)] and u(x; e) > 0 on
[x + 8(e), x2] for all 0< e < eg.. Now, suppose that there exists a point " in an interval
[Xo, Xl+8(e)) such that u(sr;e)<0. Then there exists some interval Io=((l, Sr2)
contained in [Xo, xl + 8(e)) such that

(5.2)
u(x; e)<O in/o,

d
dx

u (l, e)<--O,
d

u(r; e)=o, xx u(’; e)_->o.
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On the other hand, by virtue of (5.1), we have kv(x; e)-fo(0) > k(ql/2), and therefore,
if q2 is chosen sufficiently small,

Hence, we have

ql
kv(x; e)-/o(U(X; e))> k- (x e I0).

d2

e u =-(fo(u)-kv)u <k- u <0 (x Io).

By integrating the above inequality, it holds that

2 d 2 d fc2 q
e --xU((z;e)’<e -xU((l;e)+kjc Tu(x;e)dx

<
kql cc= u(x" e) dx < O,
4

which contradicts to (5.2). Thus, the proof of Theorem 3 is completed.

6. Concluding remarks. We have considered the two point boundary value prob-
lem with two nonnegative parameters e and ,

2 d2
0= u+(u,v),

1 d2

0= v+g(u,v)
dx

subject to zero flux boundary conditions and have shown the existence of large
amplitude solutions when e and are both suciently small. We note here that the
result remains valid when e and (O/Ou)g(h(V(x)), V(x)) are both suciently small.
Smallness of is replaced by the latter condition. Applying this to the prey-predator
model (2.5), it is found that there exist nonnegative solutions of (2.5) for any fixed
> 0 if e and the interaction rate k are suciently small.

For an application of our results, we have given one model which describes a
prey-predator system. In addition to this, we mention two examples. One is the model
proposed by Gierer and Meinhardt [6], which is

d2 cpa 2

0 d a + ppo +
h(1 + a2) a,

d2

0 dh h +c’p’a2- h,

where 0 < d << dh and p, p’, po, c, c’, , and p are all positive constants. Another is a
model substrate-inhibition reaction diffusion system

d2

0 d u +]l-u-r(u, v),

d2

0 d2 v +]2-Tr(u, v),

where r(u, v) uv/(1 + u + v + Ku2) and ]1, ]2, , and K are positive constants. This
model without diffusion was originally proposed by Seelig [16].
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We have not as yet been able to discuss the stability of the solutions obtained here.
The difficulty is caused by multiplicity of solutions. We note, however, that File’s
heuristic argument concerning the stability of large amplitude solutions [4] is worthy of
attention.

We may construct approximations of (2.1) to any desired degree of accuracy,
which have power series of e.

Acknowledgment. The authors wish to thank Professor Masaya Yamaguti for
valuable suggestions and many criticisms.
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ON THE EXISTENCE OF WEAK-SOLUTIONS TO AN n-DIMENSIONAL
STEFAN PROBLEM WITH NONLINEAR BOUNDARY CONDITIONS*

J. R. CANNON" AND EMMANUELE DIBENEDETTO+

Abstract. The weak formulation of an n-dimensional Stefan problem with nonlinear flux assigned on the
fixed boundary is studied. An existence theorem is proved by using Galerkin procedure, monotonicity
methods and trace theorems.

Introduction. This paper is concerned with a free boundary Stefan-like problem in
several space variables associated with a parabolic operator of the form

Ou
(A) Lu a (u)--- div {K(u)V,,u +b(x, t, u)}+ c(x, t, u).

A precise formulation is given in 1. The solution is required to vanish on the free
boundary F while the condition

0[grad (I)1-1(B) [Ka(Ul)VxUl +bl(X, t, Ul)-K2(uz)Vxu2-b2(x, t, U2) n=u
Ot

on F is required, where the subscripts 1 and 2 refer to the two sides of F, n is the spatial
normal to F at the time and (x, t) is a continuously differentiable function which
implicitly determines the free boundary F in the domain where (A) is defined.

The problem can be viewed as a model of a solid-liquid phase change at a
prescribed temperature.

An example situation is an ice-water mix contained in a fixed region G whose
initial nonpositive temperature is specified. It should be noticed that we were unable to
prove uniqueness for this system. To obtain stability and uniqueness one has to come off
the boundary with the trace theorem which involves ]Vu[.

This rules out any application of the methods of Cannon-Hill 1] and Friedman [4].
The plan of the paper is as follows. Section 1 contains the classical formulation of

the problem while a generalized formulation and our concept of weak-solutions are
introduced and discussed in 2. Assumptions and the statement of the existence
theorem are given in 3. The theorem is demonstrated in 4 by using a Galerkin-type
argument. Finally in 5 the Dirichlet problem for (A)-(B) is briefly discussed.

1. Classical tormulation ot the problem. Let G denote a bounded domain in
with smooth boundary OG. If t[0, T], T>0, then let G(t)= G x{t}, OG(t)=OG x{t},
lit U o<=,<=tG(r). We assume that the domain Or is divided into I) and f2 by the free
boundary F---Fr U0__<,=<rF(-), where F(t) is a hypersurface in G(t) determined by

(x, t) 0. The function e C1(f7-), < 0 in f, > 0 in f2 and V(x, t) - 0 on F
where V,, denotes the gradient with respect to the x =- (xx, x2, , x,,) variables only.
The set F(0) divides the initial region G(0) into two regions Ga(0) and Gz(0). With
respect to the boundary Sr of 127, let S f-)

Consider the problem of determining real valued functions u, 1, 2, defined in

* Received by the editors October 18, 1978, and in revised form June 25, 1979.
t Department of Mathematics, The University of Texas at Austin, Austin, Texas 78712. This research

was supported in part by the Consiglio Nazionale delle Ricerche d’Italia.
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which satisfy

Oui div {Ki(ui)Vxui+bi(x, t, ui)}+ci(x, t, ui) in l)i, i= 1 2(1.) (u,) --7=
ui=hi(x) in Gi(0), i=1,2, h(x)>0, h(x)<0,

0u+Ki(ui)-n bi(x, t, Ui) n gi(x, t, ui) on Si- F,

ui=0 onF, i=1,2,

(1.2)

(1.3)

(1.4)

(1.5) [K(u)V.u +b(x, t, u)-K2(ua)V.ua-ba(x, t, u2)]" Vx u,
Ot

where u is a positive constant, n is the outer normal to S, the div-operator is with respect
to the x variable only, the ai, Ki, ci, hi and gi, i= 1, 2 are known functions of their
arguments, and the bi are vector valued functions mapping fTE into En. Here ai(u)
and Ki(u) are sufficiently smooth functions defined for (-1)iu =<0, which for some
constants 3’o and yx, satisfy

(1.6) 0 < 3’0 < ai(u), Ki(u) < Ya, 1, 2.

2. Generalized formulation of the problem. Consider smooth test functions q in
such that

(2.1) p =0 on G(T).

Using formally identical arguments to those contained in 1 ], [4], we see that for all
such o, a classical solution to (1.1)-(1.5) must satisfy

(2.2)

where

a(u)--V,k(u). Vxq-b(x, t, u)" Vxq+c(x, t, u)q dxdt

+ Ia qa(h) dX + fs qg(x, t, u) &r=O,
(o)

U in 121, {ha in GI(0),
(2.3) u { h 0 on r(0),

u inf,
h in G(O),

(I-v, 0] for u O,

iIuKl(’)d’ u>O’

(2.5) k(u)

li
u-0,

g2(sc) dC, u < 0,
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and b, c and g are defined in a similar manner. The following definitions and the
discussion below will motivate our concept of weak-solution.

Let Lq,r(T) denote the Banach space of those measurable functions mapping
fr E with norm defined by

T

(2.6) Ilull;,,.- | Ilull;,a. d,
ao

where

q,G(’r) IN(X, T)I q dx.
(.,-)

When q r 2, L2,2(-T) coincides with the Hilbert space L2("T) whose inner product
(’,")2,a-generates the norm [1" 112,a I1" [I2,2,arr" Let W2’ (Or) denote the Hilbert
space with inner product

(2.7) (u, v)w"’(a.)= (u, V)z,a. + ,Ea 2,w

while W’ (Or) denotes the Hilbert space with inner product

(2.8) (u, V)w.’a) (u, V)w."a) +
2,-

Here Ou/Oxi and Ou/Ot denote generalized derivatives. Also let V2("T) C W"0 ([T)
denote the Banach space with norm

(2.9)

where

(2.10)

ulV2(a-,-) ess sup Ilu(. t) 2 2

O<=t<_T

Finally we let V2’ (fr)c V2(r) denote the Banach space of functions such that the
map t u is continuous with respect to I1 and the norm I" [v"’(m-)is that of (2.9)
with the ess deleted.

Our definition of weak-solution will depend crucially on the notion of relation on a
Cartesian product X x Y of linear spaces X, Y.

A relation F on X x Y is a subset of X x Y. The domain of F is {x X: Fx } and
the image of x by F is the set Fx={y Y:[x, y]F}. The range of F is
(J{Fx: x X}. We identify F with its graph which is defined as

graph F {[x, y] e X x Y: [x, y] F}.

This permits the definition of inverse of F. The inverse of F is the relation f-1 on Y x X,
whose graph is symmetric with respect to the graph of F.

The graph of every function from a subset of X into Y is a relation on X x Y.
Therefore, it is natural to identify functions as relations. A relation F is a function:
X - Y if and only if the set Fx is a singleton for every x in the domain of F.

From (2.4) follows that c(. is a relation in NxN, whose inverse c-1( is a
function.



EXISTENCE OF WEAK-SOLUTIONS 635

DEFINITION. By a weak solution of (1.1)-(1.5), we mean a function u V’ (fT)
defined by

(2.11) u=a-’(v),
where v is a function defined in fr such that

(2.12) yea(.),

the inclusion being intended in the sense of the graphs, and v and u a-l(v) satisfy

vOq-Vxk(a-l(v)) Vxq-b(x, t, a-l(v)) Vxq + c(x, t, (v))q dx dt
Ot

(2.13)

+ io qee(h) dX + Is qg(x, t, ce-l(v))do’--0
(o)

for all the q WTM (fr) which satisfy (2.1).
Remark 1. The 5o{o qc(h) dx is well defined if h # 0 a.e. in G(0).
Remark 2. Every function in V’ (Or) has trace in Li(Sr) (see [6]), so every term

in (2.13) is well-defined modulo basic assumptions on the data that will be specified
below.

Remark 3. Each classical solution of (1.1)-(1.5) generates a weak-solution.
Standard arguments [1], [4], imply that any sufficiently smooth weak solution whose
level set {u 0} is a smooth surface on which Vu # 0 is a classical solution.

3. Assumptions and statement of results. The assumption (1.6) together with the
definitions (2.4)-(2.5) imply that k(u) is Lipschitz continuous for all u, while a(u) is
Lipschitz continuous for all u 0; moreover for u 0 we have

(3.1) 0< yo <-a’(u), k’(u) <- yl

and

(3.2) y01ul--<l <u)l, k(u)<- ,l[Ul.
With respect to the data functions h, b, c, and g, we have the following two assumptions.

(A1) The functions b, c, and g are continuous functions of their
arguments over the Cartesian product of their respective space-
time domains with {-oo < u < +oo}, and satisfy respectively the
following growth conditiorts:

Ib(x, t, u) <=K, lu [,
(3.3) Ic(x, t, u) <= Ko + KllU l,

Ig(x, t, u>l <= go / g lul,
where Ibl denotes the Euclidean norm of b as a vector in R" and Ko and K1 are positive
constants.

Remark 4. The requirement that b(x, t, 0) 0 exhibits the interaction of this term
with the lack of uniform parabolicity exhibited by the vanishing of c-’(u) for certain
values of u.

(A2) The function h L2(G) and h # 0, a.e.

THEOREM. Under the assumptions (1.6), (A1) and (A2), there exists a weak-
solution of (1.1)-(1.5).
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4. Proof of the theorem. Let q C (-1 1) such that

_
o(y) dy 1 and set

u+(1/m)

cm(u) m f ff(y)q[m(u- y)] dy,
4u-(1/m)

where

If u > 2/m we have

{ c(y), y0,
c(y)

0, y 0.

(4.1) a (u)= m ff’(y)qg(m(u y)) dy <_- 3’1.
1/m

An analogous formula holds for u <-(2/m); therefore we see that

2
(4.2) yo<=o(u)<-_y for lul >--.m
From (4.1) we deduce also that

2
(4.3) yo<-’(u)<=Cm for In[ --,

m

where C is a constant which is independent of m. The a,,,( are invertible and

--1

uniformly on compact sets. We have also

(4.4) 0<mm_-<a (u)<-yo.

By defining k.,(u) in a similar way, we see that

k.,(u)- k(u)

uniformly on compact sets, and that

(4.5) To < k’(u)--< w.

We consider now the problem of finding for each m a function v,, e V’(flr) which
satisfies

IIf { l)rnOqg-Vxkm(onl(vm)).Vxq9 b(x, t, a(v)).V +c(x, t, al(v))} dx dt
Ot

(4.6)
+ a(h) dx + g(x, t, 2 (v)) d 0

G(O)

for all W’a (Or) which vanish when T.
Let

(4.7) Wm,l(X t)= 2 m,i(t)zi(x)
i=1
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denote the/th Galerkin approximate of v.,, where the zi, 1, 2,... satisfy

-Azi=Aizi in G,

OZi 0 onOG.

It is clear that we can assume that the zi form an orthonormal basis for L2(G) and belong
to W(G). Here L2(G) is the Hilbert space of square integrable functions over G with
the usual inner product (. ,. )2 and W(G) is the Hilbert space with inner product

For the construction o the W,l(X, t) [global in time] we refer to [2], [3].
The W,l(X, t) satisfy the problem

L Wl(X, t)-ak[a (W(x, t))]
Ot

(4.8)
Oiv (x, t, 2 w (x, t))) + c(x, t, w,(x, t))) o,

(4.9)
{7k[a (W,l(X, t))] + b(x, t, a W,l(X, t)))}, n

g(X, t 1 (Wm,l(X t))), (X, t) ST.

(4.0) w,(x, o)= (x)

in the sense of the projection over the span of {za, z2," ", Zl}, where

vl(X)= Z c,z(x)
i=1

and

v(x, O)= om(h)= ., c,,.izi(x).
io

Namely, denoting with P1 the L.(G) projection onto the linear span of {zl, z2, , zt},
W.l is the unique element in W’1 (T) satisfying (4.10) and

IG c3 Wtm’ PlW q- IG {Vk [cen Wm, -t- b} VPlw

+ I cPw lo g(x, t, an Wm,l))Plw O
G

for all w W (G).
Next we derive a priori bounds on the V2-norm of W,.,(x, t), independent of

m and l. To simplify the notation we will make the convention of indicating with C
generic, nonnegative constants that depend upon quantities that will be specified as the
constant appears. Set

(4.11) Um, a W,I)
then

(4.12) W,.,l=a.(U,.,).
LEMMA 1. There is a constant C dependent only upon h, D.7, Ko, K1, T1, To, v such
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that for all [0, T] and all m,

(4.13) [IW,,,l(’, t)ll2,o =< C.

Proof. We take the inner product in Lz(t) of (4.8) by W,,,l(X, t). This gives

2SIIw l(’, 7")1122, dr + Vk(Um,l). V(U,l) dx dr

+ Win, c(x, , Win,l) dx d J1 + J2 + J3.

We estimate the J, 1, 2, 3, as follows. Using (3.3) we obtain

(4.15)

We have

where

Therefore,

loire Urn, l) o{.m (0) ol (m,l(X, t))l Um,l],

[m,l(X, t)[ Um,l(X,

Jtl I og (rn,l(X, t))l Um,ll{go -- gll U,/I} do-
(x,t)ll Um.tl<=2 }St

/ f la (0)l{go + gll um l]} do’.
(x,t )ll Um.tl<=2/ }S,

Using now (4.3), we have

J s Cm
2
{go+ 2g/m} d+ [ {go+ 2gl/m} d+ CISI

where u is the constant appearing in (2.4) and IZI indicates the Lebesgue measure o[ the
set Z.

For J we observe that from (2.4) and (4.2) it follows that

j]t Vl

_
( @ Um,/l){m + KI[ U,/[} d C1]STI + C2 [ Um,/[2 d

ot

CIlSTI + C2

_
U,/[2 d,

where Ci, 1, 2 are constants which depend only upon y, v, K0, K, but not upon m
and l. Substituting the estimates of J] andJ into (4.15) yields the existence of constants
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Ci, 1, 2 such that

J1 C1 + C2 I_ Um’l[2 do-.

By the trace theorem [7], for every e > 0 there is a constant C2(e) such that

(4.16) J1 -< C1 + C2(e) (_ IU,,,,l[2 dx d’r+e f_ IVxU,,,,I2 dx d’r.

We observe that by (2.4), (4.4) and (4.11), we have

(4.17) lUre, l[ <-- v /

Therefore from (4.16) we deduce that

f w,/[2 dx d/ I IVU,’t2 dx d,(4.18) J1 Cl(e) + Ca(e)
"t1"

Next, we consider Je. By (3.3)

(4.9) ____
Ig,l dxd+ {(g,lg,,Y dx d.

For the last integral by an analysis similar to that of J, we obtain

ft, {lUm,ll(Um,t)}2= IUm,l[2t2(Uml)m dxdT
(x,t)llZ.,ll2/m}

+ f U=,,I2 ’d (U= t) dx dr
.)l,.,,[>2/m}

C+ f ]U,t[2 dx dr.

By using (4.17), we see that there are constants Cl(), C2(e such that

(4.20) J2< CI(E)+ C2(/) [Wm,,]2 dxdT/l?, fA 17xUm"12 dxdT.
d

Similar procedures yield

(4.21) J3 < C + C2 [A W,,,,[2 dx dr,

where Ci, 1, 2 depend upon y0, K0, K1, p, IfTI but not upon rn and I.
We return now to (4.14). By using (4.3), (4.5) and the above estimates of the Ji’s,

1, 2, 3, we see that

IIw( t)ll,o/(,, 2)1
(4.22)

<llv/]l= o,+c(+c( lw,(.,
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where Ci(e), 1, 2 are independent of m,l. We choose e < 3’/2 and note that

The proof is concluded by an application of Gronwall’s inequality.
LEMMA 2. There is a constant C which depends only upon h, Or, Ko, K1, y, To, v

such that

(4.23) fo [IVU’/( 2 )112, C

hoMs for all m, and all 6[0, T].
Proof. This is a direct consequence of (4.17) and (4.22).
From Lemma 1, it follows, by known analysis [2], [3], that for every N, there is a

constant K(i), which depends only upon h, Or, K0, Ka, ya, y0, u and i, such that

(4.24) ifl,i(t)-,i(s)[K(i)(t-s)a/z, m, 1,2,....

Therefore, or each fixed, { a,(t)} is bounded equicontinuous amily of unctions.
Setting l= m and considering {W,}, a subsequence can be selected via a

diagonalization process and renamed { W}, so that each ,(t) converges uniformly to
a continuous limit (t) as m tends to infinity. Setting

v E Si(t)zi(x),
i=1

it follows from Lemma 1 that for each t, { W,,,} converges weakly to v in the space L2(G).
Also, this convergence is uniform with respect to t.

From (4.23) it follows that the weak convergence of { U,,,} in W’ (127-) can be
incorporated into the diagonalization process so that

(4.25) -1U,,,m ee (W,,) (x, t) W’
Next we will show that, for a suitable subsequence, again indexed with m,

(4.26) Og (Wm)---> o (D) in L2(G)

for almost all [0, T]. To show this the following preliminary results are needed.
LEMMA 3. There is a subsequence of the 7 (W,,) (again indexed by m) such that

]:or almost all [0, T],

7: (W)(W-v) clx

Remark. The proof rests upon the following proposition.
PROPOSITION. Let {q,} be a sequence offunctions in W’ (f7") such that

(4.27) 11 0.112,  + IIv  .l12,. c, n 1, 2, .
Then, for each e > 0, there exists an integer N(e) which is independent of n such that

Z o,(x)zi(x) dx dt < e,
i=N(e)

n=l,2,...
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Proof. Recall that the {zi(x)} satisfy

-az(x) ,z(x),

Ozi O.
On o

It is well-known that the eigenvectors of the Laplacian are an orthonormal basis for
L_(G) and that the eigenvalues Ai, 1, 2, 3,. , are positive and satisfy

Let c ,,(t) 1, 2,.-. denote the Fourier coefficients of o,(x, t). Then,

c.(t) q.(x, t)zi(x) dx
Ai

q.(x, t)Azi(x) dx

1Ai J V,q.(x, t)" Vxz,(x) dx

1 1

Therefore, by (4.27),
r 1[c’ (t)]2 dt<--C.-’Ai

For fixed e >0, there is N(e) such that

C

Hence,

, .(x, t)zi(x) dx dt < e,
i=N(e)

n=l, 2,..-.

Proof ofLemma 3. It will be sufficient to show that

a (W,,,)(W,,,-v) dxO

in L2(0, T). Let

y c .(t)z,(x)
i=1

denote the Fourier expansion of a (W.,(x, t)) in L2(G). By (4.23) and the proposition,
for each e >0 there is N(e) independent of m such that

0TZ [c2(t)]--< .
i=N(e)
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Hence,
T 2

T N(e)

Cm(t)zi(x)’(Wm-v) dx + Cm(t)zi(Wm--V) dt
i=1 i>N(e)

1/2 2

i>N(e)

2 .sup [[3 (t)-fli(t)]2.
O<=t<=T i=1

Since /3’ (t)- fl’(t) uniformly in t, and II(W,,, v)(- t)ll 2 ,12,C 0 (Wm)]I2,T are equi-
bounded (see Lemmas 1 and 2), the result follows.

We select now a [0, T] for which the result of Lemma 3 holds and fix it. Select
any subsequence of the sequence for which the result of Lemma 3 holds. Now, the
bound (4.23) implies the weak compactness of{a (W,,(., t))} in L2(G). Consequently,
there exists a subsequence {mr} of the original subsequence that was selected such that

-1, (Win,) - ,(X)

weakly in L2(G). We already know that Wm-+ v weakly in L2(G) and that the
convergence is uniform in t.

LEMMA 4. For this choice of t,

-1 (Wmt) Wmt ---> I t(x)v(x, t) dx
t"

o{ mt

as m --> x3

Proof. We have

01. m, (Win,) Win, dx rh(x)v(x, t) dx

m, (Wm,) "Ot]V(X, t) dx + m, W,)(W, v) dx

-1
The first integral converges to zero by the weak convergence of a m, (Win,) to r/,(x), and
the second one converges to zero by virtue ot Lemma 3.

LEMMA 5. For this choice of t,

(4.28) ,(x) a-’(v(x, t)).

-1Proof. For each m the function a,,, (.) is monotone increasing, and is a continu-
ous map of L2(G) into L2(G). If f(x)L2(G) we have

(4.29) I[ce -1 -1.,, (w.,,)-.,, (f(x))][ w..,- f(x)] clx >-o.

7.1Letting mt oo in (4.29) and using Lemma 4 and the uniform convergence of a to
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-1
a ,we obtain

(4.30) [rh(x)- a (f(x))][v(x, t)- f(x)] dx >-_0.

Selecting f(x) v(x, t) + -q(x) in (4.30) for arbitrary if(x) L2(G), we see that

(4.31) " I [rh(x)- a-(v + ’q)]tO dx >-O.

Dividing by - and letting z-* 0, we obtain

(4.32) [rh(x)-a (v(x, t))]0(x) dx >-0

for all 4(x)e L2(G). This proves the lemma.
Thus, we have shown that for each for which the result of Lemma 3 holds, every

subsequence selected from the sequence for which the result of Lemma 3 holds contains
-1a subsequence {rn} such that a,, (W,,) -(v(x, t)) weakly in L(G). Consequently,

relabeling the subsequence of Lemma 2, we see that the entire sequence
a, (W,(x, t)) a (v(x, t)) weakly in L(G) for a.e. e [0, T]. From this result and the

nbound (4.23) we can obtain the strong La(fr) convergence of c (Wm)toa (v(x, t))as
follows.

--1LEMMA 6. The sequence , (Win) converges strongly to -l(v(x, t)) in

Proof. Set Z,(x, t)= a (W,(x, t)) a-l(v(x, t)). By Lemma 2, Z,, L2(G) for
all [0, T]. For each e >0, Friedrich’s lemma [6, p. 72] implies the existence of a

positive integer M(e) and functions 01,..., qg() L(G) with II  ll ,a- such that

M(e)

II2.( t)ll,<e[llzm( t)l{ 2 z......2,+llVx/m(" t)[122,] + Z (Zm(" t) qj)L2(a)
=1

holds for all m and almost all e [0, T]. Note that the qj are independent of m and t.

Integrating the above inequality over [0, T] we obtain

(4.33) 2,1-
]=

(g,, (" t), j)2L2(O) tit.

2From (4.23), it follows that equibounded while from (Z,(., t), 0j 0
for almost all 6 [0, T] it follows that we can use the Lebesgue dominated convergence
theorem to pass to the limit under integral. Consequently, we see that there is a constant
C such that

lim [[Z,[I2,. <- eC

for each e > 0. Hence, the proof is finished.
We now conclude the proof of the theorem. From (4.23) and (4.5) we see that for

all rn

Therefore, we may incorporate into the diagonalization process

lim q k,[a (Win)] dx dt
1"T T

qgAi
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for all q L2(T). Since for all # C (OT) we have

II IIT OT OXi

we see that the square integrable A equals the distributional derivative of k[-l(v)]
with respect to x. From a lemma of Stampacchia [8] we see that

0 0a, =[.-(v]
Consider the Galerkin approximate W. For

N

= 2 (t)z(x)
i=1

where e C([O, T]) and (T)=O, i= 1,.-., N we see that for all re>N, W
satisfies

., "Ot N--Vxkm[O (Wm)] VxrN--b(x t n (Win)) VxN

(4.34)
+c(x,t,o (W,))q &dr+ (h)dx+ g(x,t, (Wm))pd=O.

(o) ST

Consider the traces of aL(Wm) and a-l(v) on St. For each e >0, there exists a
constant K(e) such that [see [7]],

(4.35)
1 2+K()II-’() (W)ll=,..

By (4.23),

(4.36) (v)-

By the strong convergence of (W) to -l(v) in L2(Or), we see that the second term
on the right of (4.36) can be made arbitrarily small for m large enough. Hence, the trace
of a (W=) on Sr converges strongly to the trace of -a(v) in Lz(Sr). Consequently,
from this discussion and (A1) we have

nl IS -1(4.37) lim qNg(X, t, c (Win)) dcr= qgNg(X, t, (V)) dcr.

Taking the limit as m in (4.34) now yields

vCgq-----S-Vxk(a-l(v)) VxqN-b(x, t, a (v)) VxqN+C(x, t, a (v))qN dxdt

(4.38)
+ q,c(h) dx + or,rg(x, t, o (v)) do-= 0

(o)

for all finite N. Since the pzv are dense in W’1 (’-T) it follows that (4.38) holds true for
all o e W’1 (Or) such that p(x, T)=0. From an argument of [6, pp. 156-157] we
deduce that v e V’ (r).

Setting now u c (v), the continuity of c (.) implies that u V’ (12r), while it
is apparent that v c c(u). Hence a weak-solution of (1.1)-(1.5) exists.
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5. The Dirichlet problem. If the condition (1.3) is replaced by

(1.3’) ui fi on Si F

then (1.1), (1.2), (1.3’), (1.4), (1.5) is a Dirichlet problem. Let denote a smooth
function in 127- which coincides with the Dirichlet boundary data induced by (1.3’) when
(1.1)-(1.5) is reduced to its weak formulation. Setting u v + q, creates a variational
problem for v of the form (2.2) without the integral term over $7-. The test functions
employed here are those q W’1 (127-) that vanish on $7- and G(T). The definition of
weak solution is analogous to the one given in 2. The Galerkin method can be applied
to this problem in a manner similar to the application in 4. Thus, we conclude that
the Dirichlet problem (1.1), (1.2), (1.3’), (1.4), (1.5) possesses a weak solution u
v’ (f).
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CONCERNING THE EIGENVALUES OF DA UNDER
VARIATIONS OF THE ENTRIES OF D AND A*

D. J. HARTFIEL

Abstract. Let A be a positive definite matrix and D a nonsingular, nonnegative diagonal matrix. This
paper is a study of the eigenvalues of DA under variations between zero and infinity of specified entries of D
and A. Intervals containing these eigenvalues are determined and these intervals are seen to be the best
possible.

Introduction. The differential equation

DY. +Ax 0,

where D is a diagonal matrix with positive main diagonal and A is positive definite
Hermitian, describes an elastic system such as the spring-mass system. The behavior of
the system is, in part, mathematically determined by the generalized eigenvalues of
DA +A, which are the eigenvalues of -D-1A. Variational studies on these eigenvalues
have been made by Rayleigh, Courant, Weyl (see [1]) as well as many others [4].

Recently, the author [2] considered the differential equation of price stability of
multiple markets

: DAx,

where D diag (dl, , dn); each di > 0 representing the speed of adjustment to which
the ith market responds to a discrepancy between demand and supply, and where A is
an rn/-matrix due to the assumption of all goods being gross substitutes. The study
considered how D affects the eigenvalues of DA and, hence, how speeds of adjustment
affect return speeds of prices, given that there is a discrepancy between demand and
supply.

The present paper considers the analogous problem for the elastic equation above.
The point of interest in this study is how the entries in D affect the eigenvalues of DA.
Also of interest is how changes in A affect the eigenvalues of DA. Thus this work adds
to the variational study of differential equations describing elastic systems.

Throughout the paper, let n be a positive integer, and A (aii) an n x n positive
definite Hermitian matrix. Let D =diag (dl,’’’, dn) be an n x n nonnegative, non-
singular matrix. The study of the eigenvalue behavior of DA, as selected entries in D
are allowed to vary between zero and infinity, will be igy_en in 1. As the eigenvalues of
DA are as those of EAE, where E diag (n/dl, n/d), it follows that DA always has
positive eigenvalues. Intervals containing these eigenvalues will be determined. Section
2 concerns the study of the eigenvalue behavior of A under variations of its entries.
Here we first consider varying the main diagonal entries of A, that is we study A + @,
where diag (1, , 8,) is a nonnegative diagonal matrix. Intervals are found which
contain the eigenvalues of A +, as selected entries of @ are allowed to vary from zero
to infinity. The paper is then concluded by showing how some of the results presented in

1 and 2 are applied to physical situations.

1. The study for variations in D. We begin this study by considering the monotone
behavior of the eigenvalues of DA. This work utilizes the following notation" Let B be

* Received by the editors September 5, 1978 and in revised form September 24, 1979.

" Department of Mathematics, Texas A & M University, College Station, Texas 77843.
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EIGENVALUES OF DA 647

an n x n matrix with real eigenvalues. We denote the list of these eigenvalues as

an(B)<-a,,_l(B) <-. <-oz,(B).

Using this notation, we have the following
THEOREM 1.1. If mini di >- 1, then ak (A) <- ak (DA) for k 1,. , n.
Proof. For k 1, Rayleigh’s principle [1, p. 141] yields that al(DA)

maxlxl=l x*EAEx, where E diag (41, ., x/--). From this,

al(DA)= max y*Ay.
IE-ly[=l

Factoring A U*FU, where U is a unitary matrix and F a diagonal matrix yields that

a I(DA) max y* U*FUy max w*Fw.
IE-ayl=X IE-U*wI=I

Now, since IE-I(U*w)I 1 implies that Ig*wle 1, and hence, [wl-> 1, it follows that

al(DA) ->max w*Fw al(A).

For k > 1, the minimax theorem [1, p. 146] yields that

ak(DA)= min max x*EAEx)
Yl,"" ,Yk--1 (X,Yl) =0

(X, Yk--1)-----O

min max w*Aw)
Yl,’" ",Yk--1 (w’Ey-I) 0

(w,Ey11) 0

max max w*Aw)
Zl,’",Zk_ (W,Z 1) 0

(w,zk-1)=O

IE-Xwl=l

min max x*Fx)
Z1,’",Zk--1 (U*x,z1)_O

(U*x,zk-1)=O
IE U*xl

max x*Fx).
(x,yx)=O

(x, Yk--1)=O

IE-IU*xI=I

Now as IE- U*xl 1, it follows that U*xl e 1, and hence, Ixl -> 1. Thus

max x*Fx-> max
(x,yl)=O (x,yl)=O

(X, Yk--1)=O (X, Yk--1)-----O

Hence a,(DA -> ak (A). [3
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Using this theorem we can now establish the range of the eigenvalues of DA when
certain entries of D are allowed to vary from zero to infinity.

THEOIEM 1.2. Let dl, , dr vary between zero and infinity and fix dr+l, dn.

Let L diag (&+l,""", dn), L/2= diag (/&+, /-) and partition A ( P O)
where P is r x r. Then O* S

(i) fori=n-r+l,...,n, 0 < ai(DA);
(ii) for 1,. ., n r, ai(LS) ai <- a(DA);
(iii) ]’or 1,. , r, a(DA) < oo; and
(iv) for r + 1,..., n, ag(DA) <- bi ceg_r[L(S O*P-O)],

where all numbers in these intervals are achieved with the possible exception of ai and hi.
The number a (similarly b) is achieved if and only ifa (similarly b) is an eigenvalue of
LX/ZSLa/z and if ai ai+l ai+s-1 > ai+s (similarly bi bi- bi-s+l < hi-s)
then a (similarly b) is of multiplicity at least s having at least s linearly independent
eigenvectors each of which is in ker O.

Proof. Let E be the nonnegative diagonal matrix such that E=D. Then the
eigenvalues of DA are those of EAE. Now if dl,"’, dr approach zero, EAE
approaches

00 /.SL1/.)0 L
Hence

(i) 0 < ag(DA) for n r + 1,. , n, while
(ii) ai(LS) a <-a(DA) for 1,. ., n -r.
Further, as dx," & approach infinity, E-A-IE- approaches

(0 0) where C L-1/2(S I)*P-11)-1L-1/2.

Thus
(iii) ag(DA)< oo for 1,..., r, while
(iv) a(DA)<-b=ai_r[L(S-Q*P-Q)]for i=r+ 1,..., n.

Further, the above arguments show that, with the possible exception of the end points ai
for i= 1,..., n-r and b for i-r+l,..., n, all numbers in the ith interval are
achieved by a(DA) for 1,..., n.

We now consider when the boundary points ag for i-1,..., n-r and b for
i- r + 1,..., n are achieved. For this, suppose first that ak(DA) achieves its upper
bound bk for some k _-> r + 1. Then, by the minimax theorem,

min max x*EAEx)=bk
Yl,"’,Yk--1 (X, Yl) =0

(X, Yk--1)=O

for all dl,.. , dr sufficiently large. Hence, by replacing Ex by w, we have

max max w*Aw)=bk
zl,"’,Zk-1 (w,zD=O

(w,zk-1)=O
IE-lwl--1

for all dl," dr sufficiently large.
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Make two selections of values for dl,’’’, dr yielding diagonal matrices
and E.= (e) so that elel for all i, and so that the above equation holds with
replaced by E1 and by E2. Since

max w*Aw>_- max
(w,zl)=0 (w,zl)=0

(W,Zk--1)-’- 0 (W,Zk_I)=O

IE-lwl--1 IElwl--1

w*Aw

for all choices zl, , zn-1 with equality holding for some choices zl, , zn-1 so that
bk is achieved, it follows that, for such choices, the max is achieved at some w so that
IE-?IwI=IE;XwI= 1, and hence, wl Wr--O. From the proof of the minimax
theorem it follows that y E-lw is an eigenvector for E1AE1 and E2AE2 for the
eigenvalue bk. Hence, by direct calculation, y is an eigenvector for EAE for all choices
of dl," , dr with corresponding eigenvalue bk. Thus bk is an eigenvalue of L1/2SL/2
with a corresponding eigenvector v so that Qv =0. Further, if bk =bk-1
bk-s/ < bk-s, then bk must have multiplicity at least s and having at least s linearly
independent eigenvectors in ker Q.

Conversely, suppose bk bk- bk-s/l< bk- and bk is an eigenvalue of
L1/2SL1/2 having at least s linearly independent eigenvectors in ker Q. Then bk is an
eigenvalue for EAE for all choices of dl, , dr so that for each D, there is some <- k
so that bk =ai(DA)=ai-l(DA) ai-+l(DA)<ai-s(DA). As a(DA) is non-
decreasing in D for/" 1, , n, it follows that bk is an upper bound for some ai(DA),
ai_l(DA),..., ag_/I(DA) and this bound is achieved.

The proof concerning the bound ag is argued similarly and hence omitted.
Although intervals containing the eigenvalues of DA can be specified, it is not

possible, in general, to specify the list of these eigenvalues. To see this, let d
(dl," ", d,) and consider the quotient

a.(DA)
q(d) .

aI(DA)

Since q(d)=q(ad) for any positive number a, we may assume dl= 1. With this
assumption, and the inclusion principle [1, p. 149],

limq(d)=0 and limq(d)=0,
0 Ioo

where tz maxi> di and mini>l d;. Hence, q(d) achieves a maximal value for some
d > 0. Further, q(d) =< 1.

Now, if A is real and tridiagonal, with a;;/l 0 for 1,..., n then DA has
distinct eigenvalues for all nonsingular nonnegative diagonal matrices D [3, p. 166].
Thus, q(d) < 1. From this it follows that ifwe pick two positive numbers and so that
q(d)</2<l, then there is no D so that a(DA)=I and al(DA)=.

This concludes our work on the eigenvalues of DA under variations of certain
entries of D.

2. The study [or variations in A. In this section we study how varying the entries of
A affect the eigenvalues of A. The initial work concerns the varying of the main
diagonal entries of A. Our result in this regard follows:

THEOREM 2.1. Let c31, ., Or vary between zero and infinity and fix c3r/1, , at

( P Q) where P is r x r. Thenzero. Partition A
(2* S
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(i) ]’or r + 1,. , n cei(A) ai <: ozi(A +) <= bi oi-r(S), where all numbers
in this interval are achieved with the possible exception of bi and ai. The number bi is
achieved ifand only ifbi is an eigenvalue ofA and ifbi bi+l bi-s+l < bi-s then bi
has multiplicity at least s with at least s linearly independent eigenvectors having theirfirst r
components zero;

(ii) for 1, , r; ai cei(A) <- cei(A +) < cx3, where all numbers in this interval
are achieved with the possible exception of ai.;

(iii) the bound ai in (i) and (ii) is achieved ifand only ifai is an eigenvalue ofA and if
ai ai-i ai-s+l < ai-s. Then A has at least s linearly independent eigenvectors
having their first r components zero.

Proof. First write

A+=(P+IO* S

where P +@ is r r. Then, using the partitioned form of the inverse, we obtain

(a+)_ ( X -(P+@I)-IOW)WO*(P+ 91)-1 W

where X (P +D1 OS-10.)- and W (S O*(P + @1)-10)-. Thus, by applying
the adjoint formula for the inverse, it follows that as 0,..., 0r approach infinity, X
approaches 0 and (P + @1)-a approaches 0. Hence, (A + @)-1 approaches

Now by Weyl’s inequality [1, p. 157], the eigenvalues of A + @ are nondecreasing in @
and so (ii) and the first part of (i) follow.

Consider now the boundary point b in (i). For this, suppose this boundary point is
achieved. Then, there are numbers dl," dr so that if 0 > d,. , 0r > dr then

cei(A +D) oi(A +)
where D=diag(dl,’",dr, 0,"’,0). Now write @=D+R. Then applying the
minimax theorem we have

min max x*(A+D)x)= min max
Yl,’",Yk--1 (X,Yl)=0 Yl,"’,Yk--1 (X,yl)=0

(x, Yk--1)=0 (x, yk--1)=0

Ixl--1 Ixl=l

[x*(A + D)x + x*Rx]).

This minimum is achieved at an eigenvector, belonging to the eigenvalue bi, which must,
by the above equality, be of the form w where W Wr 0. Hence, by direct
calculation, w is an eigenvector, belonging bi, of A. Further, if bi bi- bi-s+1 <
bi-s then bi must be of multiplicity at least s with at least s linearly independent
eigenvectors having their first s components zero.

Conversely, if bi bi- bi-s/ < bi-s and bi is an eigenvalue of A having
multiplicity at least s with at least s linearly independent eigenvectors having their first r
components zero, then for each @ there is a k so that bi ak(A + @). Now as the
eigenvalues of A + are nondecreasing in dl,’’ ", dr it follows that bi is an upper
bound for

o(A + ), Ok-l(A + ), ", ok-s+l(A + r),

for some k, and this bound is achieved.
The bound ai is argued in a simlar way and hence is omitted.
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From the above results, it is seen that intervals containing the eigenvalues of A +
can be determined. However, it is not, in general, possible to specify these eigenvalues.

(2 1)(d O) has eigenvalues ((4+d)+x/(4+d)_4(4+2d_l))/2For example,
1 2

+
0 0

and so only one eigenvalue can be specified.
Specified eigenvalues can, of course, be achieved by allowing all of the entries of A

to vary. For our next result we show that this can, in fact, be done when A is real and
tridiagonal. The theorem will also provide a converse to the known theorem if A is a
real tridiagonal matrix with a,+lag+x,g 0 for i--1,..., n-1, then A has distinct
eigenvalues [3, p. 166].

THEOREM 2.2. Let h >’’" > ln > 0 be a list of numbers. Then them is a real
symmetric tridiagonal matrix A, with arbitrarily small aii-1 >0 for 2,..., n and
al1 >" > ann, having its list of eigenvalues h 1, , h,.

( oso-s ooIProof. First note that if A al al 0 and B OAO then
al a’ sin 0 cos 0

bll all cos2 0 -t- 2a12 sin 0 cos 0 + a22 sin2 0,

b12 a12 cos 20 + (a22- a11)(sin 20)/2,

bEE a22 COS20-2alz sin 0 cos 0 + all sin 2 0.

The proof now proceeds by an induction on n.
If n 1, there is nothing to prove. Thus, suppose the theorem holds for every list of

n distinct positive numbers where n < n l. Now let A1 >’" > A, be a list of n n
distinct numbers. By the induction hypothesis there is a symmetric tridiagonal matrix B,
having arbitrarily small b,-1 > 0 with bll > bz2 >" > b,-1 n-l, and having eigenvalues
A 1, , A,-1. Set T B (A,). Note that B can be chosen so that bll >" > b,-1 ,-1 >
A,. Define an n n plane rotation as P P(i, j, 0), where pr, the rth row of P, is defined
as

the rth unit vector for r’{i, j},

P (cos 0)e + (-sin 0)ej for r i,
/

(sin 0)ei + (cos 0)ej for r j.

(h (1)Pick PI=P(n 1 n, O1), with -7r/4<01<0 so that PAPI=BI=,.i ), where
b {1)..-1 (A, b,_l ,-1)(sin 201)/2 > 0. Then b {1).._2 (sin 01)a,-1 ,-2 < 0. Note that
lim0-.o B1 T, so 01 can be chosen sufficiently small so that b]] >. >

Now let P2 P2(n -2, n 1, 02) and set PzBIP2 B2 (b)). Take 02 so that
b (2) (cos 02)b -(sin 02)b1nn--2 nn--2 nn-1 --0, i.e.,

b (1)
nn-2

tan 02 ](1) < 0.
nn--1

Thus zr/4 < 02 < 0 and so b (2) (1) (1)
n,-1 b.-zn sin 02+ b,-1, cos 02 >0. Consider then

b () )(sin 202)/2.n--ln--2 b(na)-I n--2 COS 202 + (b (1)n-In-1 -b(nl)2_ n--2

As tan 202 < 0 and (-2b_) _2)/(b (1)
n-1.-1 bn_2n_2) ) 0 it follows that b(2)n-ln--2 # O.

Note again that limo_,oB2 T, hence 01 can be chosen sufficiently small so that
bl ,-2 > 0 and b (xEx) >... > ,(2)> 0

This argument can now be repeated to Obtain the matrix of the theorem.
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By applying real diagonal orthogonal transformations to A, we have the following:
COROLLARY 2.1. Let 11>’’’ > An > 0 be a list of numbers. Then there is a real

symmetric tridiagonal matrix A, with arbitrarily small aii-1 < 0 for 2,..., n and
a 11 >" > ann, having its list of eigenvalues A 1, , An.

This then concludes the work of this section. In the final section, some application
of these results is given.

3. Some application. Consider an elastic system, such as a spring-mass system, as
described by the matrix differential equation

where
Di +Ax O,

/all + a12 -a12 0 0 0

A
-a 12 a 12 -1" a23 -a23 0 0

0 0 ann-1 an,-

with au >0 and aii+l >0 for all i. Thus, if e (1, 1,. , 1) then Ae (01, 0,. , 0) t,
where 01 is positive [1, p. 104].

First we note that given numbers A1 >"" > An > 0, there need not be a matrix,
having the above form, with these numbers as eigenvalues. To see this, consider

A=
a+b
-a a

where a and b are positive. If we let A 100 and A2 101, then 2a + b 201, while
ab 10100. Further, by the inclusion principle,

Al<-a<a+b<-A2.

This implies that 0 < b _-< 1. But now ab <_- 100, a contradiction. Thus there is no matrix,
with the above form, having A 100 and A2 101 as eigenvalues.

As a consequence we see that the spring-mass system

2+Ax =0

can not have arbitrary generalized eigenvalues. Although this is the case, we will show
that the spring-mass system

D +Ax 0

can have arbitrary generalized eigenvalues.
THEOREM 3.1. Let h >" > An be a list ofnumbers. Then there is a real tridiagonal

matrix A, with a,-l< O ]’or 1,..., n, Ae (p, 0,..., 0)t=s, where p > O, and a
nonsingular nonnegative diagonal matrix D so that D-1A has eigenvalues

Proof. Let B be a tridiagonal matrix, as assured by Corollary 2.1, so that b,-1 < O,
611 > Ib121, bnn > ]b,-i hi, and bii > [bii-l] + Ibii+l[ for 2,. , n 1 and so that B has
eigenvalues h 1, ,

Consider the equation
Bx s,

where s (px, 0, 0) with/91 > 0. AS B is an M matrix, B-1 > 0. Hence x > 0. Set
F diag (x 1, , xn) and A FBF. Then Ae Fs (02, 0, , 0) with 02 > 0.

Now set D-diag (1/x12, 1/x2). Then D-IA has the same eigenvalues as B
and hence the result follows.
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Other such results can also be obtained from the work of the previous sections.
Theorem 1.1 shows the effect on the natural frequencies of the spring-mass system
under changes of various mass elements. Theorem 1.2 gives necessary and sufficient
conditions for a natural frequency to remain stationary under variations of mass
elements. Finally, Theorem 1.2 can be used to show the effect on the natural frequen-
cies of replacing springs by stronger springs in the spring-mass system. Other such
results are no doubt also possible.
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ON THE ASYMPTOTIC BEHAVIOR OF RESOLVENTS OF
VOLTERRA EQUATIONS*

GUSTAF GRIPENBERGS"

(1)

Abstract. This paper considers the asymptotic behavior of the resolvent of the Volterra equation

x(t)+ a(t-s)x(s) ds f(t), >_-0

given by

(2) r(t) + a(t- s)r(s) ds a(t), >= O.

Both integrability and pointwise estimates for are established and some of these are shown to be uniform
with respect to a. These results in turn give information about the asymptotic properties of the solution x of
(1).

1. Introduction. The purpose of this paper is to study some aspects of the
asymptotic behavior of the resolvent of the linear Volterra equation

(1.1) x(t) + J0 a(t-s)x(s)ds=f(t), R+ [0, co),

i.e., the unique (provided a is locally integrable) solution of the equation

(1.2) r(t)+ a(t-s)r(s)ds=a(t), teR/.

The importance of the resolvent derives from the fact that the solution of (1.1) is given
by

(1.3) x(t) f(t)- J0 r(t- s)f(s) ds, R/,

but the properties of the resolvent are also important when one studies nonlinear
Volterra integral equations. As seen from (1.3) it is interesting to determine when
r L(R+) and this question has been studied in [3], [4], [6], [8]-[10]. Other properties
of the resolvents have been studied in [2], [7], [8]. In this work the use of the Laplace
transform plays a crucial role, and we define for functions a such that e-a (t) L(R+),
o’>0,

jo e’a(t) dt, s=r+ir, o’>0, rR,

8(ir) lirn (r + it).
O+

2. Statement oi results. First we recall the following result proved (with a slightly
greater constant in (2.4) below) in [4].

* Received by the editors March 7, 1979, and in revised form September 20, 1979.
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(2.a)

(2.2)

(2.3)

Then

(2.4)

THEOREM 1. Assume that

a 6 Loc(R+),
a is nonnegative, nonincreasing and convex on (0, ),

r is the solution of (1.2).

The idea of the proof is that one combines the estimates in [10, pp. 319, 320] with
the method in [10, pp. 322, 323] to get the estimate

Ilrlll(R+)-< 40 a (t) dt + 640 a (t) d

or, by the same reasoning the estimate

[[rl[LI(R+) 40 fo a (t) dt,

and then one chooses appropriately. (For details, see [4]). As shown in [8, Thm. 2] the
constant in (2.4) can be replaced by 1 if one also assumes that a is positive and log a is
convex.

If in addition to (2.2) it is assumed that -a’ ("’" d/dt) is convex, then we get a
stronger result.

TrmOREM 2. Assume that (2.1)-(2.3) hold and that

-a’ is convex on (0, o).

Then

(2.6) Ilvar (r; [t, c))llLl+)< 122000.

It follows from [2, Thm. 2] that if log [a’l is convex too, then the constant in (2.6)
can be replaced by 1. The interesting point in (2.4) and (2.6) is, of course, that the
constants are independent of a.

We also have
COROLLARY 1. Assume that (2.3) holds and that a al + a2, where al satisfies

(2.1), (2.2), (2.5) and

(2.7) var (a2; [t, oo)) LI(R+),
(2.8) 8(s) #-1, Res>_-0.

Then

(2.9) var (r; [t, cx3)) LI(R+).
This result can be used in the study of nonlinear Volterra equations, cf. [5, Thm.. 3].
In the next theorem we consider the asymptotic behavior of the function

r(u) du, R/, (it follows from the assumptions below that r L(R+)).
THEOREM 3. Assume that (2.3) and (2.8) hoM, and that

(2.10)

(2.11)

a aa + a2, where al satisfies (2.1) and (2.2), and a2 satisfies (2.7),

lim t-,inf Io a (u) du > 0 for some a (0, 1).
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Then

Jt r(u) du O(t-) ast.(2.12)

If a satisfies (2.1), (2.2) and log a is convex, then this result is quite easy to
establish, see [2, Thm. 1]. If one considers the case a(t) -t3,/3 e (0, 1), then one sees
that the exponent in (2.12) is the best possible. The asymptotic behavior of r(u) du is
uniform, under certain assumptions, as seen from the following result.

COROLLARY 2. Assume that (2.1)-(2.3) hold, and that

(2.13) them exist positive constants , 3’ and T, c (0, 1)
such that t-" a (u) du >= , when >- T.

Then

--I(2.14) 0_< r(s)as<-_((y)-+110(y(1-))-+y +40T)t t>-T.

Observe that the inequality in (2.14) is only of interest when is large since by [7,
Thm. 1.4] we have 0 -<o r(s) as <-_ 1, R+.

In the next theorem we consider the question concerning bounds on r(t). The result
is very similar to Theorem 3.

THEOREM 4. Assume that (2.3), (2.8) and (2.11) hold and that

(2.15) a al+ a2, where ax satisfies (2.1), (2.2) and (2.5),

(2.16) az ACoc ((0, o)), lim a (t) 0,

(2.17) It var (a; [u, )) du 6LI(R/).

Then

(2.18) r(t) O(t--) as c.

In analogy with Corollary 2 we have the following result for the uniform behavior
of the resolvents.

COROLLARY 3. Assume that (2.1)-(2.3), (2.5) and (2.13) hold. Then

-I T -I(2.19) Ir(t)l-<(110(cy)-+27000(y(1-c))-1+110y +14000 )t-" t>__T.

The proofs of Theorems 3 and 4 and Corollaries 2 and 3 rely on ideas used in [1].
From [4, Thms. 1-3] and Corollary 3 we get the following result.
COROLLARY 4. Assume that (2.3) and (2.8) hold and that

(2.20) a a + a2 + a3, where a satisfies the assumptions of Corollary 3,

(2.21) a2eBV(R+),

(2.22) a3LX(R+).
Then r L(R+).

t-" var (a2; It, oo))<

It is straightforward, using (1.3) and the fact that iff r(s) ds 1 under the assump-
tions in the corollaries below, to see that we have the following applications of
Theorems 3 and 4.
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COROLLARY 5. Assume that (1.1) and the assumptions of Theorem 3 hold and that

(2.23) fBV(R+) and var (f; It, c))= O(t-) as t.

Then

(2.24) x(t) O(t-) as .
Cortot,Ar 6. Assume that (1.1) and the assumptions of Theorem 4 hold, and that

(2.25) f L(R+) and f(t) O(t-) as .
Then (2.24) holds.

3. Proofs of Theorem 2 and Corollary 1. To prove Theorem 2 we first assume that

(3.1) a(0) < oe.

Now it is easy to conclude from (1.2), (2.2), (3.1) and the fact that r LX(R/), see [10],
that r is absolutely continuous on R/. Consequently it is sufficient to show that

(3.2) Jo t[r’(t)l dt<- 121048.

Let b(t)= tr’(t). Obviously/(s) (d/dr)i(s(s)), s o-+ it, r >0 and so we have by
(1.2),

(3.3) f(s)=-(s)-s’(s)(1 + 8(s))-, Re s >0.

Here "’" denotes differentiation with respect to r. In view of Theorem i we have only to
consider the second term in (3.3).

Recall that, as a consequence o (2.2) and (2.5), d(ir) exists and is twice contin-
uously differentiable when r 0, and we have the estimates, see [1, Lemma 4.1, Lemma
5.1],

(3.4) I(iz)] 2-/ Io a(u) du, 0,

(3.5) I’(i,)[_-< 4o | ua(u) du, e0,
a0

(3.6) ["(ir)l-<_ 6000 f uZa(u) du, -0.
a0

It follows from (2.2) that Re (i-) => 0, see [10, p. 320], and so

(3.7)

Let

(3.8)

I1 + (iz)l->max {1, I (ir)l},

h(r) r’(ir)(1 + 8(it))-,
We can differentiate h when -# 0, and we obtain

(3.9)

r#0.

r#0.

By (2.2) and (3.4)-(3.7) we have ]r"(ir)l_-<6000I+ ua(u)du and Ir’(ir)(l+
3(ir))-l-< 80 2x/z, and so we conclude in the same way as in the proof of [4, Thm. 4]

h’(r) 8’(it)(1 + (ir))- + irS"(ir)(1 + 8 (it))-2

-2ir(’(ir))(1 + (it))-3, " # 0.
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(taking 8 +co in [4, line (5.6)] when o a(s) ds < 4) that

(3.10) f_ [h’()l d<-_24156.

Since (3.5) and (3.7) yield liml,l_oo h(r)= 0, and since (d/dr)i(sf(s))+ r(g) is bounded
and analytic in Re s > 0, we deduce, in the same way as in the proof of [4, Thm. 4], from
Theorem 1, (3.3), (3.8) and (3.10) that (3.2) holds (cf. also [10]).

If lim,_,o/ a(t) +co, then we define the functions an by an(t) a(t + l/n) and let rn
be the resolvent associated with an. By the previous result, (2.6) holds with r replaced by
rn and it is easy to see from (1.2), (2.2) and the definition of an that

(3.11) rn r in L1(0, T) as n - co for all T > 0.

By (1.2) and (2.1) we conclude that r is continuous on (0, co) (note that we get
esssupt>oltr(t)l<co by (2.6) (with rn) and (3.11), and so it follows from (3.11) that
var (r; l-t, co))-<lim infvar (rn; l-t, co)) for all t>0, and now (2.6) follows by Fatou’s
lemma and the corresponding result for rn.

To prove Corollary 1, note that by (2.8) we may, without loss of generality, assume
that limt_,az(t)=O (and so by (2.7) a2LI(R+)), and that al(0)<co. Choose a
sequence of functions {bn} such that

(3.12) lim bn(t) 0, limllvar (bn; [t,

defand such that cn a2- bn BV(R/). Let rn be the resolvent associated with al + cn. We
are going to show that

(3.13) sup Ilvar (rn It, co))[ILI(R+)< co.
nl

This statement follows if we can show that (d/dr)(sr(s)),Re s >0, is the Laplace-
Stieltjes transform of a measure with total variation bounded independently of n. From
(1.2) and the definition of rn we obtain

d
dr
(srn(s)) ir*.(s)+ isd’l (s)(1 + a1(S))-2(1 + ?n (S)(1 + l(S))-l)-2

(3.14)
d

(sn(s))(1 nt’al(S)Wn(S))-2+d
in (s)(1 -t-al(S)nt-n(S))-2, Res>0.

We have by (1.2), (2.3) and the definitions of cn, rn,

(3.15) fn(S)=(f(S)--n(S)(1--f(S)))(1--n(S)(1--f(S)))-1, Re s >0,

(3.16)

and

(3.17)

(1 + ?n (s)(1 + (1(s))-1)-2

(1 a2(s)(1 (s))(1 -/. (s)(1 (s))-2, Res>0,

(1 +al(S)+n(s))-2=(1-f(s))2(1-&(s)(1-f(s)))-2, Re s>0.

Now it is easy to see, from Theorem 1, (2.7), (2.8), (3.12) and (3.14)-(3.17), that (3.13)
holds when we observe that r eLl(R/), see [6].
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From (3.12) we note that (3.11) holds in this case too, and since it readily follows
that r(t)- a2(t) is continuous on (0, co) we can complete the proof of Corollary 1 in the
same way as above.

4. Proofs of Theorem 3 and Corollary 2. We may again assume that limt-oo a2(t)
0. Let x(t)= , r(u) du. Since o a(u) du +oe by (2.11) we have r(u) du 1, (that
r LI(R+) follows from results in [6]), and so

(4.1) (s) s-l(1 + (s))-1 Re s > 0

We define the function H by

(4.2) H(t)=e tR.

By standard Fourier transform results, we know that (recall the notation s + it)

lim lim (2r)- [ eit’H(n-r)(s) dr.(4.3)

From (2.1), (2.2), (2.7) and (2.8) it follows that infao 11 + a2(s)(1 + a(s))-]- > 0,
and so there exists a positive constant c such that (cf. (3.7)),

(4.4) I+(s)lc max {1, I(s)l}, Re s 0.

Choose constants T and c so that

(4.5) Jo al(u) du Nct, T.

This is possible by (2.7), (2.10) and (2.11). Observe that l(ir) is still continuously
differentiable when r 0, and (3.4) and (3.5) hold with a replaced by a (and also when
ir is replaced by + ir on the left side and a by e-Ual(u) on the right side).

Let > T be arbitrary. By the dominated convergence theorem, (3.4), (4.1), (4.4)
and (4.5) we have for some constant c3,

t--1

(4.6) lim I(s)[ dr c3 r dr c3a
0+ NIzlNt

We also get by (3.4), (4.1), (4.4) and (4.5),

f0 (i0
-1

)-1(4.7) lim (s)[ dr < cc lim -1 e-ax(U) du dr O.
0+ [ 0+

An integration by parts gives

e,,H(n_lr)(s) dr=(it)-XH(n-t-)(e-iS(-it-a)-ei(+it-))

(4.8) -(it)-1 f ei"n-lH’(n-z)2(s) dr
rl>t

-(it)-1 [ eit’H(n-r)’(s) dr, Re s > 0.
r[>t-1

Here we used liml,l (s)= 0, and this fact combined with (4.2) also yields

(4.9) lim [ ei"n-lH’(n-z)2(s) dr O.
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By (3,4), (4.1), (4.4) and (4.5) we obtain

(4.10) 1(o- :i: it-1)l <= 2-1c3 e’t-’.

From (4.1) we have

(4.11) ;’(s) -(i + i8l(s)+ is8’ (s)+
d
dr(Saz(sl)l(s(1 + (s)))-2,

and since (2.8) implies that SUpRes>o I(d/dr)(sc72(s))l < oo, it follows from (2.2), (2.10),
(3.4), (3.5), (4.2), (4.4) and (4.11) that for some constants Ca and c5,

(4.12)

dr<-_c r- dr<-c(1-a)-t 1--or

in the same way, it follows that there exists a constant c6 such that

(4.13) lim lim eit*H(n-Ir).’(s) dr < c6 dr c6T.
ergO+ noO .r[T-1

Combining (4.2), (4.3), (4.6)-(4.10), (4.12) and (4.13) we get the desired conclusion.
This completes the proof of Theorem 3.

To prove Corollary 2 we have only to note that in this case Cl 1, c2
ca 3,-125/2, Ca 25/2 +640, c5 ")/-lc4 and C6 2 + 160.21/2, and that T/t <= T"t-". By
[7, Thm. 1.4] we have r(s) ds =< 1, and since o r(s) ds 1, the conclusion of Corollary
2 follows.

5. Proofs of Theorem 4 and Corollary 3. By (2.8), (2.16) and (2.17) we may,
without loss of generality, assume that limt.,o a2(t) 0, and we note that (2.7) holds. We
also observe that (4.4) holds and we choose T and c2 so that (4.5) holds. From (2.16) and
(2.17) we deduce that 2(ir) is twice continuously differentiable when r # 0 and we have
the estimates

(5 ) ’’a2(i,)l<c3l1-1 [a (i)l < ca[l- #0

for some constants c3 and C4, cf. [10, p. 320], (not the same constants as in the proof of
Theorem 3). We also have (3.4)-(3.6) with a replaced by al.

It is easy to conclude from (2.3), (2.8) and (2.15)-(2.17) that r Lt(R/), see [6], and
that r is continuous on (0, oo). We clearly have

(5.2) (ir) (it)(1 + (ir))-.
Using the definition (4.2) we deduce from standard results concerning Fourier trans-
forms that

(5.3) r(t) lim (2,tr)- I_ eit*H(n-r)(ir) dr, > O.

As d(ir) is continuously differentiable when r# 0, the same holds for r(ir) and an
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integration by parts in (5.3) gives

(5,4)
r(t) (2rit)-( lim I_ e’n-H’(n-lr)f(ir) dr

+lim e (n r)f’(ir) d t>0.

Here we used liml,l-, f(ir) 0, and combining this fact with (4.2) we obtain

(5.5) itrt1-1H -1lim e (n r)(ir) dr O.

Next let > T be arbitrary and fixed. By (2.2), (2.15), (3.4), (3.5), (4.4), (4,5), (5.1)
and (5.2), there exist constants cs and c6 such that

(5.6)

By an additional integration by parts we obtain

(5.7)

eit’H(n-lr)f’(iz) dr (it)-IH(n -lt-1)(e-if’(-it-1) eif’(it-1))
rl>t

-(it)-1 f,>t- eit’n-lH’(n-lr)f’(ir) dr

--(it)-I eit’H(n-lr)"(ir) dr.

Here we used the fact that liml,l_,o f’(ir) 0 (a consequence Of (3.5), (4.4) and (5,1)) and
we also note that

(5.8) lim itre n-H’(n-*r)f’(ir) dr O.

From (2.2), (2.15), (3.4), (3.5), (4.4), (4.5), (5.1) and (5.2)we get

;o ;o, io, _1

(5.9) [f’(+it-1)l<--c7(( ua(u))( al(u)du) +t( al(u)du) )-<_c8t-+1

for some constants c7 and c8.
By (5.2) we obtain

(5.10) f"(ir) 8"(ir)(1 + a (it))-2- 2(8’(ir))2(1 + 8 (it)) -3, r # O.

Combine (2.2), (2.15), (3.4)-(3.6), (4.4), (4.5) and (5.1) with (5.9). Then we see that
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there exist constants C9 and c10 so that

ft ItT-l((fO )(I0
-1

)--2If"(iz)l d7<=c9 u2al(u) du al(u) du
-l<[rl<T-X

IO Ual(U) ) 2(for-1 )-3+\( du al(u) du(5.11)

(I0 al(u)du) -1) dr

Cl0tl-c.
In the same way we also deduce that

I-I__>T-1
(5.12)

IT ((I0
r-1

)(i
"r-1

)--1uZa (u) dul(U) du al

fO Ual(U) ) 2( f0-r- )-2)+( du al(u) du +r-2 dz<-3c11T.

The conclusion of Theorem 4 now follows from (4.2), (5.4)-(5.9), (5.11) and (5.12).
To prove Corollary 3 we have only to note that in this case Cl 1, c2 y, cs 640,

-1
C10 (T(1-- 0))-1c6 (ay)-acs, c7 320, cs y c7, c9 (96000+51200 2/2), c9,

Cl (24000 2/2 + 51200) and that Tt- <= Tt-.
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SOME NEW INEQUALITIES RELATED TO CERTAIN ULTRA-
SPHERICAL POLYNOMIALS*

GIOVANNI MONEGATO

rw(-) (x)}, n was first considered by Stieltjes in 1894Abstract. A remarkable class of polynomials x,+l
and later studied by Szeg6. This class can be uniquely defined, for example, by the orthogonality relation

--1/20x)(1-x) P,, (x)E(n)+l(X)X dx=O, k=O, 1,...,n,

where P()(x) is the classical ultraspherical polynomial.
In this paper we consider an inequality given by Szeg6, which involves these new polynomials, and derive

some new bounds for P(f) (x), +1() (x) and their first derivatives.

1. Introduction. In this paper, we are concerned with classical ultraspherical
polynomials and certain new polynomials which may be associated to them and give rise
to a class of quadrature formulas which have recently been studied.

We first review some known results which are needed to derive the inequalities we
will present in the next two sections.

Let P(2)(x),/x >-, be the (ultraspherical) polynomial of degree n orthogonal in
(-1, 1) with respect to the weight function w(x)=(1-xm)"-l/2; and O(,g)(x), the
associated function of the second kind:

1 F(2z) [ P()
(1 tm)-1/2 (t)

dt q(")(x).(1) (1-x2)"-l/zo(f)(x)
r( + 1/2)

For the properties of this function we refer to [5, 4.61 and 4.62]. P(,")(x) and (2(#) (x)
are two linearly independent solutions of the following linear homogeneous differential
equation of the second-order

(2) (1 -xZ)y"- (2z + 1)xy’+n(n +2)y =0.

Furthermore, we define O* (z; x) by

(3) lim [q()(x + ie)+q()(x-ie)] 2(1-x2)-*/ZO* (tx; x)
e-+O

and note that this new function is analytic on (-1, 1) and satisfies (2). The following
expansion is due to Szeg6 [4]

(1-cs2q)’-’/2[ O*Ox;csq)+i’’ F(sF(2x);)2) P;") (cos q)]
F(n + 2tz)

(4) x/-
F(n + tz + 1) =o

f(o")=1, ,() v-p, n+v
j-t, v=l,2,...., n+/+v

()Let now+1 (x) be the polynomial of degree n + 1, n 1, 2, , uniquely defined (up

* Received by the editors December 27, 1978.
+ Istituto di Calcoli Numerici, Universith di Torino, 1-10123 Torino, Italy. This work was performed

under the auspices of the Italian Research Council.
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to a constant factor) by the relation

2)"-1/2P(2 (x)x(5) (1 x (x)En+l(") dx O, k O, 1,. ., n.

These polynomials were first considered for/x 1/2 by Stieltjes [6] who introduced them
via the relation

(6) [(1 X2)-1/21 (X)]-1 ,(tx) (X) "+’nt- +’’"L:,n+l
X X

Szeg6 [4] studied them further and proved that when 0 </x <_-2 their zeros are all in
(-1, 1) and interlace with those of P(,*’ (x). In the case/x > 2 little is known about the

(’ (x), but numerical results for some/x > 2 indicate the presence of complexzeros of J-- n+l

zeros [2].
( (x) give rise to the remarkable class of quadrature formulasThe polynomials n/

(7) i_.l n+l
A (u,) fCf(U,) ,-,(u,) (t)(1 xZ)"-x/2f(x) dx ..i,. y.bi,. nt- E +12J ],n f X j,

i=1 j=l

where :,"n), 1,. ., n, are the zeros of P(ff)(x), and xl.,), ] 1, 2,. , n + 1 are the
zeros of ,+1(") (x). They have been studied in [1], [2], [3]. We recall, in particular, that (7)
exists for any n _-> 1 when 0 <=/x <- 2 and has polynomial degree 3n + 1 (3n + 2 when n is
odd), i.e., R,(f)= 0 whenever f(x) is a polynomial of degree 3n + 1 (3n + 2).

Furthermore, letting

n/2 COS=(") (cos)= Ao") ?) (n- 1)q +... + hl)/2,n+l @ COS (n + 1)@ +h cOS
n even,

n odd,

where

A(o)=l F(n+z+l)
,/g r(n + 2z)

Szeg6 shows that for 0 </x < 1 one has

()(8) hi <0, i->l (g)and A0">-Y Ai
i---1

Finally, introducing
()

(ix) (Or) t) { 1 n/2 sin o,
e.+l (o) sin (n + 1) + sin (n 1)o +. +

0,

and considering the product of (4) and

[E(+)I (cos o)- ie n+l(@)],

Szeg6 proves the following inequality, valid for 0 < x < 1,

(9)

n even,
n odd

zr F(2/x) p(2)’(") (cos q)+-- (COS )e.+l ()]> 1(1--COS2 qo)-l/2[Qn* (/.t,, cos q:))J->n+l
2 F(/x +1/2)

0<q <Tr.

In the next sections, we use (9) as point of departure from which we derive new
bounds for P(.") (x), E(")n+l (x) and their first dervatives, which do not seem to be present
in the literature. In particular, we use some of these inequalities to derive lower bounds
for r4!-) the Christoffel constants associated to P(")(x)
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2. Bounds or P(.") (x) and its first derivative. In this section, we examine some of
the consequences of inequality (9), which plays, in all that follows, an essential role.
More precisely, by evaluating (9) at the zeros :I cos ql of P(" (x), we derive the
following

LEMMA. When 0 </.t < 1, we have

(10)

(11)

4 F(n + 2,)() 2tx-l[ ,[sin i,n (2 (/z, cos i, )1 >
2 F(n +/x + 1)"

Proof. From (9), we obtain

()]2- . (),0-) (cos ()Isin q i., O (/A,, COS (49 i,n 1-:, + q9 i,n > 1, 0 < ix < 1;

because of (8), when 0 < z < 1, we also have

(12) I=(- (cos)1 < 2Ao"), (" o"),IJ. n+l [en+l(qg)[ < 21

and hence, using the explicit value of h f, from (11) we finally derive (10).
Using the above result it is then possible to prove
THEOREM 1. Let,. 1, n be the Christoffel constants associated to P") (x)

and 0 < < 1, then

2-" F(n +2) 1
(13) >

F() F(n +

where Pg’(x) denotes the first derivative os. (x).
Proof. Consider the Gaussian quadrature formula

(1 x2)"-l/2f(x) &
i=1

where

r._/" (P")
1 2)p,--1/2i,n -p(,),(z(, (1-x dx.
xi,n)

Recalling (1) and (3), and using Lebesgue’s convergence theorem, the Christoffel
constants may be expressed as follows:

(14)

Using (10) and recalling the duplication formula of the gamma function, we finally have
(13).

Since [5, (4.7.14)]

(15) dP"(x)= 2._’"+1 (x)
dx

and [5, (7.33.1)]

F(n + 2/z + 1)(p.+ 1)(16) [P.-1 (cos q)l <
F(n)F(2z + 2)’

a first consequence of Theorem 1 is the following
COROLLARY 1. For 0 </z < 1,

(17) H},", > /(2/z + 1)r(tx +1/2) r(n)
(n + 2/x)F(n + + 1)"
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Using the alternative representation [5, (15.3.2)] for the Christoffel constants

(18) _r!.) =.22_2 7r F(n + 2/x) 1 1
"" [F(x)]= F(n + 11 1 L,.,F:(")]a [P(")’(:If)]=’

together with (13), we find
COIOLLARY 2. When 0 < x < 1, the following bound holds

(19)
2 F(n+x+l) 1

F(x) F(n+l) 1 r(")]2"
Lbi,

We remark that, when 0 < 6 < q)i., < "- 6, 6 being a constant, the upper bound
given by (19) is of order O(n"), while the one obtained by means of (15) and (16) is of
order O(n2"+1), with 0< x < 1.

A very crude upper bound for HI is

1 [’* / F(x + 1/2)4!") < J_ (l--x2)"-1/2 dx
),**,,n 4 F(/x + 1

so that from (13) we may immediately derive
COIOLLAR 3. When 0 < tx < 1,

(20) IP(.) ’((")
.i,. )[>4

F(/x + 1) F(n + 2x)
F(2x) F(n + x + 1)"

A!-Finally, if we evaluate (9) at the zeros xS,". cos..1,.,/"= 1,2,...,n+1, of
E("n+l) (X), we find

2 F(, + 1/2)
and, taking account of the second inequality in (12),

(21)
1 r(x +1/2) r(n + 2x)

Isin ,..(.")12"-llP(")(cos ,,.(."))1> r(2) r(n + + 1)"

The last inequality implies, in particular, that for the smallest relative maximum of

Isin o]"-.]V’* (cos 0)1, 0< , < 1, we have the lower bound given by (21). This follows
from the known fact that the x.,. s interlace with the "’i,. s. For the Legendre case
(/x 1/2), we find

(22) [P, (cos 01.,".))1 >--1 F(n+l) 1 1

which is reasonably sharp, considering, when n is even, the smallest relative maxi-
mum of IP(x)l is known to be IP(0)l--4g 1/,,

3. Bounds for t"/l’(X). In this section, we consider the polynomial E("./1 (x) and
derive lower and upper bounds for its derivative, when 0 </x < 1.

From the cosine expansion of /1(" (cos re), and inequalities (8), noting that
[U, (cos ()1 _-< n + 1, where U(cos ()= sin (n + 1)re/sin #, one easily obtains

2 F(n+/x+l)
(23) i,..s n+l

’(") ’(cos q)l <- (n + 1)2.4g r(n + 2,)
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To obtain a lower bound for (") ’(cos a!")) we make use of the integration rule (7)It- n+l l,n

and recall that for its weights n!" the following expression is known [2]1,

n(..) h") 2Xo
’=() (cos"" (" e("(cosO a- >0,
Cn+l 1,n

I,n On+2-],n, f 1, 2," ", n + 1,

where

and

h (.") I_ (1 X2)g-1/2[p(ng)(x)]2 dx

2" F(n +k() tx
n! r(z)

Putting f(x)= [P’)(x)]z in (7), we get

h (cos
=(") ’(cos 0))=1 n+l

Recalling (21), we thus have proved the following
TnozM 2. For 0 < < 1 we have

12t-ll () ’(COSIsin 0f I/:Z n+l

and, in particular, when 1/2 <= Ix < 1,

4-" F(n + 1)

4- r(n + )’

The inequalities presented in this section could be used, for example, together with
(16) and (21) to derive bounds for the numbers r!")

1,

4. Conclusion. In this paper we have tried to show how one can obtain some
inequalities relating to the orthogonal polynomials P" (x) in a way slightly different
from those usually presented. A fundamental role is played by the polynomials +r" (x)
and their connection to the solutions of the differential equation (2), which is expressed
by the relations (5) and (6). Particularly important has been inequality (9). Up to the

=" (x). We think that newpresent, very little is known about the polynomials /1
information about them will also lead to new or more accurate results on the poly-
nomials P)(x).
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ON NONLINEAR VOLTERRA EQUATIONS WITH NONINTEGRABLE
KERNELS*

GUSTAF GRIPENBERG

Abstract. In this paper, the asymptotic behavior of solutions of the nonlinear real Volterra equation

x(t)+ fo g(x(t-s))a(s) ds f(t), =>0

is studied. Here a and f are given and x is the unknown function. The assumptions on the function f are rather
weak, and in most cases it is assumed that Io a(s) ds +o.

1. Introduction. The purpose of this paper is to study the asymptotic behavior of
the solutions of the real Volterra equation

(1.1) x(t)+ g(x(t-s))a(s) ds=f(t), R+ [0, ),

where a, g and f are prescribed real functions and x is the unknown. We will always
assume that a solution x of (1.1) exists and we note that the a priori bounds on the
solution, which we establish below, can be used to prove this existence.

The objective here is not to treat very general kernels a but to consider cases where
o a (s) ds +c and where we have to assume very little of the function f. For earlier
investigations of (1.1) and related equations under different assumptions, see [2], [5],
[8]-[19]. All our results can immediately be formulated as statements for the
integrodifferential equation

(1.2) x’(t)+Ito,tg(x(t-s))dtx(s)=f(t)’ x(0)=x0, tR+

which corresponds to (1.1) if we take a (t) /x ([0, t]) and f(t)= Xo+ofo(s) ds.

2. Statement of results. Recall that the resolvent kernel associated with the (locally
integrable) function a is defined to be the unique solution of the equation

(2.1) r(t)+ a(t-s)r(s) ds a(t),

THEOREM 1. Assume that

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

tR+.

a" R+ R+ is nonincreasing,

the resolvent r associated with a belongs to LI(R+),
gC(R),

there exists a constant kl >- 0 such that
g(z) + kl >= g(y) if z > y,

there exist constants k2 and k3 such that
Ig(z)- g(y)l-<- k2[z Yl + k3, z, y R,

(2.7) lim inf y-lg(y) > 0,

* Received by the editors March 7, 1979, and in revised form October 1, 1979.
"t Institute of Mathematics, Helsinki University of Technology, SF-02150 Espoo 15, Finland.
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(2.8) f L(R+),

(2.9) x L,c(R+) satisfies (1.1).

Then x L(R/).
This theorem is closely related to [5, Thm. 1], where (2.3) and (2.7) are replaced

by the assumpti6n that a L(R/), (then (2.3) is automatically satisfied but this fact is
not needed there). In [5, Thm. 2], the assumptions (2.5)-(2.7) are replaced by
(y y0)g(y) =>0 for some y0 R and it is moreover assumed that log a is convex. In the
case when f BV(R/), there are several boundedness results which do not depend on
(2.3) and where the assumptions on the function g are weaker than the ones used here;
see, e.g., [2], [11 ]. For cases where f satisfies some integrability conditions, see [5], 16],
[17]. Note finally that (2.3) is not a consequence of (2.2) (see [3]), and that this
assumption is clearly necessary. For some sufficient conditions for (2.3) to hold, see [4],
[6],. [7], [13].

As noted above, Theorem i is an advance over earlier results only in the case when
a(s) ds +. If moreover limt_,oo a(t) > 0, then one can prove a stronger assertion

(in this case (2.3) again holds automatically).
THEOREM 2. Assume that (2.4), (2.6), (2.8) and (2.9) hold and that

(2.10) a" R+ -> R+ is such that var (a; R+) < a (0),

(2.11)

lim sup g(y) > 0, lim inf g(y) >
y-oO

lim inf g(y) < 0, lim sup g(y) <
y---c y---oO

(2.12)

either lim sup g(y) oo or
y

lim sup Ig(y+z)-g(y)]=O for all d>0 and either
yoo Iz[<d

lim inf g(y) -oo or lim sup {g(y + z)- g(Y)l 0

]’or all d > O.

Then x L(R+).
It is quite clear that some assumptions like (2.11) are necessary to guarantee the

boundedness of the solution. To see that something more is needed, take f6
CI(R+) f’] L(R+), f(0) 0, and define g by g(y) f’(y)- 1, y _-> 0 and g(y)
y +f’(0)- 1, y <0. If a(t) 1, then x(t)= satisfies (1.1).

Next we proceed to study the asymptotic behavior of bounded solutions of (1.1).
First we have

THEOREM 3. Assume that (2.3), (2.4) hold and that

(2.13) aeBV(R+),

(2.14) Io a(s) ds +oo,

(2.15) ReIco.o) ei’t dtx(t)>-O’ cR where tx([O’ t])= a(t)’ 6R+’
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(2.16)

(2.17)

(2.18)

(2.19)

t"

if Re | e ‘’’ dlz (t) 0 for some oo R, then | e i’’ dtx (t) O,
0,) 3[0,)

var (r; [t, )) L(R),
is a measurable unction onR such that

lim sup (t + s)-(t)] 0 or all d > O,

x L(R+) satisfies (1.1),

and either (2.8) holds or

(2.20) lim a(t) # O.
t---

Then

(2.21) lim sup Ix(t+s)-x(t)[=O foralld>O
t-->o Isl<_d

and

(2.22) lim g(x(t)) O.
t-+oO

Theorem 3 is an extension of results in [12], [19] (with the exception that a La(R/)
is considered in [19]) and the proof relies heavily on these results. The main difference
compared with Theorem 3 is that in [12], [19] it is assumed that var (a; It, )) La(R+),
whereas we invoke this condition on the resolvent kernel r. Note also that if
limt_, a(t) 0 and var (a; It, )) La(R/), then (2.14) cannot hold. As an example of a
function a, for which (2.3) and (2.17) are satisfied, take a aa + a2 such that aa and-a
are nonnegative, nonincreasing and convex on R/, a2BV(R+), var(a2;[t, ))
La(R/) and such that e-Sta(t) dt -1, Re s =>0, (this is the case if (2.15) and (2.16)
hold); for details see [6].

In the next theorem, we replace (2.13), (2.15) and (2.16) by the stronger assump-
tion (2.2) and instead of (2.17) we use a technical condition saying that a is not a
constant on arbitrarily long intervals.

THZORZM 4. Assume that (2.2)-(2.4), (2.14), (2.18) and (2.19) hold and that
either (2.8) and

(2.23)
there exists to > 0 such that

(a(t)- a(t + t0))-1 Lc(R+)
or (2.20) hold. Then (2.21) and (2.22) hold.

If limt+oo a(t) 0, then Theorem 4 is very close to some results in [14], [15] where
more general kernels are treated but where, on the other hand, somewhat more is
assumed of the function g (i.e., that it should vanish or be a constant on no interval).
Consequently the main interest is in the case when lim,_, a (t) 0, a case studied only
under stronger assumptions on f in [14], [15]. In contrast to Theorem 3, the proof of
Theorem 4 does not (once (2.3) is known to hold) depend on transform techniques.

If we drop the assumption that f s L(R+), then it is no longer true (at least in the
linear case g(x) x) that (2.22) follows from the assumptions of Theorems 3 or 4 when
limt_, a (t) 0. But if we assume more of a and g then (2.21) still holds. This will be a
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consequence of the following result for the corresponding limit equation (cf. [9]),

(2.24) x’(t)+ f g(x(t-s))dtz(s)=O a.e.tR.

THEOREM 5. Assume that (2.2) and (2.4) hold and that

(2.25) a is convex,

x L(R) ACtor(R) satisfies (2.24)
(2.26)

where ([0, t]) a (t), R+,

(2.27) g is nondecmasing.

Then x is a constant. If instead of (2.27)

(2.28) g is nonincreasing

then x is monotone nonincreasing or nondecmasing and if x is not a constant, then

LG LG1
(2.29)

tR

For other investigations o the limit equation (2.24) and its relation to (1.1) and
(1.2), see [8], [9], [16], [19]. For the existence o noneonstant solutions o (2.24) under
the assumption (2.28), see [1]. Concerning (1.1), we have
Coo 1. Assume that (2.2), (2.4), (2.18), (2.19), (2.25) and either (2.27) or

(2.28) and

LGa LGa
(a.3o)

G: {[g(z)- g(y)[/lz y[ lim inf x(t)N z < y Nlim sup x(t)}
hold. Then (2.21) holds.

From the proof of Theorem 5 we can also deduce the following result for the
equation

(2.31) x"(t)+ Io, g(x(t-s)) dlx(s)=O a.e. tR.

COROLLARY 2. Assume that (2.2), (2.4), (2.25) and (2.28) hold and that

(2.32)
x 6L(R)f-I CI(R), x’ ACIoc(R) satisfies the equation (2.31)

where tx ([0, t]) a (t), R+.
Then x is a constant.

Using this corollary we obtain
COROLLARY 3. Assume that (2.4), (2.18), (2.19) and (2.28) hold and that

(2.33) a CI(R+), a(0) 0, a O, a’ is nonnegative, nonincreasing and convex.

Then (2.21) and (2.22) hold.
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Observe that it is a very strong assumption to assume that x is bounded in
Corollaries 2 and 3.

3. Proof of Theorem 1. Define the function z by

(3.1) z(t) x(t)- f(t), R/.

By (1.1), this function satisfies the equation

(3.2) z(t)+ a(t-s)ga(z(s))ds=F(t), teR+,

where

(3.3) g(y)= sup g(v), y=>0, g(y)= inf g(v), y<0
O<=v<=y y<v<0

and

F(t)= Io a(t-s)(g(z(s))-g(x(s))) ds, t6R+.

Since Igx(Y)-g(Y)[-<-kx, y R by (2.5) and (3.3), it follows from (2.2), (2.6), (2.8) and
(3.1) that

(3.4) F is Lipschitz continuous on R/.

Choose real constants ca, cz > 0 such that

(3.5) y-g(y) >= c when [yl -> ca.
By (2.7), this is possible. Let c3, Ca (0, 1) be some constants which satisfy

(3.6) (C’1C3 "+" Ca) f0 [r(s)l as <-_ 2-,
where r is the resolvent associated with a.

Suppose that x L(R/). Then, by (2.8) and (3.1), there exists a sequence {t,} such
that [z(t,)[oo as t,-oo. We may assume (see (2.4) and (2.7)) that the following
conditions are satisfied (if necessary replace x and f by -x and -f, and g by the function
g(y) -g(-y))

(3.7) z(t,)+00 as n

(3.8) z(t,) sup Iz(s)[, n-> 1,

(3.9) g(z(t,)) sup ]gl(z(s))l, n >- 1.
O<=stn

Define the numbers T, by

(3.10) T,=inf {t>=Olz(s)>=(1-c3)z(t,), gl(z(s))>=(1-c4)gl(z(tn))on[t, tn]}.

Proceeding in the same way as in the proof of I-5, Thm. 1], we deduce from (2.2),
(2.4)-(2.6), (3.2)-(3.4) and (3.7)-(3.10) that

(3.11) t,-T,oo as n o.

(Observe that the assumption a L(R/) was not essential at this point in the proof of
[5, Thm. 1]).
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Next we conclude from (2.4)-(2.6), (3.1), (3.3), (3.9) and (3.10) that there exist
constants c5 and c6 such that for all n,

(3.12) Ig(x(t))-gl(z(t))l<-_c4ga(z(t))/c5 on[T, t],

(3.13) ]g(x(t))l<=gx(z(t))+c6 on[0, T].

By (1.1) and (3.1), we have

g(x(t))+ fo a(t-s)g(x(s))ds=g(x(t))-z(t), tR+,

and solving g(x(t)) from the left side of this equation with the aid of the resolvent
associated with a (see (2.1)), we get

z(t)-fo r(t-s)z(s)ds+Io r(t-s)g(x(s))ds=O, tR+.

This equation yields, for every n,

g(z(t)) r(s) ds + z(t) 1- r(s) ds

(3.14) N sup (g(x(t))-g(z(t))+z(t)-z(t)l)l
TNtNt

+ sup (Ig(x(t))l+[z(t)l) Ir(s)l ds.

We may safely assume that a(s) ds + since the other case is covered in [5, Thm.
1]. But then it is easy to see from (2.1) that 0 r(s) ds 1 and so we get a contradiction
from (2.3), (3.3) and (3.5)-(3.14) (note that Ig(x(t))-gl(z(t))l+[z(t)-z(t)l
(c3c; + ca)lgl(z(t))l +c5). This completes the proof of Theorem 1.

4. Proof of Theorem 2. Suppose that g(x(t)) L(R+). We again introduce the
definition (3.1) and note that z satisfies the equation

(4.1) z(t)+ a(t-s)g(z(s)) ds =F(t), teR+,

where we now have F(t)=a(t-s)(g(z(s))-g(x(s)))ds, teR+. From (2.6), (2.8),
(2.10) and (3.1) we conclude that (3.4) still holds and that g(z(t))L(R+).
Consequently, we can choose a sequence {t} such that Ig(z (t))l m as t m. We may
again assume this sequence to be such that

(4.2) g(z(t)) sup Ig(z(t))l, n e 1.

Since x L7(R+) and since (2.4), (2.8), (2.10), (3.4) and (4.1) hold, we see that z is
locally Lipschitz continuous and differentiating (4.1) we get (writing a(t)=a(O)+
das))

(4.3) z’(t)+a(O)g(z(t))+ g(z(t-s))da(s)=F’(t) a.e. teR+.

It follows from (2.10) and (4.2) that

a(O)g(z(t))+ g(z(t-s) da(s)e(a(O)-var (a; R+))g(z(t)), n 1,
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and using this inequality together with (3.4) in (4.3) we conclude that z’(t) < 0 for a.e.
in a neighborhood of tn when n is sufficiently large. This is a contradiction since by
(2.11) we may assume that z(t)<-z(tn) when t<=t for all n.

Suppose next that g(x(t)) L(R/) but x

_
L(R/). By (2.8) and (3.1)we also have

z L(R/) and consequently there exists a sequence {tn} such that ]z (tn)
We may without loss of generality assume that

(4.4) z(t) sup z(t), n >-_ 1
Ot<=tn

and by (2.11) also

(4.5) g(z(t)) >- Cl > O, n >- 1

for some constant C l.

It is easy to see from (1.1), (2.10), (3.1) and the assumption that g(x(t)) L(R+)
that

(4.6) z is Lipschitz continuous on R+.

Since we clearly cannot have limsupy_,g(y)=oo, we must by (2.13) have
limy_, suPlzl_<_d Ig(Y + z)--g(Y)I 0 for all d > 0. This fact combined with (2.8), (3.1),
(4.5) and (4.6) implies that there exists a sequence {T,} such that (3.11) holds and for
every n,

(4.7)
g(x(t)) >-- 2-1cl and

var (a; R/) ess sup [g(x(t))- g(x(s))[ <-_ 2-2c1(a (0)-var (a; R/))

for a.e. (t 1, t).

We have by routine estimates

a(O)g(x(t))+ J0 g(x(t-s)) da(s)

>- a (t)g(x(t)) var (a; R+) ess sup [g(x(t)) g(x(s))l

-2 var (a; It- Tn, c))IIg(x(t))[IL(R/ for a.e. e (t + 1, tn), n >- 1.

It follows from this inequality and (1.1), (3.1), (3.11) and (4.7) that when n is large
enough, then z’(t)< 0 for a.e. e (tn- 1, t,). But this statement combined with (4.4)
yields a contradiction and the proof of Theorem 2 is completed.

5. Proof of Theorem 3. Using the resolvent equation (2.1), one easily sees that
(1.1) implies

f(5.1) x(t)+jo r(t-s)gl(x(s))ds=f(t) r(t-s)f(s)ds, tsR+,

where now g(y)= g(y)-y. Since (2.3) was assumed to hold, it follows directly from
(2.1) and (2.14) by Laplace transform arguments that

(5.2) | r(s) ds 1.
3o
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Suppose that lim,_, a(t)= 0 and (2.8) holds. By (2.3), (2.8), (2.18) and (5.2), we
have (observe that (1.1), (2.4) (2.13) and (2.19) yield fLoc(R/))

(5.3) Zf(t)- r(t- s)f(s) ds (R+)

Now we want to apply [19, Corollary 3b] to (5.1) and in view of (2.4), (2.17), (5.2), (5.3)
and the definition of gl, we have only to check that the assumptions (2.13), (2.15) and
(2.16) hold when a is replaced by r. In [19, Corollary 3b] it is assumed that x is a
bounded solution of (1.1), (2.4), (2.8), (2.13), (2.15) and (2.16) hold (with the unneces-
sary restriction that Re/2 (w) 0 for at most denumerably many o, see below) and that
var (a [t, oo))LI(R ++),/2(0)=0 and limt_,o/(t) =f(eo) exists. Then it is asserted that
(2.21) and limt_, (x(t)+ a(s) dsg(x(t)))=[(oo) hold.

We immediately obtain from (2.1), (2.3) and (2.13) that r BV(R+). Let u be the
finite Borel measure defined by u([0, t]) r(t), R+. From (2.1) it follows that

(5.4) 3(w) (t2 (o) io., It2 (o)/o 12)11 + i/2 (w)/w -2, wR,

where we have used the definition/2(09) o, ei’t dtz(t). Now it is clear from (5.4) that
we can replace a by r in (2.15) and (2.16) as we note that it follows from (5.2) that
(0) 0. An application of [19, Corollary 3b] shows that (2.21) and (2.22) hold in this
case, but note that we must use [12, Lemma 4] in the proof of [19, Lemma 2.1].

Assume next that lim/_, a (t) # 0. Write f in the form ’1 + ’2, where

(5.5) fl L(R+), f e C(R+) and lim ’1(t) 0 lim f (t).

Put R(t)= 1- r(s)ds, teR/. Since (2.20) holds, it follows from (2.13), (2.15) and
(2.17) that (see 13])

(5.6) R La(R+).

An integration by parts yields

Io Iotf(t)- r(t- s)f(s) ds R (t)/e(0) + R (t- s)f (s) ds,

and we see from (5.5) and (5.6) that (5.3) still holds. Now we can complete the proof for
the case when lim_, a(t) 0 in the same way as above.

6. Proof of Theorem 4. Define the function h by h(t) =f(t)-+ f(s) ds, R+.
We observe that

(6.1) h L(R+), lim h(t) O,

and if we define the function F by

(6.2) F(t)=f(t)-h(t)+ a(t-s)(g(x(s)-h(s))-g(x(s))) ds, tR+,

then

(6.3) F ACoc(R+), F’ L(R+) and lim F’(t) O.
t-->
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This follows by (2.2), (2.4), (2.18) and (2.19). Putting

(6.4) z(t) x(t)- h(t), R/,

we now have

Io(6.5) z(t)+ a(t-s)g(z(s)) ds=F(t), tR+.

The next step is to establish the crucial
LEMMA 6.1. Let the hypothesis o Theorem 4 hold and let , T be arbitrary positive

constants. Then there exist a positive constant To and an integer No such that J’or all
n No there exist closed intervals I c [nTo, (n + 1) To] such that m (I) r and
lg(z(t))l a, I,.

Proof. Arguing in the same way as in [10, p. 853], we conclude from (2.20), (6.4)
and (6.5) that there exist constants

(g(z(u))-g(z(u-s)))2 da(s) du + a() (g(z(s)))2 ds

q
(g(z(tl-S)))(a(s)-a(m)) ds(6.6) Cl + c f’(s)l ds + 2-

-2- (g(z(t-s)))(a(s)-a()) ds,

where a(t)=a(O)+oda(s) and a(m)=lima(t). The following estimate is a
consequence of (2.2)(c=

(g(z(tl- a()) ds [t (g(z(t- a()) dss)))2(a(s) s)))2(a(s)
(6.7)

t2--tc (a(s)- a()) s.
aO

This inequality and (6.3) imply that the right side of the inequality in (6.6) divided by
t2-ta can be made arbitrarily small, provided one first chooses t2-t to be large and
then tx to be large. This shows, since we may assume that a (t) a () (otherwise we can
invoke Theorem 3), that the hypotheses used in the proof of 10, Lemma 4] are satisfied.
Hence we conclude that if and Tx are positive constants, then there exists a positive
constant T2 and an integer N2 such that for all n N2 there exist closed intervals Jn such
that

(6.8) J, =[nT, (n + 1)T], m(J,) T, nN
and

(6.9) sup{[g(z(s))-g(z(t))[[s, teJ,}a, nN2.
If a () > 0, then the conclusion of the lemma follows from (6.6)-(6.9) by a simple

argument. Just note that g(z(t)) cannot behave like a nonzero constant on large
intervals.

Suppose that a() 0. By (2.2) and (6.3) we may differentiate (6.5) and we obtain

(6.10) z’(t)+a(O)g(z(t))+ g(z(t-s)) da(s)=F’(t) a.e. tR+.
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Let 0 < tl < t2 < 03 be arbitrary. From (2.2) we have

a(O)g(z(tz))+ g )) da(s)
(6.11)

-< a(0) sup [g(z(t2))- g(z(t))] + 2a(tz- tl) sup Ig(z(t))[.
t <--t<=t2 tO

Since limt_, a(t)=0 and (2.4), (2.19), (6.1), (6.3), (6.4) and (6.8)-(6.11) hold, we see
that if 63 and T3 are given constants then there exist a positive constant T4 and an
integer N4 such that for all n ->_ N4 there exist closed intervals Kn such that

(6.12)

(6.13)

and

(6.14)

Kn c[nT4, (n + 1)T4], m(K)>-_ T, n _->N4,

sup {lx(s)- x(t)[ ls, e K,} <- 63, n >- N4

sup {[g(x(s)) g(x(t))l Is, K,} <- 63,

(6.15)

Again we conclude that (5.1) holds. Let 0 < tl < t2 < 03 be arbitrary. We have

f t2-tl

f0t2[g(x(t2))[ r(s) ds <- x(t2)+ r(t2-s)(g(x(s))-x(s)) ds
aO

+ sup ([g(x(t))- g(x(tz))l / Ix(t)- x(t2)[) Io [r(s)l ds
tl <=tt2

+ess sup (Ix(t)] + [g(x(t))[) ft Ir(s)l ds.
to 2-tl

Let 6 be arbitrary. By (2.3), (2.4), (2.19), (5.1)-(5.3) and (6.12)-(6.15) we observe that
if we choose 63 <- 2-1 sufficiently small and T3 _-> T large enough and let tl and t2 be the
endpoints of the interval K, for some n sufficiently large, then it follows that Ig(x(t2))l <=
2-16. Consequently the assertion of Lemma 6.1 holds with g(z(t)) replaced by g(x(t)).
But the desired conclusion now follows by (2.4), (6.1) and (6.4) and the proof of Lemma
6.1 is completed.

Suppose that lim supt-, Ig(x(t))l > 0. We may without loss of generality assume
def

that g+ lim supt_, g(x(t))> 0. Let {t,} be a sequence such that

(6.16) g(z(tn))-, g+ as t -->03.

Moreover, we choose this sequence so that

(6.17) foranyintegerm, theset{t[z(t)<=z(t)}f’l(t,-m-l,t,)isnonempty.

If this is impossible to achieve, then limt_ z (t) exists. But then it follows from (2.4) and
Lemma 6.1 that limt_, g(z(t))= 0 and so (2.22) follows by (2.4), (6.1) and (6.4).

Choose 6 2-1g+ and T _-> to. For every n sufficiently large, let [qn, sn] be one of the
intervals given by Lemma 6.1 so that

(6.18) O < t,-sn <- 2 To.
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By (2.2), Lemma 6.1 and our choice of 6 we obtain for all n sufficiently large,

(6.19)

a(tn)g(z(tn))+ Io" (g(z(tn-s))-g(z(tn))) da(s)

>-a()g(z(t.))-a(O) sup (g(z(s))-g(z(t.)))
2-1tn<=s<=tn

-2(a(2-1t.)-a()) sup Ig(z(t))l
to

+ (a(t, s,)- a(t, q,))(g(z(t,))- 2-g+).
Now it follows from (2.2)and either (2.20)or (2.23)combined with (6.3), (6.10), (6.16),
(6.18), (6.19), the continuity of g(z(t)), the choice of T and the definition of g/ that ifwe
choose n large enough, then z’(t) < 0 for a.e. (t, m -1, t,) for some positive integer
m. But this statement contradicts (6.17) and hence (2.22) holds. It is an easy
consequence of (2.4), (2.22), (6.1), (6.3), (6.4) and (6.10) that (2.21) also holds. This
completes the proof of Theorem 4.

7. Proof of Theorem 5. By (2.2), (2.4) and (2.24)-(2.26) we may clearly assume
that x is continuously differentiable and (2.24) holds for all R..

Write (2.24) in the form

(7.1) x’(t)=-a(o)g(x(t))- a’(t-s)(g(x(s))-g(x(t))) dt, tR.

It is not difficult to see from this equation combined with (2.2) and (2.27) or (2.28) that x
cannot be bounded unless g(x(t))=-O or lim,_ a(t) a() 0. Hence we may assume
that a() 0.

We claim that if (2.27) holds but x is not a constant or if (2.28) holds but x is not
monotone (nondecreasing or nonincreasing) then there exist points So, to, -< So <
to < c such that

(7.2) g(x(t)) g(x(so))= g(x(to)) when 6 (So, to).

To see this we observe by (2.2) and (7.1) that if (2.27) holds then g(x(t)) is monotone if
and only if x is a constant and if (2.28) holds then g(x (t)) is monotone if and only if x (t) is
monotone.

We may without loss of generality assume that g(x(t))< g(x(to)), (So, to). By
(2.27) or (2.28) we can choose tl (So, to) to be the smallest number such that

(7.3) g(x(q)) min g(x(t)) and x’(tl) O.
so--t<--to

Let (c)/ max 0, c} and (c)_ =-(-c)/. We claim that

fq (tl S
def

(7.4) Pl a’ )(g(x(s))-g(x(tl))) ds < O.

If this is not the case then it follows from (7.1) since x’(q) 0 that ’__" a’(ta s)lg(x(s))-
g(x(q))l ds 0 and we deduce from (2.25), (2.27) or (2.28), (7.1) and our choice of tl
that x’(t) O, > t which is a contradiction by (7.2). Now it is possible to define the real
number s by

(7.5) Sl sup {t < txlg(x(t)) < g(x(q))}.
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Next we are going to define three sequences {ti}, {pi} and {sg} with the following
properties for all _-> 1"

(7.6)

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

and

Si < ti+l <- Si-1 < ti,

g(x(t)) >= g(x(to)), even and g(x(t)) <- g(x(h)), odd,

(-1)’g(x(t)) <-_ (-1)ig(x(ti)) (-1)ig(x(si)), si <- <- ti,

g(x(t+)) (-1)+ max {(-1)+g(x(t))}, x’(ti+) O,
si t<= ti

Pi a’(t-s)((-1)(g(x(s))-g(x(ti))))+ ds,

Pi+ Pi

(7.12) si sup {t < t[(-1)ig(x(t)) > (-1)ig(x(ti))}.

The numbers So, h, pl and $1 have already been defined above. It is a consequence of the
monotonicity of g that we may choose the numbers t to satisfy x’(t)= 0. Since (7.4)
holds, we have only to check that (7.11) holds as then all the other requirements are
easily seen to be satisfied (especially the crucial fact s >-oo for all i). At this point we
may assume that (7.6), (7.8) and (7.9) hold. We have by (2.2), (2.25), (7.1), (7.6), (7.8)
and (7.9),

a’(ti+a s)((-1)i+(g(x(s))- g(x(ti+l))))+ ds

t,+

a’(ti+l s)((-1)i(g(x(s))-g(x(ti+l))))+ ds

ti+l
<-_ a’(t,+l-S)((-1)i(g(x(s))-g(x(ti))))+ ds

ti+l
<- a’(t-s)((-1)i(g(x(s))-g(x(ti))))+ ds =Pi,

and (7.11) follows.
From (2.2), (2.4) and (2.26) we conclude that x is Lipschitz continuous, hence

g(x(t)) is uniformly continuous. Combining this fact with (7.2), (7.6) and (7.7) we see
that limi_,t=-oo and so by (7.6), (7.8) and (7.9) we have lim_,g(x(t2))=
lim supt_,-oo g(x (t)). But this statement gives a contradiction in view of (2.2), (7.4), (7.10)
and (7.11) and the desired conclusion follows.

Assume next that (2.28) holds, x is not a constant and (2.29) does not hold. The first
case to consider is

(7.13) Lo fo a(s) ds > 1,

where Lo infLal L > 0. We may, without loss of generality, assume that x is nonde-
creasing. It is not difficult to see from (2.2) and (7.1) that x’(t) is uniformly continuous on
R. Consequently there exists to so that x’(to)= maxtR x’(t). Since Lo > 0 we see from
(2.25) and (7.1) that x’(t) > 0 for all R and we can choose a sequence {tn}, tn oe so
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that x’(tn) minto__<,<__t, x’(t). Then we have by (2.2), (2.28), (7.1) and the definition of L0,

x’(t.) >= -Lox’(t.) a’(t. s)(t. s) ds

tn
=Lox’(t,) (a(s)-a(t-to)) ds.

But since x’(t,)>0 for all n, we get a contradiction by (7.13) if we choose tn large
enough.

The second case that we have to consider is

(7.14) L1 a(s) ds < 1,

where La supLl L (note that if La 0 then it follows immediately from (7.1) that x is
a constant). Again we assume that x is nondecreasing and choose to so that x’(to)=
max,R x’(t). From (2.2), (2.28), (7.1) and the definition of L1 we deduce that

x’(to)<-_-Lax’(to) a’ )(to-S) ds =Lax(to) a(s) ds.

Since x’(to) > 0 we have a contradiction by (7.14). This completes the proof of Theorem
5.

8. Prooi oi Corollaries 1, 2 and 3. To prove Corollary 1, it is sufficient to show that
(2.22) holds with x replaced by z as defined in (6.4) since (6.1) holds. Applying (6.3),
Theorem 5 and [9, Thm. la] to the equation (6.10), we obtain the conclusion of
Corollary 1.

To establish Corollary 2 we have to make the following changes in the proof of
Theorem 5. We replace equation (7.1) by

(8.1) x"(t)+a(o)g(x(t))+ a’(t-s)(g(x(s))-g(x(t))) ds=O, t6R

and we may assume that x C2(R). From (2.2) and (2.28) we again conclude that x
cannot be bounded unless g(x(t))=--O or a() 0. Let us assume below that a() 0.
By (2.2) and (2.28) we also see that x cannot be monotone (nondecreasing or
nonincreasing) if it is not a constant. In the rest of the proof of Theorem 5 we have only
to choose the numbers ti, i=> 1 so that (-1)ix"(ti)->0 instead of demanding x’(ti)= O.
This is possible by (2.28). The fact that x’(ti)= O, i>= 0 was only used in deriving (7.4)
and (7.11) with the aid of (7.1), and we can just as well use (-1)ix"(ti)>-0 and (8.1) to
achieve the same results. Finally we note that since x’ is now Lipschitz continuous by
(8.1), it follows that x is Lipschitz continuous too, since it is bounded. This completes
the proof of Corollary 2.

For the proof of Corollary 3, we define the function h by h(t)=
f(/)-2+a f(u)duds, tR+. From (2.18) we deduce that (6.1) holds and if the
function F is defined by (6.2), then it follows from (2.4), (2.18), (2.19) and (2.33) that

(8.2) F Ca(R+), F’ ACtor(R+), F" L(R+) and lim F"(t) O.
t-

Defining the function z by (6.4), we see from (2.33) and (8.2) that (6.5) holds,
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z E CI(R+), Z’E ACtor(R+) and

(8.3) z"(t)+a’(O)g(z(t))+ a"(t-s)g(z(s)) ds=F"(t) a.e. teR/.

Proceeding in the same way as in the proof of [9, Thm. la], we conclude that if {t,} is a
sequence such that t oe, then there exists a subsequence (also denoted by {t}), and a
function y e C(R) such that

(8.4) z(t-t,) y(t) uniformly on compact subsets of R as n

where y satisfies the equation

y"(t) + a’(O)g(y(t)) + a t- s)g(y(s)) ds O, R.

But by (2.28) and (2.33) we know that y must be a constant, and hence, (2.21) follows
from (6.1), (6.4) and (8.4).

We have still to show that (2.22) holds. Define the function v by

(8.5) v(t) x(t)-f(t), R+.
By (1.1) and (2.33) we see that v C2(R+) and

(8.6) v’(t) + a’(t- s)g(x(s)) ds 0, e R+.

From this equation we conclude by (2.4), (2.19) and (2.33) that v’ is Lipschitz
continuous. Hence (2.18), (2.21) and (8.5) yield

(8.7) lim v’(t) O.

Let r be the resolvent kernel associated with a’. Using the resolvent equation (2.1) we
obtain from (8.6)

Io Io(8.8) r(t- s)g(x(s)) ds r(t- s)v’(s) ds v’(t), R/.

It is a consequence of (2.33) that r L(R+) (see [13]), and hence, it follows from (2.4),
(2.19), (2.21), (8.7) and (8.8) that lirnt_,o g(x(t))= 0 (recall that since a’0 we have
o r(s) ds > 0). This completes the proof of Corollary 3.
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STABILITY OF AN AGE-DEPENDENT POPULATION*

FRANK J. S. WANG

Abstract. This paper considers a nonlinear deterministic population model in which the death rate rises
as the population grows. It is an age-dependent version of a logistic population whose growth is controlled by
limited resources and is in the form of a partial differential equation with respect to time and age. We prove
that the solution of our equation behaves asymptotically just like the solution of the logistic equation
dN/dt N(a- bN) and is, therefore, globally asymptotically stable. This implies that there are no steady
oscillations, and that in the long run the population size and age-structure become fixed, independent of the
initial conditions. Possible applications in fish and animal population dynamics are studied.

1. Introduction. The logistic equation dN/dt N(a bN) has proved to be a very
useful model for population growth. It applies when environmental pressures force the
death rate up or the birth rate down as the population grows. Its solution has been
applied, with remarkable success, to fit the growth curves of various types of popu-
lations (see [9], [10], [11]). Among deterministic models, the chief disadvantage of the
logistic models is that they yield no information concerning the age distribution of the
population and, in fact, are based on the assumption that the birth and death processes
are age-independent. The age-dependent analogue of the logistic model was first
proposed by Von Foerster [13], in connection with cell populations. It has then been
generalized by several authorsmGurtin [8], Griffel [6] and Rorres [12]; and the
existence and stability of their solutions has been extensively studied. It is the purpose
of this paper to propose a different age-dependent version of the logistic model and
investigate the stability of its solutions.

We define the age-density function p(x, t) such that for any a, b the number of
members at time with age between a and b is

bI p(x, t) dx.

Here, p is a continuous function, representing some kind of smoothing or statistical
average of the true integer-valued population size. We shall assume that the mean
number /3(x) of offsprings produced per unit time by an individual of age x is
independent of both and the size of the population. Hence, the birth process is
described by the integral equation

p(0, t)= | (x)p(x, t) dx, t>-O.
Jo

Here,/3(t) is assumed to be nonnegative and continuous.
Suppose the struggle for survival is dominated by competition with other individ-

uals in the population. Then individuals of different ages should be weighted differently
to account for their possible different ecological impacts on the surrounding environ-
ment, e.g., the average food consumed in a day by an individual may be different in
different age-groups. Let c(x), a nonnegative function on [0, c), represent the weighing
function. We therefore assume that the death probability of an individual at time is a

* Received by the editors October 4, 1978, and in revised form April 13, 1979.
t Mathematics Department, University of Montana, Missoula, Montana 59812.
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function of the "size"

s(t) J0 c(x)p(x, t) dx

after the adjustment according to the age-distribution of the population (see 12]) More
precisely, we assume that there exist a nondecreasing function A such that A (s(t)) is the
probability density function at time of an individual’s dying at age x; i.e., A (s(t)) At +
o(At) is the probability of an individual of age x dying in the interval (t, + At]; we
assume that this is independent of x.

Since it is usually true that the more producing power (producing offsprings, of
course) the individual has, the better physical condition it has and is thus less susceptible
to competition from other individuals; it is reasonable to assume that the weight c(x) we
put on an individual of age x is proportional to its birth rate/ (x). Without loss of
generality, we shall take the constant of proportionality to be one and thus assume
(x) c(x) and s(t) p(O, t). Applications in fish and animal population dynamics will
be given in the last section. This will illustrate the validity of the underlying biological
assumptions for some species.

In 2, we set up the basic equation of the model and reduce the problem to the
solution of an integral equation. We then transform this integral equation into a linear
renewal equation and relate the asymptotic behavior of s(t) to the asymptotic behavior
of the solution of the renewal equation. In 3, we use some well-known properties of
the solutions of the renewal equations to show that, under appropriate conditions on
/(x) and A (s), s(t) is globally asymptotically stable; that is, s(t) tends to a limit s* >_- 0
which is independent of the initial conditions, and s*> 0 if and only if

/X=fo B(x) dx,

the mean number of offspring born to a member surviving to a great age, is greater
than 1.

2. Basic equations. Consider the group of individuals who are of age x at time t. If
is increased by h units, these individuals age by h units; thus, assuming that p has partial
derivatives,

limP(x +h,t+h)-p(x,t)=px+pt
h-0 h

is the rate at which the population of this group is changing in time. Since this rate plus
the number A (s(t))p(x, t) of individuals (per unit age and time) of age x who died at
must equal to zero, we obtain

(1)

where

px + pt + (s(t))p(x, t) O,

(2) s(t) p(O, t)= (x)p(x, t) dx.

Let q be the age-density function for the initial population, i.e.,

(3) p(x, 0)= q(x) for x -> 0.

The p.d.e. (1) together with the integral equation (2) and the initial condition (3)
constitutes our model.
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Equation (1), with the initial condition (3), can easily be solved by integrating along
characteristics. One finds that

(4)

p(x, t) s(t- x) exp (- (s(u)) du

Ioq(x-t) exp (- .(s(u)) du

Substituting (4) into (2), we obtain

Define

O<__x<_t,

x>=t>=O.

io )s(t)=It (x)(x--t)exp(-- a(s(u))du dx

+ (x)s(t-x)exp .(s(u))du dx,

F(t) s(t) exp ( , (s(u)) du and g(t) It (x)q(x- t) dx,

and rewrite the preceding nonlinear integral equation for s(t) into a linear renewal
equation for F(t)"

(6) F(t)=g(t)+ (x)F(t-x) dx.

The mean number/x I0 /3(x) dx of offsprings born to a member surviving to a
great age is crucial for the general behavior of F(t). The following three results are part
of the standard textbook literature (see [1], [5]).

Suppose that/x < 1 and g(t)-+ 0 as t-+ oo, then F(t)+ 0 as t-+ oo.(2.1)

(2.2)

(2.3)

Suppose that/x 1 and g(t) is integrable, then

,-oolimF(t)=Io g(t)dt/f x3(x)dx,

where the fraction is defined to be zero if the denominator is infinity.

Suppose that /x > 1 and e-tg(t) is integrable over [0, oo) where c, the
Malthusian parameter for fl (x), is a real constant such that

Then

Io e-t(t) dt 1.

F(t)-’-e at g(x) e dx xB(x) e dx

where indicates the fact that the ratio of these two functions tends to one as

3. Global stability. We now study the asymptotic behavior of the solution s(t) of
the integral equation (5). Since (x) p(x, 0) is the age-density function for the initial
population, it should be nonnegative and integrable and its integral over [0, oo) is the
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initial population size. If the mean number Ix of offspring born to a member is less than
1, we would certainly expect the population to die out. The proof for this is immediate.

THEOREM 1. I]" IX o/(X) dx < 1, (x) and h (s) are nonnegatite and (x) is
integrable, then the solution s(t) of (5) tends to zero as

Proof. Since/3 and are both integrable, g(t)O as t--> oo. This implies by (2.1)
that

F(t) s(t) exp ( h(s(u)) du - 0

as t--> co. Thus s(t)-->O as
Consider the case Ix 1. We shall show that if g(t) is differentiable and h (s) # 0 for

all s # 0, then s(t) also approaches zero as t--> co. Assuming g(t) is differentiable and
differentiating (6), we obtain

F’(t)=g’(t)+(t)g(O)+ (x)F’(t-x) dx.

This is again a renewal equation. Since g(t) dr, being less than Ix times the initial
population size I q(x)dx, is integrable, (2.2) implies lim_,F’(t)/F(t)=O. Since

)F(t) s(t) exp ( h (s(u)) du F’(t)/F(t) [s’(t) + s(t)h (s(t))]/s(t),

or equivalently,

(7) s’(t) s(t)[e(t)-h (s (t))],

where e(t)=F’(t)/F(t)-O as oe. We are now ready to prove the next theorem.
THEOREM 2. If ix (X) dx 1, h (s) is continuous, g(t)= (x)q(x-t) dx is

differentiable, and h (s) > 0 for all s > O, then the solution s(t) of (5) tends to zero as oo.
Proof. Let g lim sup s (t) and g lim inf s (t). Suppose that g > g -> 0. Then it is seen

that there exists a sequence {tn} such that tnoe, s(tn)g>O and s’(t,)>0. Since
e(tn)O and h(s(t))h(g)>O as n oo, it follows from (7) that s’(t)<0 for all n
sufficiently large, but this contradicts the choice of t,. Thus g g and lim,_.o s(t)= c
exists. Suppose that c > 0, then (7) implies limt_.oo s’(t) c[-h (c)] < 0, contradicting the
fact that s(t)>-0 for all t. Thus c 0 and this completes the proof.

Consider the case Ix > 1. We shall show that s(t) approaches equilibrium. In the
rest of this paper, we shall assume that (x) is nonnegative and continuous, p(x) and
/3(t) are such that g(t) is differentiable and that the equation a -h (s) 0 (where a is the
Malthusian parameter for B(x)) has at most one solution. We will denote the solution of
a- h (s)= 0 by s* if it exists.

Using (2.3), an argument similar to the one used in obtaining (7) gives us the
following differential equation"

(8) s’(t) s(t)[a A (s(t)) + ae l(t)],

where el(t)O as too.
Recall that g lim sup s(t) and g lim inf s(t).
Consider the case h (s) < a for all s > 0. Suppose that g < g -<_ oo. Then there exist a

sequence {tn} such that s(tn)g and s’(t,)<0. It then follows from (8) and our
assumption about h that s’(t,)>=0 for n large, contradicting the choice t,. This shows
lims(t)=c<-oo. Suppose c<c, then s’(t)c[a-h(c)]>O. This implies s(t)-oo as

oe, a contradiction. Thus lim s (t)
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If infs__>0 A (s) > a, then s’(t) will be negative for all large and thus s(t) is bounded
above. Suppose that 0-< g < g, then there exist a sequence {tn} such that tn --> oo, s(t)--> g
and s’(t,) 0. It then follows from (8) and the boundedness of s(t) that g[a 3, (g)] 0
and thus g g 0. This shows lim s(t) O.

Consider the most interesting case where there exists exactly one s* such that
A (s*) a. Suppose that s(t) --> oo. Then there exist T and s T such that s(t) >= s T > s* for
all t> T and 8=a--A(sT)+a sup,>_Tel(t)<O. Thus s’(t)<s(t)<O for all t> T, a
contradiction. Suppose that g < oo. Pick a sequence {tn} oo such that s(t,)--> oo and
s’(t,) >0. We can show by (8) that s’(tn)< 0 for sufficiently large n, contradicting the
choice of tn. Suppose that g 0. Since s(t) >- 0 for all t, there exists a sequence tn --> oo such
that s’(tn)<=O and s(t,)-->O. By letting n be large enough, we can make s(t) so close to
g=0 that a -A (s(t)) > a -A (s*) 0. But this implies by (8) that s’(t,) > 0 for all large
n; this again contradicts the choice of t,. Suppose now that 0 < g < g < oo, then there
exist sequences {t,} and {7,} such that t-->oo, s(t)-->s, s’(t)=0; n-->oo, s(?)g,
s’(,) 0. Replacing by t, in (8) and letting n oo, we obtain that g[a- 3, (g)] 0
g[a A (g)]. Our assumption about A implies that g g s*. Thus s(t) --> s* as --> oo. We
summarize our results in the next theorem.

THEOREM 3. Suppose that Ix (x) dx > 1, A (s) is nonnegative and continuous,
q(x) and (x) are nonnegative and are such that g(t) is differentiable; then

lira s
too

where and s* are such that

and A (s*) a.

i]’ A (s) < ]:or all s > O,
/f infs_>o A (s) > a,
A (s) a has exactly one root,

Io e-X(x) dx 1

The above result shows that when there is exactly one positive root satisfying

R(s)= I (x) e -x(s)x dx 1,

the population generally approaches a fixed size and age-structure, independent of the
initial conditions. Note that R (s) is the expected number of offsprings born to a single
individual during its lifetime when the size of the population remains fixed at s. If
R(s*)= 1, then for such s* the expected number of offsprings is one and so an
equilibrium population exists. The equilibrium age distribution, i.e., solutions p(x, t) of
(1) and (2) which are independent of time t, can easily be found by (4). One finds that
p(x, oo) s* exp (-a x). Thus the total size of the population tends to

Io P(X, oo) dx s*/a

as

4. Applications in fish and animal population dynamics. In analyzing the popu-
lation dynamics of a fish stock and the effect of fishing on it, Schaefer (see [7]) uses the
logistic population model. He considers the size of the population as the biomass B, or
equivalently, the total weight of all the fish in the population. The basic assumption of
Schaefer’s model is that the biomass B of the population will tend to increase toward
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some limit B, set by the environment, and that the rate of increase is a function of the
biomass.

However very young fish (with the exception of sharks and other fish which, when
born are already comparatively large) are so small and usually differ so much in food
requirements, distribution, etc. from their parents, that it is both simpler, and in many
ways more realistic, to omit fish below some chosen size or age from most of the analysis
(see [7]). It is thus reasonable to assume that the rate of natural increase (or decrease) of
a stock is determined by the magnitude of the biomass B’ of the adult fish population
(see [7]). This assumption is even more reasonable, say, in a fishery management model,
a model used to determine the proper fishery strategy. Since, in this case, the fishing
effort depends on the abundance of the adult stock B’, the fishing mortality (one major
constituent part of the total mortality of fish, the other one is natural mortality) is in
some way proportional to fishing effort.

Let p(x, t) be the density function of the number of fish of age x at time t, and

c(x) the average weight of adult fish of age x,

0 for young fish.

Since size/age relationship plays an important roll in studying fish population
dynamics, a size/age curve can usually be obtained in the literature on fish popu-
lation dynamics (see [3], [4], [7], [14]).

Fishery scientists generally suppose that fish fecundity (i.e., egg productivity) is a
function of the weight of the fish (see [2], [3], [4]). Many fishery scientists use the term
"relative fecundity," that is, the number of eggs per unit weight of fish (see [2], [3], [4]).
This method of expressing the productivity assumes that the relation between fecundity
and weight is linear. In many cases, e.g., long rough dab [2], haddock, plaice [3] and
trout for the Northwest river of Tasmania [14], it has been proved to be so.

In [3], the authors (see p. 62 of [3]) obtain an expression for the fertile egg-
productivity of a fish population in terms of its age- and size-structure and abundance.
Let r be the relative fecundity of females and assume that the mortality and growth
coefficients are the same for both sexes, so that the proportion of females at any age can
be denoted by a constant s. The annual egg-production of the population is then given
by

r. B’= J0 s rc(x)p(x, t) dt.S

Thus/3 (x) is proportional to c(x) and the constant of proportionality is s r.
Our model is, in some way, an improvement to the Schaefer’s model mentioned at

the beginning of this section. The results of 3 imply that, with the complication of age
structure, the total biomass of the adult population grows just like a logistic curve, at
least, when gets large.

Suppose for some population, e.g., animal or bird populations, the young individ-
ual becomes adult at a certain age, say k. Suppose each individual lives for at most
years and that the reproductive rate is about the same throughout their adult ages. For
example, for Wyoming antelope, k 1.5 (18 months), 9 and the reproductive rate is
about the same among the different age groups from 1.5 to 9 years of age. (See [15]). To
model such a population, we put

/3(x)={0 ifx<korx>l,
ifk<-x<-_l,
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and let c(x)= (x)/. Then

s(t) Io c(x)p(x,t)dx=IkP(X,t)dx
is just the size of the adult population at time t. In some species the young individuals
differ very much in food requirements and usually are too weak to have a noticable
impact on the surrounding environment; it is thus reasonable to assume that the death
rate increases if the size of the adult population increases, i.e., A is a function of s(t)
rather than of ff p(x, t)dx. Certainly, the model would be much more realistic and
useful if we assume that the death probability is a function of both the age and the size of
the adult population. In this case, it is reasonable to believe that under appropriate
conditions on A, e.g., (x, s) is a nondecreasing function on s for each fixed x, the "size"
s(t) of the population will also behave asymptotically just like the logistic curve.
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SOME HYPERGEOMETRIC ORTHOGONAL POLYNOMIALS*

JAMES A. WILSON"

Abstract. Explicit formulas and orthogonality relations are given for some polynomials which include as
special or limiting cases the classical polynomials, related polynomials with discrete orthogonalities, some
polynomials of Pollaczek and the 6-/’ symbols of angular momentum.

1. Introduction. This paper contains derivations and discussion of some poly-
nomial orthogonality relations which include as special or limiting cases the ortho-
gonalities for the 6-/" symbols of quantum mechanics, the classical polynomials and
many related families of orthogonal polynomials. In [7], we give properties of these
polynomials which extend the recurrence relations, differential equations and
Rodrigues formulas for the classical polynomials.

The polynomials may be expressed as hypergeometric series:

(1.1)

p,,(t2) p.(t’, a, b, c, d)

(a + b).(a + c).(a + d).
(-n)k(a + b + c + d + n 1)k(a t)k(a + t)k

k=O (a +b)k(a +C)k(a +d)kk!

=(a+b),(a+c)n(a+d)n4F3(-n’a+b+c+d+n-l’a-t’a+t; 1)a +b, a +c, a +d

where (a)k=a(a+l) (a+k-1) if k =>1 and (a)o 1. (We use the same 4F3
notation for pn even if one of a + b, a + c, or a + d is a negative integer -N with N -> n.)
This is a polynomial of degree n in a since (a t)k(a + t)k 1-L ((a +/.)2_ ta). The 4F3
is balanced, meaning that it is a finite series and the sum of the denominator parameters
equals the sum of the numerator parameters plus one. Such series satisfy a trans-
formation formula (Bailey [1, p. 56]):

(1.2) 4F3(-n’ b’ c’ d;1
f, g

(f -b).(g-b)._(_fi_._i_. 4F3 ( -n, b, e-c, e-d;1 )e,b-f-n+l,b-g-n+l

provided e +f+ g -n + b + c + d + 1. (This formula, when iterated, contains the
symmetries of the 6-j symbols.) In terms of the 4F3 polynomials, (1.2) says that

(1.3) p.(x; a, b, c, d)=p(x; b, a, c, d),

so that pn is symmetric in all four parameters.
There are various orthogonality relations for {pn} (with respect to positive

measures on the real line) corresponding to various conditions on a, b, c and d. These
relations are derived in 3 from the complex orthogonality in 2.

2. Complex orthogonality. We prove the complex orthogonality relation

(2.1)
2rri

f(Z)pm(zZ)p,,(Z 2) dz

* Received by the editors August 1, 1979, and in revised form October 15, 1979.
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with

and

f(z)
F(a + z)F(a -z)F(b + z)F(b -z)F(c + z)F(c- z)F(d + z)F(d- z)

r(2z)F(-2z)

2F(a + b)F(a + c)F(a + d)F(b + c)F(b + d)F(c + d)
F(a+b+c+d)

n !(a + b + c + d + n 1),(a + b),(a + c),(a + d),(b + c),,(b + d),(c + d),,
(a+b+c+d)2,,

Here a, b, c, and d are complex The contour C is the imaginary axis deformed
so as to separate the increasing sequences of poles of f(z)
({a + k}k=o, {b + k}k=o, {c + k}-_o, {d + k}=o) from the decreasing sequences ({-a

k}-_o, , {-d- k}=o). Of course, we need to assume that these two sets of poles are
disjoint, i.e.,

(2.2) 2a, a +b, a +c,..., c+d, 2d {0, -1, -2, .}.

The case m n 0,

(2.3)

1 f F(a + z)F(a z)F(b + z)F(b z)F(c + z)F(c z)F(d + z)F(d z)
2 rri

dz
F(2z)F(-2z)

2. F(a + b)F(a + c)F(a + d)F(b + c)F(b + d)F(c + d)
F(a+b+c+d)

is an integral analog of the sF4 summation theorem (Bailey [1, p. 27]) which may be
written

(2.4)

or

5F4( 2a, a + l, a + b, a + c, a + d )a,a-b+l,a-c+l,a-d+l
1

F(a -b + 1)F(a -c + 1)F(a -d + 1)F(-a -b-c-d + 1)
F(2a + 1)F(-b c + 1)F(-b d + 1)F(-c-d + 1)

F(1 2z)F(1 + 2z)
Y F(1 a z)F(1 a+z).. F(1 d z)F(1-d+z)z=a,a+l,...

F(1-a-b-c-d)
C(1 a b)r(1 a c)r(1 a d)F(1 b c)F(1 b d)r( c d)

provided Re (a + b + c + d) < 1 for convergence. (Extending the sum over z
+a, +(a + 1),.. improves the resemblance to the integral formula.) Similar Mellin-
Barnes integrals are found in Bailey [1], and in fact it is possible to derive (2.3) from his
formula (1) on p. 47.

To prove (2.3), we need an asymptotic estimate for the integrand f(z). We use the
reflection formula F(z) or/F(1 -z) sin rrz along with Stirling’s formula

F(a +z, /. z"+z-1/2 e-Z(1 + O(zl-))
as z - in So {z: larg z] < 0}, 0< 0 < r, and the estimates

sin 2rz O(ez’’l’zl)
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in the entire plane, and

sin 7r(a z) O(e-=l"zl)

in the plane excluding e-neighborhoods of the poles. The implied constants in these
formulas may be chosen independently of a if a takes values in a bounded set. These
give

-2"rr3z sin 2rzF(a + z). F(d + z)
f(z)

sin r(a-z). sin r(d-z)F(1-a +z). F(1-d+z)

(2.5) Z2(a+b+c+ct)-30(e -:2"rlmzl)

O(Izle(+//d-3 e-=l-l)

as z - in $o excluding e-neighborhoods of the poles. SinCe f(z) is an even function,
(2.5) holds as z in the plane excluding e-neighborhoods of the poles.

In particular, (2.5) holds as z o on C, so cf(z) dz is convergent. Furthermore,
since the implied constant in (2.5) is independent of a (in bounded sets), the integral
defines an analytic function of a in {a:a, a + 1, a + 2,... are to the right of C and
-a, -a 1, are to the left of C}. We will use Cauchy’s theorem to prove (2.3) under
the condition Re (a / b + c / d) < 1. This condition may then be removed by analytic
continuation.

Consider Ic+c f(z) dz, where C1 Cl(tO) is the piece of C from -ito to +ito, and
Cz(to) is the path consisting of the three line segments from iw to w + iw to to -iw to -iw.
We will let to oo through value too, wo + 1, wo + 2, , where too is chosen so that the
contours C2(w0 + k) avoid the poles of f(z). Then

f(z) dz -< 40 max {[f(z)l" z on c2}
C2

O((.02Re(a+b+c+d)-2),

So with Re (a + b + c + d) < 1, c2 f(z dz vanishes as
It follows that

1 Ic 1 Ic f(z)dz,
2ri

f(z) dz ,,-lim
1+c2

which is minus the sum of the residues at the poles to the right of C. The residue at
z=a+k is

F(2a + k)((-1)’+l/k !)F(a + b + k)F(b-a -k)
F(c+a+k)F(c-a-k)F(d+a+k)F(d-a-k)

F(2a+2k)F(-2a-2k)
-F(a + b)F(a + c)F(a + d)F(b a)F(c a)F(d a)

F(-2a)

(2a)(a + 1)(a + b),(a + c),(a + d),
(1)k (a)k(a -b + 1)k(a -c + 1)(a -d + 1)k"

Here we are assuming that the poles are simple, but in (2.3) this condition is removable.
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Minus the sum of these residues for k 0, 1, 2, is given by the 5F4 formula (2.4) as

F(a + b)F(a + c)F(a + d)F(b a)F(c a)F(d a)
F(-2a)

F(a-b + 1)F(a -c + 1)F(a-d + 1)F(-a -b-c-d + 1)
1-’(2a + 1)F(-b c + 1)F(-b d + 1)F(-c d + 1)

where R is the right-hand side of (2.3), and

sin (-2ra) sin r(b + c) sin r(b + d) sin 7r(c + d)
sin r(b a) sin r(c a) sin rr(d a) sin r(a + b + c + d)"

If we define Sb, c, d symmetrically, then adding the contributions from all the poles
a +k, b /k, c +k, d/k for k =0, 1, 2, gives

27ri
f(z) dx R (Sa + Sb + Sc + Sd).

Finally, a tedious trigonometric computation or a contour integration argument shows
Sa + Sb + Sc + Sd 2. This proves (2.3).

To prove the orthogonality (2.1), first note that, by the symmetry (1.3),
m-1

pm(z2)=(-1)m(a+b+c+d+m-1)m(b-z)m(b+z)m+ yj(b-z)j(b+z)j.
j=O

For]=O, 1,..., n,

27ri
f(z)P"(zZ)(b z)J(b + z)i dz (a + b)"(a + c)"(a + d)"

(-n)k(n+a+b+c+d-1)k,o= (a + i-(a + c)k’tiii

2ri
f(z)(a z)(a + z)(b z)(b + z) dz.

The integral here may be written

1
2ri

fF(a +k + z)F(a +k-z)F(b+j+z)F(b+j-z)F(c +z)F(c-z)F(d +z)F(d-z) dz
F(2z)F(-2z)

and, by (2.3), its value is

2. F(a+b+k+j)F(a+c+k)F(a+d+k)F(b+c+j)F(b+d+)F(c+d)
F(a+b+c+d+k+])

2. F(a + b +j)F(a + c)F(a + d)F(b + c +j)
F(b + d +j)F(c + d)(a + b +f)k(a + c)k(a + d)

F(a + b + c + d +])(a + b + c + d + ])k
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Therefore,

1 Ic 2)
2ri

f(z)p, (z (b z)i(b + z)i dz

F(a + b +j)F(a + c + n)F(a + d + n)F(b + c +j)F(b + d +j)F(c + d)(a + b),
=2.

F(a+b+c+d+j)
(2.6)

3F2(-n’n+a+b+c+d-l’a+b+]; 1)a+b,a+b+c+d+]

F(a + b +/)F(a + c + n)F(a + d + n)F(b + c +/)F(b + d +/)F(c + d + n)(-j),
F(a+b+c+d+j+n)

We have evaluated the 3F2 by the formula of Pfaff and Saalschiitz (Bailey [1, p. 9])"

3F2(-n’ b’ c; 1)(d-c),(e-c),d, e (d)-i-.
provided d + e -n + b + c + 1. The result of (2.6) is zero if/" < n. Therefore

2ri
flZ)pm(Z2)p,(z 2) dz 0 if m < n,

while

2ri
f(z)p, (z2)2 dz

1 Ic 2)=(-1)"(a+b+c+d+n-1).- f(z)pn(z (b-z)n(b+z).dz

2. n!(a+b+c+d+n-1).F(a+b+n)F(a+c+n). F(c+d+n)
F(a+b+c+d+2n)

as required.

3. Real orthogonalRes. We wish to obtain from (2.1) orthogonality relations with
respect to positive measures on the real line. Note that, when the real parts of a, b, c, and
d are positive, C may be taken to be the imaginary axis. If, furthermore, a, b, c, and d
are real except for conjugate pairs, then for imaginary z,

f(z) lF(a + z)F(b + z)F(c + z)r(d + z)12r(2z)

Letting z it in the integral gives the orthogonality relation

1 fo ]F(a + it)F(b + it)F(c + it)F(d + it) 2

27r Jo F(2it)
pn(--t2)pm(--t2) dt

(3.1)
F(a + b + n)F(a + c + n). F(c + d + n)

=3,.,n!(n +a +b+c +d- 1)
F(a+b+c+d+2n)

(a, b, c, and d positive real except for complex conjugate pairs with positive real parts).
With these conditions on the parameters, the polynomials p (t2) are real for real values
of 2. This is clear from the definition (1.1) in the case where a and b are real (and either
c and d are real or c d). If a =/ and c d-, then it is clear that p,(t2", b, a, c, d)=
p,(t2; a, b, c, d). But then the symmetry (1.3) shows that p,(tz; a, b, c, d) is real.
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Return now to (2.1) and consider the case where a < 0 and a + b, a + c, a + d are
positive except possibly for one pair of complex conjugates with positive real parts.
These conditions will yield an orthogonality (3.3) with respect to a positive weight
function consisting of a continuous function plus some point masses. By Cauchy’s
theorem

2rti
f(z)p.(z2)p.(z z) dz

2"’- f(z)pn (z2)pm (Z 2} dz

-(sum of residues of integrand at z a + k, with a <= a + k < 0)

+ (sum of residues at z -(a + k), with a -< a + k < 0)

1 f(Z)pn (z2)pm (Z2) dz 2 (sum of residues at z a + k, a _<- a + k < 0)
2ri ic

1 f(it)p.(-t2)p,.(-t) dt
2r

+2
F(a + b)F(a + c)F(a + d)F(b a)F(c a)F(d a)

F(-2a)

(2a)k(a + 1)k(a + b)k(a + C)k(a + d)k
(a)k(a --b + 1)k(a C + 1)k(a --d + 1)kk=0,1,... (1)k

a+k<0

p ((a + k)a)p., ((a + k)2).

Therefore, (2.1) becomes

1 I) lF(a+it)’"F(d+it)2zr F(2it)

2

p. (-t2)p. (- 2) dt

F(a + b)F(a + c)r(a + d)r(b a)r(c a)r(d-- a)
F(-2a)

(3.3)
(2a)k(a + 1)k(a + b)k(a + C)k(a + d)k" (a)k(a --b + 1)k(a C + 1)k(a d + 1)kk =0,1,"" (1)

a+k<O

p. ((a + k)2)p,, ((a + k))

=8,.,.n!(n +a +b +c +d- 1).
F(a +b +n). F(c +d+n)

F(a+b+c+d+2n)

if a < 0, and a + b, a + c, a + d > 0 except possibly for a pair of conjugates with positive
real parts. Condition (2.2) requires that 2ag {0, -1,-2,.. }, but here this condition is
removable.

Formula (2.1) also yields some purely discrete orthogonality relations for pn(t2).
Take a +b =-N+e, N a positive integer. (Condition (2.2) requires e :0.) Use
Cauchy’s theorem as in (3.2) to replace the contour C by the imginary axis and add
some residues. Then divide the equation by F(a + b) F(-N + e). As e 0, the integral
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term vanishes because 1/F(-N + e)- O, and the result may be written

(a--c+l)N(a--d+l)N (2a)k(a+l)k(a+b)k(a+C)k(a+d)k
(2a + 1)N(1--c--d)N k=O (1)(-;-- b + 1)k(a -c + 1)i =]i)k

(3.4) p, ((a + k)2)p, ((a + k)2)
n !(n + a + b + c + d- 1),(a + b)(a + c)(a + d)(b + c)(b + d)’(c + d),

6,," (a + b + c + d)2,

when a + b -N. Interchanging a and b here is equivalent to summing in the reverse
order. The case m n 0 is the terminating series version of (2.4)"

5F4( 2a, a+l,a+b,a+c,a+d;
a,a-b+l,a-c+l,a-d+l

(2a + 1)N(1 C d)s
1 =(a-c+l)s(a-d+l)s

when a + b -N. Formula (3.4) can also be proven directly from this 5F4 theorem just
as the complex orthogonality (2.1) was proven from the integral formula (2.3).

Necessary and sufficient conditions on a, b, c, d for the positivity of the weights in
(3.4) are quite messy, but some sufficient conditions are

(3.5) a+b=-N, b<-1/2<a, -a<c<a+l and eitherd>-bord<b+l.

Of course, interchanging a and b in (3.5) also gives sufficient conditions.

4. Limiting cases. We now describe how, as claimed in 1, many orthogonality
relations for previously known polynomials are included in the 4F3 orthogonalities as
limiting cases. The appropriate limit processes can usually be determined by comparing
the hypergeometric series representations of the polynomials. It sometimes helps to
write the 4F3 polynomials, with a change of variable and parameters, as

(4.1) r(h(x);a, fl, %6)=4F3(-n’n+a+fl+l’-x’x+y+6+l;a+1, B+6+l,y+l

with h (x) x (x + y + 6 + 1).
Then (3.4) becomes

(4.2)

N (3’ + 6 + 1)k((3" + 6 + 3)/2)k(a + 1)k(fl + + 1)k(3’ + 1)k
kYO-)--(-(4--(--6;i)’2-)2(+6--a= + i2-fl + 1)(6 + i;" r. (h (k ))r., (h (k ))

n!(n +a +fl + 1),,(/3 + 1)’(a 6 + 1),, (a +fl-y+ 1),,
(ce + fl + 2)2n (a + 1)’(/3 + 6 + 1)’(3" + 1)"

if a + 1, fl + 6 + 1, or 3’ + 1 -N, with

(3" + 6 + 2)u(-B)s
(3’-fl + 1)(8 + 1)N

(3" + + 2)N(8-- a)N

(--6)N(a +/3 + 2)N
(a -6 + 1)N(/3 + 1)N

ifa+l =-N,

if/3 +6 + 1 =-N,

if 3"+1 =-N.
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Letting 6 -. with 3’ + 1 -N gives the Hahn polynomial orthogonality"
v (a + 1)x(-N)

Qn(x’a,,N)Q.(x’a,,N)=O, mn,
,,=o (-N- fl ),,x

(4.3)

O,(x;a,,N)=3F(-n,n+a++l,-x; 1) 0<n<N.
a+l,-N

Letting/3 o in (4.2) with a + 1 -N gives the dual Hahn orthogonality (Karlin
and McGregor [3])
N (3’ + 6 + 1) ((r + 6 + 3)/2).(y + 1)x (-N). (-1)
.=o x!((y+6+l)/2).(6+1)(N+y+6+2).

R,(A (x); % , N)Rm(A (x); y, , N) 0, m n,

-N, y+ 1

Actually, the dual Hahn polynomials have continuous, discrete, and mixed ortho-
gonality relations (with positive weight functions) which come from the orthogonalities
for the 4F3’s as d --> . For example, (3.1) becomes

1 [ ]F(a + it)F(b + it)F(c + it)
2-- o F(2it) Pn (--t2)pm (-t) dt

(4.4)
3,.,n !F(a + b + n)F(a + c + n)F(b + c + n),

where

p,,(zZ)=(a+b)(a+c)3F2(-n’a-z’a+z; 1)a+b,a+c

and a, b, and c are all positive except possibly for a pair of complex conjugates with
positive real parts. The complex orthogonality (2.1) becomes

1 _[. F(a + z)F(a z)F(b + z)F(b z)F(c + z)F(c z)
2ri F(2z)F(-2z)

p,(z)p,(z) dz

8m.n2" n!F(a + b + n)F(a + c + n)F(b + c + n)

with p,(z) as above, and C separating the increasing and decreasing sequences of
poles.

It is known that, by taking limits of (4.3), we can obtain the discrete orthogonalities
for the Meixner, Krawtchouk and Charlier polynomials, as well as the orthogonalities
for the classical polynomials of Jacobi, Laguerre, and Hermite.

It is also interesting that the classical polynomial orthogonalities can be realized in
a different way as limits of the continuous orthogonality relations (3.1) and (4.4). In
(3.1), let a b (a + 1)/2 and c d (/ + 1)/2 + io, and change variable ws to get:

1 r((a + 1)/2 + ios)Zr((/3 + 1)/2 + iw(s + 1))r((/3 + 1)/2 + io(s 1)) 2

F(Zios)F((a + fl + 2)/2 + io9)2

4F3(-n’n+a+/3+l’(a+l)/2+ks’(a+l)/2-is; 1)4F3(-m,-")\ a + 1, (a +/ + 2)/2 + iw, (a +/ + 2)/2- iw
w ds

n t(n + a +/ + 1),F(a + 1)F(t + 1) (/ + 1),
F(a +/ + 2n) (a + 1),
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As 09--> +c, the weight function is asymptotic to 2. s2’+111-$2[ t3 e -(Is-ll+s-1) by
Stirling’s formula, and therefore has limit 2s2+1(1-s2) if 0<s < 1, 0 if s > 1. At least
formally, this gives

fj ( )(-m,m+a++l")as -n, n +a +fl +1; 2 2s (1 s)aFa s 2F1 s d (s)
a+l a+l

n (n + a + + 1),F(a + 1)F( + 1)( + 1),
F(a + + 2n)(a + 1),

which is the Jacobi orthogonality with a change of variable.
2In (4.4), let a b (a + 1)/2 and c and change variable s. As - +, a

messy application of Stirling’s formula gives

_S(s)xFx -n s
1F1 d(s)

a+l
(4.5

F(a +l)n
(a + 1)

which is the Laguerre polynomial orthogonality. The cases of formula (4.5) with a -5
and a are the orthogonalities for the Hermite polynomials of even and odd degrees,
respectively. Of course, the Laguerre and Hermite orthogonalities are also limiting
cases of the Jacobi polynomial orthogonality.

Another limiting case of (3.1) is Pollaczek’s orthogonality relation [4]"

I_ e(-"/’’lF(,+ix)lP(x;)P(x;)dx=O, men,

n! 2F1 1-e n =0,
21

h > 0, 0< (b< rr. We extend (3.1) to a symmetric integral on (-oe, oo). Then we take
a h + i09, b h i09, and c d 09 cot (/2), and substitute x 09"

1 I) F(h+ix)F(h+ix -2/09)F(09 cot (/2)+ i(x--09))2] 2

2-7r F(2i(x -09))

4F3 (-n, n + 2, + 209 cot (/2)- 1, & + ix, , ix + 2i09;
\ 2,, + w(cot (/2) + i), & + w(cot (/2) + i)

n !(n +2 + 209 cot (/2)- 1).F(2 + n)

F(Zw cot (/2) + n)lF(& + w(cot (/2) + i)+ n)]2.26.,,,
F(2, + 209 cot (/2) + 2n)

As 09 +oo, we get Pollaczek’s orthogonality by another application of Stirling’s
formula.

a, bc)5. The 6-] symbols. The 6-] symbols IX/
d, e, f

important in quantum mechanics

in the coupling of angular momenta, satisfy an orthogonality relation which we will
show to be equivalent to certain cases of (3.4). It appears that this orthogonality was
recognized as a polynomial orthogonality only in very spenhl cases (Biedenharn et al. [2,

p. 253]). lg/{ a, b, c)\ d, e, f
is defined for half.integers a, b, c, d, e, f which are nonnegative and
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satisfy certain triangle conditions" a + b + c is an integer, a =< b + c, b =< a + c, and
<= a + b, so that a, b, and c are the sides of some triangle; each of the triples (a, e, f),

(d, b, f), and (d, e, c) satisfies similar conditions. An explicit formula for the 6-/" symbol
is

a, c) A(a, b, c)A(a, e, f)A(d, b, f)A(d, e, c)
b,

,/, e, f
(-1)’(k + 1)!

"Y
k (k-a-b-c)!(k-a-e-f)!(k-d-b-f)!(k-d-e-c)!

where

(a +b+d+e-k)!(a +c +d+f-k)!(b +c +e +f-k)!

[(a + b c)! (a b + c)! (-a + b + c)!1/A(a, b, c)
(a+b+c+l)!

and the sum is over all integers k _>- 0. Only finitely many terms of the sum are nonzero.
There are symmetries here which are easier to understand if we consider the tetra-
hedron with edges a, b, c, d, e and f and faces (a, b, c), (a, e, f), (d, b, f), and (d, e, c). The

value of I,
d, e,

is preserved under any permutation of the parameters which

preserves the tetrahedron.
Racah’s orthogonality [5] is

-(a,b,c) -(a,b,c) ,,
(5.2) Z(2c+l)W, d,e,f

W
d,e,f’ =2f+l"

The permissible values for f and f’ and the values of the summation variable are
determined by the triangle conditions. The inequalities involved are

(5.3) a -el, lb-dlL f’a + e, b + d

and

(5.4) [a-b], d-eica +, d +e.

By the tetrahedron symmetries, there is no loss of generality in assuming that

(5.5) max (la b I, Id e l) la b a b.

We need to consider two cases, distinguished by the upper limit on c.
Consider first the case where

(5.6) d+e<=a+b.

With conditions (5.5) and (5.6) we must have max ([a el, Ib dl) a e and b + d -<
a+e, so (5.3) and (5.4) reduce to a-e<= f, f’<=b+d, and a-b<=c<=d+e. Let
N b + d + e a and replace the variable c by d + e x, so the orthogonality is on the
N + 1 points where x 0, 1, , N. Replace f by b + d n, so the orthogonal functions
are indexed by n, 0 <= n <-N. We claim that

(5.7)

lg/(a,b,d +e-X) =c\d,e,b+d-n
A(a, b, d + e- x)A(d, e, d + e- x)

x! (N-x)! (2d-x)! (a + b -d-e + x)!

.4F3(-n,n-2b-2d-1,-x,x-2d-2e-1; 1)-a-b-d-e-1,-2d,-N
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where the factor C is independent of x. In fact, this is just the 4F3 transformation (1.2),
but since a little care is needed to avoid zero denominators in the computation, we give

(a’b’d+e-X) andsubstitutinga+b+d+e-]fork,details. By applying (5.1) to I
d, e, b + d-n

we get

a,b,d+e-x)If
d,e,b+d-n

C A(a, b, d + e x)A(d, e, d + e x)

’n (--1)a+b+d+e-J(a + b + d + e -j + 1)!
j"o (x -j)! (n -j)! (n + a b d + e -/’)! (x + a + b d e -j)!

j! (2d n x +i)! (N- n x +j)!
C lim A(a, b, d + e x)A(d, e, d + e x)

e-O

(--1)a+b+a+e-i(a + b + d + e -j + 1)!
’=o F(x 2 Z)

_
]-)- --]ii + a b d + e j)’.

F(x +e + a + b-d-j + l)j!F(2d-n-x-e +j + l)F(N-n-x-e +/’+1)

C. lim
A(a, b, d + e x)A(d, e, d + e x)

-,oF(x+e+l)F(x+e+a +b-d-e+1)
F(2d-n-x-e +l)F(N-n-x-e +1)

4F[ -n,-n-a+b+d-e,-x-e,-x-e-a-b+d+e; 1]-a-b-d-e-l, 2d-n-x-e+l,N-n-x-e+l

By transformation (1.2), this is

A(a, b, d + e -x)A(d, e, d + e -x)
C. lim

-,o F(x + e + 1)F(x + e + a + b d e + 1)F(2d x e + 1)F(n x e + 1)

4F3{-n,n-2b-2d-1,-x-e, x+e-2d-2e-1; 1]-a-b-d-e-1,-2d,-N

C. A(a,b,d+e-x)A(d,e,d+e-x)
x !(x + a + b d e)!(2d x)!(N- x)!

4F3(-n,n-2b-2d-1,-x, x-2d-2e-1; 1)-a-b-d-e-1,-2d,-N

This establishes (5.7). If a’= -d e 1/2, b’= a b + 2x-, c’ e d +, and d’= -a b ,
then the 4F3 we have is C. p,,((a’+x)2; a’, b’, c’, d’). It is now an easy matter to
compare the weight functions (or apply a general theorem) to see that (3.4) and (5.2)
represent the same orthogonality.

The case where a + b _-< d + e is dealt with similarly. The limits on f and c become
d b <= f, f’ -< b + d and a b -< c -<_ a + b. LetN 2b; replacef by b + d n and replace
by a + b- x. Then corresponding to (5.7) is

a,b,a+b-x)= C. A(a,b,a+b-x)A(d,e,a+b-x)If"
d,e,b+d-n x!(N-x)!(d+e-a-b+x)!(a+b+d-e-x)!

4F3(-n,n-2b-2d-1,-x,x-2a-2b-1; 1)-a-b-d-e-l,e-a-b-d,-2b
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The 4F3 here is Cp,((a’+x)Z’a’, b’,c’,d’) with a’=-a-b-1/2, b’=a-b+1/2, c’=
e-d+1/2, and d’=-d-e-5.

In both cases, the weight functions satisfy the positivity conditions (3.5).

Acknowledgment. I thank the referee for pointing out that the reduction of the
integral in (2.3) to the sum of four very well poised 5Fa’s is contained in L. J. Slater [6,
(4.5.1.2)].
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ON INTEGRAL REPRESENTATIONS FOR LAMI
AND OTHER SPECIAL FUNCTIONS*

R. SHAIL’

Abstract. In this paper we develop the theory of a class of linear integral representations of the Lam6
functions of the second kind, originally introduced by Arscott (1964). The kernels in this type of represen-
tation involve Legendre functions of the second kind. The complete class of 24 representations, three for each
of the eight species of Lam6 function of the second kind, is derived, and certain hitherto undetermined
multipliers in the formulae are calculated. It is then shown how a knowledge of the values of the Lam6
F-functions in certain basic regions enables one to compute their values throughout the complex plane.

The latter part of the paper is devoted to giving a simple and economic derivation of the class of Liouville
nonlinear integral equations for the Lam6 functions. Some generalizations and the applicability of the method
to other classes of special functions are indicated.

1. Introduction. In the study of the properties of Lam6 polynomials a number of
authors [1], [2], [3] have considered certain homogeneous integral equations of the
second kind satisfied by the polynomials, the kernels of the integral equations being
Legendre polynomials. Typical of this type of formula is the relation

2K

(1) uEz%(a) h [ P2,,(k sn asn [3)uE2mn([3)
2K

where k is the modulus of the Jacobian elliptic functions, the characteristic value h
depends on n, m, and K(k) is the complete elliptic integral of the first kind. Arscott [3]
has pointed out that there are 24 distinct kernels for integral equations similar to (1),
leading to three representations for each of the eight types of Lam6 polynomial, and has
also noted that various alternative paths of integration are possible.

The derivation of (1) and its companion formulae depends on the general Theorem
I of [3], which shows how to obtain from one solution of Lam6’s equation further
solutions in the form of integral transforms. The kernels of the transforms satisfy an
equation which, by means of a coordinate transformation of the sphero-conal type, can
be identified with the equation for spherical harmonics of some degree, and hence the
Legendre polynomial in (1) is explained.

In the same paper [3], Arscott also gives four instances of analogous represen-
tations of the Lam6 functions of the second kind; an example is

(2) K+iK’

uV2mn (a) h JK O2,,(k sn a sn/3)uE2%(/3) d/3.

In (2) the kernel is a Legendre function of the second kind, h is an undetermined
constant, and K’= K(k’), where k’ is the modulus complementary to k. In order to
prevent the argument of the Q-function becoming + 1 on the linear path of integration,
the restriction Re a (2p + 1)K, p an integer, is imposed on the complex variable a.
Arscott also conjectures that, as in the case of Lam6 polynomials, there are three
independent formulae for each of the eight types of Lam6 function of the second kind,
and expresses the opinion that such formulae may lead to practical methods of their
computation. However, apart from some work by Sleeman [4] on the series-expansion
of Lam6 functions, little use seems to have been made of formulae such as (2) until the
present author [5] found them to be ideal for the evaluation of certain limits arising in
the calculation of stress-intensity factors in elastostatic elliptic crack problems.

* Received by the editors May 22, 1979, and in revised form October 5, 1979.

" Department of Mathematics, University of Surrey, Guildford, Surrey, England.
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One aim of this paper is to develop the theory of representations of the form (2) in a
number of directions, but here it is appropriate to point out a fallacy in Arscott’s work
[3]. It is clear that if the Ozn-function is that defined in (11), then the right-hand side of
(2) is a periodic function of c, with two independent periods 4K and 2iK’; however the
Lam6 function of the second kind is not periodic, and hence (2) cannot be valid for all c,
subject to the sole restriction Re c (2p + 1)K. (A similar curious error occurs in
Arscott’s book [6, p. 94] in connection with Mathieu functions.) To overcome this
difficulty, basic regions of the complex ce-plane are established in which the represen-
tation (2) and its companions are correct, and the full list of 24 formulae for the Lam6
functions of the second kind, valid in these regions, is given. The hitherto unsolved
problem of determining the A-multipliers is treated. We then show that, in regions of
the c-plane congruent with the basic regions, the representation of the F-function is the
sum of an integral of the form (2) together with a certain multiple of the corresponding
Lam6 polynomial. Thus, from a knowledge of the value of the F-function at a point in
the basic region, its value at any congruent point in the c-plane can be computed.

The second distinct topic considered in this paper concerns a class of nonlinear
integral equations for the Lam6 polynomials and functions of the second kind. Let
(c,/3, 3") denote ellipsoidal coordinates and R the distance between the points (a,/3, 3/)
and (c’,/3’, 3"). As long .ago as 1846, Liouville [7] discovered the formula

ik2+3l(-1)+(2n + l) libel(3) F’ (3’)= 87rE’(a)ET([3)ET(3")
(sn2 a’-sn [3’)E(a’)ET([3’) da’ d[3’,

where is the scale constant in the ellipsoidal coordinates, and
2K K+2iK’

2K aK-2iK’

i.e., integration covering the ellipsoid 3" 3" twice. Further integral equations of this
type have been treated by Arscott [3] and Sleeman [8], each of these authors using
Liouville’s original method. This method stems from a further double integral trans-
form theorem (Theorem II of [3]), which is used to show that the Lam6 function F7 is
proportional to the double integral on the right-hand side of (3). The constant of
proportionality is then determined by an application of Green’s theorem.

In the later sections of this paper we show, that by considering certain trivial
potential problems for an ellipsoid, the Liouville-type representations of the Lam6
function F’ can be written down immediately, avoiding the rather circuitous
arguments of earlier workers. A further type of nonlinear integral equation is also
given. The method is also applicable to coordinate systems other than ellipsoidal, and
also to the special functions which arise in the solution by separation of variables of
Helmholtz’s equation. We illustrate this by obtaining Sleeman’s [8] integral equations
for the ellipsoidal wave functions.

2. Mathematical preliminaries. Lam6’s differential equation is

d2W
(4)

d(2 +{h-n(n+l)sn
2 (}W=O,

where k is the modulus of the elliptic function sn (sr, k). For finite periodic solutions, the
parameter n is a nonnegative integer, and the eigenvalue h has one of 2n + 1 values for
which (4) has a Lam6 polynomial as a first solution. Such polynomials have the form

(5) sn ( cn ( dn" (Up (sn2 (),
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where p, tr, r 0 or 1, Up(sn2 () is a polynomial of degree p in the argument sn2 (, and
2p + p + cr + r n. We adopt the notation of Arscott [6], and denote the eight types of
Lam6 polynomial, obtained by giving p, or, r their possible values, by

dEzn+ 2nsdE2+2 +2scE2+2(), sE2+ () cE2+ (), (), (), cdE (), and
scdE2+ (), where m 0, 1, , n. In this notation a letter s, c or d is prefixed to the
E-symbol according as to whether the corresponding function sn , cn , or dn appears
in (5), and u (denoting unity) corresponds to p z 0. The sux in the E-symbol
denotes the total degree of the polynomial, and m specifies the number of zeros in the
interval 0 < < K. We further adopt the normalization that the coecient of the highest
power of sn in the polynomial U(sn2 ) is to be unity.

Let E() be one of the eight types of periodic Lam6 polynomial; then (4) has a
corresponding second nonperiodic solution F (), defined by

(6) F (C) (-1)+*(2n + 1) 2.+ d

The normalization adopted for E and (6) means that F() (sn )--1 as iK’,
and the Wronskian relation is

(7) E(C)F’ (C) E’ (C)F (C) (- )+*(2n + 1)k2+.
At a zero of E() the residue of the integrand in (6) is zero [16, p. 562]; hence the
contour of integration in (6) can be deformed across a pole of the integrand without
altering the value of the integral.

An ellipsoidal wave function of the first kind is a doubly periodic single-valued
solution of the differential equation

d2W
()

d2 (a + bk2 sn2 +qk sn )W 0,

where the parameters a, b are suitably chosen functions of q. The ellipsoidal wave
functions of the first kind, which are in a one-one correspondence with the Lam6
polynomials to which they reduce when q 0, are denoted by el(), and have the
general form

(9) el()= sn cn dn F(sn2),
where p, , z 0 or 1, and F(sn2 ) denotes an integral function of sn2 . Let el() and
E() (the Lam6 polynomial to which el() reduces as q 0) be written as

and

el’ (r)= sn r cn r dn sr Aj(q) sn2i
sr

/’=0

N

E (r) sn r cn r dn - E Ai(0) sn2/’,
i=0

where AN(O)- 1. We then normalize el’ (() by the condition that AN(q)-- 1 for all q.
A second independent solution of (8) which reduces toF (’) as q --> 0 is denoted by

hl" ((), and is normalized in such a way that

(10) el’(()hl’’(()-el’(()hl’(()= (-1)+(2n + 1)k 2*+a.

A more precise specification of the second independent solution of concern to us will be
given at a later stage.
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We conclude this section by collecting together certain information regarding
Legendre functions. The complete solution of Legendre’s equation

dr
(1-’2) +n(n +I)W=O,

where n is a nonnegative integer, is

W aPn() + BQ,, (),

P. (’) being the usual Legendre polynomial of order n..
Adopting Copson’s definition [9], O. (r) is a single-valued function in the complex

(-plane, cut along the real axis from -1 to 1, given by

1 ’+1(11) On (r) Pn (’) log Wn-1 (r),

where the logarithm has its principal value and Wn_l (r) is a polynomial in " of degree
n- 1. When/x is real with I/x] < 1, we have that

(12) 0,,( + iO)-On(tX iO)= -TriPn(tZ).

Defining n (it) by

1 1+____ W._ (tz),(13) .. (tz)= gn(t)log
1-tz

then

(14) Q.(tz :t: i0)= ,,(tz)q:1/2riP,,(),
and

(15) .(t) 1/2{On( + iO)+O,,(t i0)}.

We also have the asymptotic formula that as Irl--> ,
rl/ZF(n + 1) 1

(16) On(()" 2"+aF(n + 3/2) (.+1
and the Wronskian relation

1
(17) P,,(()O’n(()--P(()On(()= l_Z.

3. Basic regions and representations of the Fn -functions. For clarity of exposition
we state first the fundamental representation theorem of Arscott [3].

THEOREM 1. Let w() satisfy Lam’s equation (4), and let G(a, ) satisfy the
partial differential equation

(18) O2G O2G
n(n + 1)kZ(snz a -snz/3)G,

where w, G are analytic when a, lie in regions R, R of their planes. Le Cbe a path in
the -plane lying wholly in R and sch that

dw OG
(19) (i) G(a,/3) - (/3)- w (/3) :-2 (c,/3)
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has the same value at each end of C, and

(20) (ii) W(a) Ic G(a, B)w() d/

exists and, ifsingular, converges uniformly with respect to a R. Then W(a is a solution
ofLamd’s equation with the same n, h as w().

Equation (18) may be transformed into a recognizable standard form by means of
the equations

kr sn asn/3 r sin 0 cos b,

(21) ikk’-r cn a cn/3 r sin 0 sin &,

k’-lr dn a dn/3 r cos 0,

which relate sphero-conal coordinates (r, a,/3) to spherical polar coordinates (r, 0, b).
The result is that (19) becomes

O2G OG oZG
(22) 002 +cot 0-0--- + cosec2 0 0--+ n(n + 1)G 0,

which has the spherical harmonics of degree n as solutions. It is important to notice that
the same equation (22) arises for each of the possible permutations of the right-hand
sides of (21), a fact which leads to three representations of each of the eight species of
F-functions.

We next introduce the concept of a basic region of the complex a-plane in which
representation (2) and its companions are valid. Slight variations in the basic regions are
necessary depending on which of the three possible arguments appear in the O-
function, but each region differs only in the exclusion of certain line segments, on which
the argument takes the values + 1, from the rectangle R defined by

(23) R {a ;IRe a[-<_ K, 0 -<_ Im a _-< 2K’};

further, the zeros of the arguments of the Q-functions are all boundary points of the
regions. The basic regions also have the properties that in order to obtain formulae for
the Lam6 function of the second kind in contiguous regions, either an analytic
continuation across the boundary is necessary, or, if the line segment between con-
tiguous regions consists of points at which the integral (2), say, does not exist (e.g.,
Re a K), then an examination of the singularity of the F-function at the center of the
contiguous region is necessary.

In the subsequent analysis {a 1, a2} will denote the straight-line segment (including
end points), in the complex a-plane joining the points ax and a2. Let R be the basic
region of the a-plane defined by

(24) Rd R \[{-K, K} LI {-K + 2iK’, K + 2iK’}],

and let Ro be a region of the/3-plane which contains {0, K}. (The subscript d in Ra
indicates that the basic region is appropriate to a representation in which the argument
of the Legendre function contains the dn-Jacobian elliptic functions.) We further define
Ra* by

(25) R R\[{K, K + 2iK’} {-K, -K + 2iK’}].

The solution

O2n (cos 0)= O2n(k ’-1 dn a dn/3)
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of (22) is an analytic function of its argument for a R a* and/3 {0, K}, and it is a
straightforward matter to verify, using Theorem 1, that

K

(26) W(a) [ O,,(k’- dn a dn )uEzm() dl3, a R,
30

is a solution of Lam6’s equation with the same n, h as uE2n(a). Using (16), an
examination of the integrand in (26) shows that W(a) behaves like (sn a) -(2n/1 as
a + iK’, a R, which is precisely the behavior of UFEmn (a) in this limit. Thus, for some
h, depending only on n and m, we have that

K

(27) uF2n(ce)=A Jo O2n(k ’- dna dn3)uE2,(3)dfl, a6Ra.

Consider next the appropriate form which (27) takes when a Rd\R*-d
{K, K + 2iK’} {-K, -K + 2iK’}. Let a K + iuK’, where 0 _-< u _-< 2. Then, as long as,K + iuK’- w R d,

lim O2n(k ’-a dn (K + iuK’- w) dn/3) Qzn(k ’-1 dn (K + iuK’) dn/3 i0),
w-+0

where k ’-1 dn (K + iuK’) dn/3 is real and numerically less than one for 0 _-< u -< 2, 0 _-<
/3 -< K. Thus, from (27) and (14) we have

K

uFzmn (K + iuK’) A Jo QEn (k ’- dn (K + iuK’) dn/3 iO)uE2mn() dfl

K

(28) A/ Jo 2" (k’-a dn (K + iuK’) On fl)uE2 (t)

K

+ 1/2rri t.j0 V2n(kt-1 dn (K + iuK’)dn/3)uE2(/3)

and, using the results in [3], the second integral in (28) is a multiple of uE2(K + iuK’).
In a similar manner,

K

uF2n(-K + iuK’)= A{ "],. 2n(k ’-1 dn (K + iuK’) dn/) uE2mn(fl) d
(29)

KIo an + an

and (27), (28) and (29) constitute the required integral representation of uFzmn (ce) for all
a e Re. Due to the discontinuity of Q2(r) across the cut in the ’-plane, the right-hand
side of (26) is discontinuous across Re a + K, and we investigate in a later section the
analytic continuation of the right member of (26) across Re a +K into regions
contiguous with the basic region Rd.

Two further representations for uFzmn (o:) follow on permuting the right-hand sides
of (21). However, as Arscott [3] has pointed out, it is necessary to choose different paths
of integration for the application of Theorem 1. Further, with the change in argument of
the Q-functions, the validity conditions change, leading to different basic regions.

Consider the sphero-conal transformation in which cos 0 k sn a sn/3. Let Rs be
the basic region of the a-plane defined by

(30) Rs R \[{K, K + 2iK’} tO {-K, -K + 2iK’}],
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where the subscript s is to be interpreted analogously to the d in Re. Further R is a
region of the/3-plane which contains the straight-line segment {K, K + iK’}, and

R* R\[{-K, K} U {-K + 2iK’, K + 2iK’}].

Theorem 1 and similar reasoning to that used in deriving (27) now show that
K+iK’

(31) uV2mn (a) h I1,: Oz,(k sn a sn 13)uEz (13) d{3, a R*

for some h possibly different from that in (27). For a R\R s*, the formulae equivalent
to (28) and (29) are

K+iK’

uF.", (uK)=A{ I/ 2zn(k sn uK sn B)uEz(B)d
(32) K+iK’

-1/2 rri fz,: Pz,(k sn uK sn/3)uEz(/3) d/3},
and

K+iK’

uF2mn (uK + 2iK’)= h{ f 2n(k sn uK sn [3)uE2mn(fl) d
aK

(33)
K+iK’

+1/2ri f P2n(k sn uK sn fl)uE2mn(fl) d13}
aK

for lul <-- 1. Again the second integrals in (32) and (33) are multiples of uE’n(uK).
The third sphero-conal transformation sets cos 0 (ik/k’) cn cn ft. The appro-

priate basic region is now Rc given by

(34) Rc R \[{0, 2iK’} U {-g + iK’, g + iK’}],

and we set

R * R\OR.

The integration path suggested by Arscott [3] is the piecewise linear path F in the
/S-plane, defined by

F {O, K} U {K, K + iK’}.

The resulting representation is

(35) uF2mn(a) h fr O2n (, cn a cn/3)uE2mn(/3)d3, a eR*

for some scalar h. As before, the points a R\R are excluded from the basic region
since the argument of the QE,-function can then assume the values +/-1 on the
integration path. For a ORc, formulae such as (28) and (29) are easily written down, (35)
being discontinuous as a varies across ORe.

To generate the complete set of 24 representations of the eight types of Lain6
functions in the appropriate basic regions, we use as kernels in Theorem 1 the
four simplest spherical harmonics of the second kind, i.e., Q, (cos 0),
QI (cos 0) sin b, Q, (cos 0) cos 4, Q2,(cos 0) sin 2&, which are respectively
equivalent to Q, (cos 0), sin 0 sin (bQ’,(cos 0), sin 0 cos b Q’(cos 0) and sin2 0 sin 4
cos4Q,(cos0), in each of which n may be either even or odd. (Here and
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subsequently the prime denotes differentiation with respect to the argument of the
O-function.)

Expressing these functions in terms of a and/3 by means of (21) and the other
formulae obtained by permuting the right-hand sides of (21), we have 24 distinct
functions G(a, B) suitable as kernels in Theorem 1. Writing S k sn a sn/3, C
ikk ’-1 cn a cn/3, D k ’-1 dn a dn fl, these 24 kernels can be allocated to the eight
types of Lam6 function of the second kind as can be seen in Table 1.

TABLE

uF2.(a) II sF2n+l (a) III cF2n+l (ce) IV dF2n+l

(i) O2n(S) O2n+l (S) O2n+l (C) Q2n+l (D)
D(ii) Q2n(C) SQt2n+l (C) CQ2n+l (S) QEn+l (S)

(iii) Q2(D) $Q’2+1 (O) CQ+ (O) DQ.+ (C)

v scF2n+2 (a) VI sdF2n+2 (a) VII cdF2n+2

(i) COn+2 (S) DQ’2n+2 (S) DO2n+2 C) CDQn+3 (S)
(ii) SQn+2(C) SQ’2+2(D) CQ2n+2(D) SDQn+3(C)

SD,n" CD" Srr"(iii) SCQ+2(D) ’2n+2 (C) .2n+2 (S) w2n+3 (D)

In this Table 1, I(i), I(ii), I(iii) and II(ii) are the kernels obtained by Arscott.
It is easily shown that the kernels as given in Table 1 do correspond to the Lam6

functions under which they are tabulated, provided that the limits of integration are
chosen as in (26), (31) and (35), the arguments of the Q-functions being D, S and C,
respectively. Thus, for values of c within the respective basic regions we have the
following 24 representations, the values of A differing from equation to equation.

I (i)

(ii)

(iii)

H (i)

(ii)

(iii)

III (i)

(ii)

(iii)

K +iK’

uF2mn (oe) 3, IK O2n (SluE2 (B) dB,

uF2% () a Ir Q2.(C)uE.() dB,

K

UFzmn(Ce)=A fo O2n(D)uE2mn() d[3,

K+iK’

sF2mn+l (1= a f O2n+1 (SlsE2mn+l ([3) dfl,
aK

sFz%+l (at h Iv SO;.+x (ClsE2mn+ (1

K

sF2%+1 (a)= a fo SO2n+l (DlsE2%+a (B) d,

cFn+I (or)= A fF {Q2n+l (C)cE2mn+ (fl) d[3,

K+iK’

cF2+ (a)= h f COn+x (S)cE,+x (13) dB,
aK

K

cF2mn+l (o)= A fo CQn+I (D)cE2mn+x ([3) d8,
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IV (i)

(ii)

(iii)

V (i)

(ii)

(iii)

VI (i)

(ii)

(iii)

VII (i)

(ii)

(iii)

VIII (i)

(ii)

(iii)

K

dF2+l (a) h Io 02n+1 (D)dE2+I (fl) dfl,

K+iK’

dF2+ (01.) , IK DO;,,+ (SldE’,. () dfl,

II.1)’dFz,,+x (o)= A O2,,,+ (C)dE2,+x ([3) d[3,

K+iK’

scF/ ( ,
scF/ ()= a SOn.(Clsc.(l ,

K

K+iK’

K

sdF+ () fo SO;+a (D)sdE+ () d,

K

cF+( o COi+(Dc.(,
K+iK’

K+iK’

SDscdFrn+ () .+3 (C)scd.+3 () d,

K

scdF+ () o SCO"2n+3(D)scd2n+3() d.

4. Calculation of the A-multipliers. In this section we show how to calculate the
A-multiplier in the representations of the F-functions given in 3. Two methods will be
indicated, and illustrated by detailed consideration of formulae I(i), (ii) and (iii). In what
follows, the multiplier will be denoted simply by A, but it must be remembered that its
value is a function of n, m and k, and can vary between representations of the same
F-function.

Consider first formula I(i), namely
K+iK’

uF2" (a) A I O2,(k sn a sn fl)uE2%(fl) d, s Rs.
aK
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Differentiation with respect to a gives
K+iK’

(36) uF2m (a)= hk cn a dn a f: Q’En(k sn a sn/3) sn fluE2rnn([3) d/3,

where the prime denotes differentiation with respect to argument. We now set
a iv, v R, and let v - 0 + in this limit (36) yields

K+iK’

(37) uF2m (0) hkO’n (iO) f: sn [3uE2mn ([3) dfl.

Now from (7), (17) and the result UEEm (0)= 0, we have that

uF2r (0) (4n + 1)k/uE2 (0)
(38) and

Q’2(iO) {Pz (0)}-1 (-1)22n (n !)2/(2n)!.
Thus, from (37) and (38) we have

K+iK’

(39) h (4n + 1)P2,,(O)/uE2(O) JK sn/3uE2(/3) d/3.

In tables prepared by Arscott and Khabaza [10] the coefficients of powers of sn2r/3 in
the expansion of uE2() are given for a range of n, rn and k. Thus, using the reduction
formulae given in 11 for integrals of powers of sn/, the integral on the right-hand side
of (39) can be computed.

Further, uE2(0) can be found from [11], and hence h is furnished explicitly by
(39). As an example, suppose that n rn 0. Then uE()= 1 and

f
+iK’ i’n"

sn uEo( d 2k"

It follows that h 2k/’rri and

2k K+iK’

Qo(k sn a sn/) d/3,
7rl .K

that is

log
k sn a sn/3 + 1

d/3, a Rs.
rn x k sn a sn fl- 1

Equation (40) is an example of the rich variety of definite integrals which our
representations yield.

A second method of evaluating A consists of examining the form of each side of
(36) as a iK’. In this limit, sn a oe, and (16) shows that

-rr 1/2(2n) 1
(41) O.,,(k sn asn/)--- (2k)2"+XF(2n + 3/2) (sn

Now uF’,, (a), (sn a)-2-1 as a iK’; thus combining this asymptotic form with I(i)
and (41), we have that

(42) A (2k)2n+lI 2n+ /Tr1/2(2n)! (ns[3)2n+auE2mn(fl)dfl.
JK

The integral in (42) is a little more awkward to evaluate than that in (39); hence (39) is
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preferred. When n rn 0,
K+iK’II ns dfl [log {sn /(cn fl +dn )}]K+iK’=

and (42) reproduces the value , 2k/Tri.
We next turn to I(ii), viz.,

K

uF2 (c)= A Jo 02n(k’-I dn c dn 3)uE2(3) d/3, Re.

After differentiating with respect to c, the appropriate limiting process is to set
o K + iK’- u, u R, and let u 0 +, giving.

K

uF."2 K + iK’)= iA O’2n(-iO Io uE2 (fl dn/3 d/3.

Use of the Wronskians (7) and (17) now shows that
K

(43) , k(4n + 1)P2n(O)/iuE2m(g + iK’) Jo uE2m(fl) dn d.

Since uE2(ce)= 2;o arsn2ra, where the coefficients ar (with an 1) are available from
10], the integral in (43) is reduced to a sum of elementary trigonometric integrals by the

substitution 0=am ft. Thus, when n m =0, (43) gives =2k/Tri, and therefore

(44) uF (a)
2k foC Qo(k ’- dn a dn fl) d[3,

that is,

r k dn a dn fl-
Putting a=K+iuK’-w,O<u<l in (44), letting w0+and using (14), (13), the
integral in (44) becomes

1 {Ion: (l+adn) f0
:

}log d/3 + 7ri d/3
7rt 1 a dn

where a k’- dn (K + iuK’). It follows that

(46) Io
:

( l + a dn ) d r(1- u)K’log
1-a dn

a result which is in accord with entry 801.07 of [11]. Thus, (45) constitutes a
generalization of that entry.

To apply the second method of evaluating A, it is only necessary to note that as
a iK’, k ’- dn a .-.(-ik/k’) sn a. The arguments leading to (42) now show that

:
t).+(47) A =(2k/k’)2n+aF(2n +-)(- 1)n/irl/2(2n)! (nd uE2n(fl) d/3.

Again, the definite integral in (47) is more complicated than that in (43).
The final member of the trio of representations of uF2", (o) is I(ii). The appropriate

analytic process is again differentiation with respect to c, now followed by setting
o K u + iv, u, v , and taking the double limit u, v 0 + (thereby remaining within
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Re). Then

fo
tc

(i,lim On cn a cn
U, O+

and

lim O cn cn fl uE2(fl) cn fl dfl

K

[3)uEn(fl) cn/3d/3 Q’2n(io)fo uE2mn(/3)cnfl d/3

K+iK’

O’,(-iO) I uE() cn d.

Since O’2(iO)= O,,(-iO)= {P2n (0)}-a, it follows that

cn a cn/3 uE2, (/3) cn/3 d/3
u,v-*O+ F

uE2 (/3) cn/3 d/3,

and

(48) uFz" (K)= -ikA IrPz,, (0)
uE2,, (fl cn/3 dfl.

Use of the Wronskian now gives the result that

(49) A i(4n + 1)Pz,(O)/uEz(K) fr uEz% (/3) cn fl dfl,

and the integral in the denominator of (49) can be written as a sum of integrals of the
form r cn2+a/3 d/3.

In the special case n rn 0, the result

cnfldfl=
r

r 2k

shows that A =2ik/vr, a value different from that obtained for the two previous
representations. A form for A alternative to (49) is readily obtained by means of the
limit a -> iK’, and involves integrals of the form

IF (nc fl)z"+luE2n (fl d[3.

In the derivation of (39), (43) and (49), differentiation with respect to c was first
carried out in order to make use, in the Wronskian, of the vanishing of uE2’,(a) at
a O, K + iK’ and K respectively. However, if E2 itself vanishes for the appropriate
value of c, the prior differentiation is unnecessary. Consider, for example, represen-
tation VI(ii), viz.,

K

sdF2+z(CZ)=Aksnce f snflO’2,,+2(k ’- dna dnfl)sdE’n+2()dfl, oRd.
o

Here sdE2mn+2 (K + iK’) 0 since dn (K + iK’) 0. Thus, setting o K + iK’- u and
letting u 0 +,

K

(50) sdFzn+2 (K + iK’) A JoQ2,+2(-i0) sn BsdE2,+2() dB

with Q+z (-i0) {P2,,+2 (0)}-1, and the form of sdE2+2 (/3) means that the integral in
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(50) can be reduced to a sum of elementary trigonometric integrals by the substitution
am/3. The Wronskian (7) shows that

sdE2"+z (K + iK’) sdF2.+2 (K + iK’) (4n + 5)k 3,

whence, from (50),
K

(51) A (4n + 5)k3pzn+2 (O)/sdE’+z (K + iK’) J0 sn fl sdE2+z () d.

As an example, take n m 0 with sdE (a)= sn a dn c; then

sdE’ (K + iK’) ik’/k, snz dn fl d -
and P.(O)=-1/2. Thus, A lOik4/rk and we have the explicit representation

(52) sdF (a)=
lOikS fo

:

7r--;-sn ce sn fl0’2+2 (k ’- dn ce dn/3) sdE ( dfl.

(The functional form of sdF (c) is given in [5].)
It is now a straightforward matter to codify the rules for computing the A-multiplier

in each of the 24 cases. For the contours of integration {K, K + iK’}, {0, K} and F,
respectively, the limits required are ce iv with v - 0 +, ce K + iK’- u with u - 0 +,
and a =K-u +iv with u, v-0+. A prior differentiation is necessary for these
contours in cases where E", (0), E(K + iK’) orE(K) are zero’, thus differentiation is
required for representations I(i, ii, iii), II(ii, iii), III(ii, iii), IV(ii, iii), V(iii), VI(iii) and
VII(iii), i.e., precisely half the full set of representations.

5. Representations outside the basic regions. Let I(a) denote the integral on the
right-hand side of representation (26). Then I(a +2K)=I(a), and further I(a) is
discontinuous across Re a K. Specifically, if c K + iuK’- w, where 0 < u < 2 and
w N, then

K

(53) lim I(K + iuK’- w)= | Oz(k ’-1 dn (K + iuK’) dn fl + iO)uE,.() d[3.
O- o

Thus, using (28), (53) and (12) we obtain

(54)
K

I(K + iuK’-O)=I(K + iuK’ + 0) + ri J0 PE(k’- dn (K / iuK’)dn /3)uE2(/3) d,

exhibiting the discontinuity of I(a) across Re a =K. In a similar manner, I(a) is
discontinuous across Re a (2N / 1)K for all integer N. It is now apparent from (54)
that the analytic continuation of the right-hand side of (26) across Re c K, 0 < Im a <
2K’, is

(55)
K K

All Q2n (k ’-1 dnadn/3) uE2mn()dB +rri fo P2n(k’-I dnadn [3)uE2mn([3) dB}
for K<Rec<3K, the left-hand limit of (55) as RetooK+0 being equal to the
right-hand limit of (26) as Re a -K 0 for 0 < Im a < 2K’. Thus, for cr Rd, (26) and
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(55) show that
K

uF2(a +2K)=uF:z(a)+’rriA [. Pz,, (k ’-1 dn ce dn/3)uEn(/3) d,
(56)

uFz () + i uE2(),

where is the characteristic number in the appropriate homogeneous integral equation
for uET,().

Equation (56) enables one to compute values of uFz (a) in the contiguous region
K <Rea <3K, 0<Im <2K’, from its values in the basic region. By repeated
application of the above arguments we have that, for any integer N,

(57) uF(a + 2NK)= uFz(a)+Ni uE2(a), Rd.

A slightly different form of (56) can be obtained by direct transformation of the
integral representation (6), which gives, for Ra,

(58) uF2 , [u.()]"
The path of integration {iK’, a + 2K} can be deformed into the union of {iK’, iK’ + 2K}
and {iK’ + 2K, + 2K}, and for the second segment the transformation 2K + is
applied. Equation (58) can then be rewritten as

uF( + 2K) (4n + 1)kuE() ,, [uL()]+ , [u)]
(9) ,+z

d

Comparing (56) and (59) we have the remarkable relationship

(60) ---)t (4n +. 1)k f
iK’+2K. r :, tue.t)

between the multipliers appearing in the representations of the Lam6 functions of the
first and second kinds, respectively. It is worth remarking that (59) can also be obtained
by investigating the singularity of uFz (o) at c iK’ + 2K.

Consider next the values of the uF-functions in the contiguous region IRe a] =<
K, 2K’< Im a < 4K’. Since the integral representation (26) does not exist for Im c

2K’, it is not possible to use analytic continuation; however the direct transformation of
(6) can still be used. Let c e Ra; then

+2iK’ d(61) uF:z (o + 2iK’) (4n + 1)kuEzm (o + 2iK’) |,,, uF ;". ()]’
and we decompose the path of integration as

{iK ’, o + 2iK’} {iK ’, 3iK’} U {3iK’, o + 2iK’}.

On the second segment the transformation 2iK’ + rl is applied, and the final result,
comparable with (59), is

3iK’ d(62) uFz (ce + 2iK’) uF2 (o + (4n + 1)kuEz (ce
,z’ [uU’,()]2"
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To obtain a form of (62) without the awkward integral we can start with represen-
tation I(i) and effect the analytic continuation across Im a- 2K’. Writing the h-
multiplier in I(i) as ,(, we find that for a Rs,

(63) uF2n (a + 2iK’) uF2n (a + "lrt-- uE2n (a ),

where t is the characteristic number in the homogeneous integral equation
K+iK’

uE%() g [ p. (/ sn c sn uE%(t) dt.
aK

Comparing (62) and (63) it follows that

(64) (4n + 1) 1" ’:’ d
,,, [u.()]"

By repeated application of (56) and (63) it also follows that for a R G Ra,

(65) uF2(a+2NK+2MiK’) uF2(a)+iNh }+ uE%(a),

a formula which is valid by continuity throughout the whole of the a-plane.
It is apparent that the process of analytic continuation may be applied to I(ii) across

all sides of the basic region R. Further the arguments of this section can be applied to
the remaining 2 1 formulae of the complete set of representations; the details are left to
the reader.

(66)

and we write

6. Potential problems and Liouville’s integral equations. As outlined in the
Introduction, the object of this section is to give a simple method of deriving nonlinear
integral equations for the Lam6 functions of the Liouville type. The method depends on
some simple results in potential theory.

Let S be a simple closed surface in three-dimensional space; let T denote the
infinite region exterior to S, and T* the region interior to S. Denote by V(Z) a potential
function which satisfies Laplace’s equation V2 V 0 in T [A T* and is
Defining R I.r-. I, then

v( z), .rT,
V()--- v(i)(.r), .r T*.

Using Green’s theorem applied to the volume T and (66), it follows that for .r 6 T,

1 1 0 V(O (Z’)- V( (.r’) On--;(67) V() =---- - On.’
where 0/0n’ denotes differentiation along the outward drawn normal to S with respect
to primed coordinates. A second application of Green’s theorem to the volume T* with
r T shows that

1 2,fS Iv(i) (r’t) On’ () R100rl v(i)(l..t)}dSt__ IT* v(’rt)v2’ (----’)--- V} d/)

(68)
=0.
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Suppose now that the potential function V is chosen to be continuous across S, i.e.,
V() (Z) V(i) (Z) for .r S. Then (67) and (68) can be combined to give the result that

(69)
with

v() I o’z’)
R

dS’, r.T,

1 O
{ V(O) (if)_ v(i) (r)}, r S.r() -4-- O-

Further, it is easy to verify that (69) also hold for.r T*. Alternatively we can choose the
potential function V to have a continuous normal derivative across S; in this case (67)
and (68) combine to give

(70)
with

1 V(O) v(i)(.r) U/ { (.r)- (.r)},

As with (69), (70) also hold for .r T*.
To derive integral equations of the Liouville type we introduce ellipsoidal coor-

dinates (a,/3, 3") which are related to Cartesian coordinates (x, y, z) by the equations

(71)

x k21 sn a sn fl sn

y k 2Ik’- cn a cn/3 cn y,

z ilk ’-1 dn a dn/3 dn 3’.

In (71) k is the modulus of the Jacobian elliptic functions; k’, the complementary
modulus; and l, an arbitrary constant. To obtain all values of (x, y, z) it is necessary for
a,/3, 3’ to vary in the ranges a from -2K to 2K, fl fromK to K + 2iK’, and 3’ from iK’ to
K + iK’. The coordinate surface 3’ constant is an ellipsoid (for more details, of this
coordinate system and ellipsoidal harmonics see Arscott [6]).

Let S be the ellipsoid 3" 3", a constant, and consider the potential function
V(a, fl, 3") which vanishes like the inverse distance at infinity (i.e., as 3" iK’), which is
continuous across 3" 3", and which takes on 3" 3" prescribed value

V(a, 3, 3")= ET(a)E’()= Ep’(a, fl),

where E is an arbitrary Lam6 polynomial, and the Lam6 product notation of Arscott
[6] has been introduced. In this geometry, the points of T correspond to 3" (3", iK’),
and points of T* to 3" [K + iK’, 3"), where 3" has the form r/+ iK’, 0 < ’1 <- K.

The form of the potential function V(a,, 3") satisfying the preceding
specifications is given by

(72)
V(i) (o, fl, 3") Ep(ol., )E’(3")/ET(3"),

V() (a, , 3") Ep’(a, )F7 (3")/F’ (3"),

To apply (69) to the potential (72) we let the point P’ 6 $ have ellipsoidal coordinates
,/3,3"), then

dS’ ik2 (sn2 a’ sn2 ,) da’ d’ 03""
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Thus, using (72) we have

O V() O v(i))-n; 0; ]
d$’= -ikZl(sn2 a -sn2/3’) Ep,, (a ’)

(73)

[a {Fm(Y) E,m(Y)}]F’ (y’)-E’(y’) r__-r,

Carrying out the differentiation and using the Wronskian (7), the term in square
brackets in (73) can be reduced to

(74) (-1)’+(2n + 1)k2’+l/En(Y’)Fmn (7’).

It now follows from (69), (73), (74) and the definition of the integration region given in
the Introduction that

(75) V(a,/3, y)=
ik2+3l(-1)’+’(2n+ 1) I I 1

8rE(y’)F (y’) - Ep(a’, fl’)(sn2 a’ -sn2 fl2)da’ dt3’

Thus, from (72) and (75) we have that for 3’ (y’, iK’),

ikZ’+31(-1)’+’(2n + 1)
(76) F (y)= M(a,/3, y),

8rE7(a)E’ (/3)E’ (y’)

and for "y (K + iK’, y’),

ikZ+31(-1)+’(2n + 1)
(77) E (y) M(a, fl, y),

8rE’(a)E’ (/3)F7 (y’)

where M(a,/3, y) denotes the double integral on the right-hand side of (75). Formulae
(76) and (77) are the results of Liouville [7], Arscott [3], and Sleeman [8].

We can also derive further nonlinear integral equations using (70). The potential
function V(a, fl, "),) defined by

V(i) (a, fl, ")/) Ep (a, fl) E(y)
ET’(y’-------’ 3/ (K + iK’,

(78)
F’ (y)V() (a, fl, y)=Ep’(a,8) Fm, (y,), y(y’,iK’)

has a continuous normal derivative across y 3". Also, for (a’,/3’, y’) S, (78) and the
Wronskian (7) show that

V(i) (6’, ’, ’) V() (6 t, ’, "}/’) (- 1)’+(2n + 1)k2+
Epm ’)

End’ (7’)Fm’ (7’)"
Thus, using (70) we obtain

(79)

V(a, , y)
ikz’+31(-1)’+’(2n + 1)Isef o, ()8rET’(y’)F’ (y’) -y EP’ (a" fl’)(sn2 a’-sn2 fl’) da’ dt3’,

and we have the integral equations

ikE+al(-1)+’(2n + 1)
(80) Era(v)

8,rrE,, (a)E’(8)F’ (V’)
N(a, fl, y)
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for 3’ [K + iK’, 3"), and

ik2+31(-1)’+(2n + 1)
(81) F’(3")=8rE,(a)E,(fl)E,,(3",) N(a, fl, 3")

for y (3", iK’), where N(a,/3, 3") denotes the double integral on the right-hand side of
(79). Equations (80) and (81) seem to be new, although some special cases were implicit
in the work of Sleeman [12] on low-frequency scalar diffraction by ellipsoids.

7. Some generalizations. There are a number of ways in which the arguments of 6
can be generalized and here we briefly indicate some extensions.

It was pointed out by Arscott [3] that (77) is only valid for P(a, fl, 7) at the origin
k a fl’- ’)/a(i.e. a O, K, 3’ K + iK’, R l(k2 sn2 cr cn2 dn2 y r, say) in the

case of the u-Lam6 functions, leading to the formula

ikal(4n + 1)
uF2 y’)

8rruEz (O)uEz(K)uE2(K + iK’)

(82) 1
uEp2m(a /3,)(sn2 a,_sn2 j,) dcr’ d/’

((75) is of course valid for all the Lam6 functions). To obtain nonnugatory formulae of
the type (82) for the remaining seven types of Lam6 function it is necessary to replace
the inverse distance Green’s function by those corresponding to higher multipoles. To
illustrate how this fits in with the arguments of 6, observe first that

V2 (X ,X’ 4r__O
\ g 3 ] c3X

where .r (x, y, z) and .r’= (x’, y’, z’). Using the function (x -x’)/R 3 instead of 1/R in
the derivation of (70) now shows that

OV(x, y,z)=
1 IsX-X’ {OV()

OX ---4- R3 Oft’ On’ J dS’,

valid for all.r. If we now use for V the potential function (72) with Lam6 functions of the
s-type and evaluate 0 V/Ox at the origin, Arscott’s formula for sF2 (3") (equation (5.10)
of [3]) is reproduced.

We can also consider coordinate systems other than ellipsoidal. For example,
oblate spheroidal coordinates (, r/, O) are related to Cartesian coordinates (x, y, z) by
the transformation

x a{(1 + 2)(1--’02)} 1/2
COS ,

(83) y a{(1 + sc)(1- T/2)} 1/2 sin b,

z ar,
where a is a constant, >_-0, and -1 <_-r <-1. The surface constant is an oblate
spheroid whose axis of symmetry is the z-axis. A potential function, suitable for the
application of (69), which is continuous across sc ’, is provided by

(84)

V() Pn (i:) p(r/) cos m&, 0 < : < sc’,P’ i’)

VO) O’(i)p,(rl)cosm& >,O’(i’)
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where n is a nonnegative integer and rn is an integer with 0 <= n -<_ m. On the surface
sc :’ we have that

0 ,0
a (1 + sc ’2 dry’ d& :,dS’on,

Thus (83), (69) and the Wronskian for the associated Legendre functions lead to the
results that for 0 -< : _-< :’,

ia(-1)m+l(n+m)’ I I cosm ,)(85) P(i)P(r) cos m4 4r(n miO. (i()
d4) R Pn (r dr

and for sc > sc’,

(86) O’(i)P() cos mb ia(-1)"+l(n+m)!I]= f cosm&’
47r(n m)!PT(ff’) d4’ R

pm ,)(n dn’.

In (85) and (86), R is the distance between the points P, P’ with oblate spheroidal
coordinates (, r/, b), (’, rt’, &’). If these points have cylindrical polar coordinates
(p, z, &) and (p’, z’, b’), then

ff cs mdP’ dc’= 2rr cs m4 fo e-klZ-z’lJm(kp)Jm(kp’)

2rr cos m4K,,(p, p’; z, z’),

say, and (85), (86) become

ia(- 1) m+l(-/ + m)!
(87) P,, (i)O, (rl) | Km (O, O z, z’)e7 (n’) dq ’,

2(n-m)!OT(i() -
and

(88)

ia(-1)"+l(n + m)!
(i)P"(l) j_ K,,, (p, p’; z, z’)P’ (7’) d’,-(n-m)!P’(i’)

To relate (87) and (88) to known formulae, consider the special case ’ 0 (i.e., the
spheroid has degenerated into the disk-shaped region z’=0, O<=p’<=a, O<=c <= 27r),
with n, m even integers equal to 2r and 2s, say. In the limit : 0+, r/= (1-p2/aZ) a/2,
and using the result that

O(iO+ =1/27ri(-1)s+ P*r(O),
(88) gives the result that

pr{(l_oZ/a2)/2}= 2(-1)S(2r+2s) fo P’
lfO2s t2 1/27ra(2r 2s).,2r(0)} (1-p /a)

(89)
K2(p, p’; O, O)P{(1-p’2/a) /2} dp’.

Formula (89) is a generalization of a result first written down by Popov for the case
s 0. Popov’s original proof utilizes properties of special functions, and an alternative
derivation is given in [14]. In a similar manner we may put r/= 0, i.e., sc (p2/a- 1) /,
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in (88) thus obtaining the equation

Q2S{i(p2/a22r 1)/2}
(90)

i(2r+2s)! fo p’
a(2r-2s)!(P(O)}/2 (1-p’2/a2) /2

2s p2 1/2} p.K2s(p, p ;0, O)P2r{(1--p /a 2) dp

As a final extension of 6, suppose that V, instead of being a harmonic function, is
everywhere regular and satisfies the Helmholtz equation (V2 + X2) V 0 throughout
space. As r ].rl 00, we also impose on V a Sommerfeld condition of the form

r(OV xv) -> o as r--> .
We can now repeat the arguments leading to equations (69) using the appropriate
Green’s function eiXR/R instead of the inverse distance Green’s function, to obtain the
representations

(91)

where

e ixR

V() o’(’)

I{OV
() OV(i)

}(92) cr (.r’) ---- On’ 0-;
and R [.r-.r’l. In (92) V(i> is a wave function regular within S, and V() is a wave
function exterior to S satisfying the Sommerfeld condition and such that V) V(i) for
points on S.

To apply (91) to the ellipsoidal wave functions we put q =-X212 in (8). In
ellipsoidal coordinates the Helmholtz equation then has solutions of the form

el(a)el" ()el. (,?,)

which are regular at the origin, and solutions of the form

el’ (a)el’ (B )hl(l)’ff (/)
behaving like eixksnv/k sn "y, i.e., eikr/r as r - oo. In Arscott’s terminology [6],
is an ellipsoidal wave function of the third kind. A continuous solution V suitable for
use in (91) is now furnished by

v(i) el,(a)elm(B)
el’if(T)

y (K + iK’, y’],
el(y’)’

(93)

V() elT(a)elT() hla>(y,), IT’, iK’),

the surface S being the ellipsoid y y’. Inserting (93) into (91) and (92), and using the
Wronskian (10) now leads directly to the integral representations

(94)

and

2-r+3 o’+’rik /(-1) (2n + 1)(3’) ---’ S----7 -7 M a, 3, Y, X8zrel,, (a)el, ()hl,, (7)

2r+3 o’+-rik /(-1) (2n + 1)(95) el" (y) (1)m M(a, fl, y, X) 3’ (K + iK’, y’],
8rel,, (a)el .()hl. (3’)
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where

(96)
ixR

M(o, , % X) ---el (c’)e/(/3’)(sn a’-sn/3’) da’ d/3’.

Equations (95) and (96) were first obtained by Sleeman [8]. Integral equations
analagous to (80), (81) and (5.10) of [3] are also easily written.down (see [17]).

8. Conclusions. This paper has explored two different species of integral
representation of the Lam6 function of the second kind. In 3, 4 and 5, the theory of
the class of representations of F’ (a) first introduced by Arscott [3 has been developed
and brought to a reasonable state of completeness; indeed it is now a practical
proposition to use the representations for the numerical computation of the functions.
A lack of this capability has undoubtedly hindered the application of Lam6 functions to
problems of interest in applied mathematics, the analytic form of all but the lowest-
order functions being hopelessly complicated.

In 6 and 7 a concise and simple treatment is given of Liouville-type nonlinear
integral equations for the Lam6 and ellipsoidal wave functions. The method used seems
to have been overlooked in the literature, although it would be unwise to claim that it is
original. Indeed, it is related to the standard method of expansion of Green’s functions
in terms of eigenfunctions, as described in [15]. However, the ease with which the
integral equations and generalizations are derived, when compared with the procedure
used by earlier writers, makes it worthy of note.
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AN APPLICATION OF SPLINE APPROXIMATION WITH VARIABLE
KNOTS TO OPTIMAL ESTIMATION OF THE DERIVATIVE*

CHARLES K. CHUI" AND PHILIP W. SMITH?

Abstract. In studying the optimal Lp estimation of f’ at Xo tn+k from the data f(tl), , f(tn+k-1),
where tl <. < tn+k- tn+k, one naturally arrives at the problem of best Lq approximation of N,,k from the
span of/V,k, 1,. ,n 1, where {Ni.k}i=l are the normalized B-splines with the knot sequence ,isi= and

k-21/p + 1/q 1. We prove that the Lq error dq(c(t)Nn,k, Sp{Ni,k}’--_]), where c(t)= 1/(k- 1)!II= (1- t,+i), is
nonincreasing in for -< q <= 0% and actually is decreasing for _-< q <oo, as the knots h, , tn+k-2 are
moved to the right toward t,+k-1. This agrees with the general conjecture of G. G. Lorentz, namely, "like best
approximates like." Consequently, in approximating f’(xo), it is advisable to take the nodes tl, , tn+k-2 as
close to x0 as possible as long as the process is stable. However, it is also shown that this conclusion is no longer
valid if one approximates f"(Xo)-af’(xo), say for a 10 and k 3.

1. Introduction. In applications, it is often essential to approximate the derivative
of a function f at some point say x0 from the data {f(ti)}7=+k-x. For convenience, we
consider 0 -< tl < t2 < < tn/k-X t,,/k := XO 1. The reader will see that the location
of Xo does not have to be restricted to be at t/k-X. We are interested in approximations
of the following type’

n+k-1

(1.1) /’(1)
i=1

This will be called a differentiation formula. Of course, to obtain an optimal differen-
tiation formula, one must know certain properties of f, and the problem is, in general,
very difficult. To simplify the problem, the approximation theorist usually considers
optimality over a class of functions. In this paper, we consider the Sobolev space H,
1 _<- p oo, of functions on [0, 1]. For the problem to be meaingful, we require that k -> 2
and n > 1

Let L L(/)= L(/, t), where /= (yx,""", Yn+k-1) and t= (tl,’’’, tn+k-1), be a
continuous linear functional on H defined by L[=f’(1)-27=+1-x yf(t),[eH. Set
ILl= sup {IL/I :/e H, Ib()[[o 1} and let /* (Yl*, *Y,+-I) be chosen such that
[L(/*)[ =inf {]L(T)[:/ R+-x}, We will show that [L(/*, t)] is decreasing in t. This is
achieved by recasting the above problem in terms of B-splines as follows. Let {Ni,}g%1
be the normalized B-splines with the knot sequence {ti}’=+ and let d(Nn,, Sp {Ni,}’-_-I1)
be the Lq distance from the span of {Ni,k}2 to Nn,k, where lip + 1/q 1. It is shown in
the next section that

(1.2)

where c(t) is defined by

IL(*)I c(t)d(Nn,, Sp {N,}’JI),

1 k-2

(1.3) c(t)
:)1"-----(k

* Received by the editors October 4, 1978. This research was supported in part by the U.S. Army
Research Office under Grants DAHC-04-75-G-0186 and DAAG 29-78-G-0097.

"t Department of Mathematics, Texas A&M University, College Station, Texas 77843.
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Hence, c(t) is a decreasing function of (t,/a,’", tn+k-2), We will also show that
c(t)dq(Nn,k, Sp{Ni,k}72) is a nonincreasing function of (tl,’ , tn+k-2) for all 1 =< q -<_
oe, and, in fact, it is strictly decreasing for 1 <_- q < co. The inequality will be considered in
3, while the strict inequality will be proved in 4. It is clear that, for q co, strict

inequality is not possible.
These results on approximation of N, k from the span of {Ni k} i=1 are related to the

problem of Lorentz on approximation of x from the span of {xXl, xk} on [0, 1].
This polynomial result is proved in [4] and a generalization is considered in 11 ]. The
more general result on Descartes systems is obtained by the second author in [12]. The
difficulty in working with B-splines is that they do not form a Descartes system. To
overcome this difficulty much additional analysis is necessary, and, in fact, strict
inequality is not even possible for the L case.

We have now seen that in approximating f’(1) from the data {f(ti)}=+-1, where
t < < t/k- 1, it is advisable, in the sense discussed above, to take the nodes
h,"’, t/k-a as close to 1 as possible. In fact this phenomemon holds for a more
general linear functional. In particular, it is trivially true for the approximation of
f’(1) + af(1), ce constant. One might say that this result is intuitively obvious, since to
obtain the information at a point, it would be advisable to take the data at the nodes as
close to the given point of interest as possible. Surprisingly, this intuition is wrong in
approximating, say, f"(1)-10 f’(1), when k 3. This result will be discussed in 5.

2. Differentiation formula. Let H, 1 <= p <, be the Sobolev space of functions
which are k-fold integrals of functions in Lp[0, 1], and let 0 =< t < ta < < t+.-a
t,/ 1. We are interested in approximating f’(1)=f’(t,/) from the data {f(tg)}=+-via formulae of the type

n+k-1

f’(1)- E 3qf(t,).
i=1

For the problem to be meaningful, we will require that f e Hp for k => 2 and n _-> 1. Of
course, the point t,/ 1 is just chosen for convenience and could be replaced by any
value to the left of 1 which is greater than zero.

The error

n+k-1

(2.1) Lf := f’(1)- Y.
i=1

is a continuous linear functional on Hr. Since we will want to compare these differen-
tiation formulae, we may from time to time use L(,) or even L(/, t) in place of L, where
t := (h, , t,+_x) and /:= (,, , 3’,+-a), unless it is clear from the context which
formulae L of type (2.1) we are denoting. Since any choice of in (2.1) yields a
differentiation formula, it is natural to ask which choice of /yields good or even a best
differentiation formula. We choose to measure the effectiveness of these formulae by

ILl :- sup {ILfl" f H, Ibll <_- 1}.

Then a best formula given by /* would satisfy

(2.2) r/= inf {IL(’)I: /e R"+-} IL(*)].

Throughout this paper, we will write n IL(,*)I IL(,*, t)l.
Since f(k) (f+ p)(k) for any p in rk, the space of polynomials of degree less than k, it is

clear that any L satisfying ILl < o must annihilate 7rk and we write L e 7r. Hence, we
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may apply the Peano kernel theorem to obtain

(2.3) r/= inf sup {fo KLg" g6L,[O, 1] and

where KL is the appropriate Peano kernel for L, e.g.,

(2.4) KL(t) L[ t)+-x]
and 1/p+ l/q 1.

Throughout the rest of the paper, we denote by {Ni,k:i 1,..., n}, the set of
normalized B-splines [1] with knot sequence (tl,’’’, tn+k). The following lemma
relates KL to the span of the Ni,k’S.

LEMMA 2.1. Let

(2.5) A Nn,k E ciNi,k" ci real
i=1

and

(2.6)

Then

B {K(t): L L(/) r}.

(2.7) [1 k(_iZ (l t+i)]A"B
(k- 1)! i=1

Proof. For each b 6 B, we have
k-2 n+k-1
+ E (ti-t) k-1b(t) KL(v)(t)

(1 t) yi
+(k 2)! /=1 (k 1)!

so that (recalling the definition of N.,)

[ 1
b

(k- 1)! i-1

where a e A and p e 7r. Since both a and b vanish on (1, oe), p must be identically zero.
Conversely, any element in the right side of (2.7) can be written as

g(t)
(1--t)k+-2 ,+k-1 dE (ti-t)+
(k-2)! i=1 (k- 1)!

with g(t) 0 for -< t. Integration by parts now allows us to conclude that g(t) Kc(a)(t),
where d =(dl," , d,/_l) and L(d)e 7r. This completes the proof of the lemma.

From this lemma we now conclude that the infimum in (2.2) is attained and

(2.8) r/= inf {c(t)llallq: a A},

where

1 k-2

(2.9) c(t)
:)1"(k y[ (1 -tn+i).

That is, the minimization problem (2.2) reduces to the problem of best approximating
Nn,k from the subspace spanned by {N,}’J in Lq[0, 1]. It is, of course, a classical
theorem that for 1 < q < the solutions are unique.
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All the above facts have been known for quite a while. We are interested in
comparing best differentiation formulae based on different interpolation points (nodes)
t. Specifically, let t :- 0--< t < < t/n+t,_l t/n+t: 1, 1, 2, be two sets of points,
and let L(/*i, ti) correspond to the error functionals for best differentiation formulae as
defined above for some p. In this paper, we will show that

(2.10)

>whenever ti tj for ]" 1,. n + k; and, for 1 _-< p < oo, equality holds only if t t.
This result verifies the "obvious fact" that one obtains a better differentiation formula
by using information nearer the point of interest (in this case t,+ 1). The statement
and proof of (2.10) is analogous to the problem of approximating x" from
span {x, , x} on [0., 1] where one asks for the best Ai’s given that 0=<A < <
A < n, Ai integers. Lorentz [8] proposed this problem in Loo[0, 1] and conjectured the
correct answer ( * N- k 1 + i) as was subsequently proved in [4].

3. Comparison of best differentiation formulae. A set of functions {(49i}t=1
C(a, b) will be called totally positive (see Karlin [7]) on the interval (a, b) provided

".
[q.(tl) q(t)’’’q(t) J(3.1)

det _->0,
Lq,,(t) qx(&) ,(t)J

whenever 1
C(a, b) be totally positive. In view of the discussion in 2, we will be interested in
approximating rCn by subspaces spanned by subsets of {r} 7_--11. Let 2t := (, 1, , hk) be
given where 1=<,1<,2< <&k<n and set S(X)=span{ox,}=. We define, for
l__<q__<oe,

distq (qgn, S(k)) inf {[Ir, SlIL.<a,>: S S(X)}.

The following lemma is a direct consequence of the proof of Theorem 3 in [12] and
a standard smoothing technique (cf. [10]).

LEMMA 3.1. Let
are k-tuples as above with 1 <-_ 3’ <-- < n, and if 1 <- q <- oo then

(3.2) distq (,, S(k)) -< distq (q,, S(/)).

Since we will need to use the smoothing technique several times, we sketch its use
here. For any 8 > 0 define

(3.3)
b

qi(x, t3) (1/6x/) fa pi(t)exp (-(x t)2/28a) dt.

The functions {(i(., 6)}=1 converge in Lq[a, b] (and locally uniformly) to {0i(. )}=1 as
6-0+. Furthermore, for each 6>0, the set of functions {qi(’, 6)}’=1 is an extended
totally positive system (see Karlin [7]) and in particular a Descartes system. Following
the proof of Theorem 3 of [12] we see that (3.2) is valid for Descartes systems and,
hence, (3.2) holds by letting 6-*0+. This smoothing technique has been used by
Micchelli under similar circumstances in [10].

We now present a lemma which will shortly allow us to make pairwise comparisons
of certain differentiation formulae.
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LEMMA 3.2. Let 0 <- tl < t2 < < t,+k-1 t,+k 1 and 1 <- r < r + 1 <-_ m + k 2.
Then there exist k-th order B-splines JQ1, 1Q, satisfying"

(i) span i=1 span {Ni,k} mi=l,
(ii) for r and r + 1, ti is a knot ofIQir and ]Qir+ respectively, for some index it, but is

not a knot of any other ]Q, and
(iii) {Nx,. .,/Q,} is a totally positive system.
Proof. Our proof of the lemma is constructive. The construction of the Ni’s is a little

different when tr and tr+l are close to the final or the initial knots. We therefore divide
the proof of the lemma into three cases.

Case 1. Suppose r > k. Set

Ni--Ni,k if l<-i<-r-k or r+2<=i<-m,

li(t) (ti+k ti)[tr-k, tr-1, ti+k]s(S k)k+-1

(3.4) if r- k < <-min (r + 1, m 1),

2Q, (t) (1 tr-k+l)[tr-k+, lr-1, 1, 1]s(S t) k-l+
if m <r+2.

It is clear that for r and r + 1, ti is a knot of 2Qi-k but of no other, f k. This gives
condition (ii). Since {Ni,k}?= is a totally positive system (cf. [3, 7]), in order to verify (i)
and (iii), it is sufficient to prove that there exist positive constants yi’s, such that, for
i=r-k+l,. ,r+l,

(3.5) Ni, "}/ 1i nt- ., Cj,
j=r-k

for some constants cj, i. We only prove (3.5) for r + 2 _-< m. The case r + 2 > m follows
similarly. Note that if r + 2 _-< m, the supports of/Qi, where r- k + 1 -< -<_ r + 1, and/Q-k
are contained in the interval [t-k, 1] for some constants q,i. To prove (3.5), we note that
the supports of/Q, r k + 1 -< <_- r + 1, and

_
are contained in the interval [t_, 1].

Hence, by choosing

di,1 lim ]Qk-l (t)/1Qk_-kl (t),
t- tr--k

we have

for j=O,... ,k-1. Since ]Qi-di,1]Qr-k is a polynomial of degree <_-k-1 on
[t-k, t-k+l], it must be identically zero there. This shows that (2Qi- di, liQr-k) is a kth
order spline with (possible) knots at tr-k+l, tr, ti+k and has support in [t-k+l, ti+k].
Since this support consists of a minimal number of knots, it must be a constant multiple
of the normalized B-spline with the same knots. But on [ti+k-1, tl+k] it is equal to Ni so
that it is positive there. Hence, we have

(3.6) IQi di,1]Q-k )’i,l[t,-k+, "’’, t, ti+k],(S t) k-a+
with )’i,1 > 0. Similarly, there is a positive constant yi,2, such that

(3.7) ]Qi di,2[r-k+l- di,1]Qr-k] 3’i,z[tr-k+2, ", tr+l, ti+k]s(S t)k+-.
This process can be repeated until (3.5) is obtained.
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Case 2. Suppose next that 1 < r <_-k. In this dase, we define our/Q’s as in the
following:

)Ql(t) (tk+2- h)[tx,’’" tr, tr+2," tl+2]s(S t) -1+

/2(t)=(t+-tx)[t,’’" t-x,t+,’’" t+a]s(S-t)-3(t) (t+3- h)[h,’’" t-, t+,’’" t+3](s- t) -1

+(t) (t+_- h)[tl, t_, t, t++l](s- t)-+(t) (t++-/+)[t+, , t++] (s t)-1 N+,(t),

(t)=Nm.(t).
From the above construction, it is clear that (ii) is satisfied. Indeed, t is a knot of and
t+ is a knot of N, but they are not knots of any other N. Following the argument in
Case 1, to verify (i) and (iii) it is sucient to prove that (3.5) is satisfied for some positive
constants T, 1 N N r + 1. The procedure in Case 1 applies; that is, we should verify
(3.6), (3.7), etc. Note that the only diculty is to verify (3.6) for and since
suppNc c supp N+. That is, we have to prove that there exists a > 0 such that

(3.8) (-Cl)(t)= r[t, , t+](s t)-.
Let V(. .) denote the Vandermonde determinant. By Cramer’s rule, it is clear that for
&+l < < t+, we have

(t) (t+- h)(t+a- t)-1
V(h, ", t_, t+l, ", t+)
V(h, tr_, t+, t+)

and

lQ(t) (t+z-h)(t+z-t)- V(tl, tr, tr+, tk+)
g(tl, tr, tr+2,""", t+z)"

Hence, again for t+a < < t+2, we have

)Q2(I) t+2- tr > 1.(3.9)
N(t) tk+-t+

For tl < < t., we use the identity

(S t)k-1 (S t)k-1 k-1
+ + (-1)(t-s)+

to conclude that, for t < < t,

/Q(t) (t/z-h)[tl,’", t-l, t/l,’’’, tk/]s{(S-t)- + (-1)(t-s)-1}
--(-1)(t+z-h)[tl, tr-x, tk+z],(t-s) -+
=(_l)2(t+z_h)(t_h)_ V(t2, tr-1, t+x,

V(h, tr-1, t+, t+)’

where if r=2, V(tz,...,t_x, tr+,...,t+z) means V(t3,"’,t+z)
V(tl, t_, t/x, t/.) means V(h, t3, tt+2) etc., and

and

1Q(t) (t+z- h)[h,’" ", t, t+z,..., t+2]s{(s t)-1 + (-1) (t- s)+-1}

=(_l)k(t+z_ta)(t_tl)_ V(tz, tr, t+z, t+z)
V(h, t, t+2, tk+2)"
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Hence, for tl < < t2, we have

12(t) tr-- h(3.10) ]Ql(t) tr+l--tl
That is, we have

for all e (h, t2), where cl (tr- tl)/(tr+l- tl) is a constant between 0 and 1. By using
(3.9), we have (]Q-cllQ1)(t)>O for all te(tk+l, tk+2). But /Q2-cl/Q1 has minimal
support and is, therefore, a positive multiple of the normalized B-spline with the same
knots. That is, we have (3.8) with /> 0.

Case 3. Suppose finally r 1. We then define

IQl(t) (tk+a- tl)[h, t3, t,+2]s(S t) ’-1/

and ]ri Ni, for 2, , n. Condition (ii) is clearly satisfied, and .arguing in the same
manner as in Case 1, we also have conditions (i) and (iii). This completes the proof of the
lemma.

Now let t := 0-<t <...<tn+_l tn+k 1 for 1, 2 be two sets of points
satisfying

2(i) tJ=tj if]#r and
(3.11)

(ii) t > t.
With the help of Lemmas 2.1, 3.1, and 3.2 we can deduce

LEMMA 3.3. Let t and tz be as above satisfying (3.10). Further let L(1.1, t1) and
L(I*z, t2) correspond to best Lp differentiation formulae with 1 <- p <= oo. Then

(3.12) [L(/.1, tl)l-< It(/*:, t)l.
Proof. Lemma 2.1 reduces the problem to comparing dq(Nn,, S with

dq(NZ,, S2), where the superscripts reference the knot sequence used and S
span {N,}721. First note that if r < n then N, N],k and using Lemmas 3.1 and 3.2
the result (3.12) is immediate. If n =< r -< n + k 2, then the result still follows since we
may combine the two knot sequences to form

t* := 0 =< t* <. < t,,+,
2:= 0<_-- t<’’’ < t < t <’’’ < t+,-1 t+, 1.

Let i=1 be the B-splines constructed in Lemma 3.2 on the knot sequence t* with
m =n + 1 and t2 only contributing to /Qir, and tlr only contributing to /Qir/l with
ir + 1 < n + 1, and let Si span {/V}=l,ii,+i-1. Then since c(ti)(Nin,k)(-z)(1-) is 1, we
have

c(ti)do(N 1,,, S )= +_})(1-)dq(]Qn+l, Si)

for i= 1, 2. But Lemmas 3.1 and 3.2 imply that do(/Q,+l, 1)--< d(lQ,+l, 2). Hence,
recalling Lemma 2.1, we obtain (3.12). This brings us to the main result of this section.

THEOREM 3.4. Let 1 <--p <-- be fixed, and suppose that two best differentiation
formulae L(/.1, t1) and L(/*, te) are given with

(i) 0 < t <" < +-1 t+g 1, 1, 2, and
(3.13)

1:>2(ii) t =t, /’= 1,. ., n +k-2.

Then ]L(/*1, 11)[ <--IL(/*, tZ)l.
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This theorem is easily proved by making pairwise comparisons and applying
Lemma 3.3. A similar argument is made in [12]. In the next section, we will consider the
problem of proving strict inequality.

4. Strict inequality. In this section, we strengthen the conclusion of Theorem 3.4.
In particular, we will prove that for 1 -< q < c (or 1 < p -< oo) the inequalities in Theorem
3.4 may be replaced by strict inequalities provided tl tz. It is clear that such a
conclusion cannot hold for q oo. The analysis here is parallel to that in [12], where
similar results are obtained for Descartes systems. We begin by presenting a few basic
facts about totally positive systems.

f "n+lLEMMA 4.1. Let ’tcCiti= c C(a, b) be a totally positive system on (a, b). Suppose
that a < ’ <. < r, < b exist so that

det [ccj(ri)]i=l,...,, > 0,
j=l,...,n

and qgn+l(Tj)--2in=l aiqgi("l’]) O, j 1,’’" n. Then for re (Ti, Ti+I), =0,’’’, n,

where ’o a and z,+x b. Furthermore, (-1)"-iai >- 0, for 1,. , n.
These results are immediate if one uses smoothing (cf. (3.3)) and recalls Descartes’

rule of sign. We now show that, for 1 <= q <, the best Lo approximation by totally
positive systems quite often produces an error functional whose sign structure is
comparable to that found in approximation by Descartes systems.

LEMMA 4.2. Let 1--<q<, t:=O<--q<’’’<t,,+k_l=t,,+k=l and {Ni,k}7’= be
the corresponding normalized B-splines. Set S span {Ni,,}=q, and suppose that so $ is
the best Lo(q, 1) approximation to N,,,k from S. If the Lebesgue measure of the set
{x 6 (q, 1): N,,,(x)- so(x) := eo(x) 0} is zero, then there exist - <. < -,,_ satisfying

(i)(4.1)
(ii)

changes sign at each of the zi’s, and
det [N, (zj)]i x,...,,,_ > 0.

j= l,...,m--I

Proof. For the case q 1, the reader should consult Micchelli 10]. For 1 < q <,
we note that by smoothing there exist at most/’(/" < m) points xx <. .<xi at which e0
changes sign. Again, by smoothing we can produce an s $ which, if j < m 1, is not
identically zero and has exactly the same (weak) sign structure of eo. But this means that

(4.2) (levi- sign eo)s O,
-t

contradicting the assumption that so is the best L0 approximation to qn+l on (tl, 1). Note
that it is here that we use the fact that I{x: eo (x) 0}1 0. Thus, we have the existence of
the {z}?=] satisfying (4.1, i). As for (4.1, ii) the arguments in Micchelli [10, Thm. 2]
yield the desired conclusion.

We mention, for future reference, that the {zi} ?_-] depend continuously on the knot
sequence t. For 1 < q < c, this is clear since the best approximation deform continu-
ously as a function of t. For q 1, this can be deduced from the work of Micchelli [10].

In order to be able to use Lemma 4.2, we need to know that the error eo never
vanishes on a set of positive measure. This fact is contained in the next lemma.

LEMMA 4.3. Let t := 0 <_-- tx <. < t,,+k- tm+k 1 be given and let {Ni,k}n=x be
m-1the corresponding normalized B-splines. Set S span {Ng,k}= 1, and let so S be the best
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Lq(tl, 1) approximation to N,,,k from S, where 1 <-q < co. Then eq := N,,,k- s does not
vanish on a set o]positive measure in (tx, 1).

Proof. Suppose, on the contrary, that eq vanished on a set of positive measure.
Then, by analyticity, e, must vanish on some interval (tj-1, t.). Due to the linear
independence and the property of the supports on the B-splines, we must have _<-m
and the coefficients of N.-k,k,""",/V.-1,k in sq must be zero. Since q < oe, the best
approximant s of N,,,k is unique, so that s (and hence e) is also zero on (h, t._).
Hence, eq vanishes on (tx, ti), and the above argument also shows that we may assume
that e does not vanish on a set of positive measure on (ti, 1). Also, since

(4.3) / ([eqlq-I sgn ea)Ni,k 0
-t

for 1, , m 1, and since e has no sign change on (tj, ti+l), we must have f < k. By
relabeling, we may assume without loss of generality that ] 2. Now Lemma 4.2 tells us
that there are exactly m-2 points 7"1<’’’<’m-2 over which the B-splines
{N2,k,""", N,,-1,k} are linearly independent and which are sign changes of eq. Now it
must be that N+l,k(ri) 0 for 1, m 2, which is a well-known condition for the
invertibility of the spline collocation matrix [3], so that ri (tg+l, ti+l/k). On the other
hand, [eq[q-1 sgn eq is (rthogonal to Nl,k SO that 7"1 (tl, tl+k). Let r be the first integer
_-<m 1 so that r (t, t+k). Then r [t+k, t+k+l) and {Ni,k}2 are linearly indepen-
dent over {rl,’", r_} (cf. [7]), and hence, one can produce a nontrivial linear
combination of {N,k}=l which has the same weak sign structure as e, contradicting
(4.3). If no such r exists, one can similarly construct a nontrivial linear combination of
{Ni.k}7’_ which has the same (weak) sign structure as e, again contradicting (4.3).

We are now ready to state and prove the main result of this section" namely, for
1 -<_ q < the inequalities in Theorem 3.4 can be replaced by strict inequalities.

THEOREM 4.4. Let 1 < p <--_ and suppose that two knot sequences t and t2 are
given such that (3.12) holds. Then if t t2 we have [L(/*a, tl)[ < [L(/.2, t2)[ where the
L’s are best Lp differentiation formulae.

Proof. As in the case of Theorem 3.4, the general result is proved by making
pairwise comparisons. Thus, it is sufficient to assume that t and t2 satisfy (3.10) and to
show strict inequality in this case. Proceeding as in the proof of Lemma 3.3 we form the
auxiliary knot sequence

(4.4)
t* := 0 < tl* < < t*.k * 1tn+k+l

:= 0_-<t<’’’ <tr < t <’’" <t+k- t+k 1,
I r ln+land the B-splines ,ii=l constructed as in Lemma 3.2 with m n + 1 on the knot

sequence t* with t only contributing to/Qi,, and t only contributing to/Qi,/l. We define
the error in bestthe two subspaces span {N}.=,.ir/_l, 1, 2, and denote by eq

L(h, 1) approximation of Nn/ from i. We need to show, recalling Lemma 2.1, that

Ilell. < Ile IIL. Lemma 4.3 tells us that e 2q does not vanish on a set of positive measure in
(tl, 1), and so by Lemma 4.2, there are {rg}’_-- which are the unique (ordered) sign
changes of eq.

It may happen that {N.}= 1,j.gr are not linearly independent over the {rg} n-xi= 1, but we
can assume that they are by moving t sufficiently close to t preserving the order and
recalling the continuity of the {r}’21 as a function of the knots. The comparisons will
preserve the inequalities because of Theorem 3.4. Let u- ,/-s, where s g is
uniquely chosen by the condition

(4.5) u(ri) O, 1,. , n 1.
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This can be done because of the linear independence. Now consider the difference

(4.6) u -e
j=l

This difference is not identically zero since e has the knot t which is active.
Furthermore, the sign of air/l is determined by Lemma 4.1 and condition (4.5). Now
Lemma 4.1 implies that for r (ri, r/l), we have

(4.7) (-1)-(u e)(r) 0, i=0,... ,n-l,

where o a and r b. Thus, it follows, as in [12], that
; ()l, e [h, 1 ].(4.8) lu( )l le.

2Since u e q is not identically zero, and hence is not zero on a set of positive measure, we
conclude that

for 1 q <. Finally, we obtain

as desired.

5. A eounterexample. In 2 and 3, we have seen that in approximating f(1) from
the data {f(t)}=, 0 t <. < t t+x 1, it is advisable to choose the nodes {tg} to
be as close to t+ 1 as possible. Intuitively, this seems quite reasonable since one
usually expects to obtain better information when the data values are taken closer to the
point of interest. In this section, we will show that, surprisingly, in the approximation of

f’(1)- 2af(1),

a real, from the data {/(t)}=, it is sometimes better to stay away from t+x 1.
Let N, N, and N be the normalized B-splines of third-order and with the knot

sequence {0, , t, 1, 1, 1} where < < 1. Consider the error formula

4

(5.1) Mf f’(1)-2af’(1)- Tif(ti),
i=1

where tx 0, t2 , t3 t, t4 1, and a, ’s are real. As in 2, we consider

IM I: sup {IMf[" f e H3 and [If()[l 1}
and

(5.2) (a; t) inf {M[: ,..., 74 real}.

Then by a simple calculation using the ideas in 2, we have

(5.3) n(a; t) inf {l[Na + (1 a + at)N- gxll=: real}.

The following result gives a formula for (a; t) in terms of the location of the variable
knot t.

PgoeosTIO 5.1. For each real a,

n(a; t) { (1/5)(1 t)+ (2/15)(1 a + at)(1 t) + (1/15)(1 a + at)(t 1/2)

(5.4) [t(1 t) + (1/2)(1 a + at)(t + t/2 + 1/4)]11/+ 15t(2t-5t+1/2)
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For example, if we take a 5, then the minimum value of r/(a; t) is unique and is
attained at t’- .85. Additionally one can check that r/’(5; 1) > 0, showing 1 not to be a
minimum. This shows that in the differentiation formula (5.1) the node should not be
chosen to be too close to 1.

ProofofProposition 5.1. By the standard calculus technique of finding local minima
(with respect to y), it is clear that

 Io I0 fo(5.5) r/ (a t) N+ 2/3 N3Na +a N2-( N3N + NAN1)a

where fl 1-a + at. By some tedious computations, we obtain:

N=l-t
5

1 2

N3N= 15

N=2t+l
30

(5.6)
(1-t)___2

15
2 + t2 + 1 /4

andN2N1 30t

2 -2t + St- 1/2
15t

Putting (5.6) into (5.5), we obtain (5.4).

6. Final remarks. When p 2, a strictly Hilbert space argument can be given to
obtain the results in 2. Indeed, if r/is as given in (2.2), and sf is the natural spline of
order 2k interpolating f at tl,’’’, tn+k-1, then a result in ([6] Lemma 2.3) gives

sup {l f(1)-s}(1)l./e H, 11’’112- 1}.

But then g := f-sf is in H and interpolates the zero data at the nodes tl, tn+k-1.
Let S* be the natural spline of order 2k with knots at tl," , t/k determined by the
data S*(1)= 1 and S*(tl) S*(tn/k-1) 0. Then

(6.1)

(See [5]). The quantity [Is*(k)[12 can be studied in the following manner. Let gH
satisfy g(tl) g(t,/k-1) 0 and g’(1)= 1. Following de Boor [2], we have

(6.2) IIS I1= inf H2, f(k)Ni,k g()N, for 1,... n
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By the Peano kernel theorem, it is clear that

(6.3)

Io gkNi,k (k 1)!(ti.k ti)[ti, ", ti+k]g

if l<-i<-n-1,O

(k- 1)!
(1-t+)... (1- t.+_z)

Hence, using the notation in 2, we have

ifi=n.

for an appropriate constant C, where c * ’s are chosen such that

Nn,k-- E cNi,k inf (llall=: a A}.
i=1 2

To find C, we note that

Hence, using (6.2) and (6.3), we have

C= N- c*N/
i=1 2 (1- t,+l (1- tn+k-2)

and substituting into (6.1) yields

gn,k ciNi,k C c(t) inf (llall=" a A},
i=1 2

where c(t) is defined in (2.9). This is the result in (2.8) for the case p 2. Thus, we obtain
the interesting result that IIs* k ll= is an increasing function of t.

There are many more interesting problems which we have not addressed in this
paper. In particular, the study of linear functions other than differentiation is of interest,
as is the location of optimal nodes on both sides of the support of the functional. The
study of the above and related problems will be delayed to a later date.
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OPERATOR MEASURES, SELF-ADJOINT OPERATORS
AND DYNAMICAL SYSTEMS*

PAUL A. FUHRMANNI"

Abstract. The paper studies multiplication operators in L2-spaces of matrix measures as models for
self-adjoint operators of finite multiplicity. The module theoretic aspects are emphasized and an analysis of
intertwining maps, that is, module homomorphisms relative to the algebra of multiplication operators by
bounded Borel functions, is given. Finally the machinery is applied to the study of dynamical systems with
self-adjoint generators. Controllability aspects are studied and a version of the state space isomorphism
theorem is derived.

1. Introduction. In [4] R. W. Brockett and the author studied the theory of
symmetric dynamical systems with normal generators. The main points of the study
were questions of spectral minimality, isomorphism theorems and realizability criterias.
At least as far as the state space isomorphism proved there, the canonical spectral
representation turned out to be a useful tool. The treatment had a somewhat ad-hoc
flavor and the relations and similarities with the existing body of theory of linear time
invariant dynamical systems remained somewhat obscure. In retrospect it seems the
missing ingredient was the lack of stressing of the underlying algebraic ideas.

It was Kalman [17], [18] who first emphasized the use of modules as the natural
framework within which to develop the linear theory. By now a significant part of the
new results are obtained within that framework [10], [13], [23].

Lately it has been realized that much of the recent work on infinite dimensional
systems has been developed essentially on the line of module theory, with the obvious
adjustments needed to make it work in the analytic case [2], [11]. The systems under
consideration used restricted shift operators in the discrete case and translation
semigroups in the continuous one. Thus it was a highly nonself-adjoint theory.

It is the object of this paper to remedy this situation. In the process we develop the
theory of spectral representations along nonclassical lines which point out more clearly
the connections with structure theory of operators in finite dimensional vector spaces as
developed in [10] and the structure theory of shift operators [15], [24].

Much as the left shift operator, restricted to an invariant subspace, served as a
model for a general contraction, the idea of a model for an operator was used in an
algebraic context in [10] and it appears in the theory of spectral representations of
self-adjoint operators. Thus a spectral representation is a convenient model to work
with. The relation between matrix measures their corresponding L2 spaces and spectral
representations is studied in 2. Section 3 outlines briefly the theory of multiplicity, the
ordered and canonical spectral representations of a given self-adjoint operator.

A central role in the theory is played by operators intertwining two self-adjoint
operators in Hilbert spaces. Since each self-adjoint operator in a Hilbert space induces a
natural module structure on the space, the intertwining operators are essentially
module homomorphisms where the relevant ring is the algebra of bounded measurable
functions. Convenient representations for these homomorphisms are found by way of a
lifting theorem which is the analogue of the Sz.-Nagy and Foias lifting theorem for
contractions. This should be compared also with the purely algebraic result as it appears
in [10]. Necessary and sufficient conditions for left and right invertibility of these
intertwining operators are established. For the analogues in other contexts we refer to
[9], [10], [25]. This takes up 4. In the last section we apply all this machinery to the
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" Department of Mathematics, Ben Gurion University of the Negev, Beer Sheva, Israel. This research
was supported in part by the Israeli Academy of Sciences and the Israel Commission for Basic Research.
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study of systems. We study .controllability and place a theorem of Fattorini [7] in what
seems to be its natural context. We introduce a stronger notion of controllability and
obtain an isomorphism theorem along the lines of that of Helton [16].

For the simplification of the proofs we assume that all the self-adjoint operators are
of finite multiplicity. However, there is no doubt that all the results generalize to the
case of any self-adjoint operator in a separable Hilbert space.

2. The spectral theorem and models for self-adjoint operators. We take as our
starting point the spectral theorem [1], [6], [12] which states that any self-adjoint
operator A has an integral representation of the form

(2.1) A | AE(dA),

where E(. is the associated spectral measure, that is a (orthogonal) projection valued
r-additive set function defined on the Borel sets of the real line. In case A is bounded
the integral (2.1) converges in the uniform operator topology whereas for unbounded
operators questions of convergence are handled in the strong operator topology. The
integral (2.1) allows us to construct a functional calculus. For each bounded Borel
measurable function q defined on N we can define q(A). This is done by letting

(2.2) q(A) | q(A)E(d&).

The map q-> q(A) is a *-homomorphism of the algebra 3 of all bounded Borel
measurable functions on into the algebra B(H) of all bounded operators on the
Hilbert H. In particular the underlying Hilbert space becomes a 3-module via the
definition

(2.3) q x (A)x for all x H.

Our next object is to obtain a functional representation of the Hilbert space.
Having a functional representation of the Hilbert space has the advantage of providing
extra structure in terms of which certain problems can be resolved in a concrete way. To
this end we assume our self-adjoint operator A has a finite set of generators. Here a set
of vectors x,..., x eH is called a set of generators if the set of all vectors of the
,= qi(A)xi where qi 9 is a dense subset of H. Let r be the Cartesian product of r
copies of 3. Clearly r is a 3-module. We define the map p:H by

(2.4) p(ql,""", q)= (A)x,
i=l

where x,..., x is the fixed set of generators for A. The map p is, by elementary
properties of the functional calculus a 3-module homomorphism, and by our assump-
tion that x, , Xr is a set of generators it follows that p has range which is dense in H.

Computing the norm of p(ql, ", ) we obtain

IIr qgi(A)xi[I2 Z Z (qgi(A)xi, q(A)x) Z ((](A)qgi(A)xi, x])

E E I (] (/)(i (/)(E(dA )x., x).

Define now the (complex) measures zij by

(2.5) .i](0") (E(cr)xi,
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for all Borel sets o- and let be the matrix whose i, j entry is/xij. We call such an object a
matrix measure [6]. We say a matrix measure is a positive matrix measure if for each
Borel set o-, ](o-) is a nonnegative definite Hermitian matrix. It is easily checked that
the matrix measure constructed in (2.5) is a positive matrix measure. Indeed let o- be a
Borel subset of E and let al, , ar be complex numbers; then with a (al, , ar)

((o’)a, a)= EE [J’ijOliaj EE (E(o")xi, Xj)Olilj
ij ij

(E(O’) E OliXi, E OljXj) [IE(O’) E OiXi]l2 - O.

In terms of the matrix measure introduced we have

(2.6) ]]PF][2 []Y fi(A)x’[12 I (dF, F),

where F 3 is the vector function whose components are fl,""", fr. Equality (2.6)
indicates that if we define properly the L2 space of a matrix measure M which we will
denote naturally by L2() then the map p" 3 r--> H will have a natural extension to a
unitary map of L2(]) onto H. Moreover, such a map satisfies

(2.7) p(qF) q(A)(pF) for all

Also for any vector x in the domain of A we have

(2.8) [p-(Ax)](A) A (p-x)(A).
Thus in the functional representation A acts like multiplication by A.
We note that M has a convenient description in terms of the spectral measure E(.

that is associated with A. If J"CH is the map sending (al, , ar) to ax then
for each Borel set we have

(2.9) M()=J*E()J.

To define L2(M) we proceed as in [6]. We denote by L(M) the set of all r-tuples
(f,. , f) of Borel measurable functions for which

(2.10) IIFll: [ (dF, F): [ i().() di]

and define L:(M) as the set of all equivalence classes in L(M) modulo the set of null
functions, a null function being one for which IIF[[ 0. With the inner product in L:(M)
defined by

L2() becomes a pre-Hilbert space and the only open question is that of completeness.
There is one class of matrix measures for which L() is clearly complete, namely the
class of positive diagonal measures, i.e., those for which j implies n 0 and the
diagonal elements are positive measures. If a,. ., are the diagonal elements of a
diagonal matrix measure then in this case

Itfi l

where II /ll is the norm of A as an element of L2(>i). Hence in this, case L2(M) is clearly
equal to the direct sum L2(>1)@ @L2(r) which is a complete space. We will use this
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observation to show completeness of L2([M]) by exhibiting a unitary map that diagonal-
izes M.

As a first step we simplify the problem by replacing matrix measures by density
matrices and one scalar measure. We choose a positive measure/x such that all ij are
absolutely continuous with respect to ,/zij <</z. One candidate is the sum of the total
variations of all the /x0.. A better choice turns out later to be the trace of ]. If
mii dlxJdlz is the Radon-Nikodym derivative of /x0 with respect to /z then we
introduce the density matrix

(2.11) M(A) (m,(a)).
The next lemma is quoted from [6].

LEMMA 2.1. IfM(a is density matrix ofa matrix measure with respect to a scalar
measure tx then M(A is nonnegative definite Ix-a.e.

Consider next the set of all positive matrix measures on N. We say that M divides N,
and write N]]N, if there exists a Borel matrix function H such that

(2.12) dg H* dNH.

Two matrix measures M and N are equivalent and we write M---N if M IN and
The division relation is clearly reflexive and transitive and hence induces a partial

order in the set of all matrix measures. Relation (2.12) is a generalization of the concept
of absolute continuity as applied to matrix measures. Heuristically the matrix function
H has the interpretation of a "square root" of a generalized Radon-Nikodym deriva-
tive of ] with respect to N. We point out that and N do not have to be necessarily of
the same size. In that caseH will not be a square matrix. For scalar measures x and u we
have of course/x u if and only if/x << u.

The partial order in the set of positive matrix measures is reflected in the
corresponding L2(M) spaces. Given two matrix measures M and N then we say that a
map U L2(M)- L2(N) is an embedding if it is an injective Y3-homomorphism. If U is
also an isometry we say U is an isometric embedding.

The next lemma provides a large class of isometric embeddings. The scalar case
appears in [5], [20].

LEMMA 2.2 Let and N be positive matrix measures and assume that IN. Then
there exists an isometric embedding of L2(M) into Lz(N).

Proof. Since MIN there exists a measurable matrix function H such that (2.12)
holds. Define U Lz(M) - L2(N) by

(2.13) UF HF for F L2(N]);
then clearly

IIUFII2= I(dNHF, HF)= I(H*dNHF, F)= I(dMF, F) IIFII2.

So U is an isometry and it is easily checked that it is a Y3-homomorphism.
We note that the set of isometries U is a coherent set ofisometries [5] in the sense

that if ]N and NI then we have

(2.14) U UU.
The equivalence of two matrix measures can be described also in terms of their

density matrices with respect to a common scalar measure. To this end we define a
notion of equivalence between measurable matrix functions. Let M and N be Borel
measurable n x m matrix functions defined on a subset X of N, and let r be a positive
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measure on R. We say that M and N are o--equivalent if there exist tr-a.e, invertible
measurable n n and m m matrix functions P and R such that

(2.15) M(A)=P(A)N(A)R(A), tr- a.e.

If M and N are square matrix functions we say that M and N are unitarily
tr-equivalent if there exists a measurable tr-a.e, unitary matrix function P such that

(2.16) M(A P(A )*N(A )P(A ), o-- a.e.

It is clear that both relations are bona fide equivalence relations and unitary
equivalence implies tr-equivalence. Also if u is a positive measure and u << tr then
o--equivalence implies ,-equivalence.

In terms of these notions we can state the next lemma, quoted from [6], which is the
main technical result for the proof of completeness, in the following form.

LEMMA 2.3. Let be a positive matrix measure and letMbe its density with respect
to a positive measure Iz that satisfies txij <</x. Then there exists a diagonal matrix function
D such thatMand D are unitarily -equivalent.

Alternately stated there exists a measurable matrix function H such that

(2.17) H(A)*H(A):I

and

(2.18) M(, H(A )*D(, )H(,)

hold/z-a.e.
We note that /z-a.e. M(A) is a nonnegative definite matrix and hence can be

diagonalized by a unitary matrix. The lemma’s content is that the pointwise diagonal-
izations can be made in a globally measurable way. With this lemma we can prove the
completeness of L() following [6].

THEOREM 2.4. If is a positive measure on then L2(/[]) is a Hilbert space.
Proof. Let Ix, H and D be as in the previous lemma and let dfi D d/x. The map

U L2(]) ---), L2()) given by (2.13) is an isometric embedding. However, it is invertible
and we have

(2.19) (U)- U (U)*,
where UG H*G. Thus U is a unitary map and

(2.20) LZ([D) LZ(6a)@ "@LZ(6r),

where 6i are the measures defined by 6i(r) di(X) dlz. Thus LZ() is complete and so is
L().

For o e 9 we define the operator of multiplication by o in L:() by

(2.21) M,,F oF for F e L2().

We single out the identity function X, ,t’(&) A, in terms of which we can summarize
the previous results and exhibit a functional representation for the Hilbert space H and
the self-adjoint operator A acting in it.

THEOREM 2.5. Any operator A in a Hilbert space H is unitarily equivalent to an
operatorMx, in L2(]) forsome positive matrix measure on the real line ifand only irA
is a finitely generated self-adfoint operator.

3. Unitary invariants and multiplicity theory. This section is devoted to the
characterization of the unitary invariants of self-adjoint operators by means of the
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ordered spectral representation. Again we restrict ourselves to the finitely generated
case. By Theorem 2.5 we may assume that A is the self-adjoint operator Mr. defined
by (2.21) in the Hilbert space L2(M). Since the matrix measure M was determined by a
choice of generators the question of a best choice of generators immediately arises. By
best we mean a choice that is canonical in some sense, modulo natural equivalences, and
which exhibits the structure of the operator in as simple form as possible. This is a
classical problem first resolved by Hellinger [14]. For various expositions we refer to
[6l, [12l, [21], [5], [3], [20]. Our approach gets at the result by simple matrix
manipulation. The price is the loss of generality involved by assuming finite multiplicity.

THEOREM 3.1. LetA be a finitely generated self ad]oint generator in a Hilbert space
H. Then there exists a finite sequence o]positive measures Ix1 >> Ix2 >>" >> Ixosuch thatA
is unitarily equivalent to

acting in

(3.2) L2(IXl) () @L2(IXp).
The sequence tx 1, , Ixp is determined by A up to equivalence of measures.

The representation (3.1) of the operator A is referred to as the ordered spectral
representation. The integer p is referred to as the multiplicity of A.

The proof of Theorem 3.1 is a direct consequence of the following lemma.
LEMMA 3.2. Let fl_ (Aij) be a positive matrix measure and let cr be a positive

measure such that fl_ IrI. Then there exists a diagonal matrix measure with diagonal
entries Ix 1, , Ixp such that dixi mi dtr and the following statements hold:

(i) Ix >> Ix2 >>" >> Ixo; and
(ii)

_
and are unitarily tr equivalent.

Moreover if N is another diagonal matrix measure with diagonal entries 91, , ,
such that d,i ni dp and the statements

(i’) P >> P2 >>" >> lp; and
(ii’)

_
and are unitarily p-equivalent

hold then and are unitarily z-equivalent where z =p ^ tr is the infinum of the
measures p and tr [5], [12].

Proof. By Lemma 2.3 it suffices to show that given a diagonal matrix measure

_
it

can be reduced to canonical form. Thus without loss of generality we let fl_ be diagonal
with diagonal elements A 1, , Ao where, by assumption, hi << o-. Let dAi li dr, i.e. li is
the Radon-Nikodym derivative of hi with respect to tr. For simplicity of notation we
assume p 2. Let A 2 + A be the Lebesgue decomposition of A 2 with respect to A 1,

assuming A<< A1 and A+/-A1. Let 12---l+ l with I and 1{ the respective Radon-
Nikadym derivatives of A and A with respect to tr. Let EE={AI/"(A)0} and
F2 {A I/"(A) 0} and let ,t’ and ,F2 be the corresponding characteristic function of the
two sets.

Define a 2 x 2 matrix function H(A) by

))
A simple calculation yields the equality

(3.3) L(A H(A )*L’(A )H(A),

where

(3.4) L(A)
/I(A) 0

L’ /I(A) + 2 0
0 /2(A)

and (A)=
0 /(A)
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which proves the statement for p 2. The necessary modifications needed to make the
proof work for p >2 are obvious. So much for the existence of the canonical
diagonalization.

To prove the uniqueness part we note the obvious fact that if

_
and 1 are unitarily

r-equivalent they are also unitarily r’-equivalent for any or’<< or. It follows that if we
form the infinum r O ^ r of the measures p and r transitivity Nl and N are unitarily
r-equivalent. Thus r-a.e, the diagonal matrices

0 "rn;(A)
and

0 "n,(A)

are unitarily equivalent. Here rn} and n} are the Radon-Nikodym derivatives of/xi and
vi with respect to r. Since assumptions (i) and (i’) imply m/l () 0 whenever m}(h) 0
it follows that the zero sets of rn’ and n are equal r-a.e. This is equivalent to/z v.

There is another representation associated with a self adjoint operator which is
closely related to the ordered spectral representation.

THEOREM 3.3. LetA be a finitely generated self-adjoint operator in a Hilbert space
H. Then there exists a finite sequence of mutually singular positive measures vt, vp
such that A is unitarily equivalent to

(3.5) M,.(R)... (R)M,.o
acting in

(3.6) L(IN)@ @L(II,),
where N. viii., I being the f x ] identity matrix. The sequence of measures 11, tp is
determined by A up to equivalence of measures.

The representation (3.5) is referred to as the canonical spectral representation
of A.

The passage from Theorem 3.1 to Theorem 3.3 is straightforward using repeatedly
the Lebesgue decomposition theorem for measures. We omit the details.

We remark that another alternative way of writing the canonical spectral
representation is to define the matrix measure N by

k’l+" "+/p
(3.7) N= v2+’"+vp

then A is unitarily equivalent to the operator

(3.8) M,,
acting on L2(N).

4. Operators intertwining seli-adjoint operators. Given two operators A and Az
we say operator X intertwines A and Az if

(4.1) XA1 A2X.

If the intertwining operator X is boundedly invertible then A and A2 are similar.
Given two self-adjoint operators A and Az then their similarity implies unitary
equivalence. However, even if X is not boundedly invertible the existence of intertwin-
ing operators having some additional properties (left or right invertibility) yields
information regarding the structure of A and A2. If A and Aa act in the Hilbert spaces
Hx and Hz respectively then the characterization of intertwining operators is equivalent
to the determination of a class of module homorphisms, where the modules are Hx and



744 FAUL A. FUHRMANN

H2 with the module structure induced by A1 and A2 through the classical functional
calculus.

As a consequence of Theorem 2.5 the study of operators intertwining two (finitely
generated) self adjoint operators reduces to those intertwining two operators of the
form S.. In the set of all matrix measures we single out the set of all scalar type
measures which are the matrix measures of the form rI, i.e., diagonal matrix measures
with all diagonal elements being equal to o-.

Given a matrix measure M, a subspace K of L(M) is called an invariant subspace if

(4.2) M,K cK

for all p , i.e., if it is invariant under all multiplication operators by bounded
measurable functions.

The following theorem is generally known. One version of it appears in [15].
THZOgZM 4.1. A subspace K of L(rI) is an invariant subspace if and only if

K PL(rI) where P is a measurable r a.e. projection valued matrix function.
Clearly a subspace K is invariant if and only if its orthogonal complement K +/- is

invariant. If P+/- is the projection valued function corresponding to K then we have
P+/-=I-P.

The next theorem characterizes all homomorphisms of L(rI).
TI-IZORV.M 4.2. LetX L(o’I)--> L(rI) be a homomorphism. Then there exists a

measurable r-a.e. bounded matrix function ,. such that ]:or all F L(rI)

(4.3) (XF)(a) ,,( )F(h ).

Conversely any operatorX defined by (4.3) is a homomorphism.
If o-I is a scalar type measure then we will write U for the isometric embedding of

L2(]) into L2(rI). Here we assume [o-I or equivalently d= H(A)*H(A)def. If
M(h) is the Radon-Nikodym derivative of il with respect to o" then M(A)=
H(A )*H(A )o’-a.e. It will be of interest to have a concrete representation for (U)*, the
adjoint of the isometric embedding U. For this we need to know something about
pseudoinverses.

If T’HI-> Hz is a bounded operator between two Hilbert spaces and has closed
range then Tl{Ker T}+/--+ Range T is an invertible operator. Extend the definition of
that inverse to {Range T}x by defining it to be zero there. The extended operator,
uniquely determined by T, is called the pseudoinverse of T and denoted by T# [19].
The property of the pseudoinverse which we need is

(4.4) TT#T T.

If we deal with complex matrices the above definition makes sense with the usual
inner product in C".

THEOREM 4.3. Let be a matrix measure and M[rI with

(4.5) d M(A do" H(A )*H(A do-.

LetP be the projection valuedfunction corresponding to the invariant subspace UL2([])
ofL(oq). Then we have

(4.6) (U)*G=H#PG

for all G L2(o’/) where H# is the pseudoinverse ofH.



OPERATOR MEASURES 745

Proof. Let F L2(11]) and G 6 L2(o’/), then

(F, U )* G) UF, G) I (H(A )F(A ), G(A )) do"

I (H(A)F(A), P(A)G(A)) &r.

Since PG UL2() there exists an element Go e L2() such that HGo PG. By (4.4)
we have

PG HGo HH#HGo HH#PG.

Using this equality we obtain

(F, (U)*G) f (H(A)F(A), P(A)G(A )) do-

f (H(A)F(A), H(A)H(A)#P(A)G(A)) do-

f (H(A)*H(A)F(A), H(A)#P(A)G(A))

I (dF, H#PG)
which proves (4.6).

Using this theorem we can obtain a representation for the adjoint of any isometric
embedding.

COROLLARY 4.4. Let and be matrix measures such that ]t and let trI be a
scalar type measure divisible by both and . Assume d H*Hdtr and d
K*K dcr; then

(4.7) U)*F H#OKF

for all F L2([), where O is the projection valued function corresponding to the invariant
subspace UL2(M) of LZ(crI).

Proof. We have U UgU and hence (U)* (U)*(U)*. Since U is
isometric we have

(4.8) (U)* (U)* U.
Applying Theorem 4.3 to (4.8) yields (4.7).

The next two results are instances of lifting theorems. They describe complicated
N-homomorphisms between two spaces of type L2(M) in terms of Y3-homomorphisms
of LZ(rI) which have been described in Theorem 4.2. Theorem 4.6 below is modeled
after the Sz.-Nagy-Foias lifting theorem [24]. For the algebraic analogue of this result
we refer to [10].

LEMMA 4.5. Let M be a matrix measure and assume M Io’I. Let X" Lz(rI) L2(/[])
be a Yd-homomorphism. Then there exists a N-homomorphism "LZ(rl)o L(rI) for
which

(4.9) X=(U)*X

and I1 ?11- Ilxll. This implies the existence ofa measurable r-a.e. bounded matrixfunction
Z, with Ilzll -Ilxll in terms of which we have the representation

(4.10) XF H#PEF for F L2(o-I).
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P is the proection valued matrix [unction corresponding to ULZ().
Conversely any map X’L2(o-I)L2(I]) defined by (4.9) where is a Ya-

homomorphism is also a -homomorphism and

(4.11) ])X)) I1 11 II--I1 .
Proof. If J" L2(rI) - L2(rI) is a -homomorphism then so is its composition with

(U)* and obviously (4.11) holds.
Conversely let X" L2(trI)-+ L2(d]) be a -homomorphism. Define " L2(o-I)

L2(trI) by

(4.12) F UXF for F L2(I).
Clearly X as a product of -homomorphisms is also one and since U is isometric
II ll Ilxll. By Theorem 4.2 there exists a o--a.e, bounded measurable matrix function "a"

for which XF ,.F and hence (4.10) holds by an application of Theorem 4.3.
THEOREM 4.6. Let and be matrix measures and X’LZ(/fl)L2() a =

homorphism. Let erI be a positive scalar type measure divisible by both and and let
dd H*H&r and d K*K def. Let P and Q be the measurable projection valued
functions corresponding to UL2() and UL2([) respectively. Then there exists a
gg-homomorphism .. L2(o-I)-+ L2(o-I) satisfying [1[I [IX[I for which

(4.13) XF=(U)*SfUF forFL2().
Moreover, there exists a measurable tr-a.e, bounded matrix function .. satisfying

(4.14)

(4.15)

and for which

(4.16)

IIzlloo I1 11 Ilxll,
..(a ..(a )P(A Q(A )..(a), o--a.e.,

XF K#Q,,HF ]:or all F L2(1).

Conversely every operatorXdefined by (4.16) ]:or ,, measurable and cr-a.e, bounded is a
ga-homomorphism from L2(11]) into L2().

Proof. If X is given by (4.16) then it is clearly a Ya-homomorphism and satisfies
(4.14). Let us assume therefore that X" L2()-+ L2(N) is a -homomorphism. Define
Y" LE(trI) -+ L2() by

(4.17) YF X(U& )*F.

Y is a ga-homomorphism as a product of such and YI{U&L2()}" 0 or equivalently
stated Yp+/-LE(erI)- 0 which boils down to

(4.18) ypZ O.

If we apply now Lemma 4.5; then we obtain

(4.19) Y=(U)*X

for a Ya-homorphism ."L2(o’I)-+ L2(o’I). Now ..F ,,F where .. is a measurable
er-a.e, bounded matrix function that satisfies II=_ll ll ll=llYII, Since by (4.18)
.,’p+/-L2(o’I) UYp’L2(o’I) 0 we have

(4.20) ..P+/- 0

which is equivalent to

(4.21) ,, ,,P.
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Also since X UY we have

L2(crI) UTL2(N) OL2(rI),
which implies

(4.22)

which is equivalent to

(4.23)

Q+/-,. =0,

and (4.15) is proved. We note also that (4.15) implies the equality

(4.24) ..P+/-= Q+/-...

Representation (4.16) follows now from (4.17), (4.19) and the formulas for UT and
(ugh)*.

We note for future reference that X*" L2() L() is also a -homomorphism.
In terms of the notation of the previous theorem we have the following corollary.

COROLLARY 4.7. If X’L2()L2() is the -homomorphism having the
representation (4.16) with (4.15) satisfied then X*’L2()L2(M]) is a -homomor-
phism having the representation

(4.25) X*G (U)*J*UG ]:or G L2(M)
or more specifically

(4.26) X*G H#PE*KG,
where

(4.27) E(A )* E(A)* O(A) P(A)(A)*

holds r-a.e.
For the analysis of the deeper properties of intertwining operators we will

introduce the several relevant notions of coprimeness. All definitions will be relative to
a fixed positive scalar measure r. A measurable projection valued n x n matrix P will
be called trivial with respect to o-, or o--trivial, if P(A) Io-- a.e. Two measurable, n x m
and n x respectively, matrix functions A and B are called r-left coprime if there exists
no o--nontrivial projection function P for which A PA and B PB. We denote the
o--left coprimeness of A and B by (A, B) L Analogously we define o,-right coprime-
ness and denote it by (A, B) L There is also a stronger notion of coprimeness. We

3r__say A and B are strongly r-left coprime, and write [A, ]/ /, if there exists a 6 > 0 such
that for all :, I1 11- we have

(4.28) IIA(x)*II + IIB()*II_-> , o-- a.e.

Again the analogous notion of strong o--right coprimeness is introduced in the same
manner. The above definitions extend easily to the coprimeness of a finite number of
matrix functions.

As expected the coprimeness relations are connected with the ideal structure in the
algebra of bounded measurable functions.

THEOREM 4.8. (i) Let A,..., Ap be bounded measurable n x m matrix valued
]unctions. Then there exist bounded measurable mi x n matrix valued ]:unctions B such
that

p

(4.29) A(A)B(A) 1, r-a.e.
i=1
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if and only if
(4.30) [Ax, ,Ap]7=I.

(ii) Let A, , Ap be measurable mi x n matrix functions. Then them exist n x mi
matrix functions B such that

p

(4.31) Y. B(A)A(,)=I, r-a.e.
i=1

if and only if
(4.32) [al,’’’ ,ap]7=I.

Proof. Assume there exist B such that (4.29) holds. Taking adjoints and applying
the resulting equality to a unit vector : we have

=Bi(A)*Ai(A)*

and hence

1 II ’ll <-- E IIBi(A)*Ai(h

where B maxi [IBi(,)*ll. Equivalently we have

(4.33) E IIm, (x)*s[I _-> B

that is [Ax,. ,Ap]=L
Conversely assume A x, , Ap are strongly or-left coprime. From (4.30) it follows

that

(4.34) E IIA, ()*[1: _-> a 2

for some 6>0 and all unit vectors sc. Inequality (4.34) can be rewritten as

i Ai(A)Ai(A )* _-> 621. Thus i Ai(h )Ai(A)* is measurable and invertible in the algebra
of all bounded measurable n xn matrix functions. Define Bi by Bi(A)=
Ai(A)*(i Aj(A)Aj(A)*)-. Then the Bi are bounded and measurable and (4.29) holds.
Part (ii) follows by a simple duality argument.

The following corollary justifies the distinction between or-left comprimeness and
strong r-left coprimeness.

COROLLARY 4.9. If Ax,..., Ap are bounded measurable n x mi matrix valued
functions then lAx,. , A,]7 I implies (A1," , A)7_ =/.

Proof. Assume [A,..., A,]7 L Then there exist Bi such that Yi AiBi I. From
this it follows that A x,. , Ap cannot have a common r-nontrivial projection valued
left factor. Thus or-left coprimeness.

The various coprimeness relations provide the language in which to phrase the next
result.

THFORFM 4.10. LetX L2(M) L2(]) be a -homomorphism having the represen-
tation (4.16) with relation (4.15) satisfied. Then

(i) X has dense range if and only if

(4.35) (.., O+/-) L
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(ii) X is one-to-one if and only if
(4.36) (.., P-)= I.

(iii) X has a bounded right inverse if and only if
(4.37) [.., O-] I.

(iv) X has a bounded left inverse if and only if
(4.38) [E, P-] I.

Proof. (i) The range of X is dense in L() if and only if the range of " is dense in
U() OL(rI). This occurs if and only if the span of the two linear manifolds
{EHFIF L2([])} and O-L2(trI) is all of L2(o-I). Now {,,HFIF L2(I])} ,,pL2(trI)
and since P+/- Q-_ it follows that Ep+/-L2(trI) c Q-L2(trI). HenceX has dense range
if and only if the span of .,L2(rI) and Q-L2(trI) is L(rI). Since the span of two
invariant subspaces is an invariant subspace we apply Theorem 4.1 on the charac-
terization of invariant subspaces to obtain the result that

(4.39) EL:(rl) v O-L2(crl)= L2(o’I)
if and only if (4.35) holds.

(ii) This follows from (i) by a duality argument. X is one-to-one if and only if
X*" L2()L2() has dense range. Now X* is given by (4.26) with relation (4.27)
holding. By applying part (i) X* has dense range if and only if

(4.40) (E*, P-) I

which is equivalent to (4.36).
(iii) Assume (4.37) holds. By Theorem 4.8 there exist matrix valued functions 0

and R such that

(4.41) ,,(A)O()O)Q-(h)R(X)=L tr-a.e.

Define maps Y" L2() L2() and I7". L2(trI) L(crI) by

(4.42) IT"F OF for F L(o’I)
and

(4.43) YF (U)* f’UF for F L2().
Obviously Y and I7 are bounded linear operators. We claim XY I. LetF L2(.); then

XYF U)*XU U)*YUF.

Since U is an isometry U(U)* is the projection on the range of U which is just
the multiplication by the projection valued function P. So

XYF K#Q.,POKF
and using the equality ,,P Q,, as well as Q= Q yields

XYF K#Q,,OKF.

From (4.41)we have EO I-Q-R and since QQ+/-= 0 we have

XYF K#QKF (U)*UF F.

To prove the necessity of the condition (4.37) for the existence of a bounded right
inverse for X it suffices, by duality considerations, to prove the necessity of the
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condition (4.38) for the existence of a bounded left inverse for X. Thus assume (4.38) is
not satisfied. We will show the existence of a sequence of functions Fn in L:() such that
lim IIFll- and lim IIXF,,ll- o. This woud imply the nonexistence of a bounded left
inverse for X. Since (4.38) is not satisfied then for all n > 0 there exists a unit vector :n
for which

1
(4.44) [[E(h)&Ii+ IIP(a)&ll <-

n

for all , in a set An of positive or-measure. Let/’An be the characteristic function of the
set An; then

Tn(a) [(o’(An -a/2)]

is a function in L2(o’/) of norm one. We decompose qtn relative to the direct sum
L:(o’I) PLZ(o’I)P+/-L:(o’I) to obtain n n + F. with

On [r(An 1/2)] PXA.&
and

-l/2p+/-F [r(An3 X.

Since n PL:(o-I)= UL:(M) we have n UFn for some Fn L:(M) with IIFII
I111o We note also that

lit.l[ [o’(An)]-x/:"P+/- 1
n

and therefore

lim IIF 2 lim IliOn 2- lit. ] 1.

We will show now that lim IIXF.II 0.

XFn U)*XUFn U)*XOn

and
1/2,-,n_l_XdPn=X(xltn-r’n)=[o-(An)]-l/2EXA,,fn-[o-(An)] =r XAnn"

The following estimate

[(A.)]-’{ I II()&ll d}
/

1

completes the proof.. DynamiCal systems with sd[-adoit garators. This section is devoted to the
study of linear, time invariant systems with self-adjoint generators. Thus the object
under consideration is a triple (A, B, C) where A is the infinitesimal generator of a



OPERATOR MEASURES 751

strongly continuous semigroup of operators T(t) in a Hilbert space H. This assumption
is equivalent to the existence of some o) such that Re (Ax, x)<-oollxll2. We make the
extra assumption that A is finitely generated and therefore, by 2, we may without loss
of generality assume that A is given in a spectral representation. Thus H L2(M) for
some n x n matrix measure M and the semigroup T(t) acts by

(T(t)F)(h) etF(A) for all F e L2(M).

The operators B C L2([]) and C L2(]) - Cp relate to the inputs and outputs of the
system. The elements of L2(M) are called states and L2(M) is the state space.

Since B :C L2(M) then

(5.2) (B:)(A) @(h): for : Cm,
where B(A) is some measurable n x m matrix valued function. Similarly C*"
L2(M) is given by

(5.3) (C*n)(A C(A)*n for r/ Cp,

where C(A) is some measurable p x n matrix valued function.
As usual we say the system (A, B, C) is controllable if

(5.4) f’) Ker B* T(t) {0}
t__>0

and observable if

(5.5) f’l Ker CT(t) {0}.
t_->o

Condition (5.4) is equivalent to the density, in L2(), of the set of vectors
{T(t)BI C’, >- 0} {eXtB(h)[ C", -> 0}. Similarly condition (5.5) is equivalent
to the density of {T(t)C*qlq C, _-> 0} {eXtC(h)*r/lr/ Cp, _>-0}.

We define the controllability operator ’ by
o

(5.6) (u)(h)= [ r(-t)Bu(t) dt
J_

for all C"-valued functions u which are bounded and have compact support. Thus each
such function u produces an element of L2(M), i.e., a state in the state space. Thus the
controllability operator c produces an input to state mapping. Now given a state F at
time t-0 we can observe the output of the system when no additional inputs are
applied. This gives us a CP-valued function on (0, oo) defined by

(5.7) (F)(t) CT(t)F, F L2().
We refer to as the observability operator. The product7 determines the input/output
behavior of the system. It maps functions defined on (-oe, 0) into functions defined on
(0, oo). Clearly

0 0

(Cu)(t) CT(t) [ T(-z)Bu(r) dz [ CT(t-z)Bu(r) dr
J_

or

(5.8)
0

(u)(t) I_ y(t-r)u(z) dr,
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where

(5.9) y(t) CT(t)B, >-O.

Since the system is time invariant if we drop the assumption that u(t) is zero on (0,
then the input/output relation is determined by

(5.10) y(t) y(t-r)u(r) dr.

The p x m matrix valued function y(t) is called the weighting pattern or the impulse
response of the system. If (A, B, C) is a dynamical system for which (5.9) holds we say
that (A, B, C) is a realization of the weighting pattern y(t), or that it realizes y(t).

Since we have a specific model for the system we can obtain more concrete
information about the controllability and observability operators. From (5.6), (5.1) and
(5.2) it follows that the controllability operator can be written as

0 o

(5.11) (u)(A)= | e-B(X)u(t)dt=B(A) | e-Xtu t) dr.
J_

But o e-,u(t) dt is just the Laplace transform u of u. Thus we can define the
operator on the set of all Laplace transforms of permissible inputs by

(5.12) t=u

or 5U and

(5.13) (c)() B(A)a ().

Thus on its domain of definition is a multiplication operator. Clearly if the
domain of definition of can be extended by continuity to a function space which is a
-module then becomes a -homomorphism.

An analogous situation holds for the observability operator, or rather its adjoint.
Given a state F L2(M), (F)(t) is a continuous CP-valued function on [0, oo). Let v be
any CP-valued function for which the L2(0, oo) inner product ((F, v) makes sense. Now
from (5.3)we have

(CF, ,0) (F, C*,0) I (dMF(A), C(h)*r/)

I(C(A)dMF(), n)=(I C(A)dMF(A),

or

(5.14) CF I C(h) dF(h), F L2(),

and this in turn implies

or

(5.5)

(F)(t) CT(t)F f C(A dN] eXtF(A

((YF)(t) I eX’C(A dMF(A ).

If we use the previously implied equality (6F, v) (F, 7*v) we readily obtain the
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representation

(5.16) (O*v)(&) C(&)* fo e’v(t) dt

or

(5,17) ((*t3)(,) C(,)*3(I),

where now 3 refers to the Laplace transform on [0, co). Thus also d* is potentially a
Y3-homomorphism if a right extension of its domain of definition can be found. Now
since the controllability operator c is determined by the matrix function/3 it is natural
to characterize the controllability of the system (A, B, C) in terms of/3 and the matrix
measure M. Similarly for observability. To this end let o- be any positive measure for
which lrI. Define operators B’ C" - L2(trI) and C’*:Cp - L2(o’I) by

(5.18) B’= UB and C’*I UC*?.
The introduction of/3’ and C’ removes the redundancies in the definition of B and C.
We can use now the results of the previous section, particularly Theorem 4.10, to obtain
the following generalization of a theorem of Fattorini [7], [4].

THEOREM 5.1. Let (A, B, C) be the dynamical system in L2(I]) where A is the
infinitesimal generator of the semigroup T(t) defined by (5.1), B C"--> L2(ll) defined by
(5.5) and C*:Cp Lz(Nll) is given by

(5.19) (C*r/)(,)=C(A)*r/ for leCp.

Then the system (A, B, C) is controllable if and only if
(5.20) (B,P-)[=I
and observable if and only if
(5.21) (C,P-)=I.

To see how Fattorini’s result can be derived from Theorem 5.1 we consider first the
case of a scalar type matrix measure =/xL Obviously we can identify cr with/x. The
projection function P is identically equal to I and hence pZ 0. Therefore (B, P-) I
if and only if there exists no /z-nontrivial projection valued function R such that
B RB. This is obviously the case if and only if B has full row rank/x-a.e. Summarizing
we obtain the following corollary.

COROLLARY 5.2. Let =tzIbe an n x n scalar type measure and let the dynamical
system (A, B, C) be as in Theorem 5.1. Then (A, B, C) is controllable ifand only ifB has
full row rank Iz-a.e. and observable if and only if C has full column rank tx-a.e. This
means

(5.22) rank/3( n, tx-a.e.

and

(5.23) rank ( n, tx-a.e.

respectively.
Next suppose A is given in the canonical spectral representation (3.8) with N being

given by (3.7). Take o- ’1 +" + ’p; then if ni is the Radon-Nikodym derivative of Pi
with respect to r, and Ei {)t Ini(&) 0} then o--a.e, the projection function P for which
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UL2(N) PL2(o-I)is given by

and hence

Xth +" + XEp. )
(0p+/- E

XE1 +" +

Therefore the condition (B, P-) I is equivalent, by applying the previous corollary,
to

(5.24) rank (bi(1))= k, 1,..., k, ] 1,..., m,

uk-a.e, for all k 1,. , p. Condition (5.24) is the essence of Fattorini’s result.
To get to the isomorphism theorem we have to introduce a stronger notion of

controllability, in fact a whole class of controllability criterias. We saw that a priori the
controllability operator c defined by (5.4) had a domain of definition consisting of all
C’-valued bounded measurable functions of compact support. Let now r be apositive
measure on (-, 0]. We say the system (A, B, C) is r-exactly controllable if can be
extended by continuity to a bounded operator of LZ(rI) onto L2(). In an analogous
way we define the notion of g-exact observability.

If the system (A, B, C) is r-exactly controllable then is a -homomorphism. In
p_articular we can apply Lemma 4.5 to show_ the existence of a -homomorphism
c. L2(cri) L2(o.i) for which c (U),c. If p is now any measure for which tr << p

then c can be lifted to a 5-homomorphism LZ(pI) LZ(pI) for which

(5.25) U U@.
It follows that (U)*q is a bounded extension of the controllability operator c to

a -homomorphism of L2(pI) onto L(NI). Summarizing we have obtained the
following.

THEOREM 5.3. Let (A, B, C) be the dynamical system described in Theorem 5.1.
Then if (A,B, C) is r-exactly controllable and r<< p then (A,B, C) is p-exactly
controllable.

We would like to apply Theorem 4.10 to give a characterization of r-exact
controllability in terms of the matrix function B and, essentially, the measures rI and
M. For this we would need the existence of an isometric embedding of L2(M) into

L(I), and with this in mind we prove the following theorem which may be of interest
in itself.

THEOREM 5.4. LetA andA be two self-adfoint operators acting in the Hilbertspaces
H and Ha respectively. LetX H-H intertwine A and A, a.e. XA AX. Then

(i) IfX has range density in H, there exists a coisometry V such that VA A1V.
(ii) IfX is one-to-one there exists an isometry W such that WA A W.
(iii) IfX is one-to-one and has range dense in H (in particular ifX is boundedly

invertible) then there exists a unitary U such that UA A U.
Proof. From XA A1X it follows by taking adjoints that AX* X’A, and hence

AX*X X*AX X*XA or A(X*X) (X*X)A and analogously AI(XX*)
(XX*)A. By a standard approximation argument it follows that

(5.26) A(X’X)1/2 (X’X)1/2A
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and

(5.27) Ax(XX*)/2 (XX*)X/2A 1,

Now assume X has range dense in H. Since {0}={RangeX}-=KerX*=
Ker (XX*)/ {Range (XX*)/2} it follows that also (XX*)/2 has range dense in Ha.
From the equality IlX*yll- II(xx*)/Zyl[ it follows that if we define V by

VX*y (XX*)1/2y,
then V can be extended by continuity for an isometry from Range X* onto H. Extend
V to all of H by defining VIKerX=0 and V becomes a coisometry satisfying
VX* (XX*)/. By our assumption (XX*)1/2 has dense range; hence (XX*)-/2 is a
closed densely defined operator. Thus VX*(XX*)-/Ey y for all y in range (XX*)/2.
Since V is isometric on Range X* we have X*(XX*)-/ is isometric on its domain of
definition, hence extendable by continuity to an isometry on H which has to coincide
with V*. So we have

(5.28) V (XX*)-/2X.
Since from (5.18) it follows that A(XX*)-/2 (XX*)-/2A we have

VA (XX*)-I/2XA (XX*)-/2A1X AI(XX*)-I/2X-AV

which proves (i). Part (ii) follows by duality considerations. Finally if X is one-to-one
and has dense range then both X*(XX*)-/2 and X(X*X)-/2 are isometric. Now from
the equality X(X*X)= (XX*)X it follows that X(X*X)/= (XX*)X/Ex and hence
that (XX*)-/Ex X(X*X)-/2. This means that V given by (5.28) is also isometric
and therefore unitary.

A weaker statement of (iii), that for normal operators, can be found in [22, p. 316].
As a corollary we prove the following theorem which is a converse of Lemma 2.2.

THEOREM 5.5. Let and be two positive matrix measures and let X" L2()
L2() be a ,homomorphism. Then

(i) IfX has dense range then
(ii) IfX is one-to-one then
Proof. (ii) Applying the previous theorem we deduce the existence of an isometric,

and easily checked -homomorphism, U" L2() - L2(NI). Let E be any Borel set with
compact closure, ,t’ its characteristic function C. ThenX belongs to any L2(])
space. Since U is a -homomorphism (U(x,))(A) xz(UsC)(Z) XJ(A)s for some
measurable matrix function J. Since U is isometric we have

f (dx.(x ), .r(x )) f (dx, x)

or

(5.29) J (J(A)* dJ(A ), e)= J(d, ).

Since (5.20) holds for arbitrary e C and Borel sets E then

(5.30) d J* dJ

as 1. Part (i) follows by duality.
We have now the trivial corollary of the above theorem which follows from the

definition of g-exact controllability. An analogous result holds for o--exact observ-
ability.
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COROLLARY 5.6. Let (A, B, C) be the dynamical system described in Theorem 5.1.
Then if (A, B, C) is r-exactly controllable then

Applying now Theorem 4.10 together with the above corollary we can characterize
r-exact controllability in terms of strong o--coprimeness relations.

THZORZM 5.7. Let (A, B, C) be the dynamical system in L2(11]) where A is the
infinitesimal generator of the semigroup T(t) defined by (5.1), B ’C" L() defined by

(5.31) (B)(A) B(A):

and C*" C" LZ() is given by

(5.32) (C*rt)(A) C(,)* ft.

(i) If lrI, B is measurable and bounded cr-a.e, and P the projection valued
function corresponding to PLZ(rI)= ULZ() and

(5.33) [B,P+/-]=I
holds then (A, B, C) is a r-exactly controllable system. Conversely if (A, B, C) is a
o’-exactly controllable system then lcrI and there exists a measurable r-a.e. bounded
function B(A) such that (5.31) and (5.33) hold.

(ii) If [rI, C is measurable and bounded r-a.e. and P the projection valued
function corresponding to PLZ(rI)= ULZ() and

(5.34) [C, P+/-] I

holds then (A, B, C) is a r-exactly observable system. Conversely if (A, B, C) is a

r-exactly observable system then lrI and there exists a measurable r-a.e. bounded
function C(A such that (5.32) and (5.34) hold.

In conclusion we prove an isomorphism theorem of a type different from the one
proved in (4). There are no symmetry requirements on the systems involved but we
impose a stronger controllability assumption. This is in line with Helton’s work [16].
Two systems (A, B, C) and (A, B, C) with state passes H and Ha respectively are
called similar if there exists an invertible linear map X"H Ha such that

(5.35) B XB, XT(t) T(t)X, CX C

hold. Here T(t) and Tl(t) are the semigroups generated by A and A1 respectively. If A
andA are bounded then the condition XT(t)= T(t)X can be replaced by XA A1X.

THZOR]ZM 5.8. Let (A, B, C) and (A, B, C1) be two dynamical systems of the type
described in Theorem 5.7 which realize the same weighting pattern. If both systems are
observable and r-exactly controllable then the two systems are similar.

Proof. Let cg, cg and , 01 be the respective controllability and observability
operators of the two systems. Since they both realize the same weighting pattern we
have 0cg lCgl. By the assumption of observability we have Ker 0’ {0}and Ker 01
{0}. This implies that Ker cg Ker Cgl and hence also that Ker

Define a map X" L()-->L() by

(5.36) S .
If # is the pseudoinverse of defined and bounded on all of L() as c is onto L()
then X c# and clearly X is a g-isomorphism of L2() onto L2(1).

From the definition of X we have XB(h)t(h) Bx(h)t(h) for all t e LZ(crI) which
implies the equality XB Bx. Since X is a -homomorphism and the semigroups T(t)
and Tx(t) and by multiplication by et in the respective spaces we obtain XT(t)=
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TI(t)X. Finally we note that from 6c 161 and (5.36) it follows that aa 1Xc-
which implies, as c is onto, that ’aX .
Now for F L(M), ffF CT(t)F and hence Ca rx(t)X CT(t). Using the equality

XT(t) TI(t)X and evaluating at 0 we have C1X C and thus (5.35) holds and the
similarity of the two systems is proved.
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ASYMPTOTIC APPROXIMATIONS AND EXTENSION
OF TIME-SCALES*

JAN A. SANDERSt

Abstract. It is shown how to obtain O(e) (or any higher order)-approximations to the solutions of the
differential equation

P

6=1+ E evXP(,x), CeS1,
p=l

P xED[
Y. Py’P(, x),
p=l e e(0, e0]

t_--in such a way that they are valid on the interval 0 <_- e L, with ? e N arbitrary and L an e-independent
constant under the condition that the averaged equation has an attracting nondegenerate limit-cycle.

The proof uses higher order averaging techniques and the Sanchez-Palencia contraction argument,
together with Gronwall-estimates. In fact, for the x-component the approximation is uniformly valid on
[0, ).

An application to the Van der Pol-oscillator is given, extending the usual interval of length 1/e to the
interval 0 _<- e2t L, with O(e)-accuracy. It turns out that this approximation is hardly more complicated than
the usual one.

Introduction. The aim of this article is to show how to obtain O(e) (or higher
order)-approximations to the solutions of the differential equation:

P

4; + Z "x"(, x),
p=l

P

: Y e"Y (.4’, x),
p=l

S1,

e e (0, co],

x 6Doc

rin such a way that they are valid on the interval 0 _-< e =< L, with/(r e N arbitrary and L
an e-independent constant if the higher-order-averaged equation has an attracting
nondegenerate limit-cycle, (that is, all eigenvalues of the "normal form" of the system
are negative and can be strictly ordered; if h 1, , hn are the eigenvalues, then one has
h, <. < h < 0.) It follows from the proof of Theorems 3 and 4 that the approxima-
tions of the x-component of the solution have uniform validity on [0, ). An application
of this theory can be found in Sanders (1978b), where an O(e)-approximation to the

2t_<solutions of the Van der Pol-equation has been derived, valid on 0 _-< e L.
It can also be used to give asymptotic estimates for Hopf-bifurcation problems.
Averaging consists of two parts" First a transformation is found which "connects"

the original equation (4.1) with its "almost normal form," i.e., an equation which is the
sum of its normal form (C-independent) and arbitrary small remainder terms. Secondly,
one estimates the difference between the solutions of the "almost normal form" and of
the normal form equation.

While the first step renders uniformly valid (i.e., on 0 <_- _-< ) estimates, the second
step, in general, introduces exponential growth terms in our error-estimate.

If, however, we assume contraction of the flow in the x-component of the normal
form equation, then we can use this contraction to compensate for the error-pro-
pagation which leads to these exponential growth terms (Theorem 3).

This idea is due to Sanchez-Palencia (1975).
* Received by the editors November 9, 1978, and in final revised form October 16, 1979.
f Wiskundig Seminarium, Vrije Universiteit, De Boelelaan 1081, 1007 MC Amsterdam, the

Netherlands.
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It is then a simple matter to impose sufficient conditions on a stationary x-value
(i.e., a limit-cycle in (b, x)-coordinates) to assure contraction in a certain neighborhood
of magnitude Os(1) (Theorem 4, using Lemma 2 and 3).

The organization of this article is as follows: In 1-3, we sketch the theory and
some of the proofs for the simple problem

k=eg(t,x)

with g periodic in t, using first-order averaging. This is done to clarify the theory and
proofs given in 4 and 5. These are, however, independent of the earlier sections in the
strict mathematical sense.

There is some Overlap between the two parts, but, since this makes it possible to
read them independently, we hope that it will prove to be only a minor annoyance for
the reader to meet the same definition or argument twice.

Before we start, there is one remark which has to be made. One of the most natural
ideas, and probably the first most people get when considering the time-scale extension
problem, is to use nonlinear variation of constants. Since, after the usual trans-
formations, the system seems to change on a longer time-scale, it does seem to be only a
straightforward exercise in estimation theory. This, however, is not the case" one needs
to have estimates on both the transformation and the inverse of its derivative. This
makes application to any but the most trivial example impossible. An illustration of
these thoughts can be found in Persek and Hoppensteadt (1978). One should also note
in this context that the proof in Verhulst (1975), where the nonlinear variation of
constants has been used, can be considerably simplified by using the theory to be
developed here.

1. The basic perturbation theorem. The asymptotic theory of initial value prob-
lems in ordinary differential equations consists largely of formal results.

In this paper, we will be concerned with the explicit statement and proof of the
validity of one of the many formal methods, averaging (of vector-fields) in the special
case where the averaged vector field has a nondegenerate attracting limit-cycle.

The theory developed can be applied directly to such problems as the Van der
Pol-oscillator and the Hopf bifurcation.

Before stating the well-known basic perturbation theorem, we introduce some old
and new notation.

Let M be a manifold, and X :M- TM, e (0, e0], a one-parameter family of
vectorfields.

I is some interval.
We call the vector field morphism &,, defined by

(I.I)

TI TM

a solution of X,, where is the natural section - (t, 1). As usual b consists of a map
&, I M, the solution curve, such that

(1.2)
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commutes. Or, we solved the equation

(b, (t) X, (cb (t)).

If for some r /, the additional requirement b (r) m M has been fulfilled, we have
solved an initial value problem.

We say that for two curves in two manifolds M and N, the following diagram
e-commutes lit we have the estimate

(1.3)

H

]]H(4)(t))-(t)lJ=O(e) Vt6I,

where the norm is induced by e-independent local charts.
If we require all manifolds to be compact and all maps differentiable, then we may

chase diagrams at will. That is, if we have two e-commuting diagrams,

M

(1.4a)

then we may conclude that

M N

(1.4b)

I
is e-commutative.

THEOREM 1. Let X, be of the following form
(1,5)(e) =f(x)+eR(t,x;e), 4,(0) x D c ".
There exists some L > 0 such that qbo, the solution of Xo with initial value x, exists on
I [0, L] and stays away from the boundary OD of D. Take L maximal but O(1) for
e >0. if I]X -Xo[I O(e), f CX(D) and supto.z. supo ][R(t, x; e)[[<_- C, then there
exists also a solution ofX with (0)= X, and we have the following e-commuting
diagram

idD
D -D

(1.6) */o
I

(ido identity on D).
Proof. We shall need the following lemma, the proof of which has been given as an

exercise in Coddington and Levinson (1955).
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(1.7)

Then

LEMMA 1 (Gronwall). Let O(t) >-- O, Vt [0, L], and suppose

u(t) <= 4’(t) + O(r)u (r)

(1.8)

(1.9)

I0 rt Iot (I. ))u(t) -<_ b(O) exp ( p(r) d + b’(r) exp d2(r’ dr’ dr.

We write the differential equations (1.5)(s) and (1.5)(0) in integral form:

Io Io4,(t)=X + f(b,(r)) dr+s R(r, 4(r); e) dr,

4o(t) x + f(4o(r)) dr

(b, does exist locally; if we can show that it s-commutes with 4o, then it cannot reach
0D: it has to exist on [0, L].)

D

(1.10) + st sup sup IIR (, ; )11
-[0, t] ’D

--< Ilx, -Xoll / c’ 114, (r)- cko(r)[I dr + Cet.

Applying Gronwall’s lemma, this results in

Ilck(t)-cko(t)ll<=llx; -xoll eC’t +ce e c’(’-’) dr.

This last expression is O(e) on [0, L].
The occurrence of exponential terms in the final estimate implies that one has to

think of something new in order to give an extended theorem, i.e., on [0, L/
for example.

If we assume one extra condition, then there is in fact a way out" the Sanchez-
Palencia trick.

We will give a sketch of the argument here, and bother with the technical details
later.

2. A contraction theorem.
THEOREM 2. Consider the differential equation (1.5)(e). Suppose that any two

solutions c and cb of (1.5)(0) allo’w the following contraction estimate:
(2.1) [[&o(t + L)- 4o(t + z)ll--< k(Z)llck(t)- o(t)ll
with k(L)< 1 and (clearly) e-independent. Suppose that]or some fixed initial value, Cbo
exists on [0, ). Then the diagram

D

(2.2)
*

[o,
is e-commutative under the assumptions of Theorem 1, i.e., Cko is a uniform O(e)-
approximation to 4, and 4 exists on [0, c).
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Sketch of the proof. Let, for some C to be defined later, r be such that

(2.3) sup 114 (t) 4o(t)ll--< Ce.
t[0,’r]

Define bo by b(r)= (r) and let o. Then it follows from Theorem 1 that there
exists for every L some C’ such that"

sup l{(t)-o(t)ll sup {l&(t)-&(t)]l+ll&(t)-&(t)}
t[r,r+L] t[r,z+L]

c’ + l[6t- +)-6t- +)llt_t-,,

(2.4) c’ + k(t)ll(t-)-
C’ +Z) sup

t[r-L,z]

c’ + k(L) sup
t[z-L,z]

C’e + k(L)(Ce + C’e)= {(1 + k)C’+ kC}e.

If we take C (1 + k)/(1 k)C’, then we have extended the original estimate with
an e-independent interval without changing the constant in the estimate. If we assume r
to be maximal, then this assumption is contradicted by our extension, and it follows that
the estimate is valid on [0, oe). 71

The contraction estimate (2.1) might be difficult to obtain in practice, but there is
an important class of problems where it is always valid" if the unperturbed (e 0)
problem has an attracting stationary point then the estimate is valid in a neighborhood
of this point. The exact results are formulated in 5.

3. First-order averaging. The reader may have been thinking" If I can get my
problem in the form (1.5)(e) then I believe all estimates from there, but how do I get
there in the first place?

There is, however, a class of nontrivial problems that can be brought into this form"
Consider the differential equation

(3.1) 2=eg(t,x), xDcR

with g periodic (with period 1, say) in the time-variable. We write this as follows:

(3.2)

and consider a transformation

(3.3)

defined by

(3.4)

Sl x D*- Sl x D

We want to take in such a way that the vector field

(3.5) 2 eg(x) + e (t, x" e), "i" 1

with and R to be defined next, is carried into (3.2); i.e., if we denote

(3.6) u =eg-x+-- +-Or’ eg-x
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then the diagram

(3.7)

must commute, or

T(SlxD*)

SlxD*

T T(SlxD)

SlxD

(3.8)
l+eVu e(O lot) e + e

0 1 1

This requires

OU
(3.9) g(t, x)- , (x).

Ot

If we let

(3.o) g(x) fo g(t, x) dr,

then we can solve for u. This is where the "averaging" comes in. Since u is defined on a
compact, it is uniformly bounded. D* is closed and contained in D such that ($1
D*)cSlxD.

This is where we need the initial condition x to be well inside D, otherwise we
cannot be sure that there is a corresponding point a? D*, such that (0, x) (0, x). If,
however, this the case, then solutions of (3.5) are mapped to solutions of (3.2).

We have the following commutative diagram

T(S x D*)
r4,.

T(S1X D)

S x D*
6"

.* S x D

where 0 and O are solutions of (3.2) and (3.5) with (0, O(0))= (0, 0(0)). Since u is
uniformly bounded, together with its derivatives, O can be approximated by the
canonical injection i" S x D* - $1 x D, and the diagram

SlxD, . xD

[o,

is e-commutative on [0, c).
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Since (3.5) is of type (1.5)(e), be it on another time-scale, we are now in a position
to apply Theorems 1 and 2. If gives a flow with contraction, then we define by
putting (0)= O(0) and requiring that

(3.13) ((t)).
Since II0(0)- (0)11- o(), this gives the following e-commutative diagram on [0,

S x D* id *.S D* .S D

[o,

or

II(t)- O(t)ll o() on [0,

With this strong result, due to Sanchez-Palencia under somewhat different condi-
tions, we conclude the first part of this paper. In the following sections, we formulate the
theory of stable limit-cycles.

4. Averaging. Consider the equations
P

=1+ E e19XV(O,x), esl,
19=1

(4.1)
P- , eVY(O,x), xDocNn,

p=l

with Xp and Y19, p 1, , P, (sufficiently) smooth on Do, and Do open and relatively
compact with sufficiently smooth boundary. Then there exists for each N N t_J {0} a
domain DN = Do and a transformation

oN "SIXDNSDo,

such that the distance between the boundaries of Do and Du is Os(1) for e$0 and N
arbitrary and (4.1) and (4.2) given by

N
N+IRd, + E "x(")(x)+ ’(4,, x. ), s

p=M
(4.2)

N
N+IR.-- Z ePY(P)(x) +e (q,x" e) XDNDo, M, K6N

p=K

are N-related. (Two vector fields ::- T/ and rl’W TW are f-related iff there
is a map f:J// dV" such that

Till TW

commutes).
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The right-hand side of (4.2) is smooth (and therefore uniformly bounded in all
variables) and P is of the form:

OY" + Z
X X

where u (p)" S N--> R "+1 is uniformly bounded for p 1, , N and has mean value
zero, i.e."

Is u(P)(, x) de O.

We will not prove this result here. The easiest way to do this seems to be induction on N.
The idea of the proof is a straightforward application of averaging theory, but it takes a
while to write all things out and to take care of all the little technicalities. A proof can be
found in the author’s thesis (Sanders (1978a)).

Consider the equations

(4.3)

N
N+I6=1+ X s"X(")(x)+s Rl(,x;s),

p=M

N
N+I/2 Z sY()(x) + s z(, x" s)

p=K

and

(4.4)

N

4; + Z
p=M

N

Z
p---K

S1,

M, Ke,

XDN.

S1,

M, Ks,

X DN,

Let (, ) be the solution of (4.3) with initial condition (o, 20) and (-, 2) the
solution of (4.4) with initial condition (o, 20). Let L be a constant, independent of e,

Ksuch that we have existence of solution for both equations on 0 =< e < L. (Such an L
always exists). Then we have on this interval the following estimate"

N-K+I][(t)-2(t)[[ <- c(ll o-  oll /
14;(0- q(t)l -< Iqo- qol + C(e-:+ + e

M+N-2K+I "-"ltZo  oll).+8

The proof of this statement is a straightforward application of Gronwall’s lemma.
The reader should try to prove it if he does not understand why only K determines the
time-scale. He should also notice that if we can extend the time scale of validity for the
first estimate to [0, c), say, then one can always extend the time-scale for the second
estimate to O<-et<-L, O N arbitrary, provided one can estimate [lo-2oll up to
arbitrary high powers of 8.

Combining the two results given above, it is possible to prove the validity of
approximation of the solutions of (4.1) to the solutions of (4.1) up to arbitrary high
order on the interval O_< 8:t<-L. Of course, one has to compute the right initial
conditions 2o ando first, before solving (4.4), from invertingYup to the desired order
in e.

5. Attraction and contraction. We first state two lemmas without proofs, the first
of which is standard and the second almost.
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LEMMA 2 (Attraction). Consider the equation

(5.1) 2 =F(x), xDc.

F is (sufficiently) smooth; F(O)= 0 and all eigenvalues of dF(O) are different and have
negative real parts. Denote dF(O) by A and letP be the matrix which diagonalizes A. Let
C IIP[I lIP-Ill >= 1. Write the equation as follows"
(5.2) 2 Ax + G(x), x 6 D En

with

(5,3) IIG(x)ll Clllxll2.
Let -h, h > 0, be the biggesteigenvalue ofA and let6 <//(CC1). (This is alwayspossible,
by definition of C1). Then one has the following estimate for any solution of (5.1) with
initial value Xo such that Ilx0[I--< 8/(2C)"
(5.4) [Ix (t)l[ < 8 e -At.

that

Using this lemma one can prove the following.
LEMMA 3 (Contraction). Under the same assumptions as in Lemma 2, let C2 be such

(5,5) IIdG(x)II
Let xl and x. be two solutions with initial conditions such that IIx/ll <  /2c, 1, 2, Then

(5.6) [[Xl(t)-x2(t)ll<-feC2/qllx-xlle
We will now prove the validity of certain approximations under the assumption of

contraction of the approximating flow in the x-component on an invariant domain. The
idea of the present proof originates from Sanchez-Palencia (1975) and has already been
used in Eckhaus (1975) and Verhulst (1975). It does not, however, assume the existence
of the solution to be approximated. This made it necessary to slightly alter the
proof-technique. Those readers familiar with the aforementioned papers might find it
helpful to convince themselves that it is essentially the same proof.

With this theorem, one can prove the next theorem on the validity of approxima-
tions going to a limit cycle, while the theorems mentioned before only applied to
attracting singular points.

THEOREM 3. Consider the equations

(5.7)

and

N
N+I=1+ E e2("(x)+e R(,x;e), S1,

p=M

N

2 E e’f"(P(x)+eN+R(,x; e), x
p=K

N, 1 + E eJ("(x), e S 1,
p=M

N

2 e"f’(P(x), x e DN.
p=K

Suppose any solution of (5.8), starting in S x Do, stays there for all time (invariance
of domain). Suppose one has, for any two solutions (491, xl) and (2, x2) of (5.8) with
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initial values (cb, x) and (c, x)6DN, respectively, the following estimate for all
toe[0, oo) and all [to, oe) (it suffices to have this for all [to, to+(L/e)K]),

I[X (t) x2(t)[[ <= C3 e-C4erc(t-t) llXl -x[[.
Let (, ) and (ok-, ) be solutions of (5.7) and (5.8) with initial conditions (Co, o) and
(bo, o), respectively.

C3 >- 1, and we can always take C3 > 1, such that C3-1 Os(1) as e0. Take the
distance of the boundaries ofDo and Doo, d such that d > (2M/ C4) log C3, whereMis the
sup-norm of the right-hand side of (5.7).

If [[o-o[[ O(e), and the distance of o to ODN is bigger than d, one has the
estimate

N-K+I (C3+1) VtE[0, m)-< c (ll o- oll/ C-1
and

N-K+I N+I}[(t)-(t)]<-lo-o]+C6t{et(]lo o[[+e )+e Vt[0, oo).

Remark. does not leave Do. As long as
and therefore in D. Since 051 is empty, (, 2) exists as long as is approximated by . It
follows from the theorem that it exists for all time.

Proof. Let d be the distance of o to the boundary of Dr. By assumption,
d > (2M/C4) log C3, and we may choose L such that

d 2
--=-> L > log C3.

The contraction estimate then implies

x to + x. to + --< C3 e IIx x= < IIx x II.

Let F be defined by

F(t)= sup
’[0,t]

We know from 4 that F exists, is continuous and obeys the inequality
N-K+1F(t) <- C5(lJo-oll+ e

:t <on the interval 0-< e L.
Define Fo by

N-K+ 1 + C3 e-C’L
F Cs(llo  oll + 1 C3 e -c’L"

It follows immediately that

F(t) <F on 0 <- eKt <- L.

Suppose there exists a ’ (0, oo) such that

(i) F exists on [0,

(ii) F(t) < Foo on [0, ’),
(iii) F(’) F.
Since II0- o11 O(e), (t) stays close to (t) on [0, ?]. But (t) e Do by assumption

and, therefore, (t) Du for all [0, ’]. From the existence of follows the existence
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of F. If we show that the existence of " leads to contradiction, it will follow immediately
that F(t) <F for all [0, o0).

The distance of (t) to ODN is d + O(e); since the interval [d/M, (2/C4) log C3] has
length of Os(1), we can take a slightly smaller L such that it fits the contraction
requirements and we have existence of ; on the interval [’, 7+L/eK].

Take ’< " such that 7 (, +L/eK) and define

I+= ’,+ I_= t----,
E

Since (t)eDN, we may define (, ) as the solution of (5.8) with initial condition

Let I1"11 be defined by

sup [Ix(t)l[, x
tI+

It follows from 4 that

since (t) equals (t) for ’.
The I1"11+/- are norms and we can use the triangle inequality as follows"

I1 11 I1 11 + I1 11,
I/ is compact and everything is continuous. Therefore, there exists to e 1_ such that

I1- 11+ to + to +

and, by the contraction hypothesis, this implies

I1 11 <- c e-C4LIl(to)- (/0)11 =< C3 e-C’ll
since both ;?(to) and :(to)/are in DN, no matter what to is, as long as to I_.

Using these estimates and the fact that F(’)<F, it follows that

-<-I1- 11/ / C e-C4LII
I[ ll+ + C3 e-C4Ll[ ll- + c3 e-CaLll

N--K+ C4L C4LF----< C5e (1 + Ca e + Ca e (’)
N--K+1 -C4L< C5E (1 --C3 e )-+-C3 e-CnLFoo

l+C3eN-K+I<=CseN-K+l(l+C3e-C4L)+Cs(llo-Yoll+e )l_C3e_C4LC3e

1+C3e-C4L< C51 C3 e-C"L {11o oll + e-K+ } F.

1 + C3 e-C4L -C4L) N-K+ --C4L}=Cs I_C3e_C4L{eN-K+I(1--C3e + C3(11]0+011 + e )e

1 + C3 e -C4L

C51 C3 e-cL
{lifo- Soil e-C’Lc3 + e-+}
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This implies

F(?)= sup.ll(t)-(t)ll<= sup
t[O,t] t[O,UI+

=max ( sup [[(t)-(t)[[,
t[0,

max (F(’), 11; [l+) < Fo.

This contradicts our assumption F(’) F, and therefore,

F(t)<Fo Vt 6 [0,

The desired estimate follows by estimating F as follows:

1
C3 e -C4L <,

and therefore,

l+C3e-c4L 1+(1/C3) C3+1
1-C3e-c

<
1- (1/C3) C3-1"

The proof for the b-component is straightforward and uses the remark at the end of 4.
We are now able to state and prove
THEOREM 4 (The "limit-cycle theorem"). We use the notation of Theorem 3.

Suppose there is a xo with f’(zC)(xoo)= 0 and df’(IC)(xo) nondegenerate with all eigen-
values different and realparts (strictly) negative. LetD be the attraction domain ofx and
(5.8), and suppose there is a domain D’ strictly contained in D (with Os(1) distance of the
boundaries). If Xo and o are in D’, and

I1 0  011
then

N-K+I C3+1

N-K+I N+I}.Ida(t)- (t)l _<- 1o ol+C6t{eM(llYo-,oll+e )+e

Proof. Since D is the domain of attraction x, can reach every e-independent
KneighbOrhood of x in 0 -< e < L we can use the result obtained in 4 to estimate the

difference between (4, ) and (4, ). We then use the attraction and contraction lemma
from there on. Using the contraction, we apply Theorem 3 to get the estimates given
above.

COROLLARY. Consider the equations

N

6 + 2
p=M

(5.9)

p=K

We know from the attraction lemma that inside a certain neighborhood of xoo, we have

lix*(t)- xoll <-- e -(’-’)
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if (c*, x*) is the solution of (5.9) with initial condition (qb, o). Therefore,

/[Ix(t)]b*(t)- 4, (t)l <- 14,*(to)- 4, (to)l + e

M+N-2K+I M-K<- C(eN-+ + e +RCe
<_ CeN-K+1 + CeM-:.

This indicates, that ifM-K > 0, the approximations are of a very simple type since we
can explicitly solve 4)* from (5.9):

b*(t)=b(to)+ 1 + E e P)(xo) (t-to).
p=M

In the case of the Van der Pol-oscillator, the approximation looks as follows"
Let y be the solution of

+ y ( y), y(0) yo, y’(0) zo, yo + z, 0,

and let

y*(t, et, et)=2 1+ yg -1 e

then

y(t) y*(t, et, e2t)+ O(e)

See Sanders (1978b) for details.

sin (arctg (oo) + (1 1e 2) t)
2on O<_-e t<=L.
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THE USE OF POLYNOMIALS IN EVALUATING CERTAIN
PROBABILISTIC INTEGRALS*

S. SIMONSf

Abstract. This paper is about the k-fold integral

Ik=f d(Xl) fx dl,z(x2)’’’fx dtz(Xk),
2Xl+t Xk-l q-l

where tx is a probability measure on the real line and u > 0. This integral is important in statistical problems on
ranking and selection. When k is large, it is not feasible to work out Ik directly by quadrature. In this paper,
various approximations for Ik as polynomials in 12, or in I2 and 13, are investigated. There is a full analysis of
the errors in these approximations, both in the general case and in the particular case where/x is the normal
distribution. For instance, in the case of the normal distribution and k_<-9 we can evaluate Ik with an
error- 10-1 with no quadrature at all if u->5 and with an error of -< 10-6 if u->3 with only one
(one-variable) quadrature operation.

Introduction. Let be any probability measure on the real line, R. It is of
considerable importance in statistical problems on ranking and selection to be able to
evaluate the k-fold integral

Ik I dlx(x) Ix dtx(x:) Ix dl,(Xk),
2X1 q-u Xk--1

where u is a parameter> 0. These integrals arise in connection with problems that
involve a complete ranking of all populations under study and/or a clustering of all
populations into a random number of disjoint subsets. Though these problems have not
yet been fully explored from a statistical point of view, we shall show in this paper that
these integrals have a very rich analytic structure. More specifically, we shall show that
Ik can be approximated by a polynomial in I2, and the approximation becomes
progressively better as u

This paper arose out of some joint work with Professor Milton Sobel in which Ik
was computed for/x the normal distribution by some very accurate adaptive quadrature
subroutines for k 2, 3, 4, 5 and u 0,.1,. , 5.0. The methods contained in this
paper stem from an analysis of some inequalities proved by Professor Sobel. (See [2], in
particular 7.)

For our purposes, it is convenient to define Ik inductively. To this end, we define a
sequence {fk}k>_-o of real functions on R as follows: fo 1 and, for all k >_- 1,

(where all integrals are with respect to/x unless otherwise stated). Then, for all k _-> 1,

Ik lim f(x)=f fk-1.

Clearly, for all k _-> 1, fk is a positive, increasing function on R and lim,_._ fk (X) O.
Furthermore, for all x R fk (X) <-- Ik hence Ik + Ik. For convenience we define I0 1.

* Received by the editors August 23, 1978, and in final revised form October 18, 1979.
Department of Mathematics, University of California, Santa Barbara, California, 93106.
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So we have
1=Io=I>=12>=13>= "’.

The general plan of this paper is as follows. In 1 we define a sequence of numbers
{S}__>o. The notation S was chosen for them because their usefulness depends on their
being small. I can be written explicitly as a polynomial in So, , S and in 2 we give
these polynomials explicitly for k 2, 3, 4, 5 as well as some other polynomial identities
that can be deduced by various substitutions. Unfortunately, the unstructured nature of
the coefficients of these polynomials makes them inconvenient for automatic compu-
tation and in 3 we consider how to arrange the analysis more conveniently. Using
generating functions we are able to prove in Theorem 6 a surprisingly good error
estimate in terms of the numbers S. In 4 we give an upper bound for S using the
minimum-distance theorem of Hilbert space theory. In 5 we consider the special case
where/x is the normal distribution. In 6 we tabulate some results for the normal
distribution that serve to show the accuracy of our methods. In 7 we discuss some
further inequalities that generalize some results from [2]. Finally, in 8, we prove that

1 >I2>I/2 >I/3 >

and we investigate some of the properties of

lim I/’-.

1. The definition of $,. Our analysis involves certain quantities S (that depend
both on/z and on u). We define So 1 and, for all fi >= 1,

() &= Z (_);-1&_$.
i=1

Since So 1 and Io 1, we can rewrite (1) as

k

(2) I Y (-1)-S.I_.
=1

It is clearly possible to express I as a polynomial in So, $1,’’’, S by a sequence of
substitutions using (1) and (2). We return to this topic in 2.

Our discussion of the properties of S is greatly facilitated by the definition of a
sequence {g}o of real functions on R as follows: for all k ->_ 0,

k

(3) g Y (- 1)S_.f..

Our main results about g and S are contained in the following lemma.
LEMMA 1.
(a) For all k >= 1, S g_.
(b) For all k >= 1, g(x) (x/u. g-I >= O.
(c) For all k >= 1,

S= I dp,(x) f dp,(x).., fx dlz(x,).
2XI+U Xk_l-bU

(d) I=So=SI>=S>= >=0.
Proofs. It follows from (3) with k replaced by k 1 that

k

(4) g_= Y. (-1)-S_])_.
j=l
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We obtain (a) by integrating (4) over R and using (1).
It follows from (a) that

f( gk-l Sk-- f( gk-X,

using (4),
x+u,) -,x+u3

k

Sk 2 (-- 1)J-1S_.,
/=1

k

-2(-1)&_f,.,
/’=0

since fo(X)= 1. Thus (b) follows from (3).
(c) is immediate from (a) and (b). (d) is immediate from (c).

2. Some specimen polynomials. In this section we give concrete examples of the
polynomials mentioned at the beginning of 1 and some of the identities that can be
deduced from them.

The expressions for k 2, , 5 obtained by successive substitutions using (1) and
(2), taking account of the fact that So S 1, are:

(5)

I2-- 1-S2,

13 1 2S2 + $3,

I4 1 3S2 +S + 2S3 S4,

I5 1 -4S2 + 3S 2S2S3 + 3S3 2S4 + $5.

We can modify (5) slightly by the substitution S2 1 --/’2 and obtain expressions for I in
terms of I2, $3," , S"

13 [--1 + 212] + $3,

(6) /’4 [-1 + I2 + I2z ]+ 2S3- $4,

15 [-212 + 312 + $3 + 2/2S3 2S4 + $5.

Now, whatever/z is, the Sk are fairly small. For instance, we can deduce easily from
Lemma 1(c) that, for fixed k, limu_ Sk 0, and we see in Theorem 8 that, for all k _-> 2,
Sk <- 1/k !. Thus the expressions in (6) show the approximate polynomial dependence of
Ik on 12 for k 3, 4, 5 and large u. The significance of this is that I2 is generally easier to
evaluate by quadrature than 13, I4, , since it involves fewer integrations.

We can modify (6) slightly by the substitution $3 1 212 + I3 and obtain expres-
sions for Ik in terms of I2, I3, $4," , Sk. We see in 6 how useful these results are for
the normal distribution, where we can compute both I2 and I3 with great numerical
accuracy. We obtain"

14 [1 312 +I + 213]-
(7)

/5 1 2h I + 2/2/3 +/3] 2S4 + $5.

The somewhat unstructured nature of the coefficients in (6) and (7) makes these
expressions inconvenient for automatic computation. In the next section we shall show
how to arrange the analysis more conveniently. We introduce the concept of the
r-approximation to Ik. The three expressions in square brackets in (6) are the 2-
approximations to I3, I4 and I5 and the two in (7) are the 3-approximations to I4 and I5.



774 STEPHEN SIMONS

3. The r-approximation to Ik. Throughout this section, r is a fixed integer => 1. We
have already observed in (2) that, for all k => 1,

k

(8) Ik Y. (--1)i-xSilk-i.
/’=1

We define a sequence (Ak}__>o of numbers as follows" Ao 1 and, for all k => 1,

min(r,k)

(9) Ak (-1)i-ISIAk-I.
/=1

Clearly A =I for all k =<r. The rationale behind this definition is that we are
"neglecting" St/l, $r/2, in (8). Ak is the r-approximation to I. Our main goal in this
section is to show that A is in fact a good approximation to I.

It is also convenient at this point to consider the truncation error in taking only r
terms of (8). Specifically, if k > r we define

k

(10) T= (-1)i-Silk_.
/’=r+l

It then follows from (8) that

(11) I (-1)-lSjI_i + T.
/’=1

We extend the definition of T by writing

(12) Tk =0, O<=k<=r.

The easiest way of handling Ig, A and Tg seems to be to use generating functions.
LEMMA 2.
(a) For all k >= O, I is the coefficient of z in the power series expansion of

1

Y’=o (- l )JSizi

(b) For all k >= O, A is the coefficient of z in the power series expansion of
1

Z;=o (- 1)%z

(c) For all k >= O, T is the coefficient of z in the power series expansion of

Z (-1)i-Xsiz Iiz
/=r+l

Proofs.
(a) It follows from (1) that, for all k _-> 1,

k, (- 1)SiIk_ O.
j=O

Further, So Io 1. Hence,

(-1)Sz IkZ 1.
k=O
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This gives the desired result.
(b) We write S} Si(/’ =< r) and S 0(] > r). It follows from (9) that, for all k _-> 1,

k

E (- 1)iS;Ak_i O.
i=0

Further, S; Ao 1. Hence

(-1)’S,z k A,z k 1.
k =0 =0

This gives the desired result.
(c) We write i 0 (/" -< r) and i S. (f > r). It follows from (10) and (12) that, for

all k ->_ 0

k

T E (-)-LI-.
1=0

This gives the desired result.
In the next lemma we find an expression for the difference between Ik and its

r-approximation.
LEMMA 3. For all k > r,

and

Thus

k

I Ak TAk-i.
]=r+l

Proof. We observe from Lemma 2 that

= Z (-1)&z ,
E,=o I,z =o

1 (_l)kSzk.,,=oA,z ,=o

TkZ kEk =0 y (-1)Sz .
Ek =0 k=r+l

1 1 ,=o T,z’
Zk=o AkZ, k=o IZ, +-yk=O iz

,

This can be rearranged to yield

Z (h--Ak)Z k= AkZ " TkZ k

k=O k=O k 0

which gives the required result.
In Lemma 4 we describe a curious property of the partial sums in (8). We use this

property in Lemma 5 to give bounds on T, which we then combine with the results of
Lemma 3 to give our main approximation result in Theorem 6.

LEMMA 4. Let k >-r. Then I is "bracketed" by the partial sums in (8), i.e., if r is
even, then

I _-> i (-1)i-lsiI-i;
/=1
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while if r is odd, then

Ik -< (-1)-lSjlk-j.
i=l

Proof. Since the results are true (with equality) if k r, we shall suppose that k > r.
We note from (3), with k replaced by r, and ] by i, that

(-1)iSr-if, gr >= O.
i=0

Writing r-/" we obtain

r-i >i (-1) $ifr-i=O.
/’=0

We now integrate this k- 1-r (=> O) times over (-oo, x + u and then once over R and
obtain

(13) i (-1)r-iSilt,-j ->0,
i=0

from which

i=0

has the same sign as (-1) r. This gives the required result.
LEMMA 5. Let k > r. Then

0-< (-1)rTk Ik-r-lSr+l Sr+l.

Pro@ We note from (11) that

T i (- 1)iSjI_j
/=0

and so it is immediate from (13) that (- 1)rT => 0. Since k > r, we have k => r + 1 so we
can replace r by r + 1 in (13) and get

Using (11) this can be written

r+l

Z (- 1)r+-iSI_i >- O.
/’=0

(-1)r+l rk + Sr+lIk_r_l >O

and so (-1)T =< Sr+lIk_r_l, as required.
One would expect from (9) that A would get progressively worse as an approxi-

mation to I as k increases. Furthermore, since I [0, 1], there is little point in
considering cases in which A [0, 1]. Taking these two observations together leads us
to the following "reasonableness" condition"

(14) A.[0,1] for allj=0,1,...,k-1.

We now come to our main approximation result. In order to explain it, we consider
the case of (say) r 3. We write Dk I -A. It follows from Lemma 4 and (9) that, for
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all k >_-4,

and

from which

Ilk --/’k-1 / S2Ik-2 S3Ik-3[ $4,

Ak -Ak-x + S2A-2- S3Ak-3 O,

IOl-< [D,-I + S2ID,-21 + S3lDk-3[ + 84.

Since Do D1 D2 D3 0, we can find inequalities forD recursively. For instance,
we obtain that

[D9[ <- (6 / 10S2 /4S / 6S3 / 2S2S3)S4.

.As opposed to this, Theorem 6 gives the simpler and sharper inequality

0 <-- D9 <- 6S4.
THEOREM 6. Let k > r and (14) be satisfied. If r is even, then

A <-I <-A +(K-r)Sr+x,

while if r is odd, then

Ak-(k-r)Sr+l <=Ik <=Ak.

Proof. It follows from Lemma 3 that

k

(-1)r(lk-Ak) Z (-1)TiAk-i;
/=r+l

hence, from Lemma 5 and (14),
k

O<=(--1)r(Ik--Ak) <= E Sr+=(k-r)Sr+
/=r+l

This gives the required result.
Of course, the usefulness of Theorem 6 as a device for computing Ik depends

essentially on the size of &+. We will consider this topic in the next section.

4. An upper bound for Sk. If X=(Xl,’’’,Xk)R we write Ilxll--
(x x + +

LEMMA 7. Let k >-2 and

W {x" x R , x + u <- x2, x2 + u <- x3, , x-x + u <- x}.

Then

Proof. Since W is a closed convex set (and (R k, I[" [I) is a Hilbert space), there exists
y e W minimizing Ilyll=. Now, for all A e R,

y-h(1, 1,. ., 1)e W;
hence,

k k
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Since this holds for all h, it follows that

k

(15) 2 Y1 0.
i=1

Thus there exists q, 1 -< q < k, such that

yq <= 0 < Yq+l.

Clearly yq+ Yq q- U, for otherwise we could decrease yq+l slightly and find an element z
of W such that Ilzll <lly[I Using a similar argument we can prove that, for all
/=2,... ,k,

Yj-I + U yj.

It follows from (15) that, if k is odd,

U
y =-(-(k-1),...,-4,-2, O, 2, 4,..., k- 1),

while, if k is even,

U
y =(-(k-1),... ,-3,-1, 1, 3,..., k-l).

In either case, it follows by direct computation that

This completes the proof of the lemma.
In the result that follows we write/xk for the product measure/x x x/x on R k.
THEOREM 8. Let k >-2. Then

Proof. For each permutation r of {1,..., k} let

Wcr {(Xo’l," ", Xo’k): X W},

where W is the set introduced in Lemma 7. Clearly

(16) tz(W) =/z(W).

Since u > O, if x W then

X1 <X2<

consequently,

(17) W VI W,

if r and r are different permutations of {1,..., k}. It follows from Lemma l(c) that

(18) &<-_its(W).

(The inequality "=<" arises because Sk is defined by integrals over open intervals, while
W is defined by the corresponding closed intervals. Of course, if t is continuous then
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we have equality.) Thus, from (16), (17) and (18)

k !S, <-, txk(W)= Z p4,(W)= tx(UW),

and the result now follows from Lemma 7.

5. An upper bound for Sk for the normal distribution. In this section we suppose
that dl (X (1/ 2,]) e -x=/2 dx.

LEMMA 9. For all k >= 1 and B >= 0,

/x({x x e R , [Ixllz>B}) 1 [ X
k/2-1

Proof.

x({x" x R , I]xll2 >= B})= e dx
]x [[2__>B

r e -IIx112/2 dxa dxk

A r k-1 --r2/2r e dr,

where A is the (k 1)-dimensional Lebesgue measure of the surface of the unit sphere
in R k. If we now make the substitution x r2/2 we obtain

A [.o /2-1

JB x e dx.(19) /xk({x x R, Ilxll2 >B}) 2(x/) /2

By putting B 0 in (19) we obtain

A Io /2-1(20) 1 =/x(R k)
2()k

x

The required result follows by dividing (19) by (20).
THEOREM 10. Let k >- 2. Then

Sg-<-. 1F(h-/+l)
e

where

] k3-k 2 kk + l
C=u and hm=

2 24 2"

Proof. By virtue of Theorem 8 and Lemma 9 it suffices to prove that

(21) x h- e dx <_-F(h) -c

=1 F(h-j+l)
e

For convenience we will separate the proof into two cases.
Case 1. (k is even). We observe that

[( x2 xh-I ) ] (h
xh-Id

l+x+ +’’’ + e 1)------e
-x"

d- . (h 1)!
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hence

h-1 C’2
(h-l)!

x e dx- 1+C+!+...+
Thus in this case (21) is true with equality.

Case 2. (k is odd). We observe that

,_..+_--:c.+’’’ + e F(hi
hence

r(h)
x e dx =F x e ax+ ,r( i +" + r(h e-c"

Since x -1/2 is decreasing for x > 0,

thus,

1 h-1 1 C-1/2-c C -cx e dx<-) e + +... + e
F(h)

from which (21) is an immediate consequence.

6. Some numerical results for the normal distribution. We first give tables of the 2-
and 3- approximations to Ik, computed from (9). The algorithm for the 2-approxima-
tions {Az.k}k>=O is:

A2,o A2, 1,

A,= I:,

and for all k >-3,

A2,k (A2,k-1 + I2A2,k-2)- A2,k-2.

The algorithm for the 3-approximations {A3,tc}k>=o is:

A3,0 A3,1 1,

A3,2 I2,

A3,3 13,

and for all k => 4,

A3,k (A3,k-1 + I2A3,k-2 + (1 + I3)A3,k-3)-(A3,k-2 + 2/2A3,k-3).

The arithmetic has been arranged somewhat differently from that in (9) to avoid the risk
of subtractive cancellation inherent in the numerical evaluation of expressions like

1--212+13.
I2 is worked out explicitly from the formula
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and 13 is worked out by quadrature using the adaptive subroutine QUANC8 and the
formula

where

I3 I_ d(u + x)O(u- x) dO(x),

P(x)
1 I=- e- dt.

The subroutine QUANC8 is described in Chapter 5 of 1], and the evaluation of 13 in 9
of [2]. Although the results displayed are rounded to six digits, the machine is
manipulating values of I2 and 13 that are probably correct to at least 10. (See Table 1.)

TABLE
2- and 3-approximations to I

A2,3 A3,3

.000000 .166667

.520500 .536152

.842701 .843012

.966105 .966106

.995322 .995322

.999593 .999593

.999978 .999978

.999999 .999999

A2,7 A3,7

.000000 .041667

.081177 .117840

.588014 .589283

.901168 .901173

.986021 .986021

.998780 .998780

.999934 .999934

.999998 .999998

A2,4 A3,4

-.250000 .083333
.338230 .369533
.770237 .770860
.949445 .949447
.992989 .992989
.999390 .999390
.999967 .999967
.999999 .999999

A2,5 A3.5

-.250000 .083333
.213440 .252890
.703959 .704844
.933072 .933075
.990661 .990661
.999186 .999186
.999956 .999956
.999999 .999999

A2,6 A3,6

-.125000 .069444
132349 .172686
643380 .644478
916981 .916985
988338 .988338
998983 .998983
999945 .999945
999998 .999998

A2,1o A3.1oA2,8 A3,8

.062500 .020833

.049446 .080396

.537412 .538814

.885628 .885634

.983710 .983710

.998576 .998576

.999923 .999923

.999997 .999997

A2,9 A3,9

.062500 .011574

.029984 .054847

.491165 .492668

.870355 .870362

.981404 .981404

.998373 .998373

.999912 .999912

.999997 .999997

.031250 .008102

.018129 .037416

.448898 .450474

.855346 .855354

.979103 .979103

.998170 .998170

.999901 .999901

.999997 .999997

We have, in fact, worked out much more extensive tables with u running from 0 to
10 in steps of .1. It is interesting to observe that to construct such a table it required
about the same amount of computing effort as was required in [2] to work out only one
or two values of I4 by quadrature directly. So the methods given in this paper are
preferable if they give a sufficiently accurate result.

This brings us to an analysis of the errors in our approximations. We next give a
table from which upper bounds for Sk can be read off. (See Table 2.) The upper bound is
computed directly from the formula in Theorem 10 and we have tabulated -log10
(upper bound). Thus, for instance, it follows from the table that if u 3 then $4 -< 10-9"7.

It will be observed that Sk decreases exceedingly rapidly as k and u increase. These
results clearly justify the claim made in the introduction that Sk is small, at least for
k->4 and u->2.

We note from Theorem 6 that for all the values tabulated other than u 0,

A2,k <=[k <=A2,k + (k 2)$3, k->3,
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TABLE 2
Upper bounds for Sk

k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

0.4 0.9 1.9 3.2 4.9 7.3 10.4 14.4 19.3
2 0.7 2.1 4.6 8.9 15.2 24.1 36.0 51.4 70.7
3 1.2 4.1 9.7 19.2 33.5 53.6 80.6 115.3 158.8
4 2.0 7.0 17.1 34.0 59.6 95.6 143.7 205.6 283.2
5 3.0 10.8 26.7 53.3 93.4 149.8 225.2 322.2 443.7
6 4.2 15.5 38.5 76.9 134.9 216.3 325.0 465.0 640.1
7 5.6 21.1 52.4 105.0 184.0 295.0 443.2 633.9 872.5
8 7.2 27.6 68.6 137.4 240.8 385.9 579.6 828.9 1140.7
9 9.0 34.9 87.0 174.1 305.2 489.0 734.4 1050.1 1444.9
10 11.1 43.1 107.5 215.3 377.2 604.3 907.4 1297.3 1784.9

and

A3,k-(k-3)S4NIk <=A3,k, k >-_4.

We use these estimates to give a table from which upper bounds for IA2,k- Ikl and
]A3,k- Ikl can be read off. (See Table 3.) Our notation is that

Er,k =--log10 (upper bound for IA,k- Ik[).
We summarize our conclusions in Table 4. The entry "2" means that the 2-approxima-
tion can be used and the entry "3" means that the 3-approximation can be used. We
note that the 3-approximation involves only one quadrature operation and so it will be

TABLE 3
Upper bounds for the error in the 2- and 3-approximations to Ik

2
3
4
5
6
7
8
9
10

2
3
4
5
6
7
8
9
10

E2,3 E3,3

0.9
2.1
4.1
7.0

10.8
15.5

E2,4 E3,4

0.6 1.9
1.8 4.6
3.8 9.7
6.7 17.1

10.5 26.7
15.2 38.5

E2,5 E3,5

0.5 1.6
1.6 4.3
3.6 9.4
6.5 16.8

10.3 26.4
15.0 38.2

E2,6 E3o6

0.3
1.5
3.5
6.4

10.2
14.9

21.1
27.6
34.9
43.1

0.2
1.4
3.4
6.3

10.1
14.8
20.4
26.9
34.2
42.4

E37

1.3
4.0
9.1

16.5
26.1
37.9
51.8
68.0
86.4

106.9

20.8
27.3
34.6
42.8

E2,8

0.2
1.3
3.3
6.2

10.0
14.7
20.3
26.8
34.1
42.3

52.4
68.6
87.0

107.5

E3,8

1.2
3.9
9.0

16.4
26.0
37.8
51.7
67.9
86.3

106.8

20.6
27.1
34.4
42.6

E2,9

0.1
1.2
3.2
6.2

10.0
14.7
20.3
26.7
34.1
42.3

52.1
68.3
86.7

107.2

E3,9

1.1
3.9
9.0

16.3
25.9
37.7
51.7
67.8
86.2

106.7

20.5
27.0
34.3
42.5

E2,1o

0.0
1.2
3.2
6.1
9.9

14.6
20.2
26.7
34.0
42.2

1.4
4.2
9.3

16.6
26.2
38.0
52.0
68.1
86.5

107.0

E3,1o

1.0
3.8
8.9

16.2
25.8
37.6
51.6
67.8
86.1

106.7
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>-1
>-2
>-3
>-4
>-5
->7

->10

TABLE 4

Maximum tolerated

10 10 10 10 10-20

3
2 3
2 2 3
2 2 2
2 2 2
2 2 2
2 2 2

3
2 3
2 2
2 2

10

fairly fast. The 2-approximation does not involve any quadrature at all and so it will be
very fast indeed. (These results are valid for k =< 9.)

7. Some further inequalities. In this section we prove some further inequalities for
the situation considered in the first four sections--where/x is a general measure. At this
point we do not know if these inequalities can be used efficiently for computation. At
any rate, the analysis seems more complicated than that in 3.

LEMMA 11. Let m >-- 1, n >= 2 and r >= O. If r is even then

(--1)iSi(Im+,-l+r-i--I,,Jn+r-i)<=O,
/’=0

while if r is odd, then

j=0

Proof. It follows from (3) with k replaced by r that

gr (--1) -1iSr-; -->-- O;
/’=0

hence, by integrating n 1 times, the function

[ (-) (-fr--j+n--1
/=0

is increasing. Consequently, for all x 6 R,

f f<--/.t ((-c, x+u])ff=fl(x)

(--1) (--1)’S,fr,_,+ ----< (--1)7
/=o /=o

which can be rewritten

(-- 1)r (__ 1)Jsj(fr_j+n L--/’+nfl) 0.
j=0

The required result now follows by integrating m 1 times.
Lemma 11 gives a large number of results. Here we will analyze only a few of them.



784 STEPHEN SIMONS

We first observe that it is immediate from the definition of Ik that for all m, n _-> 1,
Im+n<--I,nIn. (cf [2, 7.12]). It was also observed in [2, 7.5] that, for the normal
distribution, for all k => 3, I, I2I,-1. Both of these results are improved substantially
by Corollary 12(a).

We next consider 7.6, 7.10 and 7.11 in [2]. The first of these has already been
generalized in Lemma 4 (with r 2). The other two can be obtained from Corollary
12(b) by putting n 2 and n 3, respectively.

COROLLARY 12.
(a) If m, n >-- 1 then Ira+n-1 ----< I,Jn.
(b) If 2<-_n <n + 1 <-k then I >-I_l-(I,-I,+l)I_,.
Proofs. (a) The result is immediate if n _-> 1; if n _-> 2 it follows from Lemma 11 with

r-0o
(b) It follows from Lemma 11 with r 1 that for all m >_-1 and n >_-2, (I,+,-

ImI+l)-(Im+,_-I,J,) >-0. The result follows by putting m k-n.

8. On I/t-l).
LEMMA 13. Let k >- 1. Then for all a < b,

(22) fk(a)fk-l(b) <- fk_(a)f(b).

Proof. If k 1, then (22) reduces, for all a < b, to fl (a) _-< f (b), which is clearly true
from the definition of fl. We prove the result by induction. We suppose that it is true for
k =/" => 1, i.e., for all x < y,

If a < b then

,.(x),._(y) _-<

(23)
tz(dx) I( f/(x)f.-1 (y)/z (dy)

--oo,a+u] a+u,b+u]

--oo,a+u] a+u,b+u]

since x > y for all (x, y) in the domain of integration. Now (23) can be rewritten

from which

fi+l(a)[fi(b)- fi(a)] <= f(a)[fi+l(b)- fi+l(a)],

f.+l(a)/ (b) <-fi(a)f.+a(b).

This completes the proof of the inductive step.
COROLLARY 14. For all k >- 1, I,_lI+a <-I.
Proof. Letting b- oo in (22) we obtain

The required result follows by integrating.
THEOREM 15.
(a) If Ik > 0 for all k then

1 > /2 _-> I _-> I4 > >0.
12 13
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(b) If Ik > 0 for all k then

x3

(c) 1 >- I2 >- I/2 >- I14/3 >- >- O.

Proofs. It follows from Corollary 14 that, for all k _-> 1,

h-lh+l <= I and I-l_l/k+k- I2kk-2
hence,

Ik >Ik+l and >
Ik-1 Ik Ik-1k-1 Ikk

and (a) and (b) are immediate consequences.
We separate the proof of (c) into two cases.
Case 1. [I > 0 for all k.] Here it is immediate from (b) that, for all k _-> 1,

1> k-----T"--Ik-1
hence

from which

> ii/(k-)k-1

and (c) follows.
Case 2. [There exists k such that Ik 0.]. Here we write K for the smallest value of

k for which Ik 0. Clearly K >-2. By suitably modifying the proofs already given we
obtain

and

1>12>--13>_... >_ I:
=0,=I2 I_

iK-2I3>...> -01 >- i--- IK-1K-I--

1 >- I2 >_ I/2 >_" >_ I(K-1) 0.

However, I:+1 IK+2 0, and so (c) is true.
THEOREM 16.
(a) If Ik > 0 for all k >-_ 2, then

lim
Ik I-2

k-,oo
and lim 7---

k- Ik-1

both exist and lie in [0, 1 ].
(b) limk-,oo i/(k-1) exists and lies in [0, 1].
(c) If Ik > 0 for all k >-_ 2 then

lim i/(k-1) lim
k k Ik-1
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Proofs. (a) and (b) are immediate from Theorem 15. (c) follows from a classical
result about the ratio test and the root test. (See, e.g., [3, 3.37, p. 59]).

DEFINITION. We write p limk-,//(k-1) lim_, I/I_l.
Comments. It would, indeed, be interesting to have a direct method for computing p

(say) when/x is the normal distribution. We have numerical evidence that suggests that
I/(-) converges to p very rapidly in this case and so it might well be that pk- would
be a good approximation to I. Whether or not this would compete with the numerical
methods already discussed is a matter of conjecture. Another interesting question is:
what information does the value of p give about ? Our final theorem gives a result in
this direction.

THEOREM 17. The conditions (a)-(e) are equivalent.
(a) There exists w R such that tx ([w, w + u])= 1.
(b) f 1 [l.1, ]o
(c) For all k >- 1, I 1.
(d) p 1.
(e) h 1.
Praafs. We first prove that (b) =) (c) =), (d) ::) (e) =)> (b). If (b) is true then, by

integrating, for all k -> 1,
+ =,

from which, for all k _-> 1,
Ik+l= Ik,

and (c) is an immediate consequence. The implications (c) =), (d) and (d) =), (e) are trivial.
If (e) is true then fa 1 1 and (b) follows since fl <- 1.

We now prove that (a):::> (b)=), (a). If (a) is true then, for all x -> w,

hence,
fl(X)--/Z ((--00, X + U])-" 1;

R {fl 1} c (-, w),

from which (b) is immediate. Conversely, if (b) is true then there exists z R such that
fl(z) 1. It follows from a Dedekind section argument that there exists w R such that
fl(w) = 1 and, for all x < w, fa(x) < 1. It is immediate from this that

(24) /x ((-oo, w + u])--fl(w)- 1

and
(-oo, w)c R{fl 1};

thus, from (b)

(25) /x ((-co, w)) 0.

(a) is now immediate from (24) and (25).

Acknowledgment. I am very grateful to Professor Sobel for his help and inspiration
during the preparation of this paper.
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NOTES ON THE DYSON CONJECTURE*

GEORGE E. ANDREWS’

Abstract. A multiple integral formulation of Dyson’s conjecture is presented; also Good’s proof of the
Dyson conjecture is modified to treat directly the multiple series representation of the constant term.

1. Introduction. In [1], I raised the following"
CONJECTURE. In the expansion of

I ( o._elle 1--- eijq 1 eqq(1 1)
<__<= x x

(where e, 1 if < j and e, q if > j), the term independent of the xi’s is

(q) ++...+(.2)
(q)(q)... (q),

where

(q)A=(1--q)(1--q2) (1--qA)

F. J. Dyson [4] raised this question for the case q 1. The original Dyson conjecture was
settled independently by Gunson [6] and Wilson [11]. I. J. Good [5] also gave a
beautiful proof which we shall discuss further in 3.

I. G. Macdonald has pointed out that if all the ai c in the above conjecture then
the result is already established by considering the constant term of the corresponding
"Macdonald identity" (our choice of words) for the Lie algebra A (n 1) [7]. Thus our
conjecture appears to correspond to some finite version of the Macdonald identity for
A (n 1). Macdonald has also made a number of Dyson-like conjectures for other Lie
algebras, so that such problems become even more intriguing.

Until recently, however, the only general theorem on the subject was the original
Dyson conjecture. Within the past year, E. Bombieri and A. Selberg showed that the
integral

(1.3)

exp -k Y, x I-I (Xi--Xj)2k dXl"" dxN
i<Zj

N

(2"a’)N/2(2k)-ZW2-kNN-l/:Z(k!)-s 1-[ (k])!,

conjectured by M. L. Mehta [8, p. 42], is valid. They deduced this result from another
integral formula due to Selberg [9]"

(1.4)

(xx2"’" XN)- (1--X) l-I (xi-xj dxl dXN
/=1

N F(1 +jk)r(a+(j-1)k)r( +(j-1)k)
j=l F(1 + k)r(cr +/3 +(N+j-2)k)

Now the case N 1 of (1.4) is the famous Euler integral for the fl-function. The case

* Received by the editors October 19, 1979.

" Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802.
This work was supported in part by the National Science Foundation under Grant MCS-7722992.
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N 2 is easily reduced to

F()2F(a)F(2k+a) 2k (-2k+h)(-2k-a-+l+h)(a+h)
F(2k+a+fl)F(a+fl)i=Oh=O (h+l)(a+fl+h)(-2k-a+l+h)11

F(a)F(/3)F(1 + 2k)F(a + k)F(/ + k)
F(a + fl + k)F(1 + k)F(a + fl + 2k)

which is Dixon’s theorem [3]. Since the Dyson conjecture when n 3 also reduces to
Dixon’s theorem, we might hope that there is an analogue of (1.4) that is equivalent to
the general Dyson conjecture.

In 2, we prove,

f
(1+,O+,1-,O-) I (1+,O+,1--,O-)

nil -z--1 z+au (1- u)
P1 Pn-1

dUl"’" dun-1
l<=i]<=n--1

(27ri)2"-2F(al +... + an_l+z+l)
F(z)"-lF(1-z)"-lal! a,,_l!F(z + 1)’

by showing that (1.6) is essentially equivalent to the Dyson conjecture. The integrals
appearing in (1.6) are the Pochhammer contour integrals: the path of integration in the
ith integral starts from the point Pi on the real ui-axis between 0 and 1, encircles the
point 1 in the counterclockwise direction, encircles 0 in the counterclockwise direction,
then 1 clockwise, 0 clockwise, and returns to Pi[10, p. 256].

In 3 we give a second proof of the Dyson conjecture by reducing Good’s proof
to the point where it applies only to the multiple series of binomial coefficients that can
be easily derived as the constant term in (1.1) when q 1.

Since the upshot of our work is to produce one proof and one equivalent
formulation of a theorem already proved by Good [5] with astounding simplicity, some
justification for our efforts should be given.

(1). Selberg’s integral (1.4) and (1.6) provide possible extensions of the fl-integral
to multiple integrals. Since the /-integral can be viewed as the cornerstone of the
extensive and important theory of hypergeometric functions, it is natural to suppose
that the multiple integral analogues of the/3-integral will play an important role in the
development of multiple hypergeometric series.

(2). The treatments and formulations of the Dyson conjecture presented here
would seem to be more amenable to the development of g-analogues than any of the
known proofs. Indeed, R. Askey has already formulated a conjecture for the q-
analogue of (1.6). Due to the interest in the q-Dyson conjecture, it seems useful to
present various possible methods for attacking it.

(3). The multiple integral (1.6) provides an added facet to the Dyson conjecture.
In fact, R. Askey points out that the case z =0 of (1.6) (after multiplication by
(-47r sin rz)1-") yields Dyson’s conjecture in n- 1 parameters immediately. Other
summation identities concerning combinations of a few coefficients in the Dyson
function l-I(1- uJuj)’i can now be obtained by looking at other integral values of z.

2. The multiple integral. Recall that Dyson’s conjecture asserts that (al +... +
a.)!/(al!a2!...a!) is the constant term in the expansion of

l_--<i "--<n
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Applying the binomial theorem to each factor of (2.1) produces the expanded form

(2.2) Y# 1-[ (-1)’’i( ai ) mi -’iXi ’Xj ,
l<-ij<=n mij

where # denotes an (n2-n) fold sum over all integral values of indices mij with
l<-iCj<-_n.

Hence the Dyson conjecture now reads"

(ai) (al+a2+’"+an)’E* 1-1 (-1)m’
(2.3) 1<-i<=, mi al!ae! an!
where * is again an (n2-n) fold sum over integral values of indices mq with
1 _-< /" -< n, and subject to the n constraints:

(2.4) mil + mi2 + + min mli m2i mni O.

Now note that (2.3) may be viewed as a polynomial identity in a,. This is the case
because the right-hand side is

(a, + 1)(a + 2). (a, + al + a2 +" + an-l)
ala2l.., an-l!

while on the left-hand side the only nonzero terms involving (an) must have
subject to the inequalities mn

0 <- toni <- mil + mi2 +" + mi. <- (n 1)ai.

Thus (2.3) is a polynomial identity in an(where a l, a2,’.", an-1 are nonnegative
integers) that is valid for all nonnegative integral an. Hence (2.3) is valid for arbitrary
complex an. We therefore let an z, and we assume for the moment that z is
nonintegral. Let

(2.5) M(i, n 1) mil + mi2 +" + mi,n-1-- mli m2i mn-l,i,

and let Y" denote summation over all integral values of the (n 1)(n 2) indices m0 with
1 -< # ] -< n 1. Hence from (2.3),

F(al+" "+an-l+z +1)
alla2l" "an_l!F(z + 1)

l<=i#i<=n--1 mi] mn,’",mn--.n

Z Z

(__l)M(1.n-1)+M(2,n-1)+’"+M(n-,n-1)+m.+m.+...+m._a.

ggt m2n Fgln-1

)n 1)+ mn-l,n

=Y" 1-I (-1)"’’l<=ie]<=n-1 mii M(1, n-1)+al M(2, n-1)+a2

...( z+an-1 )M(n-l,n-1)+an_l

(by the Chu-Vandermonde summation [2, p. 3])
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l<-i]<=n--1 mij fll (M(s,n-1)+as)!F(z-M(s,n-1)+l)
l<--ij<=n-1 mii s=l (M(s, n 1) / as)! r

(--1) mi/ I-I B(z + as + 1, M(s, n 1)- z) (--1)n-1
mii \ 77" /

(where B(p, q) is the fl-function [10, p. 256])

(F(z-(-_))n-1 E" ]-I (-1)". ai

l<--_i]<=n--1 m6

s=l aP

M(s,n -1)-z -1 1 }Us (1- Us) +%dus .>< 4 sin2,rrz

F(z)n-IF(1 z)n-1 f(1+o+,1-,o-)
(2"rri)2n-2 |’P1

(Ul" Un-1)-z-l(1 Ul)z+al" (1 Un_l)z+an-1

(ai) m., mij } "’’dUn--E" [I (-1)"" /.,/i ’u; dUl
l<=i#j<--_n-1 mij

[,(Z)n-lf,(l_z)n-1 f(l+,O+,l-,O-).., f(l+,O+,l-,O-)-’-7"g--) " p P

(Ul" Un-1)-z-l(1 Ul)z+al" (1 Un_l)z+an-1

dul"’" dUn-l,
l<=i#]<=n--1

Thus (1.6) is established.

(by (2.2)).

3. The recurrence for the constant term. I. J. Good [5] proved the Dyson
conjecture by proving that the entire expression given in (2.1) satisfies the same
recurrence as the multinomial coefficient. This result together with some straight-
forward boundary conditions yields the full theorem. When one undertakes the same
approach for (1.1), all sorts of complications arise. D. Zeilberger has carried out the
modifications necessary to give a "Good" proof of the q- Dyson conjecture when n 3;
however, his methods do not obviously extend to larger n.

Our object here is to modify Good’s approach in order to prove directly that the
left side of (2.3) satisfies the defining recurrence and boundary conditions necessary to
identify it with the right side.

Let Ln(al, a2,’’ ", an) denote the left side of (2.3). For each pair (h, k) where
1 _-< h k _-< n, we define

(3.1) EhkLn(al, a2,...an)=-,,,I-I (_ 1).,;_,%( ai )
<=i <=n mij (ij

where * is subjected to the same summation constraints as before, &ii 1 if h and
j k, and b0 -0 otherwise. By the recurrence for binomial coefficients

(3.2) (1--F_,hk)Zn(al, a2, an): .,* VI (-1)’"( ai + tiJ)
l<=ij<--n \ mij /
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Consequently

(3.3)
I1 (1--Ehk.)Ln(al-- 1, a2-- 1,..., an-- 1) Ln(al, a2,

l<=hk<_n

Next we note that

(3.4) Ehk.Ek.hLn a 1," an) Ln a ", an),

because we may replace both mhk and mkh by mhk d- 1 and mkh + 1 respectively without
altering conditions of (2.4).

Furthermore, if h g,

(3.5) EhkEggLn a ., a EhLn a an),

because replacement of mhk and mkg by mhk q-1 and mkg +-1 respectively in the
conditions of (2.4) yields new summation conditions identical to the conditions
obtained when only mhg is replaced by mhg d- 1.

The algebraic reduction laws given by (3.4) and (3.5) for the operators Eit show that
(when operating on Ln(al,"’, an)) the ring of polynomials in the Eit with complex
coefficients is isomorphic with the ring of polynomials of degree zero over the complex
numbers generated by x/x2, xl/x3, , Xn/Xn-2, Xn/Xn-1, where the Xl, x2, , xn are
commutative variables. Indeed the isomorphism is merely

Eii -> xix- 1.
Next we recall the fundamental identity from Good’s proof

-1

1: (1-x)i=l t=l
]i

which rationalizes to

(3.6) [I 1 Xi 2 1-
l<=it<--_n h=l l<=i "<--n

ih

Hence

Ln(a, an)= l] (1-Eit)Zn(a- 1, a:z- 1,... an 1) (by(3.3))
l<--ij<=n

(3.7) I-I (1 Eit)Ln (al 1, a2-1,..., a, 1) (by(3.6))
h=l l<=ij<=n

ih

=Ln(a-1, a:z, an)+Ln(al, a2--1, a3, an)+’’’

+Ln(aa, a:z, an-, an-1).

Now it is obvious that

(3.8) Ln(0, 0,..., 0)= 1.

Furthermore if a specific a 0, then the only nonzero terms must have mtl- rote
mtn 0. From (2.4) with ] we see that the only nonnegative solutions possible

also require mt met rant O. Thus

(3.9) Ln(al, at-l, O, at+l, an)--Ln-l(al,’’’, at-l, at+l,’’’, an).
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Since (3.7), (3.8), and (3.9) uniquely define the multinomial coefficient (al+" "+
an)!/(al!a2!’" an!), we must have

L(al,... ,an)
(a +. +
(al!a2! an !’

which is the assertion of the Dyson conjecture.

4. Conclusion. The problem with the integral of 2 is that for convergence we are
forced to use the Pochhammer contour integrals instead of simple real integration on
[0, 1 ]. This problem appears not to arise for Askey when he treats the q- analogue, since
the q-analogue of the/J-integral has a wider domain of validity.
The proof in 3 can be immediately modified to provide an assault on the q-Dyson

conjecture. A barrier to a proof now arises because no applicable analogue of (3.6) has
been found. At least for n 2, 3, 4, however, extensive reduction of the problem can be
achieved using the algebra of the operators Ehk obtained from (3.4) and (3.5). Such
reductions combined with various q-series transformations might be a useful approach
to the q-Dyson conjecture.
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ON A NONLINEAR HYPERBOLIC VOLTERRA EQUATION*

OLOF J. STAFFANSf

Abstract. We study questions of existence, boundedness and asymptotic behavior of the solutions of the
initial value problem

ut(t,x)-| a(t-s)tr(ux(s,X))xds=f(t,x), 0<t<oo, xR,
Jo

(*)
u(0, x)= Uo(X), x R.

Here a R [0, oo) R, tr R R, [: R x R R, Uo: R R are given, sufficiently smooth functions, and
the subscripts and x denote partial derivatives. If a(t) 1, then (.) reduces to a nonlinear wave equation, and
it is well known that in this case classical solutions of (,) do not in general exist for all time. However, we show
that for a large class of kernels of physical importance equation (*) has global classical solutions for small data.
This class of kernels includes all those which are nonconstant, nonnegative, nonincreasing, convex and
sufficiently smooth. We also analyze the asymptotic behavior of the solutions.

1. Introduction. We study questions of existence, boundedness and asymptotic
behavior of the solutions of the initial value problem

(E)

u,(t, x)- a(t- s)r(ux(s, x))x f(t, x), 0<t<, xR,

u(O, x)= Uo(X), x R,

for small data f, Uo. Here a R + [0, ) R, tr R - R, f: R + R R, Uo: R R are
given, sufficiently smooth functions. The subscripts and x denote partial derivatives.

The physical interpretation of (E) varies according to the properties of a. If
a() 0, then (E) represents a mathematical model for heat flow in an unbounded bar
made out of a material with memory. If a (c) > 0, then (E) is the equation of motion of
an unbounded viscoelastic bar. In particular, if a(t) 1, then (E) becomes the nonlinear
wave equation

un(t, x)- tr(u(t, x)) ft(t, x), 0 < < oo, x R,

(1.1) u(O, x)= Uo(X), x R,

u,(0, x)= ul(x), x e R,

where Ul(X [(0, X).
Although (1.1) is a special case of (E), it is too degenerate to be very representative.

There is no damping mechanism included in (1.1), and (1.1) describes a physical system
which does not lose any energy due to friction or viscosity. It is well known [2], [5] that
the lack of damping in general prevents (1.1) from having classical solutions for all time
independently of how small and how smooth the data is. If a satisfies some natural
physical assumptions (which exclude the constant case), then (E) behaves more like the

* Received by the editors July 12, 1979, and in revised form November 14, 1979.
5" Institute of Mathematics, Helsinki University of Technology, SF-02150 Espoo 15, Finland.
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damped nonlinear wave equation

(1.2)

u.(t. x) + cu.(t, x)- o-(u(t. X))x g(t. x).

u(O. x)= Uo(X). x R.
u.(0. x) Ul(X). x R.

where a is some properly chosen positive constant (depending on a), and g is some
properly chosen function (here we have taken a (0) 1). Nishida [7] has shown that (1.2)
(with g =0) possesses classical global solutions for sufficiently small data. Nishida’s
proof depends heavily on the concept of Riemann invariants, and it does not generalize
to several space dimensions. Later Matsumura [6] applied an energy method to prove
the existence of small global solutions of (1.2). The energy method has the advantage
that it is not tied to one space dimension.

The fact that (E) behaves in the same way as (1.2) was discovered by MacCamy [3],
[4]. He differentiates (E), transforms the resulting equation using the resolvent of the
differentiated kernel, and ends up with a linear perturbation of (1.1), which we in the
sequel call "the transformed equation" (see (3.4) below). Moreover, he develops
estimates [3, 3-4], [4, 3-4] (in the following called "MacCamy’s damping esti-
mates") which show that there is a built-in damping mechanism in the transformed
equation that makes it behave in the same way as (1.2). Especially in the viscoelastic
case these estimates are quite complicated. MacCamy establishes the existence of a
global classical solution of (E) for sufficiently small data, and he shows that this solution
tends to zero as tends to infinity. He omits the proof of existence of a local solution of
the transformed equation, but such a proof was outlined by Nohel [8]. MacCamy
follows Nishida and uses Riemann invariants, which means that the results are strictly
"one-space-dimensional". In a recent paper [1] Dafermos and Nohel combine Mac-
(;amy’s damping estimates with an energy method similar to the one of Matsumura to
generalize and simplify MacCamy’s results (they also correct some errors in [,3], [4]). In
particular, Dafermos and Nohel are no longer tied to one space dimension. In this work
we essentially use the same local existence result as in [1]. However, instead of using
MacCamy’s damping estimates we develop new estimates, which are based directly on
(E) rather than on the transformed equation. We use an energy method similar to the
one in [1], but we replace differentiations with respect to by differentiations with
respect to x. As a result, we obtain a generalization of [1].

2. Summary of results. Our first goal is to develop a local existence theorem for
(E). This theorem may be considered as a modification of the local existence theorem in
[1]. The basic assumption is that the data are sufficiently smooth.

When the local existence of solutions has been established we develop global
estimates, which enable us to continue the solution for all time, as well as give us
information about the asymptotic behavior of solutions. These estimates require the
data to be not only smooth but also small enough.

Before stating our local existence theorem we introduce some notations and
assumptions. C stands for n times continuously differentiable functions, LAC for
locally absolutely continuous functions, and L, L and L are the usual Lebesgue
spaces. In our notations for function spaces we throughout omit the domain of the
independent variable (which is either R or R /) whenever no confusion is likely to arise.
In particular, in (foc) below L2 stands for L(R), and Loc(L2) stands for the space of
locally integrable functions on R/ with values in L2(R). Whenever we write an
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assumption containing conditions on derivatives we implicitly assume that the functions
are smooth enough so that the needed derivatives can be computed (or alternatively,
interpret the differentiations in the distribution sense). Besides the subscripts and x we
use a prime to denote the derivative of a function of one variable. In particular (aoc)
below is equivalent to a, a’ LAC, a(O)> O.

In our local existence theorem we assume the following:

(a,oc) a" 6 L’,o, a (0) > O,

(,,oc) c, (0) 0, 0 < p0 <-- ’() <_- p,

(fo) f(O, x)-- Ul(X),

:R,

x R with Ul, Ulx Ulxx L2,

(Uo)

ft, ftx Loc(L2), and f can be written in the form

f g + h, where g,x, htx, Lo(L2).
UOx, tOxx, UOxxx G L2.

THEOREM 1 (local existence). Let the assumptions (atoc), (O’oc), (foc) and (Uo) hold.
Then there exists a unique solution u of (E) defined on a maximal interval [0, To) R,
where 0 < To <= c, satisfying

(2.1)

Furthermore, if

(2.2) u, u, u, Uxx, Utx,, Uxx e L([O, To); L:Z),

Compared to the local existence theorem in [1] our assumption (ao) is substan-
tially weaker than the corresponding assumption in [1] (which roughly requires a",
a’" e C c L1 in addition to a (0) > 0). Furthermore, we do not need any conditions on f,
and ft, as Dafermos and Nobel do, and we can manage without conditions of fnx (i.e.,
take g 0 in (floc)). In (2.1) and (2.2) we have left out conditions on those derivatives of
u which involve more than one differentiation with respect to t. There is no need to
keep track of these derivatives in the proof of Theorem 1, because they can easily be
estimated directly from (2.1), (2.2). As a matter of fact, (E), (aloc), (O’ioc), (2.1) and (2.2)
imply

Utt-- ft, Uttx ftx, Uttt-- ftt L,c([0, To); L2)

(this is proved in the same manner as (2.5) below). Thus, if we add

f, fx, ft, Lloc(R +)

to the hypothesis of Theorem 1, then our local solution has the same regularity as the
local solution in [1].

The proof of Theorem 1, which is given in 3, follows very closely the proof of
Theorem 3.1 in [ 1 ]. In particular, we work with the transformed equation (3.4) below.
However, as soon as we have obtained local existence of solutions we discard the
transformed equation and work directly with (E) in order to get global estimates. The
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local conditions used in Theorem 1 are now replaced by global conditions:

(a) a is strongly positive definite, and a’, a" L1;
(r) o" C3, o(0)=0 and r’(0)>0;

(f) f(O,x)--Ul(X), xeR, withUl, Ulx, UlxxL2, and f=fl+f2+f3;

(f) fl e L(L2), f,, L1CI L(L), fl,, L VI L(L), fl,** LZ(L2);
(f2) f2, f2t, f2x, f2tx, f2xx, f2txx L2(L2);
(f3) f3, f3,, f3xx L(L2), f3,, f3,,, f3tx 6 La(L2).

THEOREM 2. Let (a), (or), (foc), (f), (fl), (f2), (f3) and (Uo) hold. In addition, if
a(o) O, then suppose that f3 0. If the appropriate LP-norms of the functions (and
derivatives) listed in (f), (f), (f2), (f3) and (Uo) are sufficiently small, then there exists a
unique global solution u of (E), and it satisfies
(2.3) u,, Ux, Utx, Uxx, Utxx, Uxxx L(L2);

(2.4) u=, u,,,, U=x, Uxxx L2(L2);
(2.5) u,t- f,, u,tx f,x, u,,t- f,, L L(L);
(2.6) u,,, utt- ft --> 0 in L as -> o;

(2.7) u,, u,,, utt- ft -> 0 uniformly as t-> o.

Here the primary conclusions are (2.3), (2.4), and they imply global existence (by
Theorem 1) as well as (2.5)-(2.7). There is some redundancy in the hypothesis of
Theorem 2, as (f), (fl), fie), (f3) almost imply (foc); i.e., the only part of (foc) which is
missing in (f), (f), (f2), (f3)is ft, fits, f,,** to(L).

A very small strengthening of the hypothesis of Theorem 2 yields two additional
conclusions:

COROLLARY 3. /t/ addition to the assumption of Theorem 2, suppose that f is
uniformly continuous as a function of with values in L2. Then the solution u of (E)
established in Theorem 2 satisfies

(2.8) Utx --> 0 in L2 as t-* ,
(2.9) ut, u= --> 0 uniformly as - c.

Also, in the special case when a L one can draw additional conclusions:
COROLLARY 4. In addition to the assumption of Theorem 2, suppose that a La.

Then the solution u of (E), established in Theorem 2, satisfies

(2.10) ut- f L2(L2),
(2.11) u,-f, ut,,-f,, - 0 in L2 and uniformly as t- 0o.

The assumption of Theorem 2 is not the weakest possible, as we have tried to keep
it reasonably simple. For example, (a) could be replaced by the hypothesis used on a in
[14] combined with (aloe). Also (f), (fl), (f2), (f3) do not cover the whole spectrum of
conditions which could be used on f. One can, e.g., replace flx,,x L2(L2) by flxx,
L(L2), and one can use "mixed" versions of (f), (f2), (f3). For example, in the case
a(o) > 0, a function satisfying, f 6 L(L2); ft, f= 6 LI(L2); f,, f=, L2(L2)



NONLINEAR HYPERBOLIC VOLTERRA EQUATION 797

can be allowed. This will be evident from the proof of Theorem 2, given in 5. If one
slightly strengthens the condition on a, then one can also replace some of the derivatives
with respect to x in (fl), (f2), (f3) by derivatives with respect to t. We discuss this further
in6.

Theorem 2 generalizes Dafermos’ and Nohel’s global result for the heat flow
equation [1, Thm. 4.1]. Dafermos and Nohel assume that a satisfies

(2.12) a E C3", a, a’, a", a’" EL’, tiam)(t)L 1", f =0, 1, 2, 3", m =0, 1, 2, 3,

plus something which is equivalent to the strong positive definiteness of a. They also
require f to satisfy

(2.13) f, ft, fx, ftt, ftx, fxx, ftt,, fax, ftxx La(L2),

which clearly implies (fo), (f) and (fl), (f2), (f3) (e.g., take f f3 0). The conclusions of
the two theorems are equivalent.

Theorem 2 can also be applied to the viscoelastic equation studied by Dafermos
and Nohel, and it overlaps their global result for this equation [1, Thm. 5.1]. One gets
the viscoelastic case by taking a(oo)> 0. Dafermos and Nobel assume that a satisfies

aC3; a,a’ a",a’L; a(oo)>0"

(2.14) (-1)ma(") >- 0, m=0, 1,2; a’0;

tJ[a-a(o)]"EL j=0,1 2,3, m=0 1 2 3

As is well known, this implies (a) (see [9, Cor. 2.2]). They replace our condition on f by
(2.15) f,, f,, L(L2), ftx, ft,, f,,x L2(L2)

Clearly, (2.15) does not directly fit into (f), (fl), (f2), (f3) as it does not involve any second
order derivatives with respect to x. However, when a()> 0, then one can also in our
theorem replace (f), (fl), (f2), (f3) by a weakened version of (2.15). We discuss this
further in 6.

The outline of the remainder of this paper is the following. In 3 we prove
Theorem 3, and state a lemma on how additional smoothness of the data is reflected in
additional smoothness of the solution. This lemma is needed in the proof of Theorem 2.
We have collected some inequalities for positive definite functions in 4, and we prove
Theorem 2 and Corollaries 3 and 4 in 5. Finally, in 6 we discuss possible
modifications of Theorems 1 and 2.

3. Proof of the local existence theorem. To simplify the notations we normalize a
so that a(0)= 1; (i.e., divide a by a(0) and multiply o- by a(0)).

In the proof of the local existence theorem we follow MacCamy and transform (E)
into (1.1) with an additional linear perturbation. Let r be the resolvent of a’, i.e., the
solution of the resolvent equation

(3.1) r(t) + (a’ r)(t) -a’(t), R /.

Here and below stands for convolution with respect to the time variable, i.e.,

(a’ * r)(t)= ]o a’(t-s)r(s) ds.

By standard theory for Volterra equations, (aoc) implies

(rloc) r, r’ Loc(R /).
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Differentiating (E) with respect to one obtains

(3.2) u,, r(Ux)x + a’ r(ux) +,
(for simplicity we have omitted the arguments). Convolving (3.2) with r, adding the
result to (3.2), and using (3.1) one gets

(3.3) ut- O’(Ux)x ft + r * f- r ut.

An integration by parts in the last two terms transforms this into

u,,- r(u) k(u,) + l,(3.4)

where

(3.5)

(3.6)

k(u,) =-r(0)u,-r’. ut,

l(t, x) ft(t, x) + r(O)f(t, x) + (r’ f)(t, x).

The crucial observation is that (3.4) differs from (1.1) only by a linear perturbation of
lower order. As a consequence of this fact, a proof of local existence of solutions of (1.1)
can be converted into a proof of local existence of solutions of (E). We do not give all the
details of the proof as it is very similar to the proof of Theorem 3.1 in [ 1 ]. Instead we just
point out the necessary modifications.

In a moment we shall fix T (sufficiently small) and look for a (local) solution of (3.4)
on [0, T] x R. Before doing so, let us introduce some more notations. We denote norms
as follows:

1[ 11 is the norm of L2,

I[I, 111 is the norm of LP([0, T]; L2),

III IIIsuo is the supremum norm over [0, T]xR.

Here L2 throughout stands for L2(R), and p 1, 2 or eo. By (foc) and (Uo), the constant
U defined by

(3.7) u= Ilu xll2 + Ilu 1112 + Ilu all2 +p(lluo = + Ilu0ll2 + Ilu0 2)

is finite (here Pl is the same constant as in (rloc)). The important properties of k,
defined in (3.5), (3.6) are the facts that k commutes with O/Ox, and that

<3.8> IIIk(w)lll<- glllwlll, w t(ro, T]; Z2),
(3.9) la + 12, and Illll)l / Illlllll / 2llllxlll / IIIh,lll / IIIZ=xlll--< L=
for some sufficiently large constants K and L (which depend on T), and appropriately
chosen functions 11, l.. That (3.8), (3.9) hold follows from (fo), (roc) and (3.5), (3.6). By
((rlo), it is true that for each M> 0,

(3.10) Itr"(sc)l + r"’(sc)l =< & Iscl_-<M

for some sufficiently large constant (which depends on M).
For positive M and T, let X(M, T) denote the set of functions v Ca(J0, T] R)

with initial conditions v(0, x)= Uo(X), v,(0, x)= ua(x), which satisfy

v,, v, vt, Vx LAC([0, T]; L2);
Vtx, Vxx L([0, T]; L2),
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and

Then X(M, T) is nonempty i[M is sufficiently large. Moreover, (3.11) yields

(3.12) max{lll,lllsu, IIllllu, IIlllluo, IIllllso}M,

This follows from the fact that for any q L2 satisfying q. L2,

l(x)[2 _-<2 Iq(x)l [4,(x)l dx --< 2llq, IIq’ll
(3.13)

_-< IIq, ll2 / IIq,ll=

Let S be the map which carries v X(T, M) into the solution u of the linear initial
value problem

(3.14) utt- r’(Vx)U,x k(v,) + l,

u(O, x)= Uo(X), ut(O, x)= ua(x), (x e R).

Our first goal is to show that for M large enough and T small enough S is a contraction
mapping from X(T, M) into itself. It then has a unique fixed point, which will be a local
solution of (3.4), hence of (E). We have defined $ in a slightly different way than
Dafermos and Nohel do in order to emphasize the fact that the damping factor a in (1.2)
plays no role in the local existence proof. However, the difference is so small that it does
not affect the needed estimates (Dafermos and Nohel just replace r(O)vt by r(0)u,; cf.
(3.5)).

As in [1], let us assume temporarily that r, r, u0, f and v are C smooth on their
domains of definition, and that Uox, f and v are compactly supported on R. Then the
solution u of (3.14) will be C smooth on R / x R, and u, will have compact support in R
for t R +.

Multiplying (3.14) by u, and integrating over [0, s] x R (0-<_ s _<- T) we obtain (c.f.
[1])

(3.15)

+ Io k(v)u, dxdt+ lucdxdt.

Thus by more or less obvious estimates which use the usual norm inequalities in the
different LP-spaces together with (O’loc) and (3.7)-(3.12),

(3.16)

P0 U2 21/211u,ll=(s) /-Ilull=(s) <- 1/2 / 1/2MZlllulll / MZlllu,llllllulll
+ KMTI[lu,iI[ + Eli[ u,l[[.
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One can continue this estimate by using the inequality

1
(3.17) [aCll<--ha+-- , a, eR; ,>0

with a Illu, l[l, to get

 lllu, llt +Plllu lll2 2 sup (1/211u, ll2(s)2 o-<_s<_-r

+ U2+ 12K2M2T2+ 12L2,

or equivalently,

Now fix T > 0 arbitrarily, then choose M so large that

(3.19) U2 + 12L2 <__ min {1, po}M2,

and finally reduce the size or T (if necessary) so that

(3.20) 12KZM2T2 <-24 min {1, po}M2, MT+ 12t2M2T2 -<_ p--2.
4

Then (3.18), (3.19), (3.20) yield

(3.21)

and we have completed the first step in the proof of the fact that for M sufficiently large
and T sufficiently small, S maps X(M, T) into itself.

We still need estimates on the norms Illulll, Illul[l, Illulll and Iliux=lll. These
are obtained in the same manner as above. The only difference is that instead of
multiplying (3.14) by ut one multiplies by either ut(O/Ox) or Utx(O2/Ox2). One could
also follow Dafermos and Nohel and instead multiply by utt(O/Ot), u=(O/Ox), um(O2/Ot),
and Unx(O2/Ot Ox), but that approach requires more smoothness of the data, and it leads
to double the amount of work. We skip the proof of the fact that for the same values of
M and T as above,

(3.22) M2

I[lu lll2oo+lllu x[ll 
3

(cf. [1, line (3.8)]). Instead we multiply (3.14) by UtxxO2/OX 2, and integrate over



NONLINEAR HYPERBOLIC VOLTERRA EQUATION 801

[0, s] R, 0-<s=< T to obtain (cf. [1])

Uxxx(S,x) dxtxx

udx +1/2 ’(Uox)UOxxx dx

(3.23) vux dx dt + o’"(v)vutxu dx dt

xxUxxUtx dx dt

Most of the terms in (3.23) can be estimated exactly as in (3.15), but the fifth term on the
right-hand side deserves special attention. Use (3.11), (3.12), (3.13) and (3.22) to get

(3.24)
<_ 2/aM/zllllll=lllulll./.

In the last term of (3.23), write lx llxx + lz, and integrate by parts, first with respect
to x and then with respect to to obtain

lxxux dx dt lux dx dt

+ Io I_ 12xxU=x dx dr+ I_/ix(0, X)Uoxx(X)dx
_

l(s, x)u(s, x) dx.

Hence by (3.9)

(3.25)

By using (rloc), (3.7), (3.8), (3.10), (3.11), (3.12), (3.22), (3.24), (3.25) and standard
LP-inequalities in (3.23) one gets

Po 2llu, =(s) /llu (s)<_1/2g= / 1/2#MT[Ilu*** II1 / MTIIlu,II[lllu
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This inequality is of the same type as (3.16), although it contains more terms. A similar
computation to the one following (3.16) shows that by first increasing the size of M
(which may necessitate a decrease of the size of T because of (3.20)), and then further
decreasing the size of T one obtains

M2

Illu  lll /lllux  lll -<
3

This together with (2.21), (2.22) shows that S maps a dense subset of X(M, T) (i.e., the
subset of C-functions with compact support) into itself, provided the data is smooth
and compactly supported on R.

The remainder of the proof of Theorem 1 is an almost exact copy of the proof of
Theorem 3.1 in [1], and for this reason we do not give any further details. One equips
X(M, T) with a complete metric, and shows that by further reducing the size of T (if
necessary) one can make S a strict contraction. This together with the fact that S maps a
dense subset of X(M, T) into X(M, T) implies that S maps all of X(M, T) into itself,
provided the data is smooth and compactly supported. One gets rid of the assumption
that the data is smooth and compactly supported on R by showing that S depends
continuously on the data (this particular step is skipped in 1 ], but it involves the same
type of estimates as the proof of the fact that S is a contraction). Thus, S has a unique
fixed point in X(M, T). This fixed point is a solution of (3.4) on [0, T] x R with the right
initial data, and so it is also a solution of (E) on the same strip. Define To <- m as the
length of the maximal interval of existence of a solution of (E) which satisfies (2.1). Then
u is the unique solution of (E) on [0, To). If (2.2) holds and To <, then the solution can
be extended beyond To (cf. [1]) and so (2.2) implies To .

To get the global estimates needed in the proof of Theorem 2 we have to do the
same thing as above, namely approximate the exact solution of (E) by a smoother
solution, so that certain computations can be carried out. This is possible due to the
following lemma.

LZMMA 3.1. Let the assumption of Theorem 1 be satisfied. Under the additional
hypothesis

0"

lgOxxxx, lg lxxx L2.

gt,xx, htxxx Lloc(L2)
the solution u of (E), established in Theorem 1, has the additional property

utxx, Uxxxx Llc([0, To); L2).
We omit the proof of Lemma 3.1, which is very similar to the proof of the

correspondihg Theorem 3.2 in 1]. Basically, one assumes that the function v in (3.11),
(3.14) satisfies

IIIvtxxxlll / Illvxx  [[l <-- N,
multiplies (3.14) by Uxxx(O3/Ox3), and makes a computation similar to those above to get

Illu  xlll / I[lux xxlll <- N

The crucial observation is that the constant T can be chosen independently of N. This
implies that the length of the maximal interval of the smoother solution is controlled
solely by the derivatives listed in (2.1), and so the solution stays smooth for as long as it
exists.
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4. Inequalities for positive definite functions. Our global estimates are based on a
number of inequalities for positive definite functions. All of these have been used
earlier elsewhere, but for the reader’s convenience we list them below, and outline some
of the proofs.

In this section, let H be a complex Hilbert space, and let (., and I1" denote the
inner product and norm of H. Later on, when applying the inequalities listed here, we
take H La(R). We throughout suppose that q is a function satisfying q Ltoc(R /" H)
and define

T

(4.,) O(q, T, a)=/o t(t),Ioa(t-s)q(s)ds)dt
for T>0.

LZMM 4.1. Let a be continuous and positive definite. Then, for each Loc(H)
and T>0,

T 2

This lemma is the same as 11, Lemma 6.1 ]. In 11 it is only formulated for the case
when H R, but the same proof applies in the general case.

LEMMA 4.2. Let k satisfy k, k’ L (R +). Then, or each L]o(R +; H) and T> 0.

o
k(t- s)(s) ds dt CO(, T, e),

where C [I2 + 4[I dd and e(t) e- (t R +).
The scalar version of Lemma 4.2 has been used in several places; see e.g., [13,

Lemma 2.2].
Outline opro@ Define

0tr,
(4.2) pr(t)

0, otherwise.

By the Plancherel identity and the fact that convolution is mapped into pointwise
multiplication by the Fourier transform,

(4.3)
 l[Io 112 Iok(t-s)q(s) ds dt<=

2

dt

27r

Now

Square these two inequalities, and add them to get

2l+w
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This combined with (4.3) yields

IO
r

IO
2 Ck I [[4r((’O[2

k(t- s)p(s) ds dt <=- 1+ 00- d00

=1/2CkI_ (qr(t),I_ e-lt-slqr(s))dt
CkO(q, T, e).

LEMMA 4.3. Let f, f’ L2(R +; H). Then, for each q9 Lloc(R /; H) and T> O,
T 2

]Io (q(t), f(t))dt] <= CfO(qg, T, e),

where C 2 ([If(/)ll= / Ill(011=) dr, and e(t) e -t, R +.
This is essentially the same lemma as [12, Lemma 4.1].
Outline ofproof. Define 7- as in (4.2), and let fl be the even extension to R of f. By

Parseval’s identity and the Schwarz inequality,

T

(q(t), f(t)) dt 117o (qr(t), f(t))dt]

(4.4)

: 1 + 00
2 do) (1 + 002)11) (00)11= do

By the Plancherel identity,

This substituted into (4.4) yields

< d00 CfO(q, T, e).(q(t), f(t)} dt =---- 1 + 00

LEMMA 4.4. Let a be positive definite with a(oo) > 0, and letf’ LI(R+; H). Thenfor
each p Lloc(R +’, H) and T> O,

where

IC-= 2 sup Ilf(t)]l+ IIf’(t)ll d
0t<cx3
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Outline of proof. Define b a-a(). Then b is positive definite, and

a()
q(s) dsO(q, t, a) O(q, t, b)+

2

hence,

I[I0
2 2

(4.5) q(s) ds <= Q(q, t, a) (t > 0).
a(c)

Integrate by parts to get

-ItI0   t)dt, f(Z)I Io
T

IIfl q9(S) ds, ft(t)

sup (s) ds.
OtT

This combined with (4.5) yields the conclusion of Lemma 4.4.

5. Proof of Theorem 2. Our local arguments in 3 throughout aimed at getting
bounds on various L(L2)-norms. In some of the perturbation terms it would have been
more natural to use L2(L2)-norms instead, but these could be replaced by L(L2)
norms due to the fact that we were working on a finite interval. Also, one could make
various badly behaving terms small by choosing T, the length of the time interval, small.
When one wants to get global bounds one has to use L2(L2)-norms, and in order to
make badly behaving terms sufficiently small one has to assume that the data is small.

We want to be able to apply the local existence theorem, and therefore we restrict
the range of Ux to a set where tr’> 0. Choose any constant Co > 0 such that

0 < po_<_ tr’(’) -<_pl ( [- co, Co])

for some constants Po and Pl. If necessary, redefine tr outside of the interval [- Co, Co] so
that (O’oc) holds. Then Theorem 1 applies, but of course we have to show that for all
time, [ux[-<- Co, so that the fact that we redefined r outside of the interval [- Co, Co] does
not affect (E).

Fix T > 0, and assume for the moment that the solution of (E) exists on [0, T]. By
Theorem 1, this assumption is justified as soon as we can show that the L([0, T]; L2)
norms of the derivatives listed in (2.3) are finite.

We shall use Dafermos’ and Nohel’s terminology and say that a quantity is
controllably small if it can be made arbitrarily small, independently of T, by making the
appropriate LP-norms of the functions listed in (f), (f 1), (f2), (f3) and (Uo) sufficiently
small. We use the letters C and y to denote constants. C stands for an a priori constant,
independent of T, and 3’ stands for a constant which is controllably small.

Our basic strategy is the same as in [1]; namely, we show that there exists a (small)
number/z, 0 </x =< Co, such that if

(5.1) lug(t, x)l, lug(t, x)l, lux(t, x)l -<
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then the appropriate LP-norms of the derivatives listed in (2.3) and (2.4) are controll-
ably small. However, if the norms in (2.3) are small, then (5.1) must hold, and so the
loop closes.

By the strong positive definiteness of a, a(t)-ee -t is positive definite for some
e > 0 and e(t)= e -t, R +. This means that

(5.2) Q(q, T, e) <= CQ(q, T, a), q9 Loc(L2), T > 0,

-1where C= e
To simplify the notations, define

(5.3)

-(Ux),

W() or(n) dr/,

Multiply (E) by (t, x), and integrate over [0, s] R, 0 =< s -< T, to obtain

(5.4) W(ux(s, x)) dx + O(q, s, a)= W(uox) dx + pf dx dt.

Use (roc), (f), (fl), (/2), (/3), (5.2), (5.3) and Lemmas 4.3 and 4.4 to estimate the last
term in (5.4) as follows (recall that a(o)= 0 implies f3 0)"

sup [O(o,s,a)]l/2).
O<=s<=T

Substitute this into (5.4), take the supremum of the left-hand side over 0 _-< s-<_ T, and
use (r,o) and (5.3) to conclude that Illu, lllo and sup0__<_<_TO(q, S, a) are controllably
small, i.e.,

2(5.5) Illu l[l + sup O(q, s, a)-<_ /

Combining this with (E), (a), (f), (fl), (f2), (f3), (5.3)and Lemma 4.1 we further conclude
that Illu, l[l is controllably small, i.e.,

(5.6) Illu,lll .
At this point one could make the interesting observation that so far we have used

the smallness assumption (5.1) only when replacing (or) by (roc), and so (5.5), (5.6) hold
also for large data, provided (Cro) is satisfied. In this case y represents the same thing as
C, i.e., a possibly large constant independent of T.
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Next we turn to the estimates for the second order derivatives utx and uxx. Multiply
(E) by qx(O/Ox), and integrate over [0, s] R, 0 =< s <- T, to obtain

1/2 I_ o-’(u(s, x))u2 (s, x) dx + Q(q, s, a)

(5.7) O.t 2 2
-2 (Uo) u o,, dx + o’"(ux) u,u,, dx dt

Compared to (5.4) we have one new bad term on the right-hand side. Thanks to (Crloc)
and (5.1) we can estimate

The remainder of (5.7) is treated analogously to (5.4), and one gets

sup Q(q, s, a)
OsT

+ [llu  lli2+ sup s, a) + c lllu  lil
O<=s<__T

Use (3.17) with a 3’, A 1 on the right-hand side to simplify this into

(5.8) IlluxlllL + sup O(qx, s, a) -< y2 + y/l[uxl[[z + ctz][[ul{l.
O<s<_ T

This time (5.8) does not in itself imply boundedness of the left-hand side, because
we have yet no estimate on IllUxxlll2. Define

e(t) e -t +tR

(5.9)
wl (a- (a(0) + 1)e) q,

Wz (a’ + (a(0) + 1)e) q,

w3 (a(0) + 1)e q,

and subtract w3 from both sides of (E) to get

(5.10) ut -Ji- w f- w3.

Multiply (5.10) by u,(O/Ox), and integrate over [0, T]x R to obtain

T T TIon_ utx dx dt + utwax dx dt utx(fx W3x) dx dt.
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After a number of integrations by parts this becomes

7" 7"

u t dx dt + tr u)u dx dt

T

(5.11)
T

I-- Igxx(T x)[h(T x)--f3(T x)- Wl(T x)] dx

+

_
Uo(x)[h(o, x)+f(o, x)] dx.

Here one can use (a), (roc), (fl), (fg.), (f3), (5.2), (5.5), (5.9) and Lemmas 4.1, 4.2 to
obtain

Illul[l + poll[u Ill 22

(+ Illulll= + Ittuxl[l. + I[luxl[l + cltlu,lll=[o(, T, a)]1/2

Use (3.17) to rewrite this as follows"

(5.12)

Divide (5.12) by a sufficiently large constant, and add the result to (5.8) to get

IlIull[ + IIlux[l[2 + Illul[12oo + sup O(px, s, a)<=
O<=s<=T

Thus, if/z is sufficiently small, then

(5.13) 2Illu,lll22 + [lluxlll22 + Illuxlll = + sup O(qx, s, a) <- y
O<=s<=T

Again, by combining this with (E), (a), (f), (fl), (f2), (f3), (5.3) and Lemma 4.1 we further
obtain

(5.14)

The estimates for utxx and Uxxx are obtained in exactly the same manner as the
estimates for Utx and u. Suppose for the moment that the data is smooth enough so that
Lemma 3.1 can be applied. Multiply (E) by qxx(O2/Ox2), and integrate over [0, x]x R,
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0 _-< s _-< T, to obtain

We treat (5.15) in the same way as (5.4), (5.7) to get

IIluxlll+ sup
O<s<_T

’("/+ Ill,lll= + sup [O(px, s, a)]/)
OsT

This combined with (3.17), (5.13) yields

(5.16) Illuxlll+ sup o(,s,a)=+llluxxxl[l=+c(lllulll+llluxlllb.

This time we need estimates on both IllUtxl[l and Illulll= to complement (5.16),
but these are obtained in the same way as before. Multiply (5.10) by u=(O-/Ox),
integrate over [0, T] R, and do the same integrations by parts which were used to
arrive at (5.11). This yields

Utxx dx dt + O"(Ux)U 2 dx dt

T

T

Ux] dx dt

I_ ux,x(T, x)[f2x(T, x)+f3x(T, x)- Wl(T, x)] dx dt

+ I_ Uoxxx(X)[f2x(O, x)+f3x(O, x)] dx dt.

Again, use this together with (a), ((riot), (fl), (f2), (f3), (5.1), (5.2), (5.9), (5.13) and
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Lemmas 4.1, 4.2 to obtain

Ill ulll/ pollluxxll[
<-Illu,xxlll2<lllxlll2 / I11Wxlll2)
/ 111Ux 1112(1112, 1112 / III w21112 + clltuxll[2)

+ CIllU=xlll2EQ(, T, a)]’/2.

ias, by further using (3.17) one gets

(5.17) Illuxlll + Illuxlll r2 + rllluxll[ + co<x, T, a).

Divide (5.17) by a sufficiently large constant, add the result to (5.16), and choose
small enough to obtain

<5.18) Illuxlll+lll.xlll+lllux[ll+ sup Q(x,S, a)r2.
OsT

As before, this implies

(5.19) l[[u=[[l .
We have derived (5.18), (5.19) under the additional assumption that the data was

smooth. As a matter o act, Q(x, s, a) in (5.18) is not even well defined unless
Cxx Loc(Le), i.e., Ux Loc(Le). Of course, (5.18) implies

2 2<5 20 IIulll Illuxxlll Illulll
Now (5.19), (5.20) make sense even for the less smooth solution which Theorem 1
establishes. As the solution depends continuously on the data and (5.19), (5.20) hold for
smooth solutions, also the solution established by Theorem 1 must satisfy (5.19), (5.20).

By now the proof of Theorem 2 is almost complete. Combining (5.5), (5.6), (5.13),
(5.14), (5.19) and (5.20) we observe that the LP-norms of the derivatives listed in (2.3),
(2.4) are controllably small. But this together with (3.13) implies that one can make
(5.1) hold for arbitrarily small/x by choosing the data small enough. Hence by Theorem
1, we get a global solution satisfying (2.3), (2.4) or small data. That (2.5) holds follows
from (E) combined with (a), (r), (2.3), (2.4), and (5.1). By (2.4), (2.5) both u and ut-f
belong to L2(L2) together with their derivatives with respect to t, and so (2.6) holds. The
final claim (2.7) follows from (2.3), (2.5), (2.6) and (3.13).

Proof of Corollary 3. Let the assumption of Corollary 3 hold. Then so do
(2.3)-(2.7). By (2.5) and the fact that f, is uniformly continuous with values in L2, so is

u=. Combined with (2.4) this yields (2.8), which in turn combined with (2.3) and (3.13)
yields (2.9):

u,(t, x)[ = -< 2[llu,lllollu,ll(t) o, t-

[u,(t, x)l= <-_ 211u,ll(t)lllu,xlll-, o,

Proof of Corollary 4. Use (E), (tr), (2.4) and (5.1) together with the act that
convolution with an Ll-function maps L2 into itself to get (2.10). Combined with (2.5)
this implies that u,-f 0 in L2 as oo. In this case clearly a(o0) 0; hence, [3 0 and
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SO (f), (fl), (f2) imply fx 6 L2(L2) Combined with (2.4) this yields u= -fx L2(L2), which
in turn combined with (2.5) implies that u=-fx-O in L2. The remaining claims
concerning the uniform convergence can again be deduced from the L2-convergence by
use of (3.13)"

lu,(t, x)-f(t, x)l2 _--< 2111u,-flll llu= -fx II(t)- o,
u(t, x)-L(t, x)[2 211u -f ll(t)lllu,xx Ill o- 0,

6. Modifications of the main results. When a satisfies (a) and in addition either
a LI(R /) or a(oo) > 0, then one can replace some of the derivatives with respect to x in
(fl), (f2), (f3) by derivatives with respect to t. More specifically, one can show that (fl),
(f2), (f3) can be replaced by

(fl)-- fl L(LZ), fix L 0 L(L2), fl,x 6 L 0 L(L2), fltx,, 6 L2(L2);
(f2)- f2, f2t, f2x, f2tt, f2tx, f2nx e L2(L2);
(f3) f3L(L2), f3tLI(’]L(L2), f3txG-L2f"IL(L2), ftt, f3ttxG-Ll(L2)
Also some mixed versions of (fl)-, (f2)-, (f3)- could be used, so that, e.g., (2.15) is a
perfectly good condition when a(oo)>0 (even without the requirement ft, L2(L2)).
We shall only give a brief outline of the fact that (fl), (f2), (f3) can be replaced by (fl)-,
(f2)-, (f3)- in Theorem 2 and Corollaries 3 and 4 when either a (oo)> 0 or a LI(R +).
This proof is similar to the proof of Theorem 2 given in 5, but it is more complicated,
and it requires a substantial amount of additional work. The estimates on the first order
derivatives are obtained in the same way as in 5. To get the required bounds on the
second order derivatives one first multiplies (E) by qgt(O/Ot) and integrates over
[0, s] R, 0 -< s -< T, to obtain an inequality of the type

(6.1) I[lu=lll + sup Q(qt, s, a)<- 3,
2 + vlliu lll2 / c ,lllu lll ,

O<=s<_T

In (5.11) one integrates by parts to replace w3 by (a(0)+ 1)e. qt, and gets the
inequality

Unfortunately, this time we have not yet obtained any bound on I[lu[llo, and to get
this bound we have to impose conditions on a which imply that the resolvent r of a’
defined in (3.1) satisfies at least

(r’) r’ 6 Ll(R +).
If a(oo)> 0, then by the standard Paley-Wiener theorem

(r) reLl(R+),
and this together with (a) and (3.1) yields (r’). If a L(R+), then it is also possible to
show that (r’) holds (one argues in the spirit of [10]). By using (r’) one can show that

(6.3) 3’2 + C sup O(0,, s, a).
O<_s<_T

Combining (6.1), (6.2), (6.3) one gets the desired bounds on the second order deriva-
tives.

To get the bounds on the third order derivatives one first multiplies (E) by
qgtx(OZ/c]t cX), and integrates over [0, s]x R, 0_-<s<= T to obtain

(6.4) Illu,x lll + sup Q(qgtx, s, a) <= yz_jr_ "Yll[Utxxlll2-t Cld, (tllUttx[]l"t-[llbltxx[[[ [[lUxxxll[).
Os<--_T
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Next one multiplies (E) by uttx 02/c3t Ox, and does the same type of calculation which
gave rise to (5.11) to obtain

(6.5) II1,.,,,. Ill + Ill,.,,.xlll <-- +  lllu, xllloo + r. a).

Finally, one uses (E), (r) and (r’) to get

< cIIlu.x p 2. oo. Illu.xlll < r + c sup s, a)]’/2(6.6) Illu xxlll r / II1 ,
O<__s<__T

Combining (6.4), (6.5), (6.6) one gets the needed bounds on the third order derivatives.
The proof is completed exactly as in 5.

Dafermos and Nohel mention several possible extensions of their analogues of
Theorems 1 and 2. Similar extensions are possible here. Instead of working on an
unbounded space domain one can study an initial-boundary value problem with either
Neumann or Dirichlet boundary conditions. This basically amounts to replacing the
space L2(R) in 2-6 by an LE-space over a finite interval. However, it should be
pointed out that the fact that we perform one more differentiation and integration by
parts with respect to x than in 1] causes some additional difficulties. In particular, in the
Neumann problem, one has to strengthen the assumption on f to make some boundary
terms vanish. Also, the fact that we worked in only one space dimension was not
important. The same method works for equations with several space variables. For
details, see 1]. Observe that by using our estimates in 3 and 5 rather than those in [ 1]
one does not need more than one derivative with respect to t, and so there is no need to
strengthen the assumption on a when one works in higher dimensions.

REFERENCES

1] C.M. DAFERMOS AND J. A. NOHEL, Energy methods for nonlinear hyperbolic Volterra integrodifferen-
fia equations, Comm. Partial Differential Equations, 4 (1979), pp. 219-278.

[2] P. D. LAX, Development of singularities of solutions of nonlinear hyperbolic partial differential equations,
J. Mathematical Phys., 5 (1964), pp. 611-613.

[3] R. C. MACCAMY, An integro-differential equation with application in heatflow, Quart. Appl. Math., 35
(1977), pp. 1-19.

[4] R. C. MACCAMY, A model for one-dimensional, nonlinear viscoelasticity, Quart. Appl. Math., 35
(1977), pp. 21-33.

[5] R. C. MACCAMY AND V. MIZEL, Existence and nonexistence in the large of solutions of quasilinear
wave equations, Arch. Rational Mech. Anal., 25 (1967), pp. 299-320.

[6] A. MATSUMURA, Global existence and asymptotics of the solutions of the second-order quasilinear
hyperbolic equations with first-order dissipation, to appear.

[7] T. NISHIDA, Global smooth solutions for the second-order quasilinear wave equation with the first-order
dissipation, unpublished.

[8] J. A. NOHEL, A forced quasilinear wave equation with dissipation, Proceedings of EQUADIFF 4,
Lecture notes in Mathematics 703, Springer, Berlin, 1979, pp. 318-327.

[9] J. A. NOHEL AND D. F. SHEA, Frequency domain methods for Volterra equations, Advances in Math.,
22 (1976), pp. 278-304.

[10] D. F. SHEA AND S. WAINGER, Variants of the Wiener-Ldvy theorem, with applications to stability
problems for some Volterra integral equations, Amer. J. Math., 97 (1975), pp. 312-343.

11] O.J. STAFFANS, Positive definite measures with applications to a Volterra equation, Trans. Amer. Math.
Soc., 218 (1976), pp. 219-237.

[12] O. J. STAFFANS, Boundedness and asymptotic behavior of solutions of a nonlinear Volterra equation,
Michigan Math. J., 24 (1977), pp. 77-95.

[13] O. J. STAFFANS, A nonlinear Volterra equation with rapidly decaying solutions, Trans. Amer. Math.
Soc., to appear.

14] O.J. STAFFANS, A Volterra equation with square integrable solutions, Proc. Amer. Math. Soc., to appear.



SIAM J. MATH. ANAL.
Vol. 11, No. 5, September 1980

1980 Society for Industrial and Applied Mathematics

0036-1410/80/1105-0004 $01.00/0

SPLI2TING THE SPECTRUM OF A RIEMANNIAN MANIFOLD*

DAVID D. BLEECKER" AND LESLIE C. WILSON"

Abstract. The eigenvalues of a Riemannian manifold have been calculated mostly only for spaces having
a high degree of symmetry. In these cases the eigenvalues generally have large multiplicities. However, for
most metrics the eigenvalues are all simple. We give a proof of this using perturbation theory. In particular, we
characterize those functions f for which the perturbation exp (ef)g will completely split a given eigenvalue of
the Laplace operator of the metric g. We give examples in which such an f is explicitly calculated.

1. Introduction. In this paper we show that given a closed, connected C manifold
M of dimension n -> 2 and an arbitrary Riemannian metric g on M, there is a dense (in
fact residual) set of f C(M) for which the eigenvalues of the Laplacian of the
conformally related metric exp (f)g all have multiplicity one. The proof relies on the
perturbation theory of linear operators pioneered by Franz Rellich and subsequently
extended by many others [6], [7]. A key observation which we make is that it is
"formally" possible to split an eigenvalue of A by a perturbation of the metric of the
form exp(ef)g, where f is a suitable eigenfunction of A. The perturbation theory makes
the formal procedure valid and allows us to show that the subsets Fi (of functions

f C(M) such that the first eigenvalues of the Laplacian of exp (f)g are of
multiplicity 1) are open and dense. Then, as F fqi F, F is residual.

Since finishing our paper we have learned of the important work of Uhlenbeck [8].
Using infinite dimensional transversality theory, she shows that among certain classes of
elliptic operators on a compact manifold, the following properties are generic: eigen-
values have multiplicity one, zero is not a critical value of the eigenfunction restricted to
the interior of the domain of the operator, and the eigenfunctions are Morse functions
on the interior of the domain of the operator. In her paper, generic means of second
category, which is weaker than residual. Aside from this, her results include ours as a
special case. We offer our paper anyway since our methods are quite different and are
more constructive (see Remarks 5.3.2 and 5.3.3). The reader should also consult the
article of Albert [1] for similar results about elliptic operators perturbed by adding a
smooth function to the operator.

2. Notation and statement ot the main theorem. Let M be a closed, connected C
n-dimensional manifold, n >_- 2, and let C(M) be the set of all real valued C functions
on M. We give C(M) the topology of uniform convergence of derivatives of all orders.
A subset of C(M) is called residual if it is the countable intersection of open and dense
subsets. Since C(M) is a Frechet space (a vector space having a complete, translation-
invariant metric; see [5]), residual sets are dense.

Let x1,’’’, xn be a coordinate system defined on some open set U M. Let
be the Laplace operator on C(M) relative to the metric exp (f)g. In 5 we will prove:

THEOREM 2.1. The set of all f C(M) for which every eigenvalue of A has
multiplicity one is residual.

Let Xl,’’ ", xn be a coordinate system defined on some open set U M. let 0,
1 =< -<_ n, denote the ith coordinate vector field on U or, by standard abuse, the partial
derivative with respect to the coordinate x. For the fixed metric g, let o3 be the volume
element associated with g, and define gi U N by gq g(Oi, 0]). Let o) U - N be given
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by to (det gii) 1/2. The volume element on U is then 03 to dx ^. ^ din. In terms of
these local coordinates, the Laplacian of the metric g, denoted A: Coo(M) Coo(M) is
given by A(h)=-(1/to) Oi(tog ij Ojh), where g’Jgk 6 defines g’J, and we have used the
Einstein summation convention. For a given function f Coo(M) and real number e, we
use gig(e), to(e), A(e), etc., to denote the corresponding objects derived from the metric
exp (ef)g. Note that gq(e)= exp (ef)gq and to(e)= exp (1/2nef)to. We define an operator
tA(e)" C(M)--> Coo(M) by fA(e)(h)=exp (1/4nef) A(e)[exp (-1/4nef)h]. The purpose of
using fA(e), instead of A(e) by itself, is that A(e) is not necessarily self-adjoint with
respect to the Lz inner product (h, k)=M hkto associated with the original metric.

PROPOSITION 2.2. rA(e) Coo(M) Coo(M) is self-adjoint relative to (.,.); that is
Qa(e)h, k) (h, ia(e)k) for h, k Coo(M).

Proof. (tA(e)h, k)--, vttA(e)[h]k03 JMexp (1/4nfe)A(e).[exp (-1/4nef)h]k03
M A(e)[exp (-1/4nef)h] exp (-nef)k03(e) which is symmetric in h and k because of the
self-adjointness of A(e) relative to the L2 inner product arising from 03(e). [-1

3. Some formulas. While the formulas here are not becoming, they will be of
importance in establishing certain estimates needed for the application of perturbation
theory.

PROPOSrrIoN 3.1. For h C(M) we have

fA(e)(h) exp(-ef)[Ah + e(Vf Vh -1/4n(Af)h) + e:(1/4n 1)1/4nlVf[Zh].

Proof. The proof is a straight-forward, but most unpleasant, computation. We
provide checkpoints for the reader who wishes to verify it. In local coordinates, we have
tA(e)(h) =-exp (1/4nef)to(e)- 0i{to(e)g" 0i[exp (-1/4nef)h]}. Applying the product rule
for each of the partial derivatives (performing the inner partial first) we obtain four
terms:

exp (-ef)(1/4n- 1)(1/4n)e2[Vf]2h, exp (-ef)(1/4ne)[Vf Vh- (Af)h],

-exp (-ef)(1/4n- 1)eVf. Vh, and exp (-el) Ah.

Adding these, we get the formula for )A(e)(h).
COROLLARY 3.2. A(e)(h)=rA(h)+rAl)(h)e +fAZ)(h)e+ where zA

(h) Ah, fA)(h) Vf.fAh -fAh -1/4nh Af, and A’)(h) [(-1)’/(m
2)!]/’-[f Ah/m(m- 1) +1/4n(1/4n- 1)[Vflh-f(Vf Vh-1/4nh aD/(m- 1)].

Proof. Use the formula for A(e)(h), expand exp (-el) in a power series in e, and
gather like powers.

4. Perturbation theory for Laplacians. Most of the terminology and theory we use
comes from Rellich [7].

A linear operator defined on a dense subspace U of a complex Hilbert space H is
said to be Hermitian if (v, Au) (Av, u) for all u, veU. A is called essentially self-adjoint
if A is Hermitian and A- and A + map U onto dense subspaces of H.

We may consider A and tA(e) as operators on complex-valued Coo functions on M,
Coo(M) (R) C. For h, k C(M) (R) C, we let h, k M hkS03. Then Proposition 2.2 is still
valid, as well as the formulas of 3, when properly interpreted.

POPOSITIOy 4.1. A is essentially self-adjoint on L2(M, 03), the completion of
Coo(M)(R) C relative to (.,.).

Proof. Since the eigenfunctions of A span a dense subset of LZ(M, 03), we need only
show that for any eigenfunction u, we can find b, q Coo(M) satisfying Ab + i u and
Aq- iq u. Simply let ()t + i)-lu and q (A i)-lu, where A is the eigenvalue of
u. []
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PROPOSITION 4.2. The various tA" of 3 are Hermitian.

Proof. Since tA(e) is Hermitian for all e, we have O= (d"/den)((tA(e)h, k)
(h, fA(e)k))l=o n !((tA(n)h, k)-(h, tA(")k)). ]

PROPOSITION 4.3. There are constants p, a, b > 0 such that for all h e C(M), we
have Ilre()hll<-_pm-(allhll+ bllte()hll), m 1, 2, 3,..’.

Proof. We use Corollary 3.2. Note that MIVhlEd =IMh Ahd <=
(IhaC,)/a(IMIAhl)/. In other words, IIIVhlll<-_llhllllAhll<-_1/2(llhll+llAhll) so

III Vh III -<- 2-1/([1hll + IIAhll). Now Ifl, IVfl, and lafl have finite maximums on M. This,
together with our bound on IIIX7hlll, yields Ilrm()hll-< pm-=/(m 2)!. (allhll /
where p =max [fl and m->2. (The case m 1 is handled separately.) Finally, set
a 8/p and b b/p.

THEOREM 4.4. Suppose A is an eigenvalue offinite multiplicity k >- 1 of A on Coo(M).
Let dl, d2 > 0 be such that (A dl, A + dE) contains no other eigenvalue of A. Then, for
any f C(M), there exist power series A l(e), , Ak (e) with values in R, and power
series bl(e), ", bk(e) with values in Coo(M) such that the following hold.

(1) The Ai(e) are convergent in a neighborhood of O R.
(2) The 4i(e) converge for e in a neighborhood of Oe in the sense that the partial

sums converge in LE(M, ) to a function in Coo(M).
(3) iA(e)6i(e)= Ai(e)4Ji(e), i- 1,..’, k.
(4) A,(0)=,, i= 1,..., k.
(5) (bi(e), 4j(e))= 8q, i, ] 1,..., k.
(6) Forevery d’l andd with 0<d’ < dl and 0 < d < dE, there is an a > 0 such that

< implies that the only eigenvalues of A(e) in (A d’l, A + d;) are
X(e),’’’, X(e),

Pro@ Propositions 4.1-4.3 imply thatA(e) satisfies criterion 3 [7, p. 78]. Thus, by
definition 2 [7, p. 78], the hypermaximal extension of A(e) is regular in the sense of
definition 1 [7, p. 71]. Thus, Theorem 3 [7, p. 74] applies with A(e) replacing his
A(e). [3

The eigenfunctions 4(e) and eigenvalues li(e) ofA(e) are easily related to those
of A(e).

PROPOSiTiON 4.5. U(e) is an eigenfunction o]’ A(e) with eigenvalue 1(e) iff
w(e)-= exp (1/4nef)u(e) is an eigen[unction ofA(e) with eigenvalue (e).

Proof. Both A(e) and A(e) are elliptic, and so their eigenfunctions are
Coo. If A(e)u(e)=A(e)u(e), then fA(e)(w(e))=exp(1/4nef)A(e)(exp(-1/4neJ’)w(e))=, (e)w(e), and the converse is just as easy.

Remark. The functions 1(e) can be defined for all real e by considering exp (eof)g
as the initial metric and taking the variation to be e --> exp ((e + eo)f)g. Piecing together
the functions , for various e0 presents no problem.

PROPOSITION 4.5. U(e) is an eigenfunction of A(e) with eigenvalue A(e) iff
IA(1) be as in Corollary 3.2. Then (/,A(1)h, k)= IM[(1/2-1/4n) Af-Zf]hk.

Proof. (A(1)h, k)= (V/. Vh-f Ah-1/4nh Af, k)= ((h Af+f Ah- A(fh))-fXh-
1/4nh Af, k)=(1/2h Af -1/2f Ah-1/4nh Af, k)-1/2(A(fh), k)=([(1/2-1/4n) Af-Af]h, k). [3

PROPOSITION 4.7. Using the notation of Theorem 4.4, we have A I(0)
(bi(0), fA(1)bi(0)) and 0 (b,(0), rA(’)cki(O)) if f.

Proof. A(e)ck,(e)=Z(e)ck(e) implies (rA(e)cki(e),ck(e))=(Zi(e)6,(e),ck(e)).
Differentiating with respect to e and then setting e 0, we have (A1>4(0), 4(0))+
<A(0)6 (0), b(0))+<A(0)b,(0), b(0))=(A.(0)d,(0), 6.(0))+(Adl(0), bi(0))+
(A&i(0),&(0)) or (A()qbi(O),qbj(O))=A’i(O)8ii. One point to observe is that
is Coo since it satisfies the elliptic equation

rA(O) (0)- ,, (0), (0) ,, (0),(0)- rA(’)4,, (0).
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Thus, fA()b’i(0) makes sense in the above calculation.
COROLLARY 4.8. LetP be the orthogonal pro]ection ofL2(M, onto the eigenspace

V, of the eigenvalue h of A. Then, in the notation of Theorem 4.4, {h (0), , h ,(0)} is
the set of eigenvalues of PofA(1)[V.

(1)COROLLARY 4.9. IfP fA Va is notlust a scalar multiple of the identity, then there
is at least one pair hi(e), hi(e) such that hi(e) Aj(e) for all sufficiently small e O.

5. Proof of the main theorem.
LEMMA 5.1. Let h be an eigenvalue of multiplicity k >=2 of A and let

hi(e),..., h(e) be as in Theorem 4.4. Suppose n, the dimension of M, is at least two.
Then there is a C function f such that hi(e) h(e) for all sufficiently small e > O, for
some pair i, f, 1 <- i, f <= k.

Proof. Let u, , ug be an orthonormal basis of the eigenspace Va. By Corollary
4.9, we must find an f C(M) such that CA() is not a scalar multiple of the identity. It is
sufficient to find an f such that (fA(1)Ul, /1) y& (/A(1)u2, u2). If u u, then there is an
open set on which u u2 or Ul =-u2. However, the theory of second order elliptic
equations [3] then implies that Ul u2 or Ul=-U2 on all of M, contradicting the
independence of Ul and u2. As u u, there is a nonconstant eigenfunction v with
eigenvalue tz 0 such that 2

0U 10) -7 SM/9U22(’" From Proposition 4.6 we have

(vA(1)ui, Ui)= I,t.[(1/2__ 2-
(5.2) -n)iz-h]vui0), 1, 2.

Since n >_-2, /x _>-0, and h >0 (h--0 has multiplicity one, so is excluded), we have
(1/2-Jn)/x-h <0; hence (oA()ul, Ul)(oA()u2, u2). U

Remarks 5.3 (about the above proof).
(1) Suppose M is one-dimensional; we may as well assume M T (mod 2zr).

If h k in the above proof, then Ul =cos kt, uz= sin kt, u =1/2(1 +cos 2kt),
2=1/2(1-cos2kt) v=cos2kt, tx=4k2 and so (1/2-1/4n)tx-h-0. Thus theU2

proof does fail, as it should, if dim M 1.
(2) When we know the form of the eigenfunctions, we may be able to discover an

explicit f such that the eigenvalue splits completely under the variation
exp (el)g, for small e. For instance, let M be the flat 3-torus, T x T x T1. The
eigenvalue 3 has multiplicity 8; an orthogonal basis is u sin x sin y sin z,
u sin x sin y cos z, etc. The u are sums and products of 1, cos 2x, cos 2y
and cos 2z; the uiu, , all have as a factor sin 2x, sin 2y or sin 2z. Let
f cos 2x + 2cos 2y + 4 cos 2z. The matrix ((lA(1)ui, ui)) is diagonal with dis-
tinct diagonal entries. Thus exp (ef)g splits the eigenvalue 3.

(3) The calculations are simpler when dim M= 2, for (fA(l)ui, ui)=tfuiu,
without assuming f to be a eigenfunction. This helps, for instance, in the case
M T T and h 5 (which has multiplicity 8). An orthogonal basis for the
eigenspace is Ul sin 2x sin y, uz sin x sin 2y, u3 sin 2x cos y, etc. Let f
cos 2x +cos 2y + 2 cos 4x + 3 cos 4y. Then the matrix (Mfuiuj) is diagonal
with distinct diagonal entries. Thus exp (ef)g splits the eigenvalue 5.

Let Fi be the set of all f C(M) whose first eigenvalues, arranged in increasing
order, have multiplicity one. We will now prove that each Fi is open and dense; this will
establish Theorem 1.1.

LEMMA 5.4. Fi is dense.
Proof. Suppose f Fi. Let U be a neighborhood of f. Without loss of generality we

may assume f--0, for otherwise we may replace g by (exp f)g in what follows. By
Lemma 5.1, there is an f such that, among the first eigenvalues h(e), , hi(e) of
th(e), at least two are unequal for all sufficiently small e >0, yet equal for e-0.
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Moreover, by Theorem 4.4.6, those of the above eigenvalues having multiplicity one
will remain of multiplicity one for all sufficiently small e > 0. Let e > 0 be sufficiently
small in both these respects and also be such that ef U. We may repeat the above
process with the new metric exp (ef)g and after a finite number of steps the sum of the
functions ef produced will lie in F.

In order to prove that Fi is open in C(M), we need to establish a bound on how
fast a given eigenvalue of A can grow under the variation of metric exp (ef)g. Although
the next Lemma follows from the general perturbation theory (see [6, p. 391]) and the
results of the previous section, an ad hoc proof in our special setting seems appropriate
here because it is important to our proof that Fi is open, and it is not particularly
intuitively evident.

LEMMA 5.5.Let A be an eigenvalue of A of multiplicity k. There is a neighborhood U
of 0 C(M), an interval f-a, c ], c > 0, and positive constants a and b U, ce, a, and b
independent of A) such that, for all
(a + bA)(ebll-1)/b, where A(e) (l_-<i_-<k) are as in Theorem 4.4.

Proof. Let be a real number, ]: C(M), and (.,.)r the L inner product on
C(M) relative to the metric exp (f)g. Let A (e) be an analytic continuation o A with
respect to the variation exp (e])g of the original metric g. Then/x(e) A (e + ) is an
analytic continuation of A () with respect to the variation exp ((e + )])g of the metric
exp (6f)g. Let A(e)= exp (1/4nef)A(e + 6)[exp (-1/4nef)h]; note this differs from A(e +
3), but has the same eigenvalues (the latter is not used because we want to get the
Laplace operator when e 0). Let (e) be an eigenfunction of tA (e) for the eigenvalue
/x(e), as given in Theorem 4.4. Then, according to Proposition 4.3, we have (where
h q(0))

(5.6) II[tAJ>hllt<-a(6, f)llhllr / b(, f)llA()hll,
where a(6, f) and b(6, f) are constants which, by inspection of the proof of Proposition
4.3, can be made jointly continuous in 6 and f. Hence, this inequality remains valid if we
replace a(6, f) and b(6, f) by a a(0, 0)+ 1 and b---b(0, 0)+ 1, respectively, provided
that (6, f) I U c R C(M), where I U is a suitably small neighborhood of (0, 0).
Using Proposition 4.7 the Cauchy-Schwarz inequality with respect to (., )r, and (5.6),
we have [A’(6)I [/x’(0)l <-- a + bA (6), which implies the desired inequality.

LEMMA 5.7. Fi is open.
Proof. Without loss of generality, we may assume f= 0, for otherwise we may

replace g by exp (f)g in the following argument. Thus, we are assuming that the first
eigenvalues of A, labeled A 1,""", Ai, are of multiplicity one. Let I,..., Ii be disjoint
closed intervals centered on A a,...,Ai of lengths 2dl," .,2d, respectively.
Moreover, we may assume A+l:Ii. Let a and b be the constants in the previous
Lemma. Then select /3 >0 such that lel <_-/3 implies (a + bA).(.eIl- 1)/b <-_d for
all j, 1 -< j -< i. Choose /> 0 such that [e -< 3/ implies 0 < a (e1_ 1)/b + A + d <
(2-ebl’l)Ai+l. Note 2-e bill is necessarily positive, so the inequality is preserved if we
replace A+I by Ap for any p > i. Thus for all p > and le[ _-< y, we have (a + Apb)(e bill

1)/b < Ap- A- d. Let ce and U be as in the previous Lemma and set 6 min {c,/3, 3’}.
Then ef F for all f U and [e] _-< 6. Thus, 6U is an open neighborhood of 0 contained
inF,. El

By the remark before Lemma 5.4, the proof of Theorem 2.1 is now complete.
COROLLARY 5.8. For f in the residual set F, we have that the eigenvalues of A(e)

are all of multiplicity one for all real e outside a countable subset of
Proof. Let Ai(e) be the analytic continuations of the eigenvalues of A under the

variation exp (ef)g (see Remark after Proposition 4.5). Since f is in Fo, we know that no
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pair of the Ai(e) agree at e 1, and hence the Ai(E) are distinct analytic functions. Thus
any two of them agree on at most a countable set. Taking the countable union of these
countable sets over all pairs of {Ai(e)}, we still have just a countable set.
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THE EIGENVALUES OF AN EQUILATERAL TRIANGLE*
MARK A. PINSKY?

Abstract. Let D be an equilateral triangle of side 1. We consider solutions of Au + hu 0 in D with either
the boundary condition u 0 or Ou/On 0. Let n(h) be the number of distinct eigenvalues -<,, N(h) be the
total number of eigenvalues _-<, including multiplicities. Theorem states that for either boundary condition,
A,,, (167r2/27)(m + n2- rnn), where m + n -0 (mod 3). In the first case it is further required that m 2n,
n 2m. Theorem 2 states that limx_,o (N(A)/n(h))= co. The proof uses the representation of h,n as the
norm of an integer in the quadratic number field k(o)), where o) is a primitive cube root of unity. These results
contrast with the generic results for domains with Z3 symmetry obtained by V. Arnold (Functional Anal.
Appl., 1972).

1. Introduction. Let D be an equilateral triangle of unit side. We are concerned
with the eigenvalue problem

Af+hf= 0 inD,

f=0 onD.

This problem was studied by Lam6 [7, p. 131-136], who obtained an integral quadratic
form for the eigenvalues. In trying to understand Lam6’s work, we found the following
shortcomings: (i) the complete list of eigenvalues is not clearly specified, either by the
allowable entries of the quadratic form or by any intrinsic characterization, and (ii) he
gives no methods for computing the multiplicities of the eigenvalues. Thus it is of
interest to give an up-to-date treatment covering these two points.

In 2 and 3 we give a self-contained elementary derivation of Lam6’s result, both
for Dirichlet and Neumann boundary conditions. In 4 we make the previously
unpublished observation that any eigenvalue can be written as the norm of an integer in
the quadratic number field 0(,/-3), which allows us to find a formula for the
multiplicity of any eigenvalue. Finally, this is used in 5 to prove that the "average
multiplicity" when suitably defined becomes infinite when

These questions have also been of interest recently in connection with the
non-generic behavior in domains with 120 rotational symmetry [3], [4]. For any such
domain the eigenfunctions can be chosen to be symmetric (Rf f) or complex (Rf
e+/-2i/3f), where R denotes a rotation of 120. It is shown below that for a given
eigenvalue of the equilateral triangle, the eigenfunctions are either all symmetric or all
complex (no hybrid eigenvalues are possible). The dimensions of the eigenspaces can be
arbitrarily large, for both symmetric and complex eigenvalues. This is in marked
contrast to the unit disk, where the eigenvalues are all of multiplicity one or two.

2. Eigenvalues of the Dirichlet problem. We classify the eigenvalues of the
Laplacian on the triangular domain

(2.1) D {(x, y)" 0< y <xx/, y < 4(1-x)},

with zero boundary conditions.
THEorEM 1. The eigenvalues of A on D are the numbers

( 16’n’2\/(m2+nz-ran), m, n O, +1,.(2.2)
/

* Received by the editors August 16, 1979, and in revised form November 29, 1979.
5" Department of Mathematics, Northwestern University, Evanston, Illinois, 60201.
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with the following conditions:

(A) m + n is a multiple of 3,

(2.3) (B) m 2n,

(C) n 2m.

The multiplicity Ofm, is (1/6) the number of times which it appears in the lattice (2.2).
The eigenfunctions are of the form

(2.4) f(x,y)= Y. +/-exp(-)(nx+ (2n-re)y),.,. ,/

In this sum (m, n) range over 9
_
Z2, where 191 6 and + is determined by the following

rules"

(2.5)

(rn, n)

(n-m,n)

(n-m,-m)

(m, m -n)

(-n, m n)

(-n,-m)
Eac.h transition induces a change of sign in the (m, n) entry of (2.4).

Note. Lam6’s formula is h, (16rr2/9)(z 2 + u2 +/zu). This can be obtained from
our formula by means of the substitution m 2/z + ,, n =/z ,. In these variables, (B)
and (C) state that/z 0,/z + u 0.

We introduce the rotation operator by

R x, y
_
(1 x y/- x/- )2 2’2

An eigenfunction is said to be symmetric if R f f, D. An eigenfunction is said to
be complex if R f=exp (+2zri/3)f, D.

COROLLARY 1. The eigenvalue h,,n belongs to a symmetric eigenfunction iff the
following additional condition is met:

(D) m is a multiple of 3,

(equivalently, the associated eigenfuncfion is periodic in x with period 1). The eigenvalue
h,n belongs to a complex eigenfunction iff m is congruent to +1 or -1, modulo 3. In
particular, an eigenvalue cannot belong to both a complex eigenfunction and a symmetric
eigenfunction.

COROLLARY 2. Thefollowing are symmetric eigenfunctions and give a complete list
of the simple eigenvalues.

(2.6) fp(x, y)= sin (2rrpdl) +sin (2zrpd2)+sin (2zrpd3), p 1, 2, ,
It is required that (B) and (C) be satisfied for all pairs (m, n) which appear in (2.5).
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where

d-= x ----Y_
,/3

d1, d2, d3 are the normalized altitudes of the point (x, y) in the triangle D. They satisfy the
normalization dl + d2 + d3 1 and the reflection laws Ri di -du 1, 2, 3. The
eigenvalues are obtained by the formula

(16rr2 2)/ 3p,0 \ 27 /(9P
To prove these results, we introduce the parallelogram

/-- (x,y)’0<y<
2 ’x/

and the reflection operators

RI: (x, y)-+(x,-y),

R2" (x, y)
2 2 2

3 x y/3 y /3
R3" (x, y) -+

2 2 2 ’2 2

There is a canonical isomorphism between L2(D) and the following subspace of L2(/),

(2.7) n {f E L2(/): Rif -f, 1, 2, 3},

obtained by f- liD for f E H. Thus, any eigenfunction of A on D can be obtained by
solving the equation on H. The restriction to D will automatically satisfy the Dirichlet
boundary conditions. By a standard result in [1, p. 148], we obtain a complete list of the
eigenfunctions of A on D given by linear combinations of

(2.8) f(x, y) exp (i(ax + BY)),

where (a,/3) are in the dual lattice. This requires that 3a =_2nrr, 3a/2 + 3/3fl/2 2mrr
for integers (m, n). Thus c 2nrr/3,/3 2rr(2m- n)/(3/3). It is readily verified that,
corresponding to this,

2 2,rnn Ol

(2.9) (2rf.)
2

( m- )+(2rr)2 (2 n)2

27

(16rr2|(m2\ + n2- ran).
\ 27 !
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The eigenfunction is therefore of the form

where the sum is over (m, n) with Amn A. TO satisfy the reflection conditions, we write

where we have made the substitution m’= n m, n’= n. Hence R1 o/= -)Zrequires that

(2.11)

The second reflection operator is

R2 T A,n, exp (2ri)[ (_2x y) ,)(+)]n’ + +(2m’-n
m’n’

(2m-n)y)
Therefore, we must have

(2.12) -Am,

The third reflection operator is

R3 f= ,,,,,, A,n,n, exp (2"---i[n’(3-3z
\61L \Z

x y 3
+(2m-n’

2 2

m’n’
A’n’exp(2i)[(n’+m’)exp(2i)(’ -m’x +

,,,n2 A-n,-,n exp 2__/ (_m n) exp mx +
1.

Thus we must have

(2.13) A.,,n -A_n,_., exp (-)(-rn- n).

Now if for a fixed (too, no) we have A,,,, A, then by iterating (2.11) and (2.12) and
referring to the graph (2.5), we see that exp (27ri/3)(-m-n) 1, i.e., m+n is a
multiple of 3, which proves condition (A). To prove condition (B) assume to the
contrary that too--2no. This is the same as (too, no)--(too, too-no). Property (2.12)
therefore requires that A =-A, i.e., A 0. Similarly, to prove condition (C), we note
that no 2too is the same as (too, no) (no- too, no), which by property (2.13) requires
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that A 0. Conversely, we verify directly that any sum of the form (2.4) satisfies the
reflection conditions (2.7) and is therefore an eigenfunction. Thus we have proved the
theorem.

To prove Corollary 1 we study the effect of the rotation operator on (2.10)"

(m’+ n’)y]

inn

An-m-m, exp (-)(-m)exp (2ri)[rnx+
(2m-n)y]x/

But (2.11) and (2.12) require that An-m,-n--Am, Therefore, we must have
exp (2zri/3)(-m) 1, i.e., m is a multiple of 3. Similarly, if m is congruent to + 1 modulo
3, it is clear that R o/= e+/-2"i/3j, i.e., f is a complex eigenfunction.

To prove Corollary 2 we first note that for the choice m 3p, n 0, the formula
(2.4) yields the symmetric eigenfunction (2.6). We will now show that these correspond
to the only simple eigenvalues of A on D. Indeed, suppose that hm, is a simple
eigenvalue corresponding to the set ow described in (2.5). If (m, 0) eow for some m, then
by Theorem 1, m 3p and the result is proved. Therefore, we may suppose that 0
contains no pair of the form (m, 0). Thus we may write

= {(too, no), (mo, too-no), (-no, mo-no), (-no,-mo), (no-mo,-mo), (no-too, no)}.

By hypothesis we must have no 0, mo 0, no too. Define a new set

5? {(no, mo), (no, no- mo), (-too, no- too), (-too, no- too), (mo- no, no), (mo- no, mo)}.

Clearly 5e f-I 5? , and therefore 5? can be used to manufacture a new eigenfunction
according to formula (2.4) with the same eigenvaluema contradiction. Therefore
(m, 0)6 ow for some m and necessarily rn 3p by Theorem 1. This again leads to
formula (2.6), which was to be proved.

3. Eigenvalues of the Neumann problem. The methods of 1 and 2 can also be
applied to enumerate the eigenvalues of the problem

fAf+hf=0, xD,
n
OD =0.

Indeed, given f on D, we lift f to a function )Z on /) satisfying Ri =+ x D,
1, 2, 3; )Z[o f. )Zwill still be an eigenfunction on D and hence a linear combination of

(2.8) with the same values of (a,/3). Applying the reflection operation, we have the
following result.

PROPOSITION 3. The eigenvalues of A on D with Neumann boundary conditions are

given by the numbers

hmn .m2(2 /
+n2-m.),

where rn + n is a multiple of 3. The eigenfunctions are of the form

(_)((2m-n)y)f(x, y) exp nx +
(re, n)

where (m, n) range over 3 Z2 where 15] 6 determined by the transformation (2.5).
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4. Number-theoretic discussion ot the eigenvalues. The eigenvalues can be
classified using the factorization theory in the ring Z(o)), where o) (-1 + x/---)/2 is a
primitive cube root of unity [5, Chapters 14-15]. Indeed, we can write

,( m 2
h- n 2 mn,

(4.1)

We refer to ; as a normalized eigenvalue. It is shown that Z(w) has the unique
2factorization property a m + nw p p "u where u is one of the six possible

kunits (w), k O, 1, 2, and the primes (p) are one of the following types"

(1) p 3 (1 );

(2) p a rational prime of the form 3s + 2;

(3) p a factor m + nw of a rational prime of the form 3s + 1;

these primes are denoted 7, #7, 1, #1,
PoosIwlOy 4. Let m 2 + n2- mn be a normalized eigenvalue of the equilateral

iangle with Dirichlet boundary conditions. en the primefactorization of has the form

(4.2) ;-- 322’152’2 7r’13 r2’’’

where

(1) o_-> 1,

(2) if ao 1 then /i > 0 for some i,

1

(3) multiplicity ()= l-I (1 + yi)

FI (1+,)-1

(4) ,( is symmetric iff ao >- 2.

ao 1 or yi odd for some i,

ao 1 and yi even for all i,

Conversely, any integer of the form (4.2) satisfying (1) and (2) is a normalized
eigenvalue. For Neumann boundary conditions we need only require ao >- 1. In this case,
the multiplicity () I-Ii (1 + yi) in all cases.

Proof. We first translate the known conditions on (m, n).
Fact 1. m + n =-0 (3) iff ao_-> 1.
Indeed, if ao -> 1, then a (1- w)(rh + rico)= (rh + ) + (2ri- fit)o) (m + no)) and

clearly m + n 3ri 0, (3). Conversely, if m + no) Z(o)), (m + no))/(1 o))
[1/2(m + n)- n]+ o)[(m + n)/3]. Hence, if m + n 0 (3), then the quotient is again Z(o))
and thus ao_-> 1.

Fact 2. m =-0 (3), n-=0 (3) iff ao>_-2.
Indeed, if ao->2, then a (1-o))2(th +rio))= 3ri + o3(3r- 3th) and clearly m -0

)2(3), n =0 (3). Conversely, if m + no) Z(o)), (m + no))/(1-o) =-[n + too3]. If m -=0
(3), n 0 (3), this quotient is again 6 Z(o)) and thus ao-> 2.

Fact 3. m 2n iff a is an integral multiple of zr3o3, and n 2m iff a is an integral
multiple of zrzo).

Indeed, if m 2n, then a m + no) n(2 + o)) nzr3aS. Conversely, if a nzr3oS,
then a 2n + no) and thus m 2n. In case n 2m, we write a m + nw m(1 + 2w)
mer3o), to obtain the same conclusion.
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Putting these facts together proves parts (1), (2), (4) of the proposition. Indeed,
m # 2_n, n # 2rn requires that a/r3 not be an integer. This requires that the product
r7’71... not be an integer, which is equivalent to /3i /i for some i. Finally,
m + n 0 (3) requires that a0 => 1, by Fact 1.

To determine the multiplicites, we must first determine the nonuniqueness of (4.2).
For this purpose, let a, a’ be two possible representations: [a[2= la’l2 where

a r"21511-" rrq#q u,

a’ ":’" ;5;1 zrT" z?7[ u’."/T3 Z, 13

The equation lal2= la’l 2 requires that

3-,,22,52,... 7o+ 32252... 7o+.
By the unique factorization for rational integers, we must have ao=a, a 1-"
a 1,"" ", 1 +1--1 -[ 1," "- Therefore, the multiplicity of a given eigenvalue is
equal to the number of ways of redistributing the exponents /3, 3 subject to those
conditions. If ao-> 2, c.learly this is equal to the product [Ii (1 + /). If ao 1, we must
exclude the case - 3i for all i. This can only happen if /i is even for all i.

COROLLARY. For an integer k, there exists an eigenvalue h of multiplicity k;
may be chosen to be symmetric.

2 k--1Proof. Let a zr3zr7 be a possible representation for . The remaining possible
2 k-2 2 k-2 2 2 k-representatives are zr3zr7 r7, zr3zr7 ZrT, , zr3zr7 Each of these is admissible and

corresponds to an eigenfunction. For this choice, 9.7k-1.
E.xample. For k 3, we have the values a 15-9w, a =-21o, a =-15-24o,

with h =441. This gives the simplest example of a degenerate eigenvalue of odd
multiplicity.

Note. Formula (3) of Proposition 4 also follows from [8, Satz 204, p. 144].

5. Multiplicity of the eigenvalues. In this section we obtain some qualitative
estimates on the number of multiple eigenvalues. The main result is that the "average
multiplicity" becomes infinite in the limit h - c.

To prove this, we introduce the functions

(5.1) nk (h) # {j: hj <-- h, hj is a k-fold eigenvalue},

(5.2) n() E n(;),

(5.3) N(h knk.(h ).

Since there are only a finite number of eigenvalues in each finite interval, both sums
(5.2) and (5.3) contain only a finite number of nonzero terms; n() counts the number of
(unrepeated) eigenvalues =<,, N(A) counts the total number of eigenvalues, including
multiplicities. The theorem of Hermann Weyl states that

where A x//4. To study the average multiplicity, we define

N(,)
rn lim- n(h)"

THEOREM 2. m 00.
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To prepare the proof, we study certain sets of integers. Let P (pj) be a set of prime
numbers such that

Let 5e= {n" Pj Y n for all ]}, f(x)= Z,,,,,=x 1.
LEMMA. f(X) 0 (X), X CX3.

Proof. Set SeN {n’pj X n for 1 =< ] _-< N},

fN(X) 2 1,
N,n

Clearly, 9 N for each N and thus f(x)<-fN(X). But it is well known that

Thus

!&(x)- x, N=1,2,’’’
X j=

limsupf(X)=< (1-) N=12,...
xoo X j=l

But 1/p=o implies that the product HjN__I (1- (1/pi)) tends to zero when N-.
Therefore lim supx_o f(x)/x- 0, which was to be proved.

Proof of the theorem. Let P1= {2, 5,11,17, "}, P2 ={3,7,13,19,...}. P1
contains all primes of the form 3 n + 2, whereas P2 contains all primes of the form 3n + 1
together with the prime 3. It is known [6, p. 52] that 1/pi- c for both Pa, P2. Let
0i(i 1, 2) be the sets formed from Pi, 1, 2, in the above manner. Now recall that if h
is an eigenvalue, h (16r2/27), where

322’52a2 7’ 13 2...

2
:U

where u 92, v 5el. Thus,

#(, =<x)=< E 1,
992, 1

E 2 1,
vStl u<=4x/v,uSe2

IlX f2()dfl().
Now let e >0. Thus f(u)<eu for u M. Let K =maxxxf(x). Thus

#(_-<x)=I+H,

where

I f2 rill(V),
al

//= f2
x/X

dfl(v).
/M
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Now
x/M2

I<--e dfl(v),

{ (x) lIlX/M:Zfl(V) dv}---E4 xfl - - D3/2

But fl(X)= o(x), x m implies that both terms are o(gx), x m. Hence, I o(x), x
m. For the other te, we have

o(), ( ).

This completes the proo[ that # ( x) o(x), x . Hence n(Z) o(), . But
N(Z A/4. Hence,

N(z) z
const. .

.(z) o(Z)’

The proof is complete.

Acknowledgment. We are indebted to the referees for several helpful suggestions.

Note added in proof. Using the methods of this paper, P. Brard has obtained
explicit formulas for the eigenvalues of the Laplacian of certain Euclidean domains
associated with crystallographic groups. (P. Brard, Spectres et groupes cri-
smllographiques, C.R. Acad. Sci. Paris Sr. A, 288 (25 juin, 1979), pp. 1059-1060).
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EXACT ERROR TERMS IN THE ASYMPTOTIC EXPANSION OF
A CLASS OF INTEGRAL TRANSFORMS I

(OSCILLATORY KERNELS)*
KUSUM SONI?

Abstract. In this paper we show how the Parseval relation for the Mellin transform can be used to obtain
an explicit expression for the remainder in the asymptotic expansion of a class of integral transforms. The
technique, with some modification, can be used to derive similar results for many other integral transforms
which are not discussed here.

1. Introduction. Let

(1.1) F(x) Io K(xt)f(t) at

be the K-transform of f. In this paper, under certain conditions on K and f, we give the
exact error terms in the asymptotic expansion of F(x) when x o. In particular, our
results are applicable to the Fourier transform. As far as we know, the earliest results of
this type are due to Olver [12]. He obtained explicit expressions for the remainder in the
asymptotic expansion of the Fourier integrals when the expansion is terminated after a
finite number of terms. Later, Wong [19], and McClure and Wong [11], gave similar
results for the Hankel and the Stieltjes transforms respectively. The techniques used by
Olver and Wong are different from the one used here. We use the Parseval relation for
the Mellin transform. This method was used by Handelsman and Lew [5], [6], to obtain
the asymptotic expansions for a very broad class of functions. More recently, it has been
used by Bleistein [1] to extend the work of Handelsman and Lew. The basic idea is as
follows: Suppose that M[K, s], s r + it, is the Mellin transform of K(t) evaluated at s
and M[f, 1- s] is the Mellin transform of f(t) evaluated at 1- s. Assume further that
M[K, s] and M[f, 1-s] are analytic in a strip containing the line Re s- c, and the
Parseval relation

(1.2) x-SM[K, s]M[f, 1 s dsK(xt)f(t) dt i
holds. If M[K, s] and M[f, l-s] can be analytically continued to a meromorphic
function in the right half plane and the line of integration in (1.2) can be shifted from
Re s c to Re s d > c, then by the residue theorem,

(1.3) F(x)=- Y Res{x-SM[K, s]M[f, 1-s]}+E,
c<Re s<d

where

(1.4)
1 fd+io x-M[K, s]M[f, 1- s] as.E wi aa-ioo

If the integral (1.4) converges absolutely, then (1.3) provides a finite asymptotic
expansion of F(x) as x - c with exact remainder E. In some cases, it may be possible to
obtain bounds for the error term directly from (1.4) when the Mellin transforms of f(t)
and K(t) are known; however, in general it will be necessary to represent E in terms of

* Received by the editors May 13, 1976, and in final revised form December 27, 1979.
? Mathematics Department, University of Tennessee, Knoxville, Tennessee 37916.
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the functions f(t) and K(t) as in [11], [12], [19]. Our object is to develop a technique
which will provide such a representation for a special class of kernels. The advantage of
the Mellin transform is that, in these cases, we can anticipate the form of the remainder
relevant to the functions involved. We would like to add that even though the kernels
considered in this paper are of a very special type, the technique, with some
modification, can be used successfully in various other cases. One such case is discussed
in [15].

We prove two theorems. In the first theorem, we give the remainder explicitly in
terms of the functions which are directly related to f(t) and K(t). It is assumed that f(t)
and tPf(P)(t) are absolutely integrable. These conditions are imposed so that the
Parseval relation (1.2) can be justified in a comparatively simple manner. In the second
theorem, we use an integral analogue of Abel’s theorem [8, p. 151], [12, Lemma 2] to
show that the conclusion of the first theorem remains valid under weaker assumptions
on f(t). Although our results can be applied directly to functions f(t) when

f t) akltk (log t)l, -> 0+,
k,l-O

where Re Ak ]’ oo as k - oe and {/: akl 0} is finite for each k, we assume that for each k,
al 0 for > 1.

2. Notation and basic assumptions. The functions f(t) and K(t) are complex
valued and locally integrable in [0, ). F(x) is the K-transform of f(t) and is defined by
(1.1). The variable x is real.

The variable s is complex; the real and the imaginary parts of s are denoted by r
and - respectively. The Mellin transform of a function b(t) evaluated at s is

(2.1) M[4, s] 4(t)ts-1 dt, s o- + i-,

whenever the integral converges. As is usual, M[4, s] also denotes the function which is
an analytic continuation of the function element defined by (2.1) in the complex s-plane.
An integral which converges but not absolutely, is assumed to converge in the Cauchy
sense [ 18, p. 9].

Conditions on f t).

(2.2) f(t) f,,-l(t)4- Rn(t),

where

f t) ak + bk log t) xk,
k=0

(.3)
-1 <Re Ao=<Re AI--<"" "---Re An-l, laol+lbol0,

and

(2.4) R,(t) O(tX"), t--> 0+, Re

Conditions on K t).
(i) There exists a positive number or0 such that

(2.5) M[K, s]= Jo K(t)ts- dt

converges for 0 < r < r0. M[K, s] is, therefore, analytic in this strip.
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(ii) M[K, s] can be analytically continued to a meromorphic function in the right
half plane r > 0. Furthermore, for some 8 > 0,

(2.6) M[K, o" + i’] O([’1-), [’1 , 0 < cr < Re ,, + 1.

Without loss of generality we can assume 8 <-ro.
(iii) There exist numbers C, Ce, and a, 0 _-< ce < Re ho + 1 such that for all T _-> 0

and 0 < C < O-o,

C+iT

(2.7) I t-M[K, s] ds <- C + C,
C--iT

and
C+iT

(2.8) lim [ t-SM[K, s] ds K(t), 0 < <.
Tc aC_iT

The conditions on K(t) are patterned after some of the well-known kernels used in
applications, in particular the Fourier kernel e it. The condition (2.6) is satisfied by a
certain class of oscillatory kernels considered by Handelsman and Lew [5], [6]. As
mentioned earlier, x is real in (1.1). We can allow complex values of x only if we
strengthen the condition (2.6) considerably. Finally, in order to express the remainder
explicitly in terms of f(t), we assume that for a nonnegative integer p satisfying (3.1)
there exists a function K(t, p) which is the inverse Mellin transform of F(s)M[K, s +
p]/F(s + p). In general, such a function may only exist as a generalized function (see [20,
p. 108]). However, by the condition (iv) below, K(t, p) satisfies conditions similar to
those imposed on K(t).

(iv) For some numbers C3, Ca and a’, 0 -< a’ < Re An + 1 -p, where p satisfies (3.1),

(2.9)
C+iT

t-SM[K, s +p]F(s)(F(s + p))-i ds
C-iT

<_ c3t-’+ c4

for all T->0, 0<C<8;

(2.10)
C+iT

lim f t-m[K, s +p]F(s)(F(s +p))-I ds K(t, p);
T- ,tC_ T

and, the Mellin transform of K(t, p) converges in 0 < r < 8.

3. Statement ot results.
THEOREM 1. Ill(t) satisfies (2.2)-(2.4) and

(i) f(P) (t) is continuous in (0, c), where

(3.1) max (Re hn-1, Re h,_ -b 1 8) < p < Re An + 1,

(ii) f(’) (t) f)_ (t) + O(t"-’),
(iii) f(t) and tPf(p)

#ten

(3.2)

where

(3.3)

t- 0+,

K(xt)f(t) dt E
0<cr<o’(n,p)

Res{x-M[K, s]M[f, 1 s ]} + E(x),

o-(n, p) min (p + 8, Re A,, + 1)
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and

(3.4) E(x) x-p Io K(xt, p)R (p). (t) dt.

Note that 6 and K(xt, p) are defined in (2.6) and (2.10) respectively.
TI-IEOREM 2. Ill(t) satisfies (2.2)-(2.4) and
(i)’ Conditions (i) and (ii) of Theorem 1 are satisfied,
(ii)’ tkf(k)(t) o(tP-1), C, k O, 1," , p- 1, and for every a > O,

fP) (t) o(eat), ,
(iii)’ the integrals

K(xt)f(t) dt and K(xt, p)fP) (t) dt

converge,
(iv)’ M(K, s) has no singularity in 0 < o- < Re An + 1,

then (3.2) holds provided that the finite sum on the right is replaced by

-k=0 Res x-SM[K, s]
+ 1 s ( + 1 s)2’

Condition (i) of Theorem 1 6an be weakened slightly. It is not necessary that f(P) (t)
be continuous in (0, ); it is enough to assume that f(P) (t) exists for all in (0, ) and is
bounded [17, (11.81)]. Again, it is quite possible that in certain cases Condition (3.1),
max (Re An-l, Re An-l+ 1-6)<p, can be replaced by some weaker condition, (see
[14]). We need the condition as stated in the proof of Theorem 1, when we shift the line
of integration to the right in the complex s-plane.

Admittedly, for a given n there may not be any nonnegative integer p which
satisfies (3.1). In general, this does not present any problem because if

f(t) Z (an + bn log t) a", 0+, Re An ’ c,n=0

then for each p, we can find n and a positive number e such that

Re/n-1 < Re h’., (h’. An e ),

Rn(t)=O(tX;’), t- 0+,

and (3.1) is satisfied when An is replaced by h
Finally, in Theorem 2 we assume that M[K, s] has no singularities in 0 < Re s <

Re An + 1. This restriction can easily be removed and we can allow M[K, s] to have
poles provided that we make an additional assumption on f, namely that

lim | e-"tf(t)t dt
O

exists and is meromorphic in 0 < cr < Re An + 1. Under the conditions of Theorem 2,
M[f, 1 s] need not exist. However, by the above condition, the contribution from the
poles of M[K, s] to the finite sum in (3.2) would be well defined.
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4. Some preliminary results. In this section, we investigate the behavior of
M[f, 1- s]. If f(t) L(O, o) and satisfies (2.2)-(2.4), then

(4.1) M[Z, 1 s Jo f(t) at,

converges absolutely in 0 < r < Re 0+ 1 and represents an analytic function in this
region. Furthermore, it is known [5], [6] that M[f, 1- s] can be analytically continued
into 0 < cr < Re a, + 1, and its only singularities in this strip are poles, of order two at
most, at s a + 1, k 0, 1,..., (n-1). For our purpose, this information is not
enough. In the first place, we Want to know the function represented by M[f, 1-s]
outside the strip of convergence of the integral (4.1). (For b 0, k 0, 1, , (n 1),
the result is given in [16] and the extension to the present case is straightforward). We
state this result in Lemma 1 and briefly indicate the proof. Secondly, we want to know
the behavior of M[f, 1 tr- it] as [r eo in 0 < tr < Re h, + 1, so that we may also be
able to shift the line of integration in (1.2). This behavior is given in Lemma 2. (Similar
results, given by Bleistein and Handelsman [2, pp. 226-229] are not applicable to the
functions under consideration).

LEMMA 1. Iff(t) L(O, o) and satisfies (2.2)-(2.4), then M[f, 1 s] is analytic in
0 < cr < Re , + 1 its only singularities are poles, of order two at most, at s + 1,
k 0, 1, , (n 1); and in the strip Re ,-1 + 1 < cr < Re , + 1,

(4.2) M[f, 1 s] Jo R"(t)t-s dt.

Proof. Although we need to prove only (4.2), the other properties also follow in the
process. The integral (4.1) converges absolutely in 0<r<Re o+ 1. By using (2.3),

(4.3) + ] t-f(t) dt

+
--o ,+l--s (1+l--s)

The finite sum in (4.3) is obtained by integrating t-f_(t) term by term in (0, 1). The
right side of (4.3) is meromorphic in 0<o-<Re I + 1 because, by (2.4), the first
integral converges absolutely in o-<Re I + 1. Thus (4.3) provides the analytic
continuation of M[f, l-s] into the region 0<or <Re A + 1. The conclusion (4.2)
follows from the fact that in the strip Re In- + 1 < O" < Re I + 1,

nl(ak_ bk ) fl=o Ak + l--s (Ak + l--s)2
t-f_(t) dt.

(4.4)

LEMMA 2. Ill(t) satisfies the conditions of Theorem 1, then

M[f, 1 s] O(I-[-P), I[-* oo, 0 <_- cr < Re An + 1.

Proof. Since f(t) and tPffp) (t) L(O, oo), (see Condition (iii)), it follows that

f(t)
(- 1 )PIrr(p)

(u t)p- (u) du.
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Therefore, for 0 -< o- < min (Re ho + 1, 1),

(-1)p f(p lt-sM[, s] rip (u) (u t)- d u
(4.5)

(-1)eF(1 s) o fe (u)uP-, du.
F(p+l-s)

The interchange of the order o integration in (4.5) is justified by the absolute
convergence of the double integral. Since the last integral converges absolutely, (4.4)
holds in 0 < Re ao + 1. We have to show that this estimate holds in the larger strip
0<Re a,+l.

(4.6) + (P (u)up-" du

+ (u)u-Sdu.

The first integral on the right converges absolutely in < Re I + 1 and the second
integral converges absolutely in 0. The third integral converges absolutely only in
< Re Io + 1. But by using (2.3) we see that

(4.7) (P (u)= 2 ( + log u)u-pJn-1
k=0

for some constants , so that

01 1( k k )(4 8) PC(P) (U)U du
=0 h+l-s (h+l-s)

Therefore, by (4.6), M[uff(p) (u), 1 s] is bounded as [z[ in 0 N g < Re h + 1, (not
necessarily uniformly as Re h + 1). This proves Lemma 2.

5. Proo[ o[ Theorem 1. We note that the Parseval relation (1.2) holds. To show
this, let 0 < c < min (o, Re o+ 1). Then

x-M[K, s]M[L 1-s] ds f(t) (tx)-M[K, s] d dt.(.1)
-i

The interchange of the order of integration is justified by the absolute convergence of
the double integral. Now let T . By (2.8) and the Lebesgue dominated convergence
theorem, we obtain (1.2):

1 [
c+i

x-SM[, s]M[, s](5.2) K(xt)f(t) dt
.c-i

Now shift the line of integration in the above integral from c to c’, where

(5.3) max (p, Re/n--1 - 1) < c’ <min (p+ 6, Re h, + 1).

Such a choice of c’ is possible by (3.1). Note that M[K, s]M[f, 1 s] has no singularities
in the strip max (p, Re I,-1 + 1)<tr <min (p+ 8, Re An + 1). This follows from the
observation that M[f, l-s] has no singularities in the strip Re A,-l+ 1 <r<
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Re An + 1. Furthermore, the Mellin transform of K(t, p) converges in (0, 8) so that by
(2.10), M[K, s] has no singularities in the strip p < r < p + 6. By (2.6) and Lemma 2,

(5.4) Ix-SM[K, s]M[f, 1 s]

in c -_< o- _-< c’. Therefore, the integrand on the right side in (5.2) tends to zero as Ir[-, oo in
this strip. By the residue theorem,

(5.5) [ g(xt)f(t) dr=- Y’. Res{s-M[K, s]M[f, 1-s]}+E(x),
.to

where

1 I c’+i x-SM[K, s]M[f, 1 s ds.(5.6) E(:-)

We show that E(x) satisfies (3.4). Note that by Lemma 1,

1 [
c’+i

(fo t)x-SM[K, s] t-SR, (t) d ds.(5.7) E(x)

Consider the inner integral in (5.7). If we apply integration by parts p times, use (5.3)
together with (2.4)as t0+, and use Rn(t) O(]]’(t)]+]t-’ log t]) as t--> oo, we obtain

(5.8) Io t-’Rn(t) dt=r(s-P------))F(s) Io t-’+PR)(’) dt.

Therefore,

x-p I c’-p+ie

I"(W)+ P)M[R (p) 1- w] dw,x-WM[K, w +p]F(w(5 9) E(x) i
where w s-p. Now let

R (t) ga(t) + g2(t) g3(t),

gl(t)
R(P)(t), 0<t<l,
0, t-->l,

0, 0<t<l,
g2(t) f(p) (t), >-- 1,

g3(t) { 0,,c(p) 0<t<l,

n-a (t), t---->l.

By (5.3), 0< c’-p <Min (6, Re An + l-p): Since gl(t) and gl(t)t (see Condition (iv)
on K(t) in 2) as well as gz(t) and gz(t)t are absolutely integrable in (0, co), we may
use the technique used in the proof of (5.2) to show that, for ] 1, 2,

1 fc,-p+ic r(w)
M[gj, 1- w] dw.x-WM[K, w +P]F(p + w------(5 10) K(xt, p)gj(t) dt

.,-p-,oo

The Parseval relation (5.10) holds for g3(t) also. To show this we use a result of
Titchmarsh [18, Thm. 43]. The Mellin transform of K(xt, p) converges uniformly in
every closed strip in the interior of 0 < Re w < 6, and the Mellin transform M[g3, 1 w
converges uniformly in every closed half plane included in Re w > Re ,_1 + 1 p. Since
Re A,_a + 1-p < 6, we can choose d such that Re w d is in the common strip of
uniform convergence. By (4.7), M[g3, 1- w] O([7"1-1) as oo. Therefore, the right
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side of the integral (5.10) converges absolutely for gj(t)= g3(t). If necessary, we can
move the line of integration in (5.10) to Re w d. The integral along this line converges.
Since the Mellin transform o K(t, p) converges in 0 < cr < 6, we see that the integral

(5.11) II(x)= Jo K(xt, p)g3(t) dt

is uniformly bounded in the neighborhood of : 1 for each fixed x > 0. Therefore, by
[18, Thm. 43], (5.10) holds for ] 3. By (5.9) and (5.10), ] 1, 2, 3,

(5.12) E(x) X
-p J0 K(xt, p)R? (t) dt.

This completes the proof.

6. Proof of Theorem 2.
Let

(6.1) h(t)=e-’f(t), u>0.

By using the power series expansion of e -‘, we may write

h(t) h,,_(t) + H,,(t), 0+,(6.2)

where

m-1

(6.3) hm-(t) Y (Ck + dk log t)t"k
k=0

and

(6.4) H,,(t) O(t""), -1 <Re tx0=<... -_<Re//,m-1 <Re

where the positive integer m is chosen so that

(6.5) max (Re _x, Re _a+ 1 6) < p < Re + 1.

Clearly, Re A,-1 Re
_

and Re Re A,. By Condition (ii)’, h(t) and tPhP)(t)
L(0, ). If a’ < Re + 1 -p, Condition (iv) on K(t) is satisfied, and by Theorem I we
obtain

1 ( CkK(xt)h (t) dt Res x-M[K, s]
k=0 k+l--s (k+l--s)

(6.6)
+ x-P 0 K(xt, p)H (t) dt.

Note that Ck and dk tend to a limit as u 0+. If k Ai for any ], ] 0, 1, , n 1, then
Ck and d tend to zero, and if k A for some ], then Ck and dk tend to a and b
respectively. Now we use the integral analogue of Abel’s limit theorem [8, Thm. 87]. As
u 0+, by Condition (iii)’,

K(xt)[(t) dr=-=0 Res x-SM[K, s]
1 + 1 s ( + 1 s)

(6.7)
+ x -p lim f K(xt, p)H (t) dr.

0+

To complete the proof, we must show that the last integral approaches E(x) as 0+.
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By (2.9), K(t, p) O(t-’), 0+. Therefore, by the Lebesgue dominated convergence
theorem,

(6.8) -o+lim Io K(xt’p)H)(t)dt=Io K(xt’p)R(f)(t)dt"

Also,

(6.9) lim K(xt, p)h (p)
m-1 (t) dt K(xt, p)f)_, (t) dt.

r,O+

Here we have used the fact that the Mellin transform of K(xt, p) converges in
0 < Re s < 6 so that we can integrate each term on the left and then take the limit as
, 0+. Therefore, we only need to prove that

(6.10) lim f K(xt, p)h (p) (t) dt= f K(xt, p)f(P’ (t) dt,
t,O+

where

(6.11)

By Condition (iii)’,

h (p)(t) Y (-u)p-k e-7(k)(t).
k=0

(6.12) lim f e-tK(xt, p)f(P)(t) dt= f K(xt, p)f(’)(t) dt.
,0+

Let e > O. By Condition (ii)’, choose N such that for k -O, 1,- , p- 1,

(6.13) I/>(t)[ < etp-a-, N.

By (2.9), K(xt, p) is bounded in [1, ). Therefore, for k 0, 1,. , p- 1,
N

tf(klim ()-g K(xt, p) e- (t) dt= O,
gO+

and by (6.13),

Therefore,

lim (-u)v-’ e (xt, p)f)(t) dt 0
r,O+

This proves (6.10) when a’ < Re/Xm + 1 -p. If Re/x,,, + 1 -p -< a’, the proof of (5.10) for
the function gl(t) where

(t), O<t<l,
gl(t)=

O, 1 <t<c,

requires some modification. Let m’ denote the positive integer greater than m, such that
Re/,,’-1 < Re/z,,, Re An, and define

h(p (t)-h) (t) 0<t<lm’--i --1(t)=
O, t>l.
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Since 0< c’-p < min (6, Re/z,, + 1 -p), the function so(t) satisfies (5.10). Furthermore,
ga(t)- (t) satisfies (5.10) because ga(t)- (t) O(t" log t), t- 0+. Therefore gl(t)
also satisfies (5.10). This justifies (6.6). Since,

lim I0 K(xt, p)(t) dt= 0
0

H(P) (t) in (6.8) can be replaced by 4(P)(t) and the conclusion follows as above.iq/

7. Asymptotic nature of the expansion. We prove the following:
If in Theorem 2, the integral

(7.1) l(x) fl K(xt, p)f(P)(t) dt

converges uniformly for x -> X for some X, then the remainder E(x)= o(x-P), x c.
Proof. We may assume X > 1. Since the Mellin transform of K(xt, p) converges in

0 < Re s < 6, by using (4.7) it follows that

(7.2) 52(x) I1 K(xt, P)f)l (t) dt

converges uniformly in x _-> X. Let e > 0. By the uniform convergence of (7.1) and (7.2),
we can find N > 1 such that

(7.3) IN K(xt, p)R (. (t)dt[ < e for x > X.

Also, by (2.9),

(7.4)

1/x 1/xIo K(xt, p)R(P)(t) dt= O(lx-’ t-’th"-P dtO
Now define

o(I I), x

K(t,p), t>=l,
(7.5) K*(t)

0, 0 < < 1,

and

0, t>-N,
(7.6) R(t)= R(f(t), O<t<=N.

R(t) L(O, o). K*(t) is bounded, and since its Mellin transform converges for Re s < 6,

io(7.7) K*(t) dr= o(x), x oe.

Therefore, by a known result [9, Thm. 2.1.2],
N

I1 K(xt, p)R(P)(t) dt= K*(xt)R(t) dt

(7.8)
/x

=o(1), x-*o.

By combining (7.3), (7.4), and (7.8), E(x)= o(x-P), x - o.
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8. Applications.
Example 1. Let

K(t) e it, 0 < <

The Mellin transform of e it converges in 0 < o- < 1 and

M[K, s] eiS=/2r(s).
By [17, p. 151],

M[K, s]:

It is known that the integral (2.7) is uniformly bounded. (For _-> 1, see [7, Lemma 5]; for
0 < < 1, shift the line of integration to cr -1/4). Also (2.8) is satisfied:

M[K(t, p), s]= e im/2 ei’=/2F(s),
and

K(t, p)= e ipr/2 e it.

Clearly, K(t, p) satisfies (2.9) with a’= 0, and (2.10). Therefore, if f(t) satisfies the
conditions of Theorem 2, we obtain

(8.1)

e tf(t) dt x-(k+l)
k=0

ei(Xk+l)’/2 F(Ak + 1)

[ak--bk 1ogx +bkq’(Ak + 1)+ibk’rr/2]+E(x),

where O is the logarithmic derivative of the gamma function and

(8.2) E(x) x -p e ip/2 Io eiXtR) (t) dt.

Conditions (ii)’ of Theorem 2 are weaker than those given in [12, p. 20, (iv)].
However, if we assume that the integrals in Condition (iii)’ converge uniformly for large
x, so that the expansion in (8.1) is asymptotic as x -* oe, our conditions are equivalent to
those given in [12]. From (8.2),

]E(x)l x-" Io IR(/) (t)l dt.

This provides an error bound when R() (t) is absolutely integrable in (0, oe). If R) (t) is
of bounded variation in [0, ee), the convergence of the integral in (8.2) implies that
R (p). (t)--> 0 as t--> oe. We can write R (p). (t) in (8.2) as the difference of two monotone
functions decreasing to zero, and apply the second mean value theorem to obtain

IE(x)l 2 7/x -p-1

where U is the total variation of R (t) in [0, oe). For this estimate we do not require
that R(,p) (t) be absolutely integrable in (0, ee). We must note, however, that in general
R(,p) (t) may be neither absolutely integrable nor of bounded variation in [0, oo). In such
a case, we can obtain an error bound by estimating the integral in (8.2) in the intervals
(0, c) and (c, oe) separately, for some appropriate c > 0. To illustrate this, we consider a
function which satisfies the conditions of Theorem 2 but not of Theorem 1.
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Let [(t)= Yo(t) where Yo is the Bessel function of the second kind and of order
zero. The Fourier transform of Yo(t) is known. By [3, pp. 47, 103],

eiXty(t) dt
1

{- 1 + i27r log Ix x/x 2 1]},
x/x2- 1

x>l.

We use (8.1) to obtain the asymptotic expansion of the above transform with explicit
remainder term when n p 4. By [4, p. 8, (33)],

(8.3)

Let

Yo(t) (2/Tr)(y- log 2 +log t)

(27r)-1(y l-log 2+log t)t2

+ O(t4 log t), t-+ 0+.

k, 0-<k-<3,
Ak= 4-el, k=4.

el is positive but can be chosen arbitrarily small.
(iv) v(iv(8 4) R 4 (t) (t)-(Trt2) + 12(7rt4)0

To compute the successive derivatives of Y0 we use some well known relations for the
Bessel functions of the second kind [4, pp. 11-12, (54)-(57)] and obtain

(iv)(t)=(3t-2(8.5) R4 1) Y2(t)-(Trt2)-1 + 12(7rt4)-1.
Therefore, we have the following:

o
eiXty(t) dr= -x-1(i + 2i7r- log 2x)

(8.6)
-(1/2 1.--1-x -tcr +izr- log 2x)+E(x),

where

(8.7) -l(t-2F_-,(X) X
-4 eiXt{(3t-2 11Y2(t)- 7r 12t-4)} dt.

Note that R(4v) (t) is neither absolutely integrable nor of bounded variation in [0, oe). To
obtain an error bound, we write (8.7) as follows"

2
ixtl(iv) (t) dtx4E(x) e ’4

l(t-2+ egt{3t-2 Y2(t)-r- 12t-4)} dt

ixte Y2(t) dt

J + J2 + J3.

The integrals J and J2 converge absolutely. J3 does not converge absolutely, but it
converges uniformly in x ->_ c > 1, and an upper bound for it can be obtained by using the
asymptotic expansion of Y2(t), or by integrating by parts.

In the following example we give only E(x). The expansion (3.2) can be obtained
by using (6.7).
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Example 2. Let

(8.8) K(t) e-it2/4D_(eir/a t),

where D_ is the parabolic cylinder function and Re v->0. By [4, p. 122],

(8.9) K(t)

The Mellin transform of K(t) converges in 0< o-< Re v + 2, and by [3, p. 336],

(8.10) M[K, s]-- 7rl/22 -(s+v)/2 e-iSr/4I’(s)[[’((s -t- l; + 1)/2)]-1.

By [17, p. 151],

M[K, s] O(Ir] (’-l-Re
(8.11)

M[K(t, p), s] e-iprr/47rl/22-(s+’+P)/2 e-’*=/4F(s)[F((s + + p + 1)/2)]-
By the uniqueness of the inverse Mellin transform and (8.10),

K(t, p)= e -ip’/4 e-U2/aD__p(e ’/4 t).

D_(z) is an entire function of z. We can use (8.9)-(8.11) to verify that K(t) and K(t, p)
satisfy all the conditions. Therefore, Theorem 2 holds, and the remainder in (3.2) is

(8.12) E(x) (x e’/4)-p Io e-t/aD--P(e’/axt)R<"P) (t) dt.

We mention two particular cases. If , 0, K(t) exp (-it2/2), (see [10, p. 326]). In this
case, (8.12) provides an alternative form of the remainder for the integrals of the type
considered in Example 1. If u 1/2, by using a known result [10, p. 326],

K(t) (27r)-/2 ei/8t 1/2 e-it2/4K1/4(it2/4).
In this case, the remainder E(x) can again be expressed in terms of the modified Bessel
functions, but the form (8.12) in terms of the parabolic cylinder functions is more
convenient for the computation of the error bound. To estimate the error when is real,
we use the inequality

1/2ID_(e i=/4t) <- rr 2-/2(F[(1 + u)/2])-1, 0 < < oo, u > 0,

which follows from the integral representation given in [4, p. 119, (1)]. If R(f)(t) is
absolutely integrable in (0, oo), v => 0, p > 0, we obtain

[E(x)l<-x-prr1/z2-(+P)/Z(F[(1+ v+P)/2])-i 50 IR(P)(t)[ dt.

In particular, this estimate is valid when f(t) satisfies the conditions of Theorem 1 and
Re ,,-1-P + 1 <0.

Finally, we give an example to indicate why in certain cases some modification in
the form of the remainder is desirable and suggest what can be done to achieve this.

Example 3. Let

(8.13) K(t) J(t), 0 < <

where J is the Bessel function of the first kind. If Re -> 0, the Mellin transform of K(t)
converges in 0< (r <-. (The condition on , can be relaxed). By [3, p. 326, (1)],

(8.14) M[K, s] 2s-r((s + )/2)[r(( s + 2)/2)]-1,
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and by [17, p. 151],

(8.15)
M[K, s] O(Ir[r-1),

M[K(t,p),s]=
2s+-r(s)r((s +p + v)/2)
r(s + p)r((u s-p + 2)/2)"

The condition (2.9) is satisfied with a’=0 and the kernel K(t, p) is well defined.
However, this kernel is not as convenient for finding the error estimate as the Bessel
function kernel J+p which appears in the remainder given by Wong [19], because the
properties of K(t, p) have to be studied before we can use it effectively whereas the
properties of the Bessel functions are well known. In [15], the differential operator
-a d/dt is used to modify (5.8) so that the remainder can be expressed in the desired
form. This approach can be used in other cases, particularly when the transform kernel
is a well known special function and its Mellin transform involves gamma functions. In
general, a judicious choice of the differential operator would result in a more useful
representation for the remainder.
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THE QUENCHING OF SOLUTIONS OF SOME NONLINEAR PARABOLIC
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Abstract. We consider the first initial-boundary value problem for ut u,,,, + d (u), 0 =< x =< with d > 0
on [0, a), $ convex, monotone increasing and lim,_.a$(u)=, a<, and with u(x, 0)-=0. If (c)=
() dl, O(c)= 2/- 1/2 dy/d(_(c_ y2)) and lo=sup {W(c)lc (Range ) f3 [0, )}, we prove the

following: (a) if < lo, u exists for all > 0 and approaches (t ), the smallest stationary solution of the
differential equation; (b) if lo and lo is taken by W, then (a) holds; (c) if lo is not taken and Range is
bounded, then u approaches from below the smallest weak stationary solution of the differential equation and
this weak solution is not a strong stationary solution, ux(l/2, t)-, and Ut(I/2, t)O as ; (d) if lo
and Range =[0, ) or (e) l> lo, then the existence interval is finite and u(I/2, t)a as t T- for some

1. In [3],. Kawarada established the following interesting results for the initial-
boundary value problem:

(1.1) ut=u+l/(1-u) forOxl,Ot<T,

(1.2) u(0, t) u(l, t) 0 for 0 < T, and

(1.3) u (x, 0) 0 for 0 x l.

THEOREM 1. If >2, then u reaches 1 in a finite time along the line x 1/2.
Along with this result, Kawarada was interested in quenching, and proved the

following more dicult theorem:
THEOREM 2. If the solution of (1.1)-(1.3) reaches one in finite time, then u is

quenched in that time; that is,

lim sup [u(x, t)[ .
tT-

Equation (1.1) arises in the study of electric current transients in polarized ionic
conductors.

Acker and Walter [1], [2], [5] have considerably sharpened and extended Theorem
1. Among other things, they have shown that for the more general equation (2.1) in the
next section, there is a number 10 < such that (a) if < lo, the solution exists for all
0; and (b) if > 10, the solution is defined only on a finite interval [0, T), and

u (1/2, t) 1- as T from below.
The behavior at lo was not determined, however, and it is the purpose of this

paper to do so. The result appears in Theorem 3.
This research also duplicates some of the results of Acker and Walter mentioned

above. It was done independently before the authors learned of [1], [2], [5]. Addition-
ally, our methods are somewhat different from those of [1], [2], [5].

The techniques we employ allow us to examine, for example, the equation
ut u + (1- u)-/2 at l0 4/3. This shows that Kawarada’s Theorem 2 is not true
for the more general case, since although solutions of this equation exist for all time, we
have sup lu(x, t)[ 1 as ; furthermore, it is Ux(l/2, t) which blows up, and not
ut(I/2, t), as t.
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supported in part by the National Science Foundation under Grant MCS 78-02729.
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2. The equations are:

(2.1) u,=uxx+(u),

(2.2) u(0, t) 0, u(l, t) 0

(2.3) u(x, 0) 0 for 0 -< x _-< l,

for 0 -< < T,

where is continuous on the interval [0, a) and has a continuous positive derivative
over this interval, limu-,a- &(u) oe, and &(0) > 0. There is a close relationship between
solutions of (2.1)-(2.3) and stationary solutions of (2.1) and (2.2); i.e., solutions of

(3.1) O=fx(X)+(f(x)) and

(3.2) f(O)=f(1)=O.

A weak stationary solution of (2.1) and (2.2) is a once continuously differentiable
function g which satisfies (3.1) and (3.2) with the possible exceptions of x =//’2 and

(4.1) g(x) Jo G(x, Y)&(g(Y)) dy,

where G(x, y) is the Green’s function associated with the operator -d2/dx2 on [0, l]
with Dirichlet end conditions at 0 and 1. That is,

X

-](l- y) for 0<_-x <_-y_-<l,

O(x, y)--
Y(l-x) forO<=y<-_x<-l.

Note that a stationary solution is also a weak stationary solution.
Let us establish the following notation" alp(u) (v) dv for 0_-< u < a, and

R -= {P(u)10 -< u < a}, the range of P. Since is monotone, p-a exists on R. We also let
/o---sup {q(c)[c 6 R} where (c)---2/ (II)(o) (I)(’0))-1/2 drt, ((a)= c). Since is
positive and continuous, q is bounded and 0 < lo <. To see that lo is finite, we make
use of the assumptions that ’(u) > 0 on [0, a), that 0< (0) <- (u) < on [0, a), and
that (u)c as ua-. Since is one to one, q(c)=(a). Thus /o=sup{(a);
O<=a<a}.

From the mean value theorem, we have two numbers r/a, r/2 6 (r/, a) such that

()-(n) ’(n)( n) + n)(-n)

(n)( n) + 1/2’(n)( n)
>_- (0)( -n)

since is increasing, and

(c)-(n)=’()(c-n)- n2)t-n

Therefore,

(4.2.1)

-<- (-)( -,7).

,()__<4
4(0)(- n)0

<= 24-(a/ (0))/2,
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while ,
(4.2.2) (a)>-4-

x/cb(a)(a -q)
Thus, not only is lo finite but we also have the bounds

(4.3) sup (a/qb(a)) a/2 <- lo/2x/- <- (a/dp(O)) 1/2.
a[O,a)

We are now ready to state the main result:
THEOREM 3. The number lo is the same as that mentioned in the introduction.

Furthermore, if lo in (2.1)-(2.3), then exactly one of the following hold:
(a) If there exists c such that lo (c ), then the solution of (2.1)-(2.3) exists ]’or all

>= O. And as , u(x, t) approaches monotonely from below the smallest
stationary solution, which must exist and be bounded away from a.

(b) ff does not attain its supremum, but has bounded rangeR [0, Co), (i.e., the
integral of cb over [0, a) is Co, u (x, t) exists for all and approaches monotonely
from below the smalleststationary solution g, which mustbe weak but not strong.)

(c) If 10, R [0, ), and does not attain its supremum, then the solution u (x, t)
of (2) is defined only in a finite interval [0, T), u(l/2, t) a as Tfrom below.

We first state some preliminary results.
LEMMA 1. Let u(x, t) be the solution of (2.1)-(2.3) defined on [0, l] [0, T). Then

the following hold:
(a) u has continuous derivatives u,t, utxx, and Uxx on (0, l) [0, T), and if T < is

maximal, we have lim_, 7-- u (x, t) a for some x, 0 < x < I.
(b) u is unique and symmetric about the line x l/2.
(c) u, is strictly positive when x # O, x I.
(d) u is strictly positive ]:or 0 < x < I/2, and strictly negative for l/2 < x < l. Itfollows

that for each t, u( t) is strictly maximized at x l/2.
For the proof of (b), (c), and (d), see [1]. (a) is a more or less a standard result that

follows upon formulating u as a double integral ot b against Green’s function for the
heat equation.

The proof of Theorem 3 requires two more preliminary lemmas.
LEMMA 2. The solution u(x, t) of (2.1)-(2.3) exists for all t >= 0 if and only if there

exists a weak stationary solution of (2.1) and (2.2). In this case, u(., t) approaches
uniformly from below the smallest weak stationary solution as c.

Proof. Suppose f is a weak stationary solution of (3.1) and (3.2) and w =f-u.
Then w satisfies at x 1/2 (for some u0 between f and u):

(5.1) w, Wxx + 4,(/)-4(u)= Wx + 4’(Uo)W,

(5.2) w(x, 0) =f(x), w(0, t) 0, w(1, t) 0, and

(5.3) w(//2, t)-> 0.

It follows from the maximum principle (Theorem 4, p. 173 of [5]) (applied for
x (0,//2), and x (1/2, l)) that w -> 0.

We will first show that u must exist for all -> 0: Since w u is nonpositive and
4(f)-4(u) is nonnegative, it follows from (5.1) that wx(x, t)<=O except possibly at
x 1/2. However, w exists and is continuous everywhere; furthermore, it follows from
Lemma 1 (d) that Wx is zero at x 1/2. It is an amusing exercise in elementary calculus to

Actually, for our choice of initial values, x =//2 if T<.
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show that this implies that w is maximized at x I/2. If there is a T such that u is defined
only for O<-t<T, then Lemma 1 implies that limt_.7--u(l/2, t)=a and the above
argument implies that limt_7-- u(x, t)=/(x) uniformly in x. We will show this cannot
happen unless T =. Let x0< 1/2. Then on [0, x0][0, T], w is nonnegative and
satisfies (5.1) with u(x, T)=f(x). The maximum principle would then imply that
w(x, T) > 0 for 0 < x < Xo. Since w(x, T) O, T c.

The second step in the proof of this lemma is to show that if u exists for all -> 0,
then u approaches uniformly from below in a monotone fashion a weak stationary
solution g.

To see this, let F(x, t)=- u(y, t)G(x, y) dy. Then

(6.1) Ft(x, t.)= J0 ut(y, t)G(x, Y) dy

| Ux,(y, t)G(x, y) dy + [ G(x, y)b(u(y, t)) dy,
.o Jo

or

(6.2) Ft(x, t) u(x, t) + Io G(x, y)b(u(y, t)) dy,

which is valid on [0, l] for any for which u(x, t)< a. Since &’> 0 and ut > 0, the
integrand in (6.2) is monotone in t; thus the monotone convergence theorem implies
that the right side of (6.2) approaches the limit

J(x) =- -g(x)+ Io G(x, y)cb(g(y)) dy,

where we have set g(x) limt_, u(x, t) <= a. We claim that J(x) 0 for all x. In view of
(6.1) and the fact that ut > 0, we have that J => 0. But if for some x, we have J(x) > 0, then
it follows easily that F(x, t) would increase without bound as c, and examination of
the definition of F reveals that u would reach a in finite time, contrary to assumption.
Therefore, J(x)= 0. Rewriting this, we have that g is a solution of (3.1) and (3.2). It
follows that g is continuous, and from (d) of Lemma 1 and the fact that the integral in
(4.1) is finite it follows that it is possible that g(x) a only if x 1/2. Now it is a routine
matter to verify that g is continuously differentiable, and at any point x where g(x) a,
that g is twice differentiable and satisfies (3.1) and (3.2).

LEMMA 3. A weak solution exists ifand only ifthere is a realnumberc such that either
c R and 4,(c) l, or else c cb(u) du < c and lima-,c 4,(d). In the latter cases, the
weak solution is not strong.

Proof. Let f be a weak solution. It is easy to show that f must be symmetric about
x 1/2, and that fx(l/2)= 0. On the interval where f satisfies (3.1) and (3.2), f must lie
on a level surface of the Hamiltonian "energy" function associated with (3.1); that is,

(7) H(LL 12f + a,(/’) c,

where c is a constant which, since/(0)=(0)=0 and fx(l/2)=O, must satisfy c
2fx(O)=(f(I/2)). From (4.1) it follows that fx(X) is positive for x <l/2, so (7) can be

rewritten for 0 <= x <= l! 2 as

(8)
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which can be integrated from 0 to l/2 to get
I/2

(9) f (c -dP(f(x)))-l/2fx(X) dx l/ ff-.
aO

Letting y f(x), we obtain
(1/2)

(10) l= /- [dP(f(l/2))--dP(y)]-’/ dy,

and therefore q(c).
On the other hand, suppose there is a number c e R such that (10) holds. Let f be

the unique solution of (3.1) with f(0) 0 and f(0) (2c)/. Then f is defined for all x
such that f(x) < a, and f satisfies (7) and therefore (8), as long as fx >= O. It is clear from
(8) that there must be a point Xo such that f(xo)= 0 and d(f(Xo))= c. Otherwise fx is
bounded away from 0, which would imply that f increases to at least (I)-(c), which
would in turn imply that f, would decrease to 0, contrary to assumption. Integrating (8)
from 0 to Xo yields o (c--dP(f(x))-l/2fx(X) dx xfXo. Thus,

f(l/2)

4 Io [4’(f(/2))- ’(Y)]-I/ yX0"-
This, with (10), implies that Xo I/2. Since f satisfies (3.1) on 0 <= x < I/2, and f(I/2)
-1(c) < a, f must extend to a strong stationary solution.

Now consider the case where c o b(u) du < oe, and let fbe the unique solution of
(8) with f(0)= 0. Then an argument similar to the previous one shows that f,.(l/2)= O,
which implies that f(I/2)= a. Defining f(I/2 + x) =- f(l/2- x), we see that f satisfies (7)
and is twice differentiable except at I/2, and therefore is a weak stationary solution of
(2.1) and (2.2), but not a strong stationary solution.

Example 1 (Kawarada). We examine (1.1)-(1.3), the case where b(u) (1 u)-1.
Then (U)b= I2 (l--r)-1 dr= -In (1- u), -l(y) 1- e-r, andR =[0, oo). Thus,(c)
2x/ e- [oe dy where b x/. But this is just a multiple of Dawson’s integral D(b) [6],
whose unique local maximum Do is known to occur at a finite value of b. Consequently,
if l< lo--2/Do 1.5303, there are two equilibrium solutions. Thus, the solution
exists for all time. If lo, then there is one equilibrium solution and still the solution
exists for all >- 0. Finally, if > lo, there are no equilibrium solutions and u reaches I in
finite time. This with Theorem 2 implies that quenching occurs in finite time.

Our next example shows that quenching need not occur (in Kawarada’s sense) even
though u -> a.

Example 2. Examine the case that 4(u) (1 u)-1/a. One can easily compute that
(I)-l(y) 1-(1- y/2)2, R =[0, 1), and (r/)= 2(1- (1- r/)1/2). Thus,

(c) 2"]- (c 1/2- c3/Z/3),
which is monotone increasing in (0, 1). Thus, when lo 4x//3 we are in case (b) of
Theorem 3. In this case, u 1, but in infinite time. Furthermore, ut 0 so quenching
does not occur. When < lo, there is one equilibrium solution and there is no quenching;
when > 10, there are no equilibria, and quenching occurs in finite time.

3. We would now like to indicate briefly how the foregoing can help to reveal a
more global picture of the semigroup generated by (2.1) and (2.2). There is no reason to
assume that b is defined only for positive initial data. Indeed, in Kawarada’s original
equation b is defined on (-oe, 1), and it seems reasonable to ask about nonzero,
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possibly even negative, initial data. Thus, in this section we assume 0 is defined on
(-c, a), is positive, with b’_-> 0 and limu-,a- b(u)= co.

TIqEOREM 4. (a) If (2.1) and (2.2) has no weak stationary solutions, then every
solution with continuous initial data reaches a in finite time. (b) Iff is a strong equilibrium
solution, then any solution with continuous initial data which is everywhere smaller than f
exists for all >- 0 and remains smaller than f.

Proof. Part (b) follows from the maximum principle. To prove (a), let u be a
solution of (2.1) and (2.2) with continuous initial data Uo(X) u(x, 0). Then there exists
a nonpositive function Vo(X) symmetric about x I/2 with Vo(0)= vo(l) 0, Vxx > 0 for
0 < x < l, and Uo(X) >- Vo(X) for all x. As before, it follows from the maximum principle’s
application to the equation wt wxx +c’(v)w satisfied by w vt, that if v(x, t) is the
solution of (2.1) and (2.2) with v(x, O) Vo(X), then vt _-> 0 and v(., t) is symmetric as
long as the solution exists. Examination of the proof of Lemma 2 now reveals that if v
exists for all => 0, it must increase to a weak stationary solution. Since there are none, it
follows that v reaches a in finite time.
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THE CONNECTION PROBLEM FOR
GENERAL LINEAR ORDINARY DIFFERENTIAL EQUATIONS
AT TWO REGULAR SINGULAR POINTS WITH APPLICATIONS

IN THE THEORY OF SPECIAL FUNCTIONS*

REINHARD SCH,,FKEt AND DIETER SCHMIDTt

Abstract. A two point connection problem for local solutions at two regular singularities of a general
linear ordinary differential equation is studied. Explicit formulas for the connection coefficients are obtained
which have a wide field of applications especially in the theory of special functions of mathematical physics.
Applications to the ellipsoidal wave equation and to .Heun’s equation are considered.

Introduction. In the theory of complex ordinary differential equations a study of
the global behavior of solutions is one of the most interesting and difficult problems.
Specifically, such a global problem for linear equations consists in finding explicit
connection relations between the local solutions at two different (regular or singular)
points Zo and zl. That is what one usually calls a two point connection problem. In the
present paper we study the two point connection problem for two singularities Zo and z
of the first kind (simple singularities) under the general assumption that there are no
other singularities than Zo and z within the closed disk Iz- Zol <= Izl-z01. In 1 we
consider the case of a general first order system of differential equations. Without loss of
generality it may be assumed that the two singular points Zo and z are at 0 and 1 and no
further singularity is within the open disk ," {z C’lz[< r}, where 1 < r =< c. Then
the equation has the form

(0.1) y’(z) Ao+AI+G(z) y(z),
z-

where Ao and A are complex n by n matrices and G is a corresponding matrix-valued
function holomorphic in .

Since 0 and 1 are simple singularities of Equation (0.1), the local behavior of the
solutions at these points is completely known (see, for example, [1, Chap. 4], [3, pp.
192-198,234-239], [12]): For each singularity there exists a characteristic fundamen-
tal set of solutions. The central problem arising here is to find a method to evaluate the
connection relation between these fundamental sets explicitly. In the present note we
solve this problem essentially for the special case where no logarithmic terms appear in
the fundamental sets at 0 and 1. The general case is treated by R. Sch[ifke in an another
article appearing in this issue (see pp. 863-875).

More precisely, we consider here a Floquet solution y of (0.1) at 0,

y(z)= z E z
g
d,

k=O

where a is an eigenvalue of Ao and the dk Cn. Furthermore, we consider a fundamen-
tal set y1," , Yn of Floquet solutions of (0.1) at 1"

yi(z)=(1-z)’ X (l-z)kd, (]=l,...,n),
k=0

Received by the editors February 12, 1979, and in final revised form December 12, 1979.- Fachbereich Mathematik, Universitit Essen, Gesamthochschule, Postfach 6843, 4300 Essen 1, West
Germany.
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where aj are eigenvalues of A1 and the d Cn. (A sufficient condition to insure the
existence of such a fundamental set is that A is diagonalizable and the eigenvalues of
A do not differ by nonzero integers.) The y can be written as a linear combination of
the yj:

y(z)= .
j=l

with 3’ (2 called "connection coefficients". The main result of 1 is an explicit limit
formula for these connection coefficients in terms of the dk as k --> oo and some of the dk.
We obtain this tormula--which is not only o theoretical but also o practical interest
since it allows the derivation of methods for numerical computations--by a surprisingly
simple idea, using only the Cauchy integral formula and making some estimates of the
integrals. (As the referee remarked, a similar method is used in analytic number theory,
where it is known as the "circle method.")

In 2 we restrict our considerations to the case of a general second order
differential equation which we assume to be in the following normal form:

(1-,o 1-,1 ) b(z)
(0.2) y"(z) +

z
+

z ’l+a(z) y’(z) +
z(z- 1)y(z) O,

where/Zo and/Xl are complex numbers and a and b are holomorphic functions in . 0
and 1 are simple singularities with exponents {0, txo} and {0, Ix1}.

In the special situation of equation (0.2) the method of 1 and the resulting
formulas become very simple. It will be shown that in this case the full connection
problem can be solved by essentially considering only one connection coefficient and
without making any restrictive assumptions on the parameters /Zo and /t or the
functions a and b.

In 3 some important applications to the theory of special functions are discussed.
We consider there the special second order differential equation

(l-tzo 1-/Zl l-tz: ) 0-[-1Z-[-2Z2
(0.3) y"(z) + + + + c y’(z) (z) 0,i)(z_a)yz z-1 z-a z(z-

where a C\{0, 1} and/z0,/x l,/z2, a,/30,/1,/2 are arbitrary complex numbers. 0, 1,
and a are then simple singularities with exponents {0,/Xo}, {0,/Zl} and {0,/x2} respec-
tively, while is (at most) an irregular singularity of rank 1.

It will be shown, that, with a few restrictions on a, all connection coefficients
between the Floquet solutions at the three simple singularities can be obtained by the
results of 2, and thus the full monodromy group of the equation can be determined.
Furthermore, an important property of equation (0.3) is that the connection
coefficients may be computed by four-term recurrence relations.

To underline the importance of equation (0.3), it may be sufficient to remark that it
contains the ellipsoidal wave equation as well as Heun’s equation and thus the Mathieu,
spheroidal, Lam6, Whittacker-Hill and Ince equations as special cases.

Our main results are summarized in Theorems 1.7, 2.15 and 3.13. They seem to be
new even when restricted to the special case of the Heun equation (See, e.g., [4]). Some
of the results, in the case of the ellipsoidal wave equation, can be found in 11 ], but the
methods used there are quite different and much more complicated.

For the Mathieu, spheroidal, Whittacker-Hill and Ince equations the connection
problem discussed herein is not as interesting as the problem of the "characteristic
exponents," especially for methods for their numerical calculation. These problems
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have been discussed in a series of papers ([9], [5], and [6]). Since the knowledge of some
of the connection coefficients implies the knowledge of the characteristic exponents,
our results can be applied to this problem, too. By doing so, we obtain a new, simpler
theoretical foundation for the results in [9], [5], and [6].

1. On the general first order system (0.1). In this section we make the following
general assumptions on the system of differential equations (0.1):

Let y be a Floquet solution of (0.1) at 0 given by

(1.1) y(z) z"h(z), h(z) E z " d,
k=O

where a e C, the d e Cn and especially do 0. a is then an eigenvalue of Ao with
corresponding eigenvector do.

Further, suppose that there exists a fundamental set y 1," , y, of Floquet solu-
tions of (0.1) at 1 given by

(1.2) yi(z) (1 z)’hi(z), hi(z) E (1 z) d/,
k=O

Where the ae C, the d e C’. and especially the d # 0. In this case the cz are
eigenvalues of A, with corresponding eigenvectors d.

If the powers z and (1 z) are determined for z e ]0, 1[ by arg z arg (1 z)
0, a linear connection relation

(.3) y(z) v;y(z), (z e ]0, 1[),
i=1

with unique coefficients ’i e C (] 1,..., n) is valid.
The aim of the following considerations is, as stated in the introduction, to obtain

an explicit formula for the connection coefficients ’i. This will be done by deriving first
an asymptotic formula for the coefficients dk as k --> in terms of the "/i and some of the
d. The precise statement of this fundamental result is given in the following theorem,
which we will prove at the end of this section.

THEOREM 1.4. Suppose the general assumptions and notations in (1.1), (1.2), (1.3)
to be given. Then

( =o F k + a l- aidk F(k + a + 1)j=l F(-/- a)
d + (k--1) as k --> oe,

where the m are arbitrary nonnegative integers and fl min {Re a +mr + 1"]
1,... ,n}.

Since, by Stirling’s series, for any ti, e e C

(1.5)
F(z + e)" z 1 +

m=l
’,,z as Re z --> +o,

with coefficients -, e C depending on t and e (see e.g., [7, Ch, 4, 5]), one can derive
from Theorem 1.4 the asymptotic behavior of the dk as k --> in terms of powers of k -1.
This result immediately yields

COROLLARY 1.6. Suppose the general assumptions and notations in (1.1), (1.2),
(1,3) to be given. Further, let

a_:= min{Re ci: ]= 1,..., n}
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and

Then

I’= {j" Re aj c_}.

lim k"-+ldk do.

If, in particular, I {jo} and ao No, then Corollary 1.6 is an explicit limit formula
for /o. More generally, if ce No for I and {d "] I} is linearly independent, then all

3 (] I) can be evaluated explicitly by Corollary 1.6.
With some more effort and computations it is possible to evaluate all 3’j (/’

1,..., n). An appropriate formula (one of our main results) is contained in the
following theorem.

THEOREM 1.7. Suppose the general assumptions and notations in (1.1), (1.2), (1.3)
to be given. Moreover, suppose the fundamental set yl, , yn to be normalized such that
d, , dg are linearly independent. Further, let the m No (/" 1, , n) be chosen such
that /3:=min{Rea+m+l:]=l,’..,n}>a+:=max{Rec:]=l,"’,n}. If c
denotes the vector with components ,j/[F(-c)] ( 1,. ., n), and Dk the n by n matrix
with columns

then

/=1 cr=-I k +a-ai-cr
(/’= 1,...,n),

+c + 1) D-1c -.olim diag -/ g -)] d,

the convergence being (k/-) as k .
Before proving Theorem 1.7, let us illustrate how to construct a "normalized"

fundamental set ,..., , with linearly independent d,.’., dg from a given
fundamental set y,. , y,. Suppose, e.g.,

=o,

with I {:a a} and 0. Replacing y by

1 := Y,
jI

we obtain a fundamental set , ym, , y, with

(z) (1 z)l(z), (z) Z (1
=0

where a + and d 0. Proceeding in this way, we ultimately get the desired
result.

In order to derive Theorem 1.7, let us write eorem 1.4 in the form

d D diag
k + 1) ]

c + ff(k--Now, lim+mD exists and equals the n by n matrix with columns d (] 1, , n).
Since the d,..., d are linearly independent, D is invertible for large k and

D (1) as k . Using (1.5) we immediately get Theorem 1.7.
The convergence in Theorem 1.7 will be better, the larger the chosen. In this

case, the evaluation of the D becomes in general much more extensive, however.
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Theorem 1.7 actually represents an explicit limit formula for those Yi with
A Yi with aiNo can be evaluated by Theorem 1.7 or by Corollary 1.6, using a
preliminary transformation

y(z)=(1-z)"(z)

with some suitable v e C, changing a into a vt
A special case of Theorem 1.7 should be mentioned explicitly since in this case the

limit formula becomes very simple. If

max {Re (a al) j 1} < 1,

we may choose ml m, 0 and then obtain (using (1.5) once more,)

(1.8) c lim diag (k;/l)(d, ,dg)-1 dk.
k

Let us now begin with the proof of the asymptotic formula, Theorem 1.4. Assume
for this purpose that h is analytically continued in o := \[1, r[, and the h (j=
1,... ,n) in l:=\]-r, 0]. Further let the powers z and (l-z)j be uniquely
determined in and o by arg z, arg(1-z)]-Tr, 7r[, respectively. Then the
connection formula (1.3) is even valid for z of-).

Now we choose 1 < p < r and let 0 and Cl be the two curves of Fig. 1.

0 p

FIG. 1.

By the Cauchy formula we have for k e No,

d -/ z h(z) dz--g’_ z h(z) dz.

Since Cl lies within of-), we can substitute (1.3) in the second integral. Then, for
k e No, we get

(1.9) dk d +

where

(1.10)

and

d z- h(z) dz,

-1 I -k-o-I )eJhi(z dz, (] 1, n).(1.11) a =/ z (1-z
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In the following we shall calculate the asymptotic expansions of the
Obviously,

(1.12) d if(p-k) as k-+oo.

The asymptotic expansion of the dk (j 1, , n) is not so easy to derive. Nevertheless
(1.11) suggests looking at Watson’s lemma in the theory of the Laplace transform. Our
further calculations will follow this approach, for which we refer for example to [7, Ch.
4, 3], or to [8, Ch. 2].

For f 1,. , n and m 6No let

hi(z) Z (l-z)/d+(1-Z)m+llj(Z),
/=0

with/j holomorphic in St 1. Substituting this in (1.11) leads to

d Y i z (1- z dz d/
/=0

1 I, -k- )m+l
27ri

z -1(1 Z +"Jhj(z) dz.

Now we choose rn + 1 + Re c9 _-> 0. Since/i is bounded in compact subsets of ,(ff 1, there
exists a constant MR/ such that the remainder in (1.13) can be estimated for
sufficiently large k .N by

1 fc -k- ).,+--7 z -l(1-z l+%hi(z) dz

--k-a 1)m+l+z -’(z- "hi(z) dz

<=M fl z-k-Re-l(z -1)m+l+Reajdz

MF(k + Re (a aj)- m 1)F(m + Re a, + 2)
F(k + Re a + 1)

Here the first equality is obtained by deformation of the path of integration (see Fig. 1),
and the last by the substitution z t-1 which yields the first Euler integral. After use of
(1.5), the remainder in (1.13) becomes, as k

1 I, -k-c-i )m(1.14)
2rri

z (1-z +l-’’h’.(z) dz (k-m-Rea’-2).

Below it will be shown that for any a,/3 C,

1 if, -k--, F(k+a-/3) +(1.15)
2ri

z (1-z) dz
F(k + a + 1)F(-/3)

as k-oo. Substituting this result and (1.14) in (1.13), we finally obtain for d{ (]=
1,. ., n) the asymptotic representation

(1.16) d E F(k +a-l-a) 1 d+(k_.,_Re%_2)
/=0 F(k+a +1) F(-l-ai)
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as k--)o; this is now valid for all m No, since we can remove the assumption
m + 1 + Re aj -> 0 afterwards by use of (1.5).

Together (1.9), (1.12) and (1.16) yield the asymptotic formula for dk in Theorem
1.4.

It only remains to prove (1.15). For that purpose let be the (infinite) curve
consisting of the following three parts" First the straight line from to p with arg z 0
and arg (1 -z) -Tr, then the curve 1 of Fig, 1, and finally the straight line from p to c
with arg z-0 and arg (l-z)= 7r. Then for Re (k+a-fl)>0,

1 (I- f) --- ) sinrfll; --- )
2rri

z ’(1 z dz z (z 1 dz.

Obviously,

.--1- ) -)z (z-1 dz=(p askoo.

On the other hand, for Re (k + a -/3) > 0 and the temporary added condition Re/3 > 0,

1 f, -k-’- sinTrflfl -k-l-

2rri
z (z-l)dz=

r
z (z-l) dz

sin 7r(-/3) fl tk+-t3-(1- t) t3 dto
F(k + a fl)

r(k-- )r(-)
The first equality is obtained by collapsing the curve onto the two sides of the interval
[1, [, the second by means of the substitution -, the last by use of the beta-
function integral and the reflection formula for the gamma-function. The condition
Re fl > 0 can be removed afterwards by analytic continuation. This completes the proof
of (1.1). Thus, Theorem 1.4 is established.

We conclude this section with some remarks concerning generalizations of
Theorem 1.4. These can be obtained without difficulty by modifying the proof of
Theorem 1.4 in nonessential ways.

Remarks. Let y be an analytic function with values in any (complex) Banach space
E, having a representation

(1.17) y(z) Z Z
k dk,

with a C and dk E, the Laurent series converging for r’ < Izl < 1.
Assume further that y is analytic at all points on the circle Izl 1 except for a finite

number s of singularities a (o- 1,. , s), where a representation of the form

(1.18) y(z)= Y /y(z),
j=l

with n( N, y. C and

(1 19) yj(z)=(a z)’j , (a z)kd
k=0

is valid. In (1.19) let ai C and d’ E, especially d’ 0. In (1.18) let the powers z
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and (a,- z)i be determined such that arg z arg (a z) e [-rr, rr[ for z
ta(t ]0, 1D.

Then we obtain the following generalization of (1.4),

(1.20) dk y. d7 + {?(k --1)
o’=1 \/= F(k +a +1) F(-/- aj)

as k -+ +oo, where the mj are arbitrary nonnegative integers,/3 := min {Re c,,. +m +
1:o’, j} and arg a e [-rr, rr[.

This remark shows that the property of y to be a solution of a differential equation
(especially an equation of the form (0.1) with two simple singularities at 0 and 1) is not at
all essential for our considerations. Nevertheless, the case where y is a solution of a
system of differential equations

y’=F(z)y,

where F is holomorphic in r’ < Izl < r (r’ < 1 < r) except for a finite number of singulari-
ties a, is one of the main applications of (1.20). We do not discuss further details here.
It should only be mentioned that it is generally not possible to derive from (1.20) an
appropriate limit formula for all yj corresponding to Theorem 1.7.

2. On the second order equation (0.2). In this section we shall study the (general)
connection problem for the second order equation (0.2). For this purpose it will be
useful to call special attention to the dependence of equation (0.2) on the parameters
/- :-" (/-0, jt 1).

First of all, it turns out to be convenient for the/x-dependence to be symmetric with
respect to certain index transformations. Therefore, let the coefficient b(z) b(z, Ix) be
of the form

(2.1) b(z, ) 1/2(1 tXo)(1 -/.t) + 1/2a (z)((1 -/Zo)(Z 1)+ (1 l)z)+ bo(z),

where bo is holomorphic in .
Further on, it turns out to be useful, especially in order to avoid additional

complications for exceptional values of/x, to consider holomorphic/x-dependence of
the solutions.

We begin by stating a proposition on the holomorphic solutions of (0.2) at the
singular points Zo := 0 and Z := 1.

PROPOSITION 2.2. For ] O, 1 there exists a unique function rli holomorphic with
respect to (z,/x) i C2 (where 0 := \[1, r[ and 971 := \]- r, 0]), such that, for each
Ix, rli( Ix) is a solution of (0.2) satisfying l,(z,, /x)= 1/IF(l-/x,)]. r/o can be expanded
in a power series

r/o(Z, ) g=o F(1 tXo + k)

and rll correspondingly as

k

where the (unique) coefficients rk are holomorphic with respect to tx. In particular,
() 1.

The proof is, as usual, by the method of power series. A more detailed discussion of
this and the following preliminary results can also be found in [13, 1.2].
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To obtain further solutions of (0.2), we consider the substitution

(2.3) y(z) z(1 z)mf(z), cri 6 {0,/zi} (] 0, 1).

By the special choice of the/z-dependence in (2.1), this substitution transforms (0.2)
into an equation of the same type with/2 =/xi-2cri e {/xi,-/xi}, (] 0, 1), and a,
bo bo. From this it is easily seen that z’rto(Z, -lZo,/21) and (1 z)"rla(Z, tzo, -) are
also solutions of (0.2) in ofq Sta. Thus, defining

(2.4) (Yox, Yo2)(z,/./.) := (no(Z,/Zo,/z 1), zZr/o(Z,-/-t,o,/-61))

and

(2.5) (y11, y12)(z,/z) := (’01(z,/d,o,/1), (1--Z)/XT/l(Z,/.0,--/-tl)),

for z e Rofq $t and/z e C2, we get a set of two Floquet solutions of (0.2) at Zo 0 and at

Z1 1, respectively.
The aim of the following discussion is to obtain explicit connection relations

between the sets of Floquet solutions y, Y2 for j--0, 1. To avoid excluding the
exceptional values of/z where y and y2 become linearly dependent, it turns out to be
necessary to write the connection relations in a homogeneous form.

For this purpose, we introduce the Wronskian

(2.6) W[yl, y2](z) := yl(Z)y2(z)-y2(z)yl (z)

of two arbitrary solutions yl, y2 of (0, 2) in $t0x. Solving the linear first order
differential equation for the Wronskian, we find that there exists a unique constant
[YI, Y2] C, such that

((2.7) w[y, y](z)= [y, ya]z"- (1 z)"- exp \- a(’)

for z eo, the powers being determined by arg z, arg (1 z) e ]-m r[. Obviously,
[y, y] 0 if and only if y, y constitute a fundamental set. Since [., is bilinear and
alternating, we have for any three solutions y, y, y of (0.2) in o1, the identity

(2.8) [Yl, Y2]Y(Z)=[Y, y2]Yl(Z)+[yl, y]y2(z).

(2.8) is the homogeneous form of the connection relation which has turned out to
be appropriate for the study of the connection problem between the sets of Floquet
solutions y, Yi2, ( 0, 1). The main advantages of using this formula are that no
restrictions need be made on the parameters/x involving the linear independence of yil,
yi2, and that the connection coefficients [yi, y], (L {0, 1}; , r {1, 2}) are directly
defined by means of the Wronskian.

The coefficients [yil, y2], ( 0, 1), can be evaluated explicitly. Substitution of the
power series of rti in (2.6), comparison with (2.7) and inspection of the leading terms
immediately yields

(2.9) [Yjl, yj2]
sin (zr/xi) i, (j 0, 1),

with o exp (- a(z) dz)and :i-= 1. This especially shows that YI and Yi2 constitute a
fundamental set of solutions if and only if/ze 7/.

Next, we show that the remaining coefficients [yi, yt] (j l) can be represented
by means of only one function q defined by

(2.10) q(/z) ;’- [nO(’, /-/’), ’01( /’)], (/-’ G C2)
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It can be seen from Proposition 2.2 and Equations (2.6) and (2.7) that q is an entire
function of

By definition, [Y0a, Yaa] q(ix). In order to obtain the representations of the other
coefficients in terms of q, we need the following identities,

(2.11) n0(Z, IX)--- (1- Z)Ix"I)o(Z, IXO,

and

(2.12) TI(Z, IX)-- ZlzTIl(Z, --IXO, IXl),

which are an immediate consequence of (2.3) and the uniqueness of the functions rtj in
Proposition 2.2. Using then (2.4), (2.5) and (2.11), (2.12) in (2.6), (2.7), with
replaced by -IXj if necessary, we finally obtain

(2.13) lYon, Yl] q((-l)-lixo, (-l)-aix,), (t(, (r {I, 2}).

Combining (2.8), (2.9) and (2.13) leads to

PROPOSITION 2.14. For K 1, 2

sin (Trix a)
lYO,,: q(+/-ixo,-IXl)Yll-q(+/-ixo, IXl)Yl2,

and

sin (trio)
0Yl -q(-ixo, +IXl)Y01 q-q(ixo, +IXl)Y02,

with +forK=land for 2.
Proposition 2.14 shows that the connection problem between the sets of Floquet

solutions Yil, Yi2, (j 0, 1) will actually be solved if the function q can be evaluated.
Using the methods of 1, we obtain the following formulas by which q may be
calculated explicitly.

THEOREM 2.15. Let the notations in Proposition 2.2 be given. Then for tx C2,

F(k+l) -(ix)=q(ix) 1+ Z T](IxO,--Ixl) H (o’+ixl-k)-a
F(k + 1 Ixo)F(k IxI) l=1 r=a

+C(k-.-’)
as k -)oc, where m is an arbitrary nonnegative integer. In particular,

liE
F (k + 1) .(ix) q(ix).

F(k + 1 to)F(k tzi)

We prove this result by proceeding exactly as in 1. Using here the connection
relation between r/o yOl and the yla, ya2 given in Proposition 2.14 and noting that
yll "01 is holomorphic in Zl 1, we obtain for k e o and Ix C2

(2.16)
F(1-o+k)

where

~o 1 It -k-1(t) / z no(Z,tldz
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and

1 I z-- z)’"7(tz)
2i sin (zrzl)

(1- TI(Z, .L0,--/J’l) dz.

In the last formula, of course, the limits for/zl Z must be taken. These exist, since
ya(Z,/z) (1- z)"(z, Zo,-gl) is holomorphic in Zl 1 for &l 7/and therefore the
contour integral, being an entire function with respect to z 1, becomes zero by Cauchy’s
integral theorem.

Corresponding to (1.12), we have obviously
~0
’g (/z)= U(p-) as k - o.

Corresponding to (1.16), we obtain by using (1.15) and the reflection formula for the
gamma-function,

"7(/z)= (-1)F(k-l-tz)r(IZo,-tz)+(k-m-R-a)
=o F(k + 1)

as k oo, where m is an arbitrary nonnegative integer. Multiplying (2.16) with
F(k + 1)/F(k- xl) and using once more (1.5) finally leads to Theorem 2.15.

Remarks.
(1) If the coefficients a and bo of equation (0.2) depend analytically on further

parameters, say A C, then the functions rt, z,, y, and q will also depend analytically
on the .

(2) In the case/x 7/the solutions y and Ya become linearly dependent. Then it is
always possible to obtain a fundamental system at z by differentiating a suitable linear
combination of y and ya with respect to x. (See [13, 1.2]), Without going into
further details it should be mentioned that the corresponding connection coefficients
can be obtained by differentiating q(x) with respect to x.

(3) A number u C is called a "characteristic exponent of (0.2) in 1 < Izl < r" if and
only if there exists a nontrivial solution y(z)= zh(z) of (0.2) with h holomorph.ic in
1 < Izl < r. In [13, 1.3], it has been shown that the characteristic exponents u are then
determined by

27/.2
(2.17) cos r(2u- Xo- x) cos "n’(/Xo +/Xl) +0q(/xo,/x)q(--/z0, --/xl)

and also by

2rr2
(2.18) cos (2’-/Xo-/Xl) cos r(xo-xa)+--oq(-Xo,/xl)q(/o,

Thus, Theorem 2.15 can be used to calculate the characteristic exponents explicitly.

3. On the generalized I-Ieun equation (0.3). In this section we shall apply the
results of 2 to the generalized Heun equation (0.3). For the same reasons as in that
section, it will be convenient for the dependence of equation (0.3) on the parameters
x := (Xo, x 1, x2) to be symmetric with respect to certain index transformations. Thus,
we let the second coefficient of (0.3) be in the form

(3.1)
20 -[- 1Z "[’- 2Z

z(z-1)(z-a)
17/ (/2)(1 .) +.
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with Zo := 0, Zl :- 1, z2 := a e C\{0, 1}, and arbitrary parameters h := (ho, h 1, A2) e C3./
is then in a linear one-to-one relation with (/30,/3,/3z).

As stated in Proposition 2.2 for Equation (0.2), we have a holomorphic solution of
(0.3) at 0. (See also remark 1 in 2).

PROPOSITION 3.2. Let a C\{0, 1} be fixed. Then there exists a unique function
r/=r/(.;a) holomorphic with respect to (z, ix, , a {z C" [z[ < min (1,1al)} x C.7,
such that, for each (IX, a,A), rt(" ,IX, a,A; a) is a solution of (0.3) satisfying

1
rt (0, IX, a, A a)

F(1 Ixo)" rt can be expanded in a power series

zk(ix, a, A; a)
(z, ix, a,,l;a)=

k=0

y
F(k+l- Ixo)F(k + 1)

where the (unique) coefficients rk are holomorphic with respect to (Ix, c, A). In particular
ro(Ix, a, X; a) 1.

Substituting the power series into equation (0.3) then leads to the following
four-term recurrence relation for the r,

(3.3) r ql(k 1)r-l- q2(k 2)rt-2 + q3(k 3)rk-3, (k NI),

where ,7-_ 7-_2 0 and

1
o1(:) so(so + 1- Ixo- Ixa) +-:(+ 1 Ixo- IXz)- asc --1/3o,a a

(3.4)
o2(sc) (: + 1)(: + 1 Ixo)(:(+ 2-Ixo-Ixx-IXz)-(1

The following transformations will demonstrate that all Floquet solutions at the
(simple) singularities O, 1 and a can be defined in terms of the function /investigated in
(3.2).

We look first at the index transformations

(3.5) y(z) Z’(Z- 1)rl(z- a)2(z)

with r/e {0, &}, (] 0, 1, 2). Considering the special choice of the Ix-dependence in
(3.1), a straightforward calculation shows that (3.5) transforms (0.3) into an equation of
the same type with/2/= Ix/- 2r/6 {&, -&}, (] 0, 1, 2) and d a, , A, & a.

The second class of transformations of interest are the linear transformations

(3.6) 3, ez + 6 (e, ,5 e C, e # O)

of the independent variable, which map the simple singularities {0, 1, a} into the simple
singularities {0, 1, d} and keep the irregular singularity m fixed. Table 1 contains the six
possible substitutions and yields all information about them.

Using (3.5) and Table 1, we can now define for each 0, 1, 2 a set of two Floquet
solutions y/, y/2 at z/in terms of the function rt by

(3.7)
yox(Z,/x, a, h ):= r/(z, Ixo, //’1, //’2, 0, /. a),

Yo2(Z, IX, 0, ,.):= Z’rI(Z, --IXO, IXl, Ix2, 0, h a),
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(a)
(b)

(c)

(d)

(e)

TABLE

Z (]0, /1, ]2) a
1- z (/ 1, ]0, ]2) 1- a
z

(0, ]2, ]’ 1)
a a

1-z
(’1, 2, 0)

1-a 1-a
z

1-- (/*2, ]0, ]1) 1--
a a

a-z a
(]’2, ]/" 1, 10)

a-1 a-1

at

(a- 1)a

(1-a)a

aA

(a-1)a

-aA

(1-a)h

for tz[ < min (1, lal),

(3.8)
Yll(Z,/., a, A):--1"/(1- Z, /.1, /.0, /2,--Ce,--A l-a),

YI2(Z,/, c, A ):= (1 z)"’/(1 z, --]Z1, ]0, ’2, --t, --/; 1 a),

for z- iI <min (1, la- 11), and

(3.9)

y2(Z,/z, a, A): /-/’2, 0, 1,-aa,-ah; 1-

Y22(Z,/x, a, A):= (1-)’2r/(1-,-/z2,/x0,/Xl,-aa,-aa; 1-)
for [z a[ < min (lal, [1- al).

Furthermore, using (3.5") and Table 1, we can derive exactly 8 different represen-
tations for each function yjK in terms of r/. We shall present here only the basic identities

(3.10)

r(z, t*, a, A; a) (1 z)’*’r/(z, t*o, --//’1, /-/’2, a, a; a)

1 (z, o, , -, , I a)

(1 z)"’ 1 n(z, o, -, -, , a; a),

valid for Izl <min (1, lal) and arg (1-z), arg (1-z/a) ]-zr, zr[, and

(3.11) l(z, Iz, a, A a) l tZo, Iz2, tZl, aa, ah

valid for [zl<min (1, [al). These are immediate consequences respectively of (3.5),
Table 1 (c), and the uniqueness of the function r/in Proposition 3.2.

Our further considerations deal with the connection relations between the
different sets of Floquet solutions yjl, yj2, (] 0, 1, 2). We derive a basic connection
formula by carrying over the results of 2, and describe how this can be used to obtain
all other connection relations between the yil, yi2 (except for a few values of a).
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From Proposition 2.14 we obtain, by considering (3.7), (3.8) and remark (1) in 2,
PROPOSITION 3.12. Let al > 1. Then there exists a unique function q q(. a)

holomorphic with respect to (tx, a, 3‘ C7, such that the connection formula
sin (rr/z 1)

n(z, tx, a, h; a) q(txo, -1, tz2, a, h a)rt(1 z, tx, to, tz, -a, -h 1 a)

q lo tx tz a 3‘ a)(1- z)’’
/(1 z, -/z,/Zo, 2, -a, -3‘ 1 a)

is valid for [z[ < 1, [z 11 <min (1, [a 11), arg (1- z) ]-r, 7r[ and (t, a, 3‘) C7.
Applying Theorem 2..15 to this special case leads to
THEOREM 3.13. Let [a[ > 1. Then for (Ix, a, 3‘) C,7,

rk(l, a, 3‘; a)
q (/x, a, 3‘; a) lim

k-o F(k + 1 -/zo)F(k -/z 1)

"/’I(--L/,1, /.L0, /.L2,--O,--3‘ l-a) FI (r +z- k)-1+
/=1 l! tr=l

the convergence being (k-"-) as k - oo, where m is an arbitrary nonnegative integer.
The proof ot Theorem 3.13 follows from (3.7), (3.8) and Propositions 2.2 and 3.2,

which in particular yield

(3 14) -(/z)= "rk(/.*, a, 3,; a) r(/z) "rk(l, /-*0, /2, --O, --3‘; 1 a)
k! k!

(k eN0)

Theorem 3.13 and (3.3) show that q can actually be computed by four-term recur-
rence relations. Furthermore, Theorem 3.13 shows that a satisfactory convergence
should be attained by choosing m large enough.

Applying now the 6 substitutions of Table 1 to the connection formula Proposition
3.12, and using the identities (3.10), (3.11), we immediately obtain 6 connection relations
between the Floquet solutions YI, Y2, (/" 0, 1, 2)in terms of q. In fact, substitutingTable
l(a) for lal > and Table l(b)for la 11 > 1, yields the connection relations between yoa,
Y02 and ya 1, yl.. Correspondingly, substituting Table 1 (c) for [a[ < 1 and Table 1 (e) for Re
a < 1/2 yields the connection relations between y01, y02 and y21, y22. Finally, substituting
Table l(d) for la- 11 < 1 and Table l(f) for Re >1/2 yields the connection relations
between yla, y12 and y21, y22. We shall not list these formulas explicitly.

The preceding discussion shows that whenever a is within one of the regions
;1:= {a e C ]al>l^Rea>1/2}ort2:={aC:[al<l^la-l[<l}or3:={aeC:la-
11 > 1 ^ Re a < 5}, (see also Fig. 2), we always obtain two different connection relations in
terms of q, one between the sets of Floquet solutions y, yz and yk 1, yk2 and the other
between the sets of Floquet solutions ykl, yk2 and yt, y2, where {], k, l}-{0, 1, 2}.
Combining these, we also get a connection relation between the sets yix, ya and yx,
in terms of q. Thus in these cases all connection coefficients between the Floquet
solutions at the three simple singularities z0 0, z 1 and z a can be represented in
terms of the function q and, therefore, the full monodromy group of Equation (0.3) can
be computed by Theorem 3.13.

We conclude our discussion by stating some final points.
Remarks:
(1) When a 0 and/32(=3‘0 + 3‘ -[- 3‘2) 0, O0 is also a simple singularity and (0.3) is

Heun’s equation. The exponents at oo are then

(3.15) v+ 1- ()(/o +/Zl +/.L2), --/+ 1- (1/2)(/Zo +/.tl
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2

FIG. 2.

where/22 (1/4)(]t -[" jtL -[-/,L --/1 ah 2. In this case, we can also define a set ofFloquet
solutions Y31, Y32 at oo in terms ofthe function r/of Proposition 3.2. The transformations to
be used here can be found in the original paper of K. Heun (see [2, p. 162-168]). By these
transformationsexactly 24 differentrepresentationsforeachofthe 8 Floquetsolutions yjK,
(] 0, 1, 2, 3; K 1, 2), canbeobtainedintermsof r/. Oncemoreusingtheresultsof 2,itis
easy to verify that the connection coefficients between the solutions y31, y32 at oo and the
solutions yjl, Y2 (] 0, 1, 2) atthe finite singularitiescanalsoberepresented intermsofthe
function q of Proposition 3.12, whenever a is within one of the regions 9tl, R2, 9t3 of
Fig. 2.

(2) When a 0 and/xo =/x =/22 , equation (0.3) is the ellipsoidal wave equa-
tion. In this case our results agree completely with those of [11].
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THE CONNECTION PROBLEM FOR TWO NEIGHBORING REGULAR
SINGULAR POINTS OF GENERAL LINEAR COMPLEX ORDINARY

DIFFERENTIAL EQUATIONS*

REINHARD SCH,FKEt

Abstract. A two point connection problem for local solutions at two regular singular points of a general
linear ordinary differential equation is studied. Generalizing the results of a recent paper of D. Schmidt and
the author [SIAM J. Math. Anal. 11 (1980), pp. 848-862] explicit formulas for the connection matrix of the
fundamental solutions are derived without restrictive assumptions.

Applications to the hypergeometric equation in a Banach algebra yield new formulas for their
connection factors.

Introduction. In a recent paper [6] D. Schmidt and the author considered the
following differential equation,

(0.1) y’(z) 1Ao+ A+ G(z) y(z),
z-1

where A0, A are complex matrices and G(z) is a matrix valued function holomorphic
in a disk {z e el Izl < r} with 1 < r _-< m. (0.1) is the general system of linear complex
ordinary differential equations with two neighboring" singular points of the first kind,
which are located at 0 and 1.

In this paper we discuss the connection formula

(0.2) Yo(z)= Y(z)C,

between characteristic fundamental solutions of (0.1) at 0 and 1, respectively, of the
form,

(0.3) Yo(z) Ho(z)z co, Ho(Z) Z z’Dk,
k=0

(0.4) YI(Z) H(z)(1- z)C, Hi(z) (1 z)gD.
k=O

Fundamental solutions of (0.1) of the form (0.3), (0.4) can always be established (see,
e.g., [7] or [2, p. 120]). Co, C1 and the coefficients Dk can be computed from Ao, A and
from the coefficients of G(z). In the discussion below they will be assumed as known.

The case which can be completely treated by the results in [6] is the case of
diagonalizable matrices Co, C1.

In 1 of this work we allow C1 to be any matrix and discuss the connection relation

(0.5) y(z) YI(Z)C,

between (0.4) and a vector solution of (0.1) of the form

(0.6) Y(z) =z’ Z z’d,.
k=0

The results of [6, 1] are completely generalized.

* Received by the editors February 12, 1979, and in final revised form December 12, 1979.

t Fachbereich Mathematik, Universitit Essen, Gesamthochschule, Postfach 6843, 4300 Essen 1, West
Germany.
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In 2 these results will be applied to the general connection formula (0.2) with
(0.3), (0.4) and arbitrary Co, Ca. Instead of fundamental systems of logarithmic
solutions we use fundamental solutions containing the exponential function of matrices
zA; otherwise the computations would be much more complicated or impossible. Thus
the gamma function of matrices also appears in a natural way. The properties of the
gamma function needed in the text are proved in an appendix.

In 3 we derive connection formulas for the hypergeometric equation in a Banach
algebra,

y’(z) a+l_ z

with fewer restrictions than made by Burmann [1].

1. The connection relation for a vector solution. (a) Let E be a finite dimensional
normed linear space, (E) the Banach algebra of (bounded) endomorphisms of E.
Then we regard (0.1) as a differential equation in E with A0, A and a holomorphic
G: t --> . In this first section we consider the connection relation (0.5) with (0.6), (0.4).
Then [6, 1, (1.4)] can be generalized to the following theorem:

THEOREM 1.1. Let

y(z) z zkdk with a C, dk E
k=0

be a solution of (0.1) at O, and let

Y,(z) Y (1 z)kDk(1 Z) c’,
k=O

where Ca, D k ?, be a fundamental solution of (0.1) at 1. If the connection vector c is

defined by

y(z) Ya(z)c (z e ]0, 1[),

where the powers are determined by arg z arg (1 z) O, then ]:or arbitrary m NI,
> O, we have

1 1
dk 2 D] -(-l- C,)(k + a + )r(k + l- C1)c -- (k---m-2+)I=0

]:or NI k --> oo, where y_ min {Re y[ 3/6 or(C1)}.
Here or(C1) denotes the spectrum of Ca. For the extension of the gamma function

see the appendix. Here and in the sequel, e.g., -l-Ca means -//-

Proof. The proof of the corresponding theorem (1.4) in [6] can be used with slight
modifications. We only need two further statements. First we need an estimate for
powers containing matrices,

[(1-z)Cl<=Mlz-l[--, y_ min {Re ’l Y r(C)},

which holds for any C , 6 > 0 and 1 < z < r < oo, arg (1 z) -r or 7r, with Ms
depending only on C, and r. Second in the proof of the analogue of [6, (1.15)], we need
the formula

1 I-k--a c,

_
1

2rri
z (1 z) dz (k + a + 1)F(k + c Ca)-((-Ca),
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where a C, C , k 6 N sufficiently large, and c is an (infinite) curve surrounding
[1, o[ in positive sense, but not 0. This formula will be proved in the appendix (A.5).

In the special case that the elements of tr(A 1) do not differ by nonzero integers, it is
known ([2, p. 119]) that in (1.1) C1 A andD I may be chosen. In this case the limit
formula [6, (1.7)] can be applied without any difficulty:

THEOREM 1.2. Suppose that the elements of(A) do not differ by nonzero integers,
and that the assumptions of (1.1) are satisfied with C1 A 1, D I. Define

y+ max {Re

and choose an integer m > y+-y_- 1. If we define

D=D+ 2 D [(--aa)(k+a--a)-a]
/=1 =1

for sufficiently large k , then

(-A)c lim F(k + + 1) (k + -A1)Dd,

the convergence being as (k*----+), > 0 arbitrary.
Pro@ Using the functional equation of the gamma function, Theorem A.2,

Theorem 1.1 can be written

1 1
(1.3) dk D(k +

for N k , 6 > 0 arbitrary. Now limk Dk I; thus Dk is invertible for sufficiently
large k and DI is bounded as k . From the asymptotic formula (A.6) for quotients
of gamma functions we know that

1rk + a + 1)(k + -A1)
behaves like kA’+ for k . Since

for k with aM depending only on A and 6 > 0, multiplication of (1.3) by D{ and
F(k + a + 1)(1/F)(k + a -A) yields the desired formula for c.

The convergence in Theorem 1.2 will be better, the larger m is chosen. The
evaluation of Dk becomes in general more extensive, however.

From Lemma A.3 we see that (1/F)(-A) is invertible iff A has no nonnegative
integer eigenvalue. Then by Theorem 1.2 the connection vector c itself can be
calculated. If A1 has a nonnegative integer eigenvalue, c can be computed after a
preliminary transformation of (0.1), y(z) (1-z)(z), with some suitable u C,
changing A into A u.

In the special case that y+-y_ < 1, i.e., if

max {Re (y- y2) 7, 72 (a1)} < 1,

the limit formula of (1.2) reduces to

1
lim ka’+adk.F

(-A1)c
k
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In Theorems 1.1 and 1.2 it is not necessary that E be finite dimensional. The proofs
remain valid if E is an arbitrary Banach space.

PROPOSrnON 1.4. Theorems 1.1 and 1.2 are valid if E is an arbitrary Banach
space.

For singular differential equations of the first kind in Banach spaces, it is known
that a solution y(z) of (0.1) at 0 of the form assumed in Theorems 1.1 and 1.2 can be
constructed from any c C and nonzero do E, such that (Ao a)d0 0 and a + 1, a +
2,... are not elements of tr(Ao). Then the dk may be determined recursively.

A fundamental solution Yl(Z) of (0.1) at 1 of the form assumed in Theorems 1.1
and 1.2 exists if the elements of tr(A) do not differ by positive integers. Then, as in the
matrix case, C1- A1 and D- I may be chosen (see [4, 6.5]).

(b) If we drop the assumption D I (i.e., the assumption on A1) in Theorem 1.2,
D may be unbounded or may not exist, and it is more difficult to derive a limit formula
for c from Theorem 1.1. Using a result of D. Schmidt [7] concerning the precise
structure of the fundamental solution at a singular point of the first kind, the following
generalization of Theorem 1.2 can be proved:

THEOREM 1.5. Suppose the assumptions of Theorem 1.1 are satisfied with a C
such that

o’(C) {A e o’(A1)[(A -) o’(A1) }.

Define
=max {Re (1- ]/2) ,]/1, 2 E 0-(C1)}

d max {l E 711 c O2 where a cr(A 1)}.

Choose an integer m >-d such that m > 4/+ d- 1, and define

Dk=D Y D} I-I [(-r-Cx)(k+a-r-C1)-l].
/=1 t=l

If we assume that C -[- trI is nonsingular for o- 1, , d, then

1 1
1
-’(-Cx)c klim F(k + a + 1)(k + a Cx)D-ldk,

the convergence being (k/+a-l-m+), 6 > 0 arbitrary.
Before we prove Theorem 1.5 let us discuss the condition on C1 (i.e., on Yl(z)). A

fundamental solution Y1 of (0.1) at 1 with C1 satisfying the hypothesis of Theorem 1.5
can always be established by the procedure of [2, pp. 119tt], or as in [7] or [3, XIV, 10].
Suppose now that E -C", and that a fundamental solution

Yl(z) Y D(1- z)k(1- Z) c’

of (0.1) at 1 is given where C1 does not satisfy the condition in Theorem 1.5. Then we
can apply Theorem 1.5 if we proceed as follows (proof omitted)"

If J is a Jordan canonical form of C1, and C1 TJT- with some regular T, we can
write J ] + N, where

r(]) {h e o’(A 1) l(h ) CI o’(A 1) },

and N is a diagonal matrix commuting with J whose entries are integers. Then we can
write

YI(Z)T=H(z)(1-z) H(z)= Y’. DT(1-z)(1-z).
k=O
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By insertion into (0.1) we see that H(z) must be holomorphic at z 1. The c in
y(z) Yl(z)c can be determined by Theorem 1.5 applied on

y(z)= H(z)(1-z)(T-lc).
Sometimes instead of a fundamental solution containing the exponential function

of matrices, a fundamental system of logarithmic vector solutions is given. In this case
Theorem 1.5 can be applied in the following way (proof omitted):

Suppose for a moment that

y(z) (1 z)a Tl,[log (1 z)]hi(z),
j=O 1’.

where r and ho(z), , hr(z) are vector functions holomorphic at 1, is a solution of
(0.1). By insertion in (0.1) we see that A + ko is an eigenvalue of A if k ko denotes the
smallest integer such that hk) (1) 0 for some j {0,. , r}, and that

;(Z) (1 Z)a rl 1
[log (1 z)]ih+l(Z)

=0

is a second solution of (0.1).
Then clearly any given fundamental system of logarithmic solutions can be

normalized such that (z) appears in it whenever y(z) does. Then it has the form
{Yjl}l=O’, ,m

.,-1 where the Yjl can be written

yi(z) (1- z), 1

v=0
[log (1 Z )]Vhj,l_r(Z ),

with (A1) such that (-) (A) and hl(Z) is holomorphic at 1.
I now Yl(Z) denotes the fundamental solution of (0.1) whose columns are the

y(z), H(z) is the matrix whose columns are the hl(Z), and J is the matrix in upper
Jordan canonical form with m Jordan blocks of length r,. , r and diagonal entries
al,..., a, then

Yl(z)=H(z)(1-z)

satisfies the assumption in Theorem 1.5. Thus the connection coefficients jl in a
formula

y(z) E jlYjl(Z)

can be calculated by Theorem 1.5 applied on

y(z)= Yl(Z)C,

where c is the vector of the Tit.
We close this section with the proof of Theorem 1.5.
Proof of eorem 1.5. As in the proof of Theorem 1.2 we can write Theorem 1.1 in

the form

1
(1.6) d DF(k + a Ca)(k + + 1)c + U(k-r--2-m+a),

where T- min {Re y Y e (C)}. Later it will be shown that under the conditions o
the theorem,

D is nonsingular for sufficiently large k ,
(1.7)

O =(kd) as k.
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This is in fact the only difficult part of the proof. Now (again as in the proof of Theorem
1.2),

1
F(k + a + 1)(k + a C) ff(k/++l+),

where y+=max{Reylyr(C)}. Nowmultiplication of (1.6) by D and
F(k +a + 1)(1/F)(k +a-Ca) yields the desired result.

For the proof of (1.7) we assume that E C" for some n e N; this can be achieved
by an inessential linear isomorphism. We assume further that A is in Jordan canonical
form. This can be achieved by a preliminary transformation y(z) T(z) of (0.1) with a
nonsingular Te, such that T-1AIT is in Jordan canonical form. Such a trans-
formation is inessential because only the D, D and c are multiplied by T- from the
left.

If A is in upper Jordan canonical form and if the Jordan blocks are appropriately
ordered, we can state the main result of [7] as follows (see also [3, vol. II, pp. 163ff]).

RSUT 1.8. Equation (0.1) has a fundamental solution at 1 of the form

,(1-z)= Z H,zt’zDzB
k=0

where Ho L D diag (11,""", l,) with integers d ll >-12 >=’’" In--O, and B is an
upper triangular matrix satisfying

o-(B) {h e r(a,) (h -N) CI r(A) Q}.

Now with a nonsingular T we have

(1.9) 1(1 Z) YI(1-z)T.

If we replace z by z ezi (i.e., if 1-z surrounds 1 once in positive direction) we get

1(1 Z e2i) ’1(1 z) exp (27riB),

YI(1 z e2i) Y1(1 z) exp (2zriC1),

and conclude that

exp (2rriB) T-1 exp (2"rriC1)T =exp (2"n’iT-1CIT).

Using the fact that or(B) or(T-1 C1 T) and that -/x for a, tz e r(B), we obtain (see
[3, vol. I, pp. 239ff, pp. 220ff])

(1.10) B T-1CIT.
Now from (1.9) we see that the power series parts Y1(1 z)z- and Y1(1 z)z -c’ T are
equal, and thus

(1.11) Y, HI_,,E=DT (/=0, 1,...),
j=l

where E diag (0,..., O, 1, 0,. ., O) with 1 in/’th position. By (1.10) and (1.11) we
can now express the D:

sljDt,T E Zl’HsEi [(-r-B)(k +a-o’-B)-’].
j=l s=O cr=l
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This can be written as

D,T= Y HEk--L(k),
j=l s=0

where the Lsj(k) are upper triangular matrices such that Lsj(oo)= limk_oo L(k) exists
and is nonsingular iff all o- + Ca (or 1, , s + li) are nonsingular. By assumption this is
always true if s + li _-< d. Now we see that

OkTk=
j=l s=0

where the//,j(k) k-Li(k)k have the same properties as the Li(k ). From this we
claim that the limit

lim DkTkD E Elo()(1.12)
k-, =a

is nonsingular since all/2o (oe) are lower triangular and nonsingular. (1.12) immediately
yields (1.7).

2. The connection formula for two fundamental solutions. Let E be a finite
dimensional normed linear space and a (E), 2 (o’) the Banach algebras of
endomorphisms of E and a, respectively. We regard (0.1) as a differential equation in
E with A0, A and a holomorphic (3: -> a. Then we would like to have formulas
for the connection matrix C in

Yo(z) Yl(z)C, Z e ]0, 1[,

between fundamental solutions of (0.1) of the form

Yo(z)= Ho(z)z,
Ya(z)=Hl(z)(l-z) c’,

at 0 and 1, respectively.

Ho(z) E z’D,
k=O

Ha(z) Y’, (1 z)Dl,
k=O

Here we cannot proceed in the same way as in [6, 1] because we would need a
formula for

(1-- z)C1Cz C‘,-1 dz,

where is an infinite curve surrounding [ 1, oe[ in positive sense, but not 0, and C, Co, Ca
are arbitrary elements of 5fa. Such a formula does not seem to exist, if C, Co and Ca do
not commute. Thus we shall transform the problem so that the conditions of 1 hold
and all theorems can then be carried over.

Yo and Ya are solutions of the matrix differential equation corresponding to (0, 1),

(z1_ 1 )Y’(z)= ao+ al + G(z) Y(z).
z-1

This linear ordinary differential equation in , is transformed by

CoY(z)=H(z)z
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into a new linear differential equation in ,,
(2.1) H’(z) (fi.o + 1 A1 + ((z)| H(z),

z-i /

where fio, fi, e 2 and : 2 are defined by

AoX AoX XCo
IX-AIX
G(z)X=G(z)X

Here and in the following fi,/, denote elements of 2. With E and replaced by
.a and 2, we have the situation of Theorem 1.1 applied for (2.1):

Ho(z) Z zD
k=O

is a solution of (2.1) at 0 (with a 0). A fundamental solution of (2.1) at 1 is given by

,;q(z)X Hi(z)(1 z)C’Xz-c

because we can write in the form

,(Z)= Il(Z)(1-- Z)e’,
where

1X C1X
ISI,(z)X Ha(z)Xz-Co

and/-ira(z) is holomorphic. From

z-C,,= o (CO+ l-1)l-----
(l-z),

we get the power series for/- at 1,

(X e

(X 91)

where

J lkx D lk X
/=o

(X o,1).

Now the connection relation Yo(z)= Ya(z)C reduces to

Ho(z)= Y,(z) C.

Thus we have in fact the situation of Theorem 1.1 with (0.1), E, L;, y, o, dk, El, D, C1, 17

replaced by (2.1), fl, 2, Ho, 0, D, ’1,/), 71, C respectively.
Now not only Theorem 1.1, but also Theorems 1.2 and 1.5, can be translated into

theorems for the matrix connection formula. Thus the following theorem is proved.
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THEOREM 2.2. Suppose thatfundamentalsolutions Yo(Z) of (0.1) at 0 and YI(Z) of
(0.1) at 1 are given in the form

Yo(z) E zDz c,,,
k=0

Yl(z) Z (1- z)D(1 z) c’,
k=O

where the C. andD are complex matrices. Let the connection matrix C between thembe
defined by

Yo(z) Yl(z)C, Z ]0, 1[,

where the powers are determined by arg z arg (1 z) O. Finally define 3’+ and y_ by

+ max {Re [ e (C1)},
_

min {Re e (C)}.

(i) For arbitrary m , 6 > 0 we have as k ,
()D= D_ 1 1

+ (k----+).
t=o =o "F (-l- C1)F(k l- C)C Co+ 1

Now define (k) () by

D(k)X=DX+ D [(--C)(k--C)-]X C0+p-1

l=1 v=0 =1

(ii) If under the above conditions the elements of (A) do not differ by nonzero
integers and C1 A, D I, we have for integers m > T+- T-- 1,

1 1

-F (-A)C olim k’. (k-A )(k)-D

the convergence being as U(k r+-r_-m-+a), > 0 arbitrary.
(iii) Suppose C1 satisfies

and define the integer d by

d max {A- AeIA, A2 (A), A1- A2 }.

I + C is nonsingular for 1,..., d then we have, for integers m d such that
m > T+- T- + d 1 and real > O,

(-C)C= lim k
1 )_

the convergence being as (k*--+e--+).
The remarks of 1 concerning better convergence versus more computation, the

possibility of obtaining C and not only (1/F)(-C)C, and methods of finding
fundamental solutions of the required form, remain valid here. We state explicitly the
following two remarks.

(1) In the special case +-
_
< 1 we choose m 0 in Theorem 2.2 (ii) and obtain

using Theorem A.6

1
(-A)C lim k’+D.
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(2) In Theorem 2.2, (i), (ii) it is not necessary that we have a system (0, 1) of
differential equations. Proposition 1.4 and the proof of Theorem 2.2 show that we may
replace (0.1) by a differential equation in any Banach algebra with unit element e,

Y’(z) Ao+ AI + G(z) Y(z),
z-1

where now Ao, A1 and G" ff - is holomorphic. Then the C and Dk are elements
of .

We recall that such solutions at A -0 or 1 exist if the elements of o-(A) do not
differ by nonzero integers. Then Cx A and D e may be chosen and the D are
determined recursively (see [4, 6.5]).

3. e hypergeometric equation in a Banaeh algebra. Now consider the hyper-
geometric equation in a Banach algebra with unit element e,

(3.1) y’(z) a+b y(z).

The basic properties of (3.1) can be found in Hille [4, pp. 240-245]. If we assume that

(. ((a (al N

then (3.1) has a solution w(a, b; z) defined for lz< 1:

(3.3) w(a, b; z)= 2 zd(a, b)" z .
k=0

The coecients d(a, b) can be computed recursively:

do(a, b)= e,
(3.4)

(k Ca)d(a, b) (L + k 1 C)d_(a, b).

Here L() denotes left multiplication by b, and C() the commutator
operator Cax ax- xa. If we furthermore assume that

(3.) ((b) ()) ,
then the transformation y(z)= (1-z) shows that w(-b,-a; l-z) is a solution of
(3.1) as well. w(-b,-a; l-z) is defined for Iz-1] < 1. Hence there is a connection
relation

(3.6) w(a, b; z)= w(-b, -a; 1-z)c(a, b)

for zC satisfying [zl, ll-zl<l and argz, arg(1-z)]-,[, with a unique
c(a, b) called the connection factor. Now (3.1) has the form required in Remark 2
below Theorem 2.2, with A0 a and A -b. Thus Theorem 2.2 (ii) can be applied and
we obtain
Tzoz 3.7. For m6, m+l>(b):=sup{Re(a-2)l,2(b)}, and

for suciently large k let

m(a,b,k)X= 2 2 d_(-b,-a) [(b-o)(b+k+o)-]X a+-I
/=0 =0 p=

en or any > 0 and or N k ,
1 1

F(k + 1)(k + b)m(a, b, k)-d(a, b)= (b)c(a, b)+



CONNECTION PROBLEM FOR TWO NEIGHBORING SINGULAR POINTS 873

If x(b) < 1 we can choose rn 0 in the above theorem and get

b) 1-1=(b)c(a, b).lim k-’+ldt,(a,
1

If r(-b) does not contain any nonnegative integer, c(a, b) can be determined from
Theorem 3.7. If r(a) does not contain any nonnegative integer, c(a, b)-1= c(-b,-a)
can be computed by means of Theorem 3.7. In some cases c(a, b) can be determined by
using the property

c(a, b)= c(a + ae, b + e) (, C)

and by application of Theorem 3.7 to the right side.
By using transformations

1
y(z) ((z)), (z) z,-, - z, ,

Z

the connection factors not computed in Hille [4, pp. 244ff] can be expressed by some
c(, b), and hence can be determined by Theorem 3.7. This will be done here only for
the connection factor which was determined by Burmann [1] in a different way.

Burmann assumes

(r(a)-o-(a))flN,= and (o(b-a)-o(b-a))f’lN,= .
Then (3.1) has the solutions w(a, b; z) and w(b-a, b; 1/z), which are defined and
single valued in the regions Izl < 1, arg z ]0, 2r[, and Izl > 1, arg z ]0, 2r[ respec-
tively. These solutions can be analytically continued to solutions y0 and y of (3.1) in
Cs C-N/. Burmann considers the connection formula

yo(z) y(z)q(a, b) (z Cs).

In order to express q(a, b) in terms of c(.,.), we transform y(z) (z/(z-1)) and
obtain from (3.6)

(3.8) w(a, a- b
z ) (’z 1 =w b-

for z {2 satisfying Re z < , [z 11 > 1 and

arg e ]-r, 0[,

a,-a; c(a,a-b)

arg(ll-z)]0’r["
Since in (3.8) solutions at 0 and oe are connected, we get, together with connection
factors determined by the method of Hille [4, pp. 244ff],

q(a, b) exp (’n’i(b a))c(a, a b) exp (.rcia).

Now from (3.7) we have a formula for q(a, b) which is valid if weaker conditions than
those of Burmann [1, Thm. 9] are satisfied.

Appendix. Extension of the reciprocal gamma function. Let Yd be a Banach
algebra with unit element e. (The reader not interested in Banach algebras may replace
N by the algebra of n x n matrices.)

If f(z) is an entire function, f(z) Y./=00lzt with complex Cl, we define [: Yd -* N by

f(a) ooe + Y Olal (a
/=1
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Then f f(a), a fixed, is linear and multiplicative; it is continuous in the following
sense.

LEMMA A. 1. Let f, (z), f(z) be entire functions and suppose ) (z) converges to f(z)
uniformly on {z CIIzl =<K} for arbitrary K >0. Then f(a) converges to f(a) uniformly
on {a lla[ --< K} for arbitrary K > O.

Proof. Estimate the difference between the coefficients of fn and f by Cauchy’s
formula.

Now we study the extension of the entire function (1/F)(z) on and state the
results needed in the text.

THEOREM A.2.

(i) (a) =exp (ya)a y= e +-a exp --n a (a 6 ),

where

( 1 1 )y=lim l+-+...+---logn
,--,oo 2 n

(ii) If (l/F)(m) denotes the m-th derivative of the (complex) l/F,

1 1 ()
(m)

?(a) 2 . (h)(a he)" (a , h C).
m:O

1 1
(iii) (a) a-((a + e) (a ).

(iv) If a, b and b is invertible then

1 _11.(b-lab) b -(a)b.F

Proof. (iv) follows from the definition of 1/F(a) by a power series with complex
coefficients. (i) and (ii) are applications of Lemma A. 1. The compact convergence in C is
trivial for (ii), and is shown in [5, ch. 2, 1.4] for (i). (iii) is an application of Lemma A.1,
too, because

l(a) a lim .l(;)
(m)

)m(0)(a + e (a N)
F 0

is to be shown
From Theorem A.2, (i) we conclude immediately
LEMMA A.3. 1/F(a) is invertible in Y3 iff cr(a)fq(-N0)=. Then define

F(a)=[1/F(a)]-1.
If is a matrix algebra the reciprocal gamma function can be expressed by the

scalar one and its derivatives. By Theorem A.2(iv) we can limit ourselves to matrices in
Jordan canonical form.

THEOREM A.4. Let a be a matrix in Jordan canonical form,

J1. 0 h!.
a= "... Ji

0
0

1 0

"’1 (an ri ri matrix).
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TheFt

with

l(a
F

Ogi. Ogiri1.tO

0 aiOA

/-//
.Oil /

Proof. From the definition of 1/F we see that it suffices to prove Hi 1/F(Ji). This
follows from Theorem A.2(ii) with , ,i, because Yi-,i is a (nilpotent) shift matrix.

Once more by Lemma A.1 we can carry over the formula used to prove [6, Thm.
1.15].

LEMMa A.5. For a , a C and k N suciently large,

1 f_ -k--I 1 1
Z (Z- 1)adz (k + + 1)F((k + )e-a)(-a)2i

where c is an (i@nite) curve surrounding [1, [ in positive sense but not 0.
Somewhat more difficult is the extension of [6, Thm. 1.5] (asymptotic series for

quotients of gamma functions):
THEOREM 1.6. Let a , z C with [arg z < /2, Re z > lal. en for arbitrary

m 6 N,

(a)F(ze + a)z e + Z Z-l(a)+ z-mr(a, z),
/=1

where rm (a, z) tends to 0 for Re z and the pl are polynomials.
Proof. In Stirling’s series for F(z) (see [5, ch. 8, 4.2]), we insert z and z + with
C and divide. Thus we obtain for m N,

r(z)z
1 + Z s(.)z + z-mr(, z)

r(z +) s=l

where the l() are polynomials, the ?(, z) are entire functions with respect to a for
any fixed z, [argz[</2, and limRefm(a,Z)=0 uniformly on la[NK, K>0
arbitrary. Now Lemma A.1 yields the desired result.

REFERENCES

[1] H. W. BURMANN, Zur hypergeometrischen Differentialgleichung in Banachalgebren, Math. Z., 125
(1972), pp. 139-176.

[2] E. A. CODDINGTON AND N. LEVINSON, Theory of Ordinary DifferentialEquations, McGraw-Hill, New
York, 1955.

[3] F. R. GANTMACHER, The Theory of Matrices, Chelsea, New York, 1971.
[4] E. HILLE, Lectures on Ordinary Differential Equations, Addison-Wesley, Reading MA, 1969.
[5] F. W. J. OLVErt, Asymptotics and Special Functions, Academic Press, New York, 1974.
[6] R. SCHAFKE AND D. SCHMIDT, The connection problem for general linear ordinary differential equations

at two regular singular points with applications in the theory of special functions, this Journal, this
issue, pp. 848-862.

[7] D. SCHMIDT, Spektraleigenschaften und kanonische FundamentallOsungen linearer Differential-
gleichungen bei einfachen Singularitdten, Arch. Math., 31 (1978), pp. 302-309.



SIAM J. MATH. ANAL.
Vol. 11, No. 5, September 1980

1980 Society for Industrial and Applied Mathematics

0036-1410/80/1105-0010 $01.00/0

INEQUALITIES FOR ULTRASPHERICAL AND
LAGUERRE POLYNOMIALS. II*

J. BUSTOZf AND N. SAVAGEf

Abstract. The main result proved here is the inequality (n + 1)F (x)F (x)-nF’+l (x)F_l (x)> 0 for
-1 < x < and 2=a -< fl --< a + 1, whereF (x) Px/Pl and P(x)is the ultraspherical polynomial. We
discuss some other similar inequalities for ultraspherical and Laguerre polynomials.

1. Introduction. Let P(x) denote the ultraspherical polynomial defined by the
generating identity:

(1-2xz+z2)-= Z P(x)z’.
n=O

In [3] we proved the inequality

(1.1) P(x)P+l(x)-P+l(x)g(x)>o, 0<x<l

for various values of a and/3 including 1/2 </3 < a -</3 + 2 and < a </3 =< a + 2. We then
used (1.1) with/3 1 to prove

(A)k (A),_k sin [(k + l) 0]
> 0 0<0<Tr, 2<A<3.(1.2)

=o k! (----;! (k+a)sin0

R. Askey and G. Gasper [2] had proved (1.2) for 1 < < 2, and Askey [1] proved (1.2)
for 3, also showing it is false for > 3. P. Turan proved the interesting inequality for
Legendre polynomials

(1.3) [P,,(x)]Z-P,+a(x)Pn_l(X)>O, -1 <x < 1.

G. Szego [9] gave four elegant proofs of (1.3) and showed that similar inequalities hold
for the polynomials F(x)= P(x)/P(a) and for Laguerre and Hermite polynomials.
The generalization of (1.3) to the F is

(1.4) [F(x)]2-F.+1’ (x)F_l (x)>0, -l<x<l, A>-5.

Various other authors have studied inequalities for Turan type. In particular G. Gasper
[5] proved such an inequality for Jacobi polynomials, and S. Karlin and G. Szego [7]
generalized Turan inequalities to n x n determinants.

These inequalities suggest the existence of inequalities of the Turan type involving
two parameters. In this paper we will prove the inequality

(1.5) (n+I)F.F,-nF.+IF_I >O, -l<x<l, 1/2<--_a<--fl<=a+l.
When/3 a, (1.5) is weaker than (1.4) since in this case (1.5) becomes

n[(F)2-F+IF-I + (F)2 > 0.

We will also prove an inequality similar to (1.5) for Laguerre polynomials. We let
A(x; a, fl)= P’(x)P+I (x)-P+l (x)P(x). G. Gasper [6] proved that

(1.6) 0 (Ix + 1) (Ix + 1)._ sin [(k + 1)0]
k=O k! (n-k)! (k+l)sinO/2

<0’ 0<0<Tr,

* Received by the editors February 20, 1979, and in revised form October 15, 1979.

? Department of Mathematics, Arizona State University, Tempe, Arizona, 85281.
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This inequality can be rewritten as

d
dxA(x 1 I)>0 0<x<l, 1_-<a_-<2,

and this suggests the possibility that the determinants A. (x; a,/3) may be monotonic in
0 < x < 1 for certain values of c and/3. We will prove this monotonicity when/3 a + 1.

2. Monotonicity of A.(x; a, a + 1). Set D,,(x; a, )=F(x)F+l (x)-
F:+ (x)F (x ). In proving that (d/dx) A,(x;a,a+l)>O and that (n+I)F,,F,,-
nF,+IF,,_I >0 we will need the fact that D,,(x; a, fl)>0 for 0<x <1, -<c </3-<
c + 1. The proof that D,,(x; a,/3)>0 is very similar to the proof of (1.1) given in [3];
however, there are important differences and thus we will give a complete proof here.
Note that in [3] we proved the inequality (1.1) under the condition c > 1/2 whereas in
the following we will have a >-.

By using the standard identities satisfied by ultraspherical polynomials, see [3] and
[10], we can prove the differential identity

(2.1)
d 2)x[(1-x ’-l/2Dn(x" or,/3)]-- 2(fl a)(1- x2)’-3/2F+l (F+I xF. ).

LEMMA 2.1. D, (x; a, a + 1)> 0 for 0 < x < 1, a >-.
Proof. Setting/3 a + 1 in (2.1), we have

d
dx
[(1-x2)a-1/2Dn] 2(1 x2)a-3/2F’+l t" ,,+l -xF. ).

Case 1. Suppose Fn+l 0. Then D, F,F,+I. But (n + 2a + 2)(n + 2a + 1)(1
2KTa+l 0X l* n+l (2a + 1){[n + 2a + 1 2(n + a + 1)x2]F:+l + (r/+ 1)nF,, } Hence if Fn+l

=FnFn+IthenD, +l>0for0<x<l,a>-.
a+l a+lCase 2. Suppose F,,+I-xF, =0. Then D,,=F+I(xF,,-F,,+I). Using the

identities

(1-x2)(F)
xF. F.+I and (F)t

n +2a+1
n--1,

n + 2a 2a + 1

we get

D,, F,
+(1x2) 1F:+._
2a+l

,-,,,+1 -(n+2a+a..,,+l which, sinceNow, use the identity nr._l 2(n +a + 1)xF:+1 "l"a+l
a+l lTa+1 a+l l,a+l a+l

+1 xF,, becomes n-1 xF Hence, if +1 xF, then

D. =(1-x2)x(F:+I)2>O for 0<x<l, a>-i.2a+1

LEMMA 2.2. If -1/2<a<fl<y<-a+l and D,(x;a,y)>O for 0<x<l, then
D,(x;, y)>O forO<x<l.

Proof. From (2.1) we have

[(1-X2)13-1/ZDn(x; fl, 3,)]’=
-2(3,-/3)
n+2/3

--1/2 ,fl(1 x2) .+1 (F.)’.

We consider two cases for critical points.
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Case 1. Suppose Fn0+l 0 at the points xj, 1 > xl > x2 >" then, D.(xj; fl, 3")
F we have sgn D,,(x;/3, 3") (- 1)+1(xi)F.+l (x) Since sgn F (xj)= (-1)i+1

sgn Fn+lV (xi). Since D,,(x a, 3’) > 0, it follows that the roots of F+I and Fvn+l interlace
and hence so do the roots of F+I and F.+V 1. Consequently sgn F.+l(Xi) (-1)+1and
D,,(xj; , y)>0.

Case 2. Suppose (F)’ 0 at the points x with 1 > xl > xz >" Since

n + 2y _r+xF (1 xZ)(F)
and (V)’

2-Fn+l ----’-"YEn-l,
n+2a r+a

+1 (x) 0 and xF.(x) ’then F.-x F.+ (xj) Also,

D.(x; , 3") V(xi)[xiF (x) F+ (xj)]
(1 x.___._)F(xi)(F )’(x).
n+2fl

Now sgn F(x) (-1) and we need to show that sgn (F)’(xj) (-1)i, or equivalently
/3+1 ,3,+1 -,/3 +that sgn..._a (xi) (-1). The zeros of *’n-1 and a’n-1 interlace because 0< 3’-/3 < 1

w+l (x) (_1) and consequently D,,(xi; , 3")>0.and this implies sgn ...-1

By Lemma 2.1 and Lemma 2.2 we obtain the following theorem.
THEOREM 2.1. If -1/2<a <--fl -<a + 1, then D,(x; a,/3)>0 for 0<x < 1.
When a 1, Theorem 2.1 yields the trigonometric inequality

(2.2) Y (n-k+l) (fl)---- (fl)"- sin [(k + l) 0] > 0, 0<0<zr, 1</3-<2.
k=0 k! (n-k)! (k+l)sin 0

We will briefly outline the steps that lead from Theorem 2.1 to (2.2). First set
x cos (0/2) for 0 < 0 < rr, and write

(n + 2/3)(n +2)P,(1)D,(x; 1,/3)= 2(1- fl)
sin [(n +2)O/2]P,(cos 0/2)

sin 0/2

2)[sin [(n + 1)0/2] .. sin [(n + 2)O/2]p(cos 0/2)]+(n + nb r,+l (cos 0/2)-
sin 0/2 _"

The second term on ttae right in this last expression can be written as (see [3])

0 (/)k (/),-k sin [(k + 1)0]
2(fl 1)(n + 2) cos

k=0 k. (Z! (k + 1) sin 0’
and the first term on the right can be rewritten as

2!1-/3) (fl)k (/3),-__.__Lk sin [(k + 1)0]
sn 0/2 k=0 k. (n k).

Combining these trigonometric sums gives (2.2).
THEOREM 2.2. Write A,(x; a,/3)= P(x)P+I (x)-P+ (x)P,(x). If a >0, then

(d/dx) A.(x; a,a + 1)>0 .for 0<x <1.
Proof. Using the fact that

P"(1)= (n + 2a-n 1),
we find that

(2.,3) a,,D,,(x; o,)=(n+2a)A,,(x; a,)-Z(-a)P+l(X)P(x),
where a. (n + 2c)(n + 2)P(1)P(1)/(n + 1). Since A. >0 for a >0 and/3 >0, we
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have from Theorem 2.1 that

(2.4) (n +241A,(x; ce,)>2(-ce)P:+l(X)Pn(x)
Next we need the identity

for 0<x < 1, 0<a </3_-<a + 1.

(2.5)

d
(1-x2)-A (x; a,/3)= (2c- 1)xA (x; a,/3)

dx

+ 2(/3 )P(x)[P (x)- xP+a (x)].

This identity was proved in [3]. Using (2.5) in (2.4) and combining terms we get

(n +2c)(1-x 2) ---d A,(x; c, ) > P(x)[(n + 2a)P(x)-(n + 1)xP+l (X)]
2(/3 a) dx

(2.6)
2c(1-xZ)P(x)P+1 (x).

The Theorem follows upon setting/3 a + 1 in (2.5). Specifically, the result is

d 4a[P+l(x)]Z(2.7) dxA,(x , c + 1)> a >0
n+2c

Integration of (2.7) yields the following positive lower bound for A,(x; c, a + 1):

4c [P+I (t)]2 dt, 0<x < 1, ce >0.(2.8) A (x; c, ce +1)>
n+2c

In view of Gaspers’ inequality (1.9) and Theorem 2.2 we venture the following
conjecture"

d
dxhn(x a,/3)>0 for 0<x<l and 0<a<fl<a+l

3. Two parameter inequalities for ultrasphericai polynomials. Set B,,(x; o, fl)=
(n + I)F,Fn -nFn+lFn+l. In this section we will prove that B,(x; a,/3)>0 for -1 <
x < 1 and 1/2 < c _-</3 _-< c + 1. The proof uses a differential identity and essentially the
same idea used both in [3] and in the proof of Theorem 2.1 in the present paper. We will
prove that a positive multiple of Bn (x; a,/3) has positive extrema in -1 <x < 1. This
accounts for the presence of the factors n + 1 and n in Bn (x c,/3). With these factors we
get a tractable differential identity for B, (x; c,/3). From the identities

(1-xZ)(F) n(F,_a -xF,)
and

(n + 2A )F+I 2(n + A )xF nF,-a,x
we can prove

(3.1) (1-x2)(Bn)’= 2cexBn +2[n(fl-ce- l)-ce]F+l[F -4)n(Ce, fl)xF-l],
where ,(a,/3) n(fl-a- 1)[n.(/3-a- 1)-O]-1.

Now, (3.1) can be rewritten as

(3.2) [(1-x2)"B,(x; a,/3)]’= 2(1-xZ)-a[n(fl-a 1)-c]F:+I[F
From (3.2) it follows that B, (x; a,/3) is positive in 1 < x < 1 if B, (x; c,/3) is positive at
those points in -1 <x < 1 where F:+a =0 and F, -,xF_l. First we prove that
B, (x; a,/3) > 0 when/3 a and when/3 a + 1.
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LEMMA 3.1. B, (x a, a) > 0 and B, (x a, a + 1) > 0 for 1 < x < 1 and a > -.
Proof. B,(x;a, cr)>0 in -l<x<l for a>- by (1.4) since B,(x;a,a)=

n[(F)Z-F_F+]+(F)2. When a + 1 we use (3.2)which reduces to

(3.3) [(1 x 2)B,]’= -2(1 xZ)-lF"+IF"+1
The right side of (3.3) vanishes when F+I 0 and when F+a 0. We consider these
two cases separately.

Case 1. If F+ =0, then B,(x;,+I)=(n+I)FF+1. Setting F+I=0
in the identity (n+2 +l)(1-x)F+ =(2+I)(F-xF+I) yields F+a

(2 + 1)(n +2 +1)-1(1-xZ)-aF. Hence when F+1 =0, then B,(x; , a +1)=
(2 + 1)(n + 1)(n +2 + 1)-(1- xZ)-(F)2 and this is positive for -1 <x < 1, >-5.

a+lCase 2. If F+a =0, then B,(x;,+l) -nF,+x.,_l. From the identity
+1 +1(2 + 1)F (n +2 + 1)F+a nxF,_ we get (2 + 1)F nxrn_a, and from the

identity (1-x2)(n +2 + 1)F+ (2 + 1)(F -xF+l) wc get F xF+. Thus
when F+a 0, then B(x; , + 1)= (2 + 1)x-2(F)2. This completes the proof
of the lemma.

As in [3] wc say that the zeros of two polynomials P(x) and O(x) interlace if
between every two consecutive zeros of P(x) there is precisely one zero of O(x) and vice
versa. The proof of the next lcmma is omitted since it is almost exactly like the proof of
Lcmma 2.1 in [3].

LMMA 3.2. If B(X; ,)0 in -l<x <1, then the zeros of F and F_
interlace.

THEOREM 3.1. Bn(x;,)>Ofor-l<x<l,g+l.
Proof. After Lemma 3.1 we need only consider 5< < < + 1, and since

Bn(-X) Bn(x) and Bn(0)>0 wc may assume 0<x < 1. From (3.2) it suffices to prove
B > 0 at points where F+I 0 and at points where F xF_l.

Case 1. Suppose F+a 0. Note that the zeros of F and F+a interlace. The
positive zeros of F arc monotone decreasing functions of . Since F(-x)=
(-1)F (x), it follows for < < + 1 that the zeros of F and f+ interlace. Hence
at a zero of F+a the polynomials F and F have the same sign for < < + 1. We
conclude that B (n + 1)FF > 0 at each zero of Fn+l where < < + 1.

Case 2. In this case wc have F-,xF_ =0, and
_

[(n + 1).xF. nV.+, ]. Write V .xF_. If 0 < < < + , then 0 <, < 1. From 0 < , < 1 and the fact that the zeros of F, F_a interlace wc deduce that
the equation 0 has n distinct roots in (-1, 1) and that if z > zz >... are the
positive roots of 0, then sgn F_I (zi) (-1)+1. Note also that the roots of 0
are symmetric about zero. In order to prove then thatB(zi) > 0 we need to prove that if
gN<< + 1, then

(.4) sgn [(n + 1).zF (z)- nF+ (z)] (-1/+’.

It is convenient to introduce a third parameter A in addition to and and define
g(x; , ) by

g.(x; , )= (n + 1).(, )xF(x)-nF+l (x).

In this notation (3.4) becomes sgn g(zi)= (-1) i+1.
First we will establish that if A or A 1, then sgn g(zi) (- 1)+ 1. Note that

(zi)= 0 implies z F(zi)/F_ (z), so that

. (n + 1)F (z)F (z)- nF_ (z)V+ (z)g.(z) F_(z)
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The numerator in this last expression is positive for A =/3 and ) =/3 1 by Lemma 3.1.
Hence if , =/3 or A =/3 1, then sgn g(zj) sgn F_I (zj) (-1)+1. Next we will
prove that if/3 1 < A </3, then

(3.5) sgn g(z) (- 1)+ 1.
This will imply (3.4) by setting A a. Since sgn g(zi)= (-1)i+l and sgn g-l(zi)
(-1)+a, it follows that both g-i and g vanish at least once between consecutive zeros
of . We need to prove that g and g-i vanish exactly once between consecutive
roots of . Let Yl > Y2 >" and x > x2 >" be the positive solutions of g 0 and
g-I 0 respectively. Note that the roots of g 0 are symmetric about zero, and that
the degree of g is n+ 1 while the degree of is n. Thus, since g(Zl)>0 and
g-i (Zl) > 0, we will have

(3.6) Yl > Z1 > Y2 > Z2 and X Z X2 Z2

if we can prove that g and g-i are negative at a point to the right of Zl. Since
F (1) 1, we have g(1) n(fl 1)/[n(fl a 1)- a] and hence g(1) < 0 for fl > 1,
N a < < a + 1. This gives (3.6) for fl > 1. When fl 1 then g(1) 0 and again (3.6)

holds. By using the explicit representation of F as a polynomial we find that

g(x) n2"(fl),(2fl+n-nZ)(fl-a-1)+2a(fl+n)
(2fl)n (2fl + n)[n (fl-a 1)-a]

g-(x) n2"(fl-1),(2-2+n-nZ)(-a-a)+2a(-l+n)
(2fl- 2)n (2-2+n)[n(-a-1)-a]

It is easy to check that the leading coefficients in these last two expressions are negative
for n > 1 if 5 N a < fl < a + 1 and fl < 1. Thus, (3.6) holds for N a < fl < a + 1 and n > 1.
When n 1 a simple calculation shows that B, > 0.

Next we will prove that if fl- 1 < h < fl, then sgn g(yi)=, (-1)i+1 and sgn g(x)=
(--1)+2. This and (3.6) will establish (3.5). Since g(y)=0 we have (n + 1),yi=
nF+l (y)/F (y) and hence

g. (y) n F (y)

By Theorem 2.1 the numerator in this last expression is positive for fl 1 < A < fl and
hence sgn g(yi)= sgn F (yi). But by writing O,yi nF+ (yi)/(n + 1)F (yi) in ff we
find

6(y) (n + 1)[F (y)]- nF+ (y)F_
(n + 1)F (y)

Since the numerator is positive, sgn ff (yi) sgn F (yi). However sgn F (yi) (- 1)i+
and we have sgn Similarlyg.(y) (-1)+’

F(xF-1 (x) (x)+1 f+ (x)F-1
Ag.(x)= n F_l(x)

and the numerator is negative by Theorem 2.1. Hence, sgn g(xi)=(-1)+2. This
implies that g vanishes between xi and y. Since Xl > za > x2 > z2 >" and yl > Zl >
y2>z2>"" it follows that sgn g(zi)=(-1)+1. This completes the proof of the
Theorem.

Set T,(x; a, fl)=P(x)P(x)-P+l(X)P_l(X). We will next prove that
T, (x; a, fl) > 0 when fl a + 1 and fl a + 2.
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THEOREM 3.2. Tn(x;a,a+l)>O and Tn(x;a,a+2)>O
and a > 1/2.

Proof. The Christoffel-Darboux formula [10, p. 433] gives

(3.7) y (p)2= c,,[(P+,)’P-(P)’P+,] where c. >0.
k=0

Now using the identity
19A+I(3.8) (P)’ 2*n-1

we have from (3.7) that

for -l<x<l

2oec,,T,,(x; a, a + 1)-- (p)2
k=O

and hence T, (x; a, a + 1) > 0 for all real x if a > 0. To prove that T, (x; a, a + 2) > 0 we
will use Theorem 2.2. From (3.8) we have

d
A(x; a, B)= 2fl(PP+ -P,+P)-2a(P+-P+P+I)

dX

2flT(x a, fl + 1)- 2aT,(x; a + 1, fl).

Setting fl a + 1 above and invoking Theorem 2.2 gives

(a + 1)T,(x a, + 2) > aT,(x; a + 1, a + 1).

This proves the theorem since aT, (x; a + 1, a + 1) > 0 for 1 < x < 1 and a > by (1.5).

4. Two parameter inequalities [or generalized Laguerre polynomials, In this
section we prove theorems similar to those of } 3 but for generalized Laguerre
polynomials.

Let L(x) denote the generalized Laguerre polynomial defined by the generating
identity

(1- z)-- exp 1" 2 L(x)z.
In [3] we proved the inequality

(4.1) L(x)L+(x)-L+(x)L(x)>o for x >0

if (, ) lies in either of the following regions"

(i) 0<<N+2
(ii) 0<<N+2.

Set l(x)= L(x)/L(O). The following theorem can be proved using arguments
similar to those in [3] and consequently we omit the proof.
ToN 4.1. [l(x)l+(x)-l+(x)l(x)]/(-)>O or x>0 g (,) lies in

either o the regions"

(i) 0<<N+I
(ii) 0<<N+I.

Set (x; , )= (n + 1)ll- nl+l_. We will prove the analogue of eorem
3.1.
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THEOREM 4.2. 6, (X C, /) > 0 for x ".> 0 and 0 < a < < a + 1.
Writing 6n for 6n (x; a, ) we can derive the differential identity

(4.2) X(6,)’=(x-a-1)6,+[n(a-+2)+a+l]l+l[l-ck,(a, fl)l_,]
where b,(a,/3)= n(a-fl + 2)[n(a-/3 +2)+a + 1]-a. The derivation makes use of the
identities x(/,)= n(l, l,-a) and (n +

Equation (4.2) can be rewritten as

(4.3) [x+ae-X6,]’=[n(-+2)+a+l]e-Xxl+a[l-ck,l_l].
We prove that X

a+l e-XS, has positive extrema for x > 0 which implies 6n is positive.
According to (4.3) the extrema occur when /+1 0 or l b,l-a. First we prove
6, (x; a,/3) > 0 when/3 a or when/3 a + 1.

LEMMA 4.1. 6,(X;a,a)>O and6,(x;a,a+l)>O forx>O anda>-l.
Proof. 6,(x; , a)= n[(l)2-l_ll+a]+(l)2. But (1)2-1_11+1 >0 for x >0

and a >-1 is a well known result (see [9]). Hence 6,(x; a, a)>0.
When/3 a + 1 equation (4.3) reduces to

n(n +a + 1)-at+l(4.4) [X a+l e-X6,] (n +a + 1) e x ln+a[l+1 "n--l]"
la+l n(n + a + 1)-1/-+The right side of (4.4) vanishes when/,+1 0 or when ,,+1

Case 1. If l+a =0, then 8,(x; a, a+ 1)=(n+ 1)//a +a. Setting /+1 =0 in the
identity

(4.5) xl, +a (a + 1)(/

gives In +a (a + 1)x-11n. Hence, when In+l 0 then
(n + 1)(a + 1)x-a(/)2 and this is positive for x >0 and a >-1.

Case 2. If/+1 n(n +a + 1)-1/_ then from the identity

(4.6) (a + 1)1. (n + a + 1)1. +1 ntn-1-

6,(x; a, a + 1)=

we obtain /,=0; hence, 6,(x;a,a+l)=-nt+it_l. From (4.5) we get ln+a=
l+l=(n+a+l)l+ when-x(+1)-1/, +1 when /,=0. From (4.6) we get

/=0. Hence 6,(x;,+l)=(n++l)(+l)-lx(l+a)2. Thus when /+1=
n(n + + 1)-al2, then 6, (x; , + 1) is positive for x > 0 and >-1. Lemma 3.2
holds for Laguerre polynomials so we have

LEMMA 4.2. If 6, (X , ) 0 for X > 0 then the zeros of l and l_ interlace.
Returning to the proof of Theorem 4.2, we see from (4.3) that it suffices to prove

> 0 at the points where 1+ 0 and at the points where k ,1_. The condition
O< a < < a + 1. implies 0< <b,, < n/(n + 1) and the argument goes through just as in
the proof of Theorem 3.1. An important difference is that the zeros of l are monotone
increasing functions of a.

Note added in proot. In a paper titled Two Parameter Turan Inequalities for
Ultraspherical and Laguerre Polynomials which will appear in J. Math. Anal. Appl., J.
Bustoz has proved the inequalities

(1) (n + 1)F (x)F (x)- nF+ (x)F-I (X) > A,o[F (x)],
-1 < x < 1, -1/2 < a <-/3 <_-a + 1, where A. is a positive constant involving a and fl;

(2) V’(x)Vn(x)-V’+x(x)V-l(X)>O, -l<x<l,

(3) Gn(x)Gn(x)-Gn+I(X)G_I(x)>O x>0,

The proofs depend on writing the quantities in question as explicit positive sums.
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WEIGHTED L1,REMAINDER THEOREMS FOR
RESOLVENTS OF VOLTERRA EQUATIONS*

G. S. JORDAN? AND ROBERT L. WHEELERS

Abstract. Conditions are found that guarantee that the resolvent of a linear Volterra integral or inte-

grodifferential equation may be written as a finite sum of products of polynomials and exponentials, plus a

remainder term which belongs to a weighted Ll-space. The kernel has the form a(t) c + b(t); here c is a

constant and b(t) belongs to the same weighted Ll-space. It is assumed that b(t) satisfies a combination of

moment and monotonicity hypotheses that is determined by the maximum of the orders of the zeros on

Re z 0 of certain Laplace transform equations. The results extend to weighted Ll-spaces some recent

Ll-remainder theorems due to K. B. Hannsgen (Indiana Univ. Math. J., 29 (1980), pp. 103-120). The re-

suits for resolvents are deduced from more general results for linear Volterra-Stieltjes equations. The
proofs employ extensions of Banach algebra techniques used by the authors in an earlier related paper,
where the hypotheses involve only moment conditions.

1. Introduction. We study the asymptotic structure of the integral and integro-
differential resolvent kernels rl and r2 defined by

(1.1) r(t) a(t) r(t s) a(s) ds, R+ =- [0, ),

(1.2) r(t) r2(t s) a(s) ds, r(O) 1, R+,

respectively. Here a is a complex-valued function of the form a(t) c + b(t) where
c is a constant and b(t) belongs to a weighted space L(R+; p) (see 2). The impor-
tance of these resolvents derives from the fact that, under mild conditions, the Vol-
terra equations

(1.3) x(t) f(t) x(t s) a(s) ds, R+,

(1.4) x’(t) f(t) x(t s) a(s) ds, x(O) Xo, R+,

are solved by

(1.5) x(t) f(t) f(t s) r(s) ds, R+,

(1.6) x(t) Xo rz(t) + f(t s) r(s) ds, R+,

respectively. Moreover, the resolvents rk (k 1, 2) occur in variation of constants
formulas associated with certain nonlinear perturbed forms of (1.3) and (1.4) (see 12,
Chapt. 4] and [4]).

Received by the editors December 10, 1979.
? Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37916. The work of

this author was partially supported by the National Science Foundation under Grant MCS79-03358.
$ Department of Mathematics, University of Missouri, Columbia, Missouri 65211. The work of this

author was partially supported by the National ScienceFoundation under Grant MCS78-01330 A01. This
author is presently on leave visiting the Department of Mathematics, Virginia Polytechnic Institute and
State University, Blacksburg, Virginia 24061.

885



886 G. S. JORDAN AND ROBERT L. WHEELER

Associate with the resolvents ra and r2 the zero sets

(1.7) Za ={z[ + 3(z) 0, Rez_->0},

Z2 {z[z + ,(z) 0, Re z -> 0},

respectively. Here fi denotes the Laplace transform

i0l(Z) =-- e-t a(t) dt.

(We have assumed that the weight p(t) is such that the abscissa of convergence of
(z) is Re z 0; this is not an essential restriction, see 2, Remark 2.2.)

Ifa La(R+; p) and Za , Gelfand, Raikov and Shilov [1, p. 116] have shown
that r t LX(R+; p); this generalizes the classical result due to Paley and Wiener [14]
for the usual L space, that is, LX(R+) --= LX(R+; /9) with p(t) 1. The corresponding
result that r2 La(R+; p) when Z2 and a LX(R+; p) is due to Shea and
Wainger [15, Theorem 3] (and Grossman and Miller [4] in the unweighted LI(R/)
case).

For recent results which yield that re(t) belongs to a weighted space La(R+; p)
when Zk and a ff La(R+; p); see Gripenberg [2] and Jordan and Wheeler [11].
Also, the asymptotic rate of decay of the resolvents re(t) for classes of nonintegrable
kernels a(t) satisfying Ze is studied by Hannsgen [6], Wong and Wong [16], Gri-
penberg [3], and others.

We assume, for k 1, 2, that

(1.9) Ze {Z ,""", ZN} with zj # 0, 1, j _-< N < o,

and give conditions that ensure that the corresponding resolvent re has the form
N

(1.10) re(t) , pj(t) eZ/ + ue(t), R +,
j=l

where, for <- j <- N, p(t) is a polynomial, and uk(t) LI(R+; p). Of particular im-
portance are the zeros z Ze that satisfy Re z 0.

Recently, the authors [10] deduced that the representation (1.10) holds with
ue LI(R+; p) provided that the moment hypothesis (1 + t)TM a(t) La(R+; p) is
satisfied. Here M is the maximum of the orders of the zeros zj Ze satisfying Re
z 0. The proof in 10] relies on Banach algebra methods, and the results for the re-
solvents re are deduced as corollaries of more general results obtained in [10] for the
Volterra-Stieltjes equation

f0x(t) + x(t s) dA(s) f(t), R+.

On the other hand, Hannsgen [8] has recently obtained a Wiener-L6vy Theorem
for quotients which, when applied to the study of the resolvents re, also yields condi-
tions under which (1.10) holds (see also Hannsgen [7]). The proof in [8] relies on so-
phisticated techniques from the theory of Fourier transforms; compare Shea and
Wainger [15]. The result in [8] as applied to the study of the resolvents re(t) is more
general than that obtained in [10], in the sense that the moment hypothesis on a(t) in
[10] is generalized to a combination of moment and monotonicity assumptions; see
2. (Also, the result in [8] may be applied to study re(t) for a certain class of noninte-
grable kernels a(t); see 2, Remark 2.1.) On the other hand, the conclusion obtained
in [8] is that the remainder ue(t) in expression (1.10) belongs to the usual Lebesgue
space La(R+); this is less sharp than the weighted remainder estimate ue La(R+; p)
obtained in 10].
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The purpose of this paper is to obtain the representation (1.10) with the weighted
remainder estimate uk LI(R+; p) when a(t) c + b(t) with b LI(R+; p), and
with b(t) satisfying a combination of moment and monotonicity conditions analogous
to those assumed in [8]. The proof uses an extension of the Banach algebra tech-
niques employed in [10].

In 2 we describe the weighted spaces and the classes of kernels that we con-
sider. We then state and discuss our Theorems 2.1 and 2.2 for the resolvents rl and
r2. In 3 and 4, results for general linear Volterra-Stieltjes equations are formu-
lated and proved, and in 5 we deduce Theorems 2.1 and 2.2 from the theorems
of3.

2. Resolvents. By a weight p(t) we mean a positive continuous function on R+

such that p(0) 1,

(2.1) p(t + s) <- p(t) p(s), O t, s < ,
and

(2.2) lim
log p(t) sup

log p(t_____) O.
t t>0

In addition, we assume that p(t) satisfies the regularity condition

(2.3) p(t) is nondecreasing on R+.
We remark that the first equality in (2.2) is guaranteed by (2.1) and the continu-

ity of p(t), and that

p, lim
log p(t)

satisfies - < p, ; see [1, p. 113]. Our assumption that p, 0 is not an essen-
tial restriction. It is made merely to simplify the statement of our results; see Remark
2.2 at the end of this section.

Some interesting and important weights p(t) that satisfy (2.1)-(2.3) are

pl(t) (1 + t), R+, 0,

pz(t) (1 + log(1 + t))p(t), tR+, yO,

p(t) exp(t)pz(t), R+, O a < 1.

The space LI(R+; p) consists of all measurable functions a(t) for which

oP(t)[a(t)]

dt < .
We let LI(R +) L(R+; p) when p(t) 1.

Let p(t) be a weight satisfying (2.1)-(2.3). Analogous to Hannsgen [8] we define,
for a L(0, T) for each T > 0, the hypotheses H(M, D; p) where D M are non-
negative integers.

H(M, 1; 0): a has bounded variation on [1, ),

a() O, t p(t)lda (t)l < .
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H(M, D; 0)(2 -< D): a(D-2) is locally absolutely continuous on (1, ),

a() O, M p(t)lda(D-l) (t)[ < .
(Here a(D-l) is normalized to be left-continuous.)

For a nonnegative integer M, we let S(M; p) consist of the linear combinations

S(M; O) a , az) a (M, ; O)
/)=0

Clearly if a S(M; O) we may, if necessary, redefine the components av(t) near
0 and assume that, for D ->_ 1, av(t) 0 on 0 _-< =< 1. Throughout this paper we will
always assume that any a S(M; O) has been expressed in this manner.

The following lemma lists some elementary consequences of S(M; 0).
LEMMA 2.1. Let M > 1 and a ,;ao aD S(M; p). Then

(i) For O <= d < D,
-v+l+a p(t) a(oa(t) - O, (t -- ),

M-D p(t)lav(t)[ dt< , M-D+l+ct p(t)lda(Da(t)[ < .
(ii) For O <- d < D,

D(Z) Z-(a+l) e-zt da(Da)(t), Re z --> 0, z / 0.

Proof. If D-0, (i) is vacuous. When 0_-<d_-<D-1 _-<M-1, note that
a() 0 follows from aD() 0; hence,

a(oa) t) da(s).

The last equality and (2.3) yield

(2.4) p(t)la(va(t)[ <= s p(s)lda(va(s)[,

for 0 _-< d < D and 0 _-< k _-< M D + + d. In particular, it follows from H(M, D;
p) and (2.4) with d D and k M, that t p(t) a-l(t) -- 0 as -- w. Also,
da(va-l(t) a(va(t) dt for 0 _-< d < D (by convention daBl(t) av(t) dt). Thus, H(M,
D; p) together with inequality (2.4) with d D 1, k M 1, and an interchange
of the order of integration yield the integral inequality in (i) when d D 2. The
proof of (i) is completed by successively applying the above arguments with d
D 2 and d D 3,... d 0 and d -1, using at each stage the integral
inequality in (i) that was obtained at the previous stage.

Part (ii) follows from the definition of z)(z) after d + successive integrations
by parts. The boundary terms vanish, since av(t) 0 on 0 _-< -<_ and a(t) 0 as-- for k 0, 1, d. This completes the proof of Lemma 2.1.

From Lemma 2.1 (i) it is clear that H(M, D; O) H(M d, D d; O) for 0 -<
d -< D. In particular H(M + 1, M + 1; p) = H(M, M; t9); hence, S(M + 1; p)
S(M; p) for each nonnegative integer M.

Also, from Lemma 2.1 (ii) with d D 1, 0 < D -< M, we see that/(z) is M
times continuously differentiable for Re z >- 0, z 0, whenever b S(M; p). Thus,
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if a(t) c + b(t) with b S(M; p), we say that z0 C Z1 satisfying Re z0 0, z0 0,
is a zero of order m -_< M if the first m derivatives of + fi(z) vanish at z z0,
but fi(m(z0) 0. The order of a zero z0 Z2 satisfying Re z0 0, z0 # 0, is defined
in the analogous manner.

THEOREM 2.1. Let M be a nonnegative integer and a(t) c + b(t) with b
S(2M; O). Suppose that Z1 {z l, ZN} with z Ofor <=j <-_ N < . Let msbe
the order ofthe zero z, and if Re zj O, assume that mj <- M. Then the solution r(t)
of(1.1) has the form (1.10) where, for each j, p(t) is a polynomial ofdegree at most

m which depends only on a(t), and Ul(t) L(R+; p).
For the differential resolvent r2 we have
THEOREM 2.2. Let the hypotheses of Theorem 2.1 hold with the exception that

the zero set Za in the statement of Theorem 2.1 is now replaced by the zero set Zz.
Then the solution rz(t) of (1.2) has the form (1.10) with both ul(t) and u’(t) in
LI(R +; p).

As an application of Theorem 2.2 we state the following weighted L1-

generalization of the L(R+)-remainder theorem for rz(t) obtained by Hannsgen [7], in
the case where a(t) has a special piecewise linear form.

COROLLARY 2.1. Let o(t) be a weight satisfying (2.1)-(2.3). Let a(t) c + b(t),
where c >- O, and

(2.5)

with to > 0 and

b(t) 8, [1 (nto)-1 min {t, nt0}],

8,>-_0, O< b(O) 8,-- 8<w.
rt--1

Suppose that oo =-X/8 + c 27rk/tofor some integer k, and that

(2.6) nS,p(nto) < .
Then

r2(t) 2y-1 cos oot + u2(t),

where y (36 + 2c)/(8 + c), and both uz and u belong to LI(R+; p).
Corollary 2.1 is an immediate consequence of Theorem 2.2 with M since Z

consists of a pair of simple zeros at +_ io (see [7]), and, as one easily checks,

(2.7)
p(t) b(t) dt <-_ 2-1 p(t) db’ (t)

t02-1 nS, p(nto) <
n=l

so that b S(2; p). Corollary 2.1 reduces to Hannsgen’s result when o(t) in
which case the first inequality in (2.7) becomes an equality.

Remark 2.1. Hannsgen’s result in [8] also permits a certain class of noninte-
grable kernels a(t). Specifically, it follows from his result that, for k 1, 2, (1.10)
holds with uk L(R+) when 1) the kernel a(t) is such that (-1) d aa (t) >- 0 (0 <
< , 0 _<- d _-< 2M 1), la(ZM-l(t)[ is nonincreasing and convex, and a(w) 0; and

2) Zk {z l, ZN} with the zeros on Re z 0 having orders _-< M. (Of course, z
0, =< j _-< N.) The techniques of this paper do not appear to yield a weighted ana-
logue of this result.
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Remark 2.2. As noted above, the assumption that the weight p(t) is such that
p, 0 causes no loss of generality in Theorems 2.1 and 2.2. To state the analogous
results in the case where p, # 0, we must modify condition (2.3) to "exp (p, t)p(t) is
nondecreasing on R +’’. Also, the integral inequalities in the definition of H(M, D; p)
(D -> 1) must be modified to

M exp (p, t)p(t)ld((exp (- p, t)a(t))(D-1)) <

(Condition H(M, 0; p) is unchanged.)
The appropriate form of the kernel becomes a(t) c exp (p,t) + b(t), where b
belongs to the class S(M; p) which now is defined using the modified H(M, D; p)
classes. Finally, Re z _-> p, replaces Re z -> 0 in the definitions of the zero sets Zk.
The more general result is easily obtained from the corresponding Theorem 2.1 or 2.2
by setting pl(t) exp (p,t)p(t), al(t) exp (- p, t)a(t) rkl(t) exp (- p, t)r(t),
and using the operational calculus.

3. Volterra-Stieltjes equations. In this section we consider the scalar linear
Volterra-Stieltjes equations

(3.1) x (R) A(t) x(t s) dA(s) f(t), R+,

(3.2) x’(t) + x (R) A(t) f(t), x(O) Xo, R+.
For a weight p(t) satisfying (2.1)-(2.3), let V+[p] denote the weighted space con-

sisting of functions A(t) that are of bounded variation on R+, normalized to be
left-continuous and vanish at 0, and that satisfy

IIA[I =- p(t)ldA(t)l < .
Recall (see [1, p. 166] or [9]) that A V+[p] may be uniquely decomposed as

(3.3) A(t) hA(t) + SA(t) + gA(t),

where hA is a discrete function, SA is a singular function, and gA is absolutely continu-
ous on each finite subinterval of R+.

For M a nonnegative integer, we consider the class oW(M; p) consisting of those
A V+[p] for which

(3.4) tMp(t)ldhA(t)] < , tMp(t)ldSA(t)] < ,
and

(3.5) ga(t) a(s) ds with a S(M; p).

Here S(M; p) is the class defined in 2. Clearly oW(M + 1; p) oW(M; p) for each
nonnegative integer M.

It follows from the definition of 5(M; p) and Lemma 2.1 that the Laplace-
Stieltjes transform

fi(z) e-zt dA(t)
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is analytic in Re z -> 0, z 0, whenever A oW(M;/9). Hence, the meaning of a zero
of order m <= M of(z) or z + (z) in Re z >= 0, z 0, is clear.

We now state our fundamental result which concerns (3.1).
TrtEOREN 3.1. Let M be a nonnegative integer, and assume that A oW(2M; /9)

and f S(M; /9). Suppose that the only zeros of f(z) in Re z >= 0 occur at z zj,

1 <= j <- N < , and that no zj O. Let m be the order of the zero zj, and if Re zj

O, assume that m <= M. In addition, assume that

(3.6) is bounded in Re z >- 0 except near
the points z, <=j <= N,

and

(3.7) inf IfzA(iy)l

If x is a Borel measurable solution of (3.1) which is integrable on each finite in-
terval, then x has the form

N

(3.8) x(t) , p(t)eZ + xl(t),
j=l

where, for each j, pj(t) is a polynomial ofdegree at most m which depends only
on A and f, and x(t) LI(R+;/9).

We now turn to (3.2). By a solution of (3.2) we mean a function x(t) absolutely
continuous on bounded intervals [0, T], and such that x(0) x0 and (3.2) holds a.e.
on R +.

THEOREM 3.2. Let M be a nonnegative integer, and assume that A @ b(2M;/9)
andf S(M; /9). Assume that the only zeros ofz + f(z) in Re z >= 0 occur at z z,
1 <= j <= N < , and that no z O. Let m be the order of the zero z, and if Re z
O, assume that mj <- M.

Ifx(t) is a solution of(3.2), then x(t) has theform (3.8) with both x(t) andx’(t) in
L(R+; /9).

Theorem 3.2 is obtained from Theorem 3.1 by a method used in [10]. Observe
that a technical hypothesis such as (3.7) is not required in Theorem 3.2.

4. Proofs of Theorems 3.1 and 3.2. The proof of Theorem 3.1 employs a tech-
nique similar to that used to prove the scalar case of Theorem 2.1 of [10]. The prin-
cipal technical difference is treated in Lemma 4.1, which gives some consequences
of 3(M;/9).

LEMMA 4.1. Let P and Q be nonnegative integers such that Q >= P + 1, and let
z satisfy Re z O, z / O. IrA 5e(Q;/9), then the function R(t) R(t; A, P, z), >
O, defined by

(4.1) foR(t) (t- S)P ez(t-s) dA(s) eZra, Pp=0

satisfies R(t) S(Q P 1;/9).
Proof. For simplicity we first assume that P 0. To establish Lemma 4.1 in this

case, observe that if aD @ H(Q, D;/9), <- D <- Q, then successive integrations by
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parts (recall az)(t) 0 on 0 =< _-< 1) and Lemma 2.1 (ii) yield

(4.2)

e(t-s) az)(s) ds z-D ez(t-s) da(DD-1)(S) (t)

ezt gtz)(z) z-v e(-) da-l)(s) c(t),

where

D-1

c(t) -= c(t; D, O) Z-(k+l) a)(t).
k=O

Here a( --- az). From Lemma 2.1 (i) we have a(vk) H(Q, D k; p) for 0 -< k _-< D
1; hence, c(t; D, 0) S(Q; p). Moreover, since a(vv-l) H(Q, 1; p), an interchange
of the order of integration and (2.3) yields

(4.3)

a- p(t)lz-z) e(-) dag’-)(s)l dt

s p(s) lda-1)(s)l <

Combining (4.2) and (4.3) we see that

R(t; aD, O, z) -z- ez(t-s) da(ff-1)(s) ((t; D, O)

belongs to S(Q 1; p).
Now, decompose A oW(Q; p) as in (3.3)-(3.5) with a

H(Q, 0; p), the calculation in (4.3) shows that
z)=0av. Since a0

(4.4) Q-1 p(t) f= e(t-) ao(s) ds dt < ;

hence

R(t; ao, O, z) f e(t-) ao(s) ds H(Q 1, 0; p).

In the same manner R(t; ha, O, z) and R(t; SA, O, Z) both belong to H(Q 1, 0; p).
Lemma 4.1 with P 0 now follows from the linearity of the Laplace-Stieltjes trans-
form.

The proof of Lemma 4.1 for P > 0 is analogous to the proof when P 0, except
for the fact that the calculations become more involved.

As in the P 0 case, we first show that R(t; a), P, z) S(Q P 1; p) when
aD H(Q, D; p), <= D <- Q. In order to prove this, we establish the following for-
mulas (Re z 0, z 0):

(P) t-)(z)ezt

p
P=0

(4.5)
K(t s, z; D, P) e(t-) daV-1)(s),



RESOLVENTS OF VOLTERRA EQUATIONS 893

and

(4.6)
(t s) " ez(t-s) az)(s) ds

K(t s, z; d, P) ez(t-s) da-)(s) c(t; d, P),

for _-< d _-< D, where

P p! (d- + i) tp_z_(a+i)(4.7) K(t, z; d, P) (- 1) (pi)-----5 d
i=0

(4.8) a(t; d, P)=(-1) P P! k=0l (p+k k) z_(p+k+l a)(t)"

To verify (4.5), observe that Leibniz’s rule for differentiating products may be
applied to the expression for 5z)(z) with d D in Lemma 2.1 (ii), to yield

(4.9) a)(z) fo T(s, z) e- da(DD-1)(S),

where T(s, z) T(s, z; D, k), 0 =< k _-< P, is defined by

k (k) (D- +i)!
T(s, z) , (-1)i (D 1)

i=O

(-- s)k-i z--(D+/).

Then, substituting the right side of (4.9) for each -P)(z) on the left side of (4.5), we
obtain (after an interchange of the order of summation, some algebra, and an appli-
cation of the binomial theorem to (t s)’-i) formula (4.5) with K(t, z; D, P) defined
as in (4.7).

The proof of formula (4.6) is by induction on d. To obtain (4.6) when d 1, ob-
serve that an integration by parts using the functions ez(t-s) and (t s) aD(s) yields

(4.10) ez(t-s) az)(S) ds .-1 fo e(-s) daz)(S) Z-1 az(t),

and

(t s) ez(t-s) ag(s) ds

(t s) ez(t-s) daz)(s) kz-1 fo (t s)- ez(t-s) aD(s) ds,

for k ->_ 1. Then, P successive applications of (4.11) followed by an application of
(4.10), yields (4.6) when d 1 with K(t, z; 1, P) and a(t; 1, P) defined in (4.7) and
(4.8), respectively.

Next, assume formula (4.6) holds for some d, -< d < D, and deduce (4.6) for
d + 1. To do this, recall that a)(s) ds daba-1)(s), and use the method just em-
ployed to deduce (4.6) when d to replace each term in the integral

o
K(t s, z; d, P) ez(t-s) a(va)(s) ds

by the corresponding sum of integrals with measure da(s), and with a boundary
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term involving a)(t). The resulting boundary term becomes

_(_ 1) P p! . z_(p+d+l a)(t) d + a(t" d, P) -a(t; d + P)
i=o

d-

where the equality follows from the identity

(4.12)
m m +k=m

Also, the double sum in the resulting integral term may be reduced to K(t s, z; d +
1, P) after some elementary algebra, a change of the variable of summation in the
inner sum, an interchange of the order of summation, and use of the identity (4.12).
Thus (4.6) holds for d + with K(t, z; d + 1, P) and c(t; d + 1, P) defined in (4.7)
and (4.8), respectively, and our inductive proof of formula (4.6) is complete.

Combining (4.5), (4.6) (with d D), and the definition (4.1) of R, we see that
when av H(Q, D; p), <- D <= Q,

(4.13) R(t; aD, P, z) ft K(t s, z; D, P) ez(t-s) da(Dn-1)(S) c(t; D, P).

Observe that ao-1) H(Q, 1; p); hence, an interchange of order of integration and
(2.3) yield

(4.14)

f s) eZ(t-s) da(nn-1) (S)(t

l-P-1 O(t) s [daDD--1)(S)I dt

dt

s+- p(s)Ida(DD-1)(s)l < (0 <- k <-_ P).

From (4.7) and (4.14) we see that the integral term on the right side of (4.13) belongs
to H(Q P 1, 0; p). Combining this with the fact that c(t; D, P) S(Q; p), we
obtain R(t; aD, P, z) S(Q P 1; p) when aD H(Q, D; p), <= D <-_ Q.

To complete the proof of Lemma 4.1 when P > 0, decompose A oW(Q; p) as
in (3.3)-(3.5) with a ,OD=oaD. The formula

gt(ok)(z) (-s) e-zs ao(s) ds, Re z -> 0, 0 -< k <_- P,

together with the binomial theorem, yields

R(t; ao, P, z) ft (t s) P ez(t-s) ao(s) ds;

hence, the estimate in (4.14) with k P, yields R(t; a0, P, z) H(Q P 1, 0; p).
Similarly R(t; ha, P, z) and R(t; SA, P, z) both belong to H(Q P 1, 0; p). Thus,
linearity of the Laplace-Stieltjes transform yields R(t; A, P, z) S(Q P 1; p),
and Lemma 4.1 is established.

Proof of Theorem 3.1. The proof is by induction on M. If M 0, then A
ow(0; p) V+[p], f S(0; p) LI(R+; p), and i(z) has no zeros on Re z 0;
hence, the result follows from the scalar case of part (i) of Theorem 2.1 of [10].

Now fix M -> 0 and assume that Theorem 3.1 holds for all nonnegative integers
less than or equal to M. We show that it holds for M + 1. Recall that S(M + 1; p) ==__
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S(M; p) and 3(2M + 2; p) 3(2M + 1; p); hence, we may as well assume that
i,(z) has at least one zero of order M + on Re z 0. Let z l, zL be all of the
zeros of (z) on Re z 0 having order M + 1, and define

(4.15) Sj(t) (zj + 1) eZ ds

Also, let J(t) be the unit step function

(1 <=j<=L,tR+).

J(0) 0, J(t) 1, (t > 0),

and put

(4.16) B(t) J + $1) (R) (R) (J + SL)(t), R+,

(4.17) C(t) a (R) B(t), R+.
An elementary Laplace transform argument [9, p. 604] shows that

L

(4.18) B(t) J(t) + ., S(t),

where
L

H (z + 1)/(z z).

This fact combined with (4.17), (4.15) and i,(z) 0, (1 =< j =< L), yields

c

-1 (zj + 1)(e e-5 dA(s) + A(t))C(t) A(t) z
j=l

and, consequently,

(4.19) dC(t) dA(t)

_
oz(z + l) e-Z dA(s) e dr.

.=1

Since A(t) (2M + 2; O) and (z) 0, (1 <_- j _-< L), R(t; A, 0, z) defined in (4.1)
belongs to S(2M + 1; O) and satisfies

R(t; A, O, z) eZ(-s dA(s), (1 _-< j _-< L);

hence, by (4.19), C(t) o(2M + 1; 0).
From (4.16) and (4.17) we have

z+l
(4.20) 7(z) (z)(z) fi (z) H z zj

for Re z => 0, z # z(1 -<_ j -<_ L). Thus, in Re z > 0 7(z) has the same zeros (includ-
ing order) as A(z); on Re z 0 the zeros of A(z) of order M + are zeros of 7(z)
of order M, and the remaining zeros of A(z) are zeros of 7(z) of the same order.
Moreover, it follows from (4.17), the expression for (z), (4.18), and Taylor’s
formula with remainder, that

(4.21) ;(M)(z Oj(Zj .qt_ 1)(M+I)(zj) < j < L.M+I

From (4.20), we see that (3.6) holds with i, replaced by 7. Moreover, if we
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express C hc + Sc + gc as in (3.3), it follows from (4.19) that hc
SA; hence, (3.7) holds with A replaced by C.

Now define

where

hA and Sc

xl(t) x(t) g(t),

L

g(t) (z) u e’,
j=l

with

(4.22) /3j (M + 1)/A(+l)(zj).
From (4.17) and (3.1) we have

(4.23) x (R) C(t) fl(t), R+,
with

fl(t) =-f(R) B(t) g (R) C(t), R+.
In order to apply the inductive hypothesis to (4.23), we must show that fl

S(M; p). Combining (4.18) with the definition off yields

(4.24) f(t) f(t) + , c(z + 1) eZt-s) f(s) ds g (R) C(t),
=1 0

where

(4.25) g (R) C(t) , (zj) (t s)M eZ(t-s) dC(s).
j=l

Since t(k)(z) 0, 0 <= k <- M 1, 1 <_-j -<_ L, and C 9(2M + 1; p), Lemma 4.1
yields that

o"(t s)M e(-) dC(s) R(t; C, M, z) + eZ (M)(z),

with R(t; C, M, z) S(M; p), <= j <-_ L. Combining this with (4.21), (4.22) and
(4.25), we obtain

L

(4.26) g (R) C(t) , j(z + 1)j(z) eZ S(M; p).
j=l

Also, since f S(M + 1; p), we may set F(t) fro f(s) ds and apply Lemma 4.1 to
get that

(4.27) R(t; F, 0, z) e-f(s) ds e (z) S(M; O)

for _-< j _-< L. Combining (4.24), (4.26), (4.27), and f S(M + 1; 0), we see that
fl S(M; p).

Our inductive hypothesis applied to (4.23) yields

N

(4.28) xl(t) p)(t) eZ + x(t),
j=l

where, for each j, p(t) is a polynomial and xl(t) LI(R+; p). Moreover, the degree
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ofp) (t) is at most M for -< j =< L, and at most mj for the remaining zeros zj

of i, (z) in Re z _-> 0. (Of course, there is no sum in (4.28) when L N and M 1.) It
follows from our definitions of x and g that x has the form (3.8), with pj(t) p](t) +
(zj)tt for _-< j _-< L, and p(t) p(t) for the remaining zeros z of (z). This
completes the proof of Theorem 3.1.

It would be of interest to generalize Theorem 3.1 to a result that includes linear
Volterra-Stieltjes systems. We remark that the technique employed in 10] to deduce
the systems case of [10, Thm. 2.1] from the corresponding scalar case of the same
theorem is not directly applicable in the setting of the present paper. The difficulty is
caused by the fact that the classes oW(M; p) are not closed under convolution multi-
plication.

The following elementary lemma is needed for our proof of Theorem 3.2.
LEMMA 4.2. Let Q be a nonnegative integer and set G(t) e-t, R+. IfA

oW(Q; p), then G (R) a(t) S(Q; p).
Proof. We begin by showing that whenever aD H(Q, D; p), <= D <- Q, then

(4.29) bD(t) =- G * aD(t) H(Q, D; p).

Here G, aD(t)=-fro G(t- s) aD(S) ds. To prove (4.29), differentiate bD (D-
1)-times, and obtain, using aD(t) 0 on 0 --< --< 1, b-l(t) G * a-l)(t). Inte-
grating the last expression by parts yields

b(DD-1)(t) a->(t) G(t- S)da-l)(s);

hence,

db-)(t) G(t s) da-l)(s) dt.

Since aD(t) 0 on 0 <- _-< 1, we get, after an interchange of the order of integration
and a change of variables, that

(4.30)
o

p(t)

<- (t + s) a p(t + s) G(t) dt [da-a)(s)l.

UsingA H(Q, D; p), (2.1), and (2.2), we see that the expression on the right side
of (4.30) is finite, and (4.29) is established.

Now decompose A oW(Q; p) as in (3.3)-(3.5). It follows from the calculation
in (4.30) and (2.1), (2.2), (3.4) and ao H(Q, 0; p), that

bo(t) G (R) [ha + Sa](t) + G * ao(t)

belongs to H(Q, 0; p). Combining this with (4.29) completes the proof of Lemma 4.2.
Proof of Theorem 3.2. The proof uses a scalar version of the technique em-

ployed to deduce Theorem 2.2 of [10], together with Lemmas 4.1 and 4.2. Namely,
let G(t) e-t and convolve both sides of (3.2) with G(t) to obtain

(4.31) x’ , G(t) + x , G (R) A(t) G , fit), x(O) Xo, R+.
Integrate the first term on the left side of (4.31) by parts, and rearrange the resulting
equation to rewrite (4.31) as

(4.32) x (R) B(t) k(t),
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where

k(t) G f(t) + x(O) G(t),

and

B(t) J(t) + b(s) ds,

with J the unit step function and

b(t) -G(t) + G (R) A(t).

Since G H(Q, 0; O) for any (2, Lemma 4.2 with Q 2M yields b
hence B Se(2M; 0). Similarly, we may set F(t) fo f(s) ds, and apply Lemma 4.2
with Q M to F to get G ,f S(M; 0); hence k S(M; 0).

From the definition of B, we see that h(t) J(t) and s(t) 0 in the decompo-
sition (3.3) of B. Also, the definitions of G, B and b show that (z) (1 + z)-(z +
(z)) for Re z 0; hence, (z) and z + (z) have the same zeros (including order) in
Re z 0. Thus, Theorem 3.1 may be applied to equation (4.32) to yield that x(t) has
the form (3.8) with Xl(t) LI(R+;

It remains to show that x;(t) U(R+; 0). Let w(t) denote the sum on the right
side of (3.8), and use (3.8) and (3.2) to write

x;(t) f(t) Xl A(t) w(t) w A(t).

Since f and x @ A both belong to L(R+; p), x(t) LI(R+; p) follows from

(4.33) w’(t) + w A(t) LX(R+; p).

To verify (4.33), first let z be a zero of z + (z) of order m satisfying Re z 0.
By Lemma 4.1,

R(t; A, , z) (t s) e(-s dA(s)

belongs to S(2M k 1; p) L(R+; p) for 0 k m 1. Combining this with
the fact that z is a zero of z + (z) of order m, we deduce that

(4.34) (t e) + f (t s) e dA(s)

belongs to LI(R+; p) for 0 k m 1; hence the terms in w’ + w @ A contrib-
uted by zeros of z + (z) on Re z 0 belong to La(R+; p).

The proof that the terms in w’ + w @ A contributed by zeros of z + (z) in Re
z > 0 also belong to L(R+; p) is even easier. For if z, Re z > 0, is a zero of z +
(z) having order m, then the expression (4.34) may be written as

(4.35) (t s) e(- dA(s), 0 N k m 1.

Here we have used the binomial theorem, the formula for >(z) in Re z > 0, the def-
inition of a zero of z + (z) of order m, and the fact that the integral (4.35) con-
verges since Re z > 0. Using (2.2) and Re z > 0, one easily checks that the integral



RESOLVENTS OF VOLTE.RRA EQUATIONS 899

(4.35) belongs to LI(R+; p). This completes the proof of (4.33), and Theorem 3.2 is
established.

5. Proofs of Theorems 2.1 and 2.2. In this section we deduce the theorems in
Section 2 from those in 3.

Proof of Theorem 2.1. When c 0, Theorem 2.1 follows immediately from
Theorem 3.1 by setting A(t) J(t) + ft a(s) ds, where J is the unit step function,
and rewriting (1.1) as

(5. l) rl (R) a(t) a(t), R+.
To establish Theorem 2.1 when c # 0, convolve (1.1) with G(t) e-t, subtract

the resulting equation from (1.1), and use a(t) c + b(t) to obtain

(5.2)

where

r(t) + ra aa(t) f(t), R +,

al(t) b(t) b G(t) + (c 1)G(t),

f(t) a(t) + G(t).

Lemma 4.2 with Q 2M applied to B(t)=-fto b(s) ds yields b. G S(2M; p);
hence al and f both belong to S(2M; p). Define Aa(t)= J(t)+ fto a(s)ds, and
rewrite (5.2) as

(5.3) r (R) a(t) f(t), R +.
From the definitions of A1, a and G, we see that

A(z) (1 (z))(1 + fi(z)) + c,(z)
z(1 + z) -1 (1 + h(z)), Re z >_- 0.

In particular, (0) c 0; hence,

{ZIAI(Z 0, Re z _-> 0} Z,

including order of the zeros in either set. Thus, Theorem 3.1 applied to (5.3) yields
that rl has the form (1.10) with u(t) LI(R+; p), and Theorem 2.1 is established
when c 0.

Proof of Theorem 2.2. When c 0, set A(t) fto a(s) ds, rewrite (1.2) as

(5.4) r(t) + r2 (R) A(t) O, r2(O) 1, R +,
and apply Theorem 3.2 to (5.4) to see that rz satisfies the conclusion of Theorem 2.2.

If c 0, convolve (1.2) with G(t) e -t, and integrate the term r’ G(t) by parts
to obtain

(5.5) rz(t) r G(t) + rz a G(t) G(t), R+.

Next, subtract (5.5) from (1.2) and use a(t) c + b(t), to get

(5.6) r2’(t) rz(t) + rz az(t) -G(t), rz(O) 1, R+

where

a2(t) b(t) b G(t) + (1 + c) G(t).

As in the proof of Theorem 2.1, a S(2M; p); hence, Az(t) -J(t) + fro az(s) ds
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belongs to (2M; p), and (5.6) may be rewritten as

(5.7) r(t) 4- r2 (R) A2(t) -G(t), r(O) 1, R+.
One easily verifies that .(z) z(1 / )-1( / ()); hence (0) c # 0, and

{z[z + zi2(z) 0, Re z _-> 0} Z2
(including order). Now apply Theorem 3.2 to equation (5.7) to obtain the desired re-
sult.
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PERIODIC SOLUTIONS OF A NONLINEAR AGE-DEPENDENT
MODEL OF SINGLE SPECIES POPULATION DYNAMICS*

K. E. SWICK?

Abstract. A system of nonlinear differential and integral equations, derived in an earlier paper as a
model of single species population dynamics, is studied under the general assumption that the birth rate
decreases or the death rate increases as the total population increases. Lower and upper uniform asymp-
totic bounds are determined for solutions of the model, and sufficient conditions are determined for the
existence of periodic solutions.

1. Introduction. The renewal equation, as developed by Lotka [8], has been
used extensively by demographers as a mathematical framework for determining the
future female birth trajectory in a closed population when the initial population dis-
tribution and the birth and death moduli are known. In any particular application, the
initial population distribution can easily be determined from census data. Present
and past values for the birth and death moduli can also easily be determined from life
tables, which are derived from existing census data, see Keyfitz [7, Chapt. 2]. To ac-
curately determine the future birth trajectory, it is required that one know the birth
and death moduli for future time; information which is, of course, not available. To
obtain future birth trajectories, it is normally assumed that these moduli remain un-
changed in the future, but since these rates can often change significantly, an accu-
rate prediction of the future birth trajectory in these cases must accommodate these
fluctuations.

Since it is impossible to know precisely the future mortality and maternity rates
for any population, one must develop birth and death moduli which determine future
rates in response to given exterior conditions; that is, the birth and death moduli are
nonlinear functions of these variables.

Frauenthal [2] and Rorres [10] have looked at nonlinear generalizations of
Lotka’s model in which the birth moduli react to the cohort size. These models re-
flect an observation of Easterlin [1, Chapt. 5] that women born in large cohorts tend
to produce fewer children than women born in small cohorts.

A population subject to limited resources or space often exhibits a decline in
birth rate or increased mortality as a result of an increase in total population. In [3]
Griffel derives an age-dependent model in which the mortality function exhibits this
property, and determines certain asymptotic properties of solutions of this model.

Gurtin and MacCamy [4] derive a model, based on a partial differential equation
proposed by Von Foerster 14], in which both birth and death moduli are functions of
age as well as total population. In [13] this author derived a model, based on the
Gurtin and MacCamy model, but satisfying the additional conditions: (i) there is a
maximum life span L in the population, (ii) there is a time lag - -> 0 between concep-
tion and birth, and (iii) the birth and death moduli are also time-dependent. Proper-
ties of solutions were determined under the basic assumption that the birth rate in-
creases with increasing population, a situation which occurs, for example, in the
spread of certain contagious diseases. Threshold levels were established determining
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was supported in part by the National Institutes of Health under Grant GM-24326.

? Department of Mathematics, Queens College, City University of New York, Flushing, New York
11367.

901



902 . E. SW.ICK

situations under which the population disappears and under which it increases
without bound as -- .We continue here the study of the model derived in 13], with the exception that
it will be assumed here that L + .

In 2 we sketch the derivation of the model to be studied. In 3, upper and
lower asymptotic bounds are determined for solutions of the system studied here
under the general assumption that the birth rate decreases and/or the mortality rate
increases when the total population increases. These results enable the use of an
asymptotic fixed point theorem of Horn to establish the existence of periodic solu-
tions of the system.

The existence of periodic solutions in non-age-dependent population dynamics
is well known, and has been studied extensively. For models in which the mortality
is age-specific and the maternity dependent on the size of the population, the exist-
ence of periodic solutions was established in [11] and [12]. Little is known, however,
about the existence of periodic solutions in age-dependent dynamics, although such
information is quite useful for a full understanding of the nature of the dynamics of a
population.

In [5] Gurtin and MacCamy examined the autonomous system derived in [4]
under the assumption that mortality is only dependent on the population size. They
found there for two choices of the maternity, which were functions of age only, that
the system had no nontrivial periodic solutions. They conjecture that the system has
no closed orbits, under reasonable assumptions, even when maternity is
population-dependent. In 5 we give sufficient conditions, via a Hopf bifurcation,
for the existence of periodic solutions for one of the cases studied in [5]. This condi-
tion requires that maternity be also population-dependent.

2. The model. If we assume that p(a, t) is the population at time in the age in-
terval (a, a + da), and P(t) is the total population, then

(2.1) P(t) o(a, t) da.

Ifwe set Do(a, t) lim (l/h) (o(a + h, + h) o(a, t)), h O, thenD0 is the
rate at which the population of age a at time is changing with respect to time. If
d(a, t) is the number of individuals of age a who die at time t, per unit age and time,
and if we assume that d(a, t) )t(a, P(t), t)o(a, t), then we have Von Foerster’s
equation,

(2.2) Do(a, t) + )(a, P(t), t)o(a, t) O.

As a result of (ii) and (iii), the birth modulus/3 depends on the size of the popula-
tion at time 7, and assuming that the birth process is described by the "renewal
equation," we have

(2.3) B(t) 0(0, t) B(a, P(t r), r)o(a, r) da.

Here B(a, P, t), the birth modulus, is the average number of offspring per unit popu-
lation produced, at time t, by an individual of age a, 0(0, t) B(t) is the birth rate,
and )t, the death modulus, is the death rate at time t, per unit population of age a.

The model studied here is the system of equations (2.1)-(2.3) with the initial
condition:

(2.4) p(a, t) (a, t) a >= O, r <= <= O.
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It was shown in [13] that if we set P(t) f (a, t) da and B(t) (0, t) r <-
-<_ 0, then

p(a, x)=

p(a- t, -x) exp X(a + s. P(s x), s x) ds fora t,

(2.5)
B(t-x- a) exp X(s,P(t-x- a + s),

t-x- a + s) ds ] fora < t,

where x 0 or r. Substituting (2.5) into (2.1)-(2.3), we find that (2.1)-(2.3) is equiv-
alent to

(2.6a)
P(t) B(a) exp X(s a, P(s), s) ds da

+ (a, 0) exp X(s + a,P(s),s)ds da

B(t) B(t a, P(t r), r)B(a r)

exp X(s a,P(s r),s- r) ds da

(.b

+ B(t + a, P(t r), r)(a,

exp X(s + a,P(s- r),s- r) ds da.

It can be shown that (2.1)-(2.4) has a unique solution, existing for 0, if the
following assumption is satisfied. (See [4] for the case r 0 and [13] for r > 0.) Let
I0 [-r, 0] and I [-r, ).

H0: L(R+ x I0) is piecewise continuous; X, C(R+ x R+ x I), Xe(a,
P, t) and e(a, P, t) exist for a 0, P 0, N r and X(., P, t), B(’, P, t), Xe(’, P, t),
Be(’, P, t), as functions of P and t, belong to C(R+ x I L(R+)) for 0, X 0,
and B 0; and sup B < .

We will assume, henceforth, that H0 is satisfied.
By o(a, t; ) we will mean the solution of (2.1)-(2.4), and by (P(t; ), B(t; ))

the associated solution of (2.6), generated by the initial function .
3. Cmraetin fslmis. We consider first the case r 0. Let (P, B) be a pair

of functions satisfying (2.6), with r 0, for 0. Differentiating (2.6a) and substi-
tuting the ght hand side of (2.6b) for B(t) in the result, we get, noting that if r 0
then p(a, t) p(a),

P’(t) o
(3.1)

[/3(t- a, P(t), t) X(t- a, P(t), t)]B(a)

exp h(s a, P(s), s) ds I da

[/3(t + a, P(t), t)- X(t + a, P(t), t)](a)

exp h(s + a,P(s),s)ds da, fort>0.
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Equation (3.1) provides a direct means of calculating bounds for solutions of
(2.6). In particular, if/3(a, P, t) )(a, P, t) =< e < 0 for a, ->_ 0 when P _-> P2 -->
0, then it follows from (3.1) and (2.6a) that P’(t) <= -eP(t) when P(t) >= P2. Since
when - 0, ][11 f(a) da P(0; ), it follows that for any M > 0 there is To ->_ 0
such that P(t; ) <- P for => To if [[qvl[ -< M. A similar situation holds for the lower
bound.

The following theorem gives some rather general conditions under which the so-
lutions of (2.6) contract uniformly to a given set when z 0.

THEOREM 1. Suppose z O, Ho is satisfied and there are positive constants
e and P1 < Pz such that (a, P, t) )(a, P, t) >= e for a, >= 0 ifO <= P <= P1 and
(a, P, t) )(a, P, t) <-_ efor a, >= 0 ifP >= Pz. Then there is To >= O, depending
only on [[1, e, P1, and P such that PI <= P(t; ) <= P2for >= To.

Furthermore, if/31a(P) <= (a, P, t) <= 2az(P) for a, P, >= O, then

(3.2) /31a1(P(t; ,;))P(t; ) <- B(t; ) <-/32az(P(t; ))P(t; ) for _-> 0.

Equation (3.1) can also be used to show that the solutions of (2.6) behave as we
would expect when the birth rate always exceeds the death rate or vice versa.

THEOREM 2. If z 0, H0 holds and (a, P, t) )(a, P, t) >- > Ofor a., P, >=
O, then for any , P(t; ) as . If(a, P, t) )(a, P, t) <= e < Ofor a, P,

>-_ O, then for any P(t; ) -- 0 as .
When z > 0, the equations which generate the upper and lower bounds for solu-

tions of (2.6) are delay differential equations. As would be expected, additional
structure is required for/3 and to get the contraction of solutions described for z
0 in this case.

To this point the biological motivations for 3 and have been ignored. When
space and/or natural resources are limited, a common reaction is that an increase in
total population produces a decrease in the birth rate and/or an increase in the death
rate. Theorem can easily be applied in such a situation, and can just as easily be ap-
plied when this situation holds only for very small and very large values of P. With
this condition in mind, we add the following assumptions about/3 and .

Hi" There are functions c, y C(R+, R+), where c(P) is a nonincreasing and
c(P)P and y(P) are nondecreasing functions of P, such that 0 </3 _-</31(P) -</3(a,
P, t) <= fla(P) <= fi and 0 < A <-- )y(P) <= X(a, P, t) <-_ )y(P) -<_ X for a, P --> 0 and
t>__-z.

Since qv LI(R+ I0) when z > 0, we take

]]] sup (a, t) da sup P(t; ).
tIo tIo

We also define

(a, t) da inf P(t; ).
tIo

The following lemma provides the information needed to establish contractive
bounds for solutions of (2.6) when z > 0.

LEMMA 1. If H0 H are satisfied and if [1] <- M and p <- M, then

P’(t; ) -< za(P(t z; ))P(t z; )

)ly(P(t; ))P(t; ) + 2/3M exp (-_ht),
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and

P’(t; ) >-/31c(P(t ’; ))P(t .c;

h2y(P(t; ))P(t; ) /3M exp (-At)

fort>O.
THEOREM 3. Suppose - >= O, H0 H1 are satisfied, 0 < MI <= I[11, --< I111 -< M2,

9 <- Mz and there are positive constants e, P1 < P such that

(3.3) fia(P) )k27(P1) 8 and fi2a(P2) )kiT(P2)

Then there is To > O, depending only on M, M2, e, P and P2 such that

P <-_ P(t; ) <-P2 fort >_- To,

and

fla(P(t -; ))P(t -; ) <-_ B(t; ) <- fla(P(t -; ))P(t -; ), > O.

A proof similar to that used to establish Theorem 3 can be used to extend
Theorem 2 to the case > 0.

THEOREM 4. If Ha is satisfied then Theorem 2 holds for - >-_ O.
One of the most concise, but yet realistic, realizations for/3 and ) of the assump-

tion of a finite carrying capacity for the environment is the s shaped curve given by
y (bx + c)/(x + d), where b, c, d > 0. We assume next that/3 and )t are bounded
by such functions of P as follows:

H2: There are positive constants/3, X, l, 2, and b, c, l, 2, 3, such that
/3aa(P) <- fl(a, P, t) <- fl2a(P) and .IT(P) =< )t(a, P, t) _-< )t2T(P) for a, P _-> 0, and

_-> --, where c(P) (boP + b)/(P + b2), y(P) (coP + c)/(P + c2), bob2 <=
b l, and c <-_ COC2.

We will say that solutions of (2.6) uniformly approach the set [P, P.]
[B, B2] if for any e > 0 and M > there is To > 0 such that if 1/M <-_ I1 ,11, <- I1 ,11 --<
M and <_- M then (P(t; ), B(t; )) [P1 e, P2 + ] [B1 , B2 + 8] for _>-
To.

The following is a direct consequence of Theorems 3 and 4 since H. implies H1.
THEOREM 5. Assume >-- 0 and H0, He are satisfied.

(i) If blfiz/be < Cl)tl/Cz, then (P(t; ), B(t; ))-- 0 as
(ii) If bofi > c0X, then P(t; ), B(t;
(iii) If bofiz < Co)tl and bafil/bz > ca)t/cz, then the solutions of (2.6) uniformly

approach the set [P1, P2] x [flPlt(P1), flzPza(Pe)], where P1, Pe are the unique
positive solutions of fixc(P) Xy(P) and fizt(P) ly(P) respectively.

4. Periodic solutions. Since a periodic solution in a population model represents
a state of equilibrium for the system described by the model, it has both theoretical
and practical importance. We can use the preceding results along with an asymptotic
fixed point theorem of Horn [6] to establish the existence of a periodic solution of
(2.1)-(2.4).

We will need the following:
Ha: The functions/3 and h satisfy a Lipschitz condition in each variable for a,

P>-0, andt >=--.
H4: There is to > 0 such that/3(a, P, + to) fl(a, P, t), and h(a, P, + to)

X(a, P, t), for a, P -> 0 and ->_ --.
The key condition in the application of Horn’s theorem is that solutions of

(2.1)-(2.4) contract uniformly from a given set in L(R+ [--, 0]) to a smaller set
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contained within the original set. Necessary conditions for these contractions are
contained in each of Theorems 1, 3 and 5. Condition Ha is a smoothness condition re-
quired for the application of Horn’s theorem; it says that/3 and X do not vary "too
fast," a situation which is usually the case in nature.

THEOREM 6. Suppose z >-_ O, H0, H, H and H4 are satisfied, o > z, and there
are positive constants P1 < P2 such that /1o(P1)- )k2"Y(P1) > 0 and /2a(P2)-
)kiT(P2) < 0. Then there is a positive periodic solution p(a, t; () of (2.1)-(2.4) of
period o.

Also from the proof of Theorem 6 we have:
THOaM 7. If the hypotheses of Theorem 6 are satisfied (H4 is not needed),

then the solution p(a, t; ) of(2.1)-(2.4) is a continuous functional of the function .
Theorem 3 says that we need look only at (P, B) [P1, P2] [/IPla(P1),

2P2a(P2)] to find the salient features of the model. Theorem 6 describes a state of
equilibrium within this set. Two obvious questions are left unanswered; namely, is
the periodic solution unique, and if it is, do nearby solutions converge to it as ?

5. Periodic solutions when (2.1)-(2.3) is autonomous. When z 0 and/3 and )

are independent of t, (2.1)-(2.4) reduces to the system derived by Gurtin and Mac-
Carny [4]. When it is assumed further that )(a, P) )(P), these authors showed in
[5] that the system reduces to systems of ordinary differential equations. In particu-
lar, they showed that if g satisfies g(a)p(a, t) - 0 as a - , and

then

G(t) g(a)p(a, t) da, H(t) g’(a)p(a, t) da,

0 + )(P)G- g(O)B H.

If it is assumed that )(a, P)= )(P) and fi(a, P)= fi(P)e-‘a, a > 0, then
(2.1)-(2.3) reduces to the following pair of differential equations:

[’ )(P)P + fi(P)G,
(5.1)

( [-h(P) + fl(P) a]G,

where B fi(P)G.
When fi(a, P) fi(a)ae-"’*, (2.1)-(2.3) reduces to the system

P -h(P)P + fl(P)A,

(5.2) ( -[h(P)+ a]G + fi(P)A,

A -[)(P) + a]A + G,

where B fl(P)A and G f e-sap(a, t) da.
It is shown in [5] that if fl(P) rio, then neither (5.1) nor (5.2) can have closed

orbits; i.e., (2.1)-(2.4) cannot have a periodic solution. The authors conjecture that
the general system (5.2) has no closed orbits.

We show next that if fl(P) is not constant, then closed orbits can occur for (5.1).
it will be assumed that ),/3 Ca(R+), and that )(P) )0 q(P 1) + )kl(P 1)
and (P) fl0 r(P 1) + /I(P 1); here )0,/30 are positive, )1(0) 0 )(0),
and 1(0) 0 fi(0), i.e., )k and 1 contain only higher order terms in (P 1).
System (5.1) has the positive equilibrium (P, B) (1,)0/fi0) if and only if/30 a +
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)to. Setting x P and y G h0//30, reduces (5. 1) to

Jc (q )to- hor/o)X + oY + gl(x, y),

3 (ho/flo)(q r)x + gz(x, y),

where gl and g2 contain only higher order terms in x and y.
The characteristic equation of the linear part of (5.3) is z2+

hor/Bo)z + Xo(r q) 0, which has roots

( hoT) /( )k0r)z
2 )to- q +--0 +--- )to- q +---0 4 ho(r- q).

--q+

If r > floho/a, then r > (h0/fl0)(fi0 + r) -= q,; Re (z) is negative for q < q, and posi-
tive for q > q,, and at q q, z +--iX/Xo(r q,). Since d/dq Re (z)) 1/2, a Hopf
bifurcation occurs at q q, to a periodic solution of (5.1) of period
27r/X/h0(r q,). See e.g. [9]. It is also easily seen that Re (z) < 0 for q < q, as
long as z is complex, and both roots are negative if q < q, when the roots are real.

THEOREM 8. Suppose h, Ca(R+), and admit the preceding expansion where
)to > O, o c + )to and r > fi0X0/c. Then the equilibrium (1, ho/Bo) is asymptoti-
cally stable for q < q, and bifurcates at q q, to a periodic solution of (5.1) of
period near 27r/X/h0(r q,).

Gurtin and MacCamy [5] assumed fl(P) /30; in that case r 0, and it is not
possible to get closed orbits, as they showed. As was noted earlier, one would
usually expect h to be an increasing function of P, while the periodic solutions occur
here only when X is a decreasing function of P near P 1. There are, however, rea-
sonable applications of this result, for example the case examined by Gurtin and
MacCamy [5, Fig. 4], where it is assumed that h is large for small and large P and
relatively small between these extreme values of P.

It is not known whether (2.6) can have periodic solutions when (2.6) is auton-
omous, h is an increasing and/3 a decreasing function of P.

Appendix.
Proof of Lemma 1. Equation (2.6b) can be rewritten in the form

B(t + r) (t a, P(t), t)B(a) exp h(s a, P(s), s) ds da

(t + a, P(t), t)p(a, O) exp

fl(t a, P(t), t),p(O, a) exp

(t + " + a, P(t), t)(a, -r)

h(s + a, P(s), s) ds ]da
)t (s a, P(s), s) ds I da

exp h(s + a,P(s- r),s- r) ds
.tO

(t + a, P(t), t),p(a, 0) exp h(s + a, P(s), s) ds da.

da

Since h >_- _)2, > 0, 0 </3 <-/3 <_-/3, 0 -< -< M, and I1 11 M, we get the inequalities
given in Lemma 1.

Proof of Theorem 4. For a fixed , consider P(t) P(t; ) for -_> 0. It follows
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from (3.3), Lemma 1, and the fact that a(P) is a nonincreasing and a(P)P and y(P)
are nondecreasing functions of P, that P’ (t) _-< -ePz if P(t) >- P and P(t z) <-
P(t). Nowf(x, y) a(x)x ?ly(Y)Y is a continuous function ofx and y, and since
f(x, y) <- -ePz for 0 -< x -< y and Pz _-< y _-< M, it follows that there is > 0 such
thatf(x,y) <--Pze/2ifx_-<y + 8andP-<y-<M.

Now consider P(t) for -> to > z, and assume that supi P(to + s) > Pz. At
each point > to, one of the following must hold: 1) P(t) < Pz, 2) P(t) < P(t z)

or 3) P’(t) <= -Pze/2. It follows that if rain (, Pze/2) and P. max (P,
supo P(to + s) ), then P(t) < sup P(to + s)for > to, and P(t) <-P. for _->

to + z. This argument can be repeated sufficiently often, (the next iteration would
start at to + 27), to find Ta > To, depending only on e, Pz and Mz, such that
P(t) < P for T z -< _-< T1. Suppose now that P(t) P for some tx TI, and
we can assume that P(t) < Pz for T z _-< < t. Then, since P(t z) < Pz
P(t), it follows that P’(ta) < -Pze/2, which is clearly impossible in view of the
choice of tx. It follows that P(t) < Pz for > T.

The proof establishing the lower bound is similar.
Proof of Theorem 3. Since Hz implies HI, it is easily seen that i) and ii) follow

from Theorem 2, and that Theorem 3 and the inequalities given in iii) imply that the
solutions of (2.6) approach a set of the form given. To see that PI and P give such a
set, note that after simplifying, the equations/la(P) )tT(P) and a(P) )kiT(P)
can be put in the form AP + AP + Aa 0 and A4P2 + AP + A 0, respec-
tively. Using H0 and the inequalities given in iii), we can show that A < A4 < 0 %
Aa < A. It follows that each equation has one positive root, and that P1 < P2.

To establish Theorem 6, we need the following:
LEMMA 2. Horn [6]. Let So C Sa C S2 be convex subsets of a Banach space X

with So, S2 compact and $1 open in S2. Let T" S2 X be a continuous mapping
such that for some integer rn > 0, T(S1) C Sz, 0 -<j -< rn 1, T(Sa) C So, rn <-
j <= 2m 1. Then T has a fixed point.

Proof of Theorem 6. Let X be the Banach space of continuous functions in
LI(R + x I0). Since the hypotheses of Theorem 6 satisfy Theorem 3, if 0 < M1 <
P1 < Pz < Mz and if X with M =< II l], --< I1 ,11 --< Mz, then M --< P(t; ) <-_ Mz
and lMlOz(M1) -< B(t; p) <- Mza(Mz) for _-> 0. It follows that M1 _-< IIo ( ,)ll, --<

-< M2 for t-> o, and from (2.5) that 0 =< p(a, t; )<-M4; here M4
max (M, [3zMza(M)), if 0 _-< _-< M4, and Or(p) X is defined by Or(p) p(a, +
s;)fora_->0andsI0.

Let S {p x ll  ,ll -< M2 and 0 _-< _-< M4}, and define T" S -- S by T
po(). We also define the sets

Sz(K) { S [(aa, tl) (az, tz)[ _-< K([al az[ + [ta tz[)
for a, a -> 0 and tx, tz I0},

where K is a positive constant to be determined later in the proof,

S1 { S2(K) MI < [l(l]: - II@]l <

and

So {p S(K) P1 <- [1 11, I1 11 < P).

It follows from Theorem 3 that there is rn > 0 such that P1 --< IT  [I, Ilz  ll
P for j _-> m, if S and M __--< [l ll, --< II ll -< M2.
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Since the proof that T is continuous and that p satisfies the appropriate Lipschitz
condition involves rather lengthy calculations, we only sketch the main ideas.

Let (P(t; ), B(t; )) and (P(t; 0), B(t; q)) be solutions of (2.6), with ,, tO S,
and set Xl(t) ]P(t; ) P(t; O)] and Yl ]B(t; ) B(t; )1 for -r. One can
show that there is K > 0, such that for 0 N N ,

x(t) yl(a) + K1 x(s) ds da

fo }+ (a, 0) O(a, 0)] + O(a, 0) x(s) ds da,

ya(t) K Xl(t r) + ya(a 7) + xa(s r) ds da

fo {
+ (a, -7)x(t r) + O(a, -7) x(s 7) ds da

or, there is K2 > 0 such that

x(t) <-_ IIp- 011 + K2 x(a) + y(a) + xa(s) ds } da,
(A.1)

yl(t <- gll, q, / g Xl(t r) + ya(a r) + x(s r) ds da.

If (x, y) is the solution of (A. 1) with "=" replacing "N", then

2(0 Kz(x(t) + y(t) + tx(t)),

(A.2) (t) Kz(Kz + 1)(t + 1)(x(t- r) + y(t- r)),

x(t) II Ol, y(t) gl Oil, 0.

Since the solutions of (A.2) exist for 0 and depend continuously on the initial
function, there is Ka > 0 such that

(m.3)
IB(t; ) B(t; 6)1 gll 611, 0.

Now, from (2.5),

Ilz ZOl sup Io(a, w + s; ) p(a, + s; O)l da
sIo

sup B(w + s- a;)exp X()ds
sIo J 0

-B(w + s- a;O) exp X(O) ds da

+ sup (a- w- s, 0) exp X()ds
SIo +s

O(a- w- s, 0) exp X(O) ds da.
o
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(A.3) can be used to find a positive constant K4 such that each of these integrals is
bounded by K411 t011, which establishes the continuity of T.

Since c and 3’ are continuous, it follows from H1 that there is K5 > 0 such that
]/3(a, P, t) h(a, P, t) =< K5 for P S, which, with (3.1) shows that there is K6 > 0
such that

(A.4) [P’(t; )[ =< K6 for S.

Using (A.4), one can show that there is K7 > 0 such that for S,

(A.5) IB(tl; ) B(t; )1 --< g t tl.
We need to show not only that p(a, o9 + s; ) is equicontinuous for s I0 and

a -> 0 on S2(K), but that there is K > 0 such that if Sz(K), then ]p(al, o9 +
$1 q) p(a2, 09 + $2 q)l < g(lal a21 + IS1 $2 l) for al, a2 > 0 and s1, s2 I0.

Using (2.5), (A.4) and (A.5), we can show that there is Ks > 0, which is inde-
pendent of K since it is valid for all S, such that

Ip(al, o9 + $1 ) p(a2, 09 + $2;

<-- exp (-k_.(o9 -))(K + Ks)(la a21 + ]tx t2l) for al, a2 >= O, sa, s2 Io.
If we select K > Ks/[exp (h_(o9 -)) 1], then we have T(S1) C S2(K)j => 1,

and T(Sa) C So forj >- m. It follows now from Lemma 2 that T has a fixed point ,
and clearly p(a, t; () is the periodic solution sought.
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NOTE ON THE ASYMPTOTIC BEHAVIOR OF MULTIDIMENSIONAL
LAPLACE INTEGRALS*

L. A. SKINNERJ-

Abstract. The leading terms of a uniformly valid asymptotic expansion for a class of multidimensional
integrals of Laplace type are obtained by a procedure derived from singular perturbation theory. The ex-
pansion describes the smooth transition between distinctly different forms of asymptotic behavior which
occurs when the critical point of the integrand crosses the boundary of the domain of integration.

1. Introduction. This paper is concerned with the asymptotic evaluation of inte-
grals in m-dimensional Euclidean space E of the form

(1.1) I(x, v) g(x, :) exp [-uh(x, :)] d:,

as u o. We shall assume
(i) g(x, :) and h(x, ) are real-valued functions of class C on E Era;
(ii) h(x, ) > h(x, x) 0 for x, and (1.1) converges absohttely for suffi-

ciently large u;
(iii) the matrix A(x) ofpartial derivatives aij(x) h,e (x, x) is positive definite;
(iv) OD, the (m 1)-dimensional boundary olD, is of class Coo.

Thus for each x Em, the minimum of h(x, ) occurs at x, and it is a simple min-
imum. Also, OD has a well-defined normal at every point. There is no loss of general-
ity in assuming h(x, x) 0.

Under the above conditions, as has essentially been known for some time (cf.
[3]),

(1.2) I(X, V) ’)/(X) -{- O(/d-1)

if x is an interior point of D, and

(1.3) I(x, v)= k y(x) + O(v-1/2)

if x OD, where

(1.4) ,(x) IA(x)I-/ g(x, x).

Also, if x is an exterior point of D then, clearly,

(1.5) I(x, v) o(v-),

i.e., I(x, v) O(l-N) as v-- o for any N. Bleistein and Handelsman [2] have re-
cently developed a method of integration by parts which establishes the general form
of the asymptotic expansions corresponding to (1.2) and (1.3). However, due to the
complexity of the calculations required for their results, the next term of (1.2) is the
only additional one they determined explicitly.

As in the one-dimensional analogue of (1.1), which has been studied by Bleistein
[1] and Wong [5], the transitions from (1.2) to (1.3) to (1.5) as x approaches and then
crosses OD do not happen abruptly. There are boundary layers on either side of 0D.
Together they form a shock layer. Our objective in this paper is to give a precise

Received by the editors June 5, 1979, and in final revised form February 25, 1980.
? Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wiscon-

sin 53201.
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description of this boundary layer behavior. In other words, we seek an asymptotic
expansion for I(x, u) which is uniformly valid in x. In the process we shall establish
the next term of (1.3), and it will be clear that our procedure also could be employed
to obtain more terms for both (1.2) and (1.3).

The basis for our analysis is the following theorem, which is a straightforward
generalization of the theorem given in [4] to study Laplace integrals in E with
coalescing saddle points.

THEOREM 1. Let q)(, Z, x) be a real-valued function of class C on B x Em x
A, where B and A are closed subsets ofE" with 0 B, and let oPt(Z, x) denote the
coefficient of v- in the expansion of (h(v-Z, Z, x) as v . If q)(, Z, x) is uni-

formly o(IZl-) as tZ]--, , then
N--1

(1.6) b(, va/z, x) v-/z (P(va/z, x) + O(v-N/z)
/=0

uniformly, for all , x)
This theorem has an immediate interpretation in singular perturbation theory.

The assumption q)(K, Z, x) o(]Z[ -=) is equivalent to assuming that the (outer) ex-
pansion of w(
ez, .} is identically zero. Thus (1.6) simply says that, this being the case, the
N-term inner expansion of w(
followed by the substitution Z e-a , is uniformly valid.

2. Preliminary transformations. Since A(x) is a symmetric positive definite ma-
trix of class C on Em, all its eigenvalues Xa(x), )m(X) are positive, and there
exists an orthogonal matrix Q(x) of class C such that

(2.1) Qr(x)a(x)Q(x) diag [k(x),..., Xm(X)].

As in [2], let

(2.2) R(x) diag [M-Z(x), hZ(x)].

Then P(x) Q(x)R(x)S(x), where S(x) is another C orthogonal matrix, satisfies

(2.3) Pr(x)a(x)P(x) I,

and

(2.4) C(x) P(x)Pr(x) a-a(x).

The first step in our analysis of (1.1) is to change the variable of integration from

s to by setting

(2.5) f x + P(x).

The Jacobian determinant of this transformation is [A(x)] -x/ and, in view of (2.3),

(2.6) h(x, x + P(x))

where

(2.7) V(x) p,.(x)p(x)pt(x)h,..,(x, x).

Here we are employing the convention that repeated italic indices denote summation
from to m. Similarly, we shall use Greek letters for indices which range from 2 to
m. Thus, for example,

(2.8) / --I l2.
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We also have

(2.9)

where

(2.10)

and

(2.11)

G(x, ) e(x) + ,7,(x) +

G(x, ) IA(x)[-1/Zg(x, x + P(x))

T(x) IA(x)l-/2 pr(x)ge (x, x).

Furthermore, from (2.6), since

(2.12) O(114) ijij O([12),
there exists a C matrix U(x, ) such that

(2.13) h(x, x + P(x)) ijuij(x, ),

and the elements of U(x, ) satisfy

(2.14) uij(x, ) k + (x) + O([).
Now let {x: Ix x0{ }, where x0 is a point on the boundary of D, and let

B {:[ b}. The reason for including S(x) in the definition of P(x) is that for all x
in a sufficiently small neighborhood of x0 we can define S(x) so that the 1 axis is
always perpendicular to 0D(x), where D(x) is the image ofD under (2.5). This allows
us to express 0D(x) near the image of x0 as 1 f(x, ’), where ’ (, Ca,
era). Let us agree to orient the l-axis so that (x) fix, 0’) < 0 when x is an interior
point of D, and (x) > 0 when x is an exterior point. Then, provided > 0 is suffi-
ciently small, there exists b > fi such that B D(x) { :f(x, ’) 1 b, [
b}; hence

(, p g, x)dg + o(p-),(2.15) I(x, u)
(x)

for all x , where

(2.6) (, z, x) G(x, ) exp [-ZZu(x, )].

The desired uniformly valid expansion of I(x, v) can now be obtained by expanding
(, vi/z, x) according to Theorem and integrating term by term.

Referring to (2.9) and (2.14) we see for (2.16) that

(2.17) o(Z, x) (x) exp Izl
and

(1)(2.18) (I)l(Z x) [Zy(x) g ZZZ.o(x)y(x)] exp -. IZl 2

Let
1

and, in analogy with (2.13) and (2.14), note that

(2.20) f(x, ’)= o-(x) + v,(x, ’),
where
(2.21) v,(x, ’) 1 o-,(x) + O(1’]2)
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and

(2.22) o-(x) f(x, 0’).

In the next section we will show that

(2.23) F(x, v) - erfc [(v/2)1/2 or(x)]

Similarly,

(2.24)

and

(2.25)

where

(27rv)-a/2 o’er(x)exp [ ]2 -Fi(x’ /))
D(x)

vl/2 i exp

(2rr) -1/2 gil exp -- vcr2(x) + O(

Fjk(X’ /))
f"ID(x)

v3/2 J(’ exp (-
(27r)-a/ {hijk /xok[vo2(x) 1]} exp - vcr2(x)

Also, for any k, because of the exponential factor exp (-1/2 vlgl2),

(va/2 , x) dg O(1).(2.27)
riD(x)

Therefore, collecting these results together, we obtain

1/2

where

(2.29)

O(/2--1).

/)--1/20(X, /)l/20"(X)) -4- 0(/)--1),

0(/)-1/2

0(X, )= (277")1/2 {yl(X) ----")/(X)[O’(xO(X Tlkk(X)

(x)]}exp( )+ - (2 1)Tll - 23. Evaluation of leading terms. Note that

for all (x, g’) A x B’ where B’ {{’ :lgl --< b}. Thus, if we set

( Z, I2 )(3.2) 0(g’, Z’, x, 2;) erfc {2-1/2 [E + Zv,(x, g’)]} exp -1
then, from (2.19),

+ o(v-=),
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(3.3) F (X, 12) 5 //(t, 121/2 t, X, 121/2if(X)) d’ + o(v-’)

where m’ m 1. Furthermore, (’, Z’, x, E) is of class C on B’ Em-1 A

[-, w]. Hence, by a slight variation of Theorem 1,

F(x, v) - (2rr)-m’/2 [xIt0(Z’, x, 121/2o’(x))
Z I->0

(3.4)
+ 12--1/2 xI3,1(Z X, 121/20"(X))] dZ’ + O(12-1)

where

and

qt0(Z’, x, E) erfc (2-1/2 E) exp IZ’

Z’(3.6) ’klYl(Z X, E) -(27r)-l12ZoZoo(x) exp --. (Ez +

Since

(3.7)

and

1 12 Z2

Iz’l/\ dZ’ (2)m’/z

/

we therefore obtain (2.23). The same procedure yields

(3.9) F(x, 12) (2rr)-m/z
x,)
Z exp - IZI dZ + O(12-1/’),

and

(1)F,ijc(x, 12) (27r)-m/z ZiZjZk exp [ZI dZ .ql_ 0(12--1/2)
x,v)

where K(x, 12) {Z :Z _-< 121/20"(X), Iz’l 0}.
To complete the evaluation of I(x, 12) we need to express r(x) and the quantities

occurring in (2.29) independently of the transformation matrix P(x). Let (x)
be the point on OD closest to x A, and let w(:) 0 be the local representation for
OD. Assume w() < 0 inside D and w(:) > 0 outside D. Then

(3.11) n(x) [Wt()Wt()]-1/2W’()
is the ith component of the unit outer normal to OD at . Similarly, the outer normal
to OD(x) is given by the gradient (with respect to ) of w(x + P(x)). Thus

(3.12) i(x)pjtc(x)nj(x) 8],1,

since the 1 axis is perpendicular to 0D(x), and therefore

(3.13) Pil(X) Pi(x)8l -/z(x)cij(x)n(x),

where C(x) A-l(x) as noted in (2.4), and

(3.14) /X(X) [c(x) n, (x) n(x) -x/2.
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Hence

(3.5)

(3.16)

and

(3.17)

Also, since

/(x) -IA(x)[-/ (x),(x)n(x)ge,(x, x),

Tlkk(X) k6(X)Cri(X)Cst(X)i(X)he,. ( ,(X,

q111(X) za(X)Cri(X)Csj(x)tk(X)ri(x)nj(x)nk(x)hgrg. , (x, x).

(3.18) i x + p(x)j,
where (r(x)8x, it follows that

(3.19) o-(x) -- [cij(x)ck(x)n(x)n(x)]-1/2 d(x),

where d(x) is the (directed) distance from x to OD. Finally, since 1 f(x, t) is a so-
lution of w(x + P(x)g) 0, and f.,.(x, 0’) 0, it follows that

o’c(X) /z(X)[Ci(X)- 12(X)Cri(X)Csj(X)nr(X)rs(X)]Ki(X),

(3.20)

Therefore

(3.21)

where

(3.22) Ki(X) [W:k()14’k()]-1/2 Wfj(),
and we have used the fact that

(3.23) ci(x) Pil(X)pjl(X) -+- p/a(x)pa(X).

Now suppose x is any point ofEm for which is uniquely determined. According
to the analysis just completed, if x is in a sufficiently small neighborhood of some
point x0 on 0D, then (2.28) holds with o-(x) given by (3.19), and the terms in (2.29)
given by (3.15)-(3.17) and (3.21). On the other hand, if x is not in such a neighbor-
hood, this same expression is asymptotically equivalent to either (1.2) or (1.4), de-
pending on whether d(x) < 0 or d(x) > 0. In other words, the expansion is valid in a
larger region than we assumed for its derivation. Indeed we can summarize our re-
sults as follows.

THEOREM 2. Let I(x, u) be the function defined by (1.1) with conditions (i)-(iv),
and let R be a closed subset o.f Em such that

(v) for each x R there exists a unique point (x) R f3 0D which is clo-
sest to x;

(vi) R f30D { R w() 0}, where w() is of class C on a domain con-
taining R 73 OD, and grad w() is an outer normal.

Then the asymptotic expansion (2.28), with o-(x) given by (3.19) and the terms in
(2.29) given by (1.4), (3.15)-(3.17) and (3.21), holds uniformly as u-- for all
xR.

As an example consider the solution,

(3.24) I 1u(x, t) (47rt)-z/z b() exp - Ix l d:,

of the diffusion equation
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(3.25) ut uxlxl + u22 + ux3, > O,

with the initial condition

b(x), x D,
(3 26) (x, O) ( 0, xD.
If we put v (20 -1, then u(x, t) I(x, ,), with

l lx- 1 g(x, )=(3.27a,b) h(x, )

Thus in this example we have A(x) I. Therefore C(x) I and/x(x) 1. It follows
from (1.4) that ),(x) b(x) and from (3.15), 3,1(x) -(x) where (x) is the deriv-
ative of (x) in the direction of the outer normal to D at . Similarly, (3.19) reduces to
(x) d(x) and from (3.21), (x) 2H(x) where

(3.28) H(x) (Sij nin)i(x)

is the mean curvature of OD at . We also have 9e(x) (x) 0, since h(x, ) is
quadratic. Hence, substituting into (2.28),

u(x, t) (x) erfc [(4t)- d(x)] [(x) + (x)g(x)]
(3.29)

exp [-(4t)- d(x)] + O(t).

IfD is a sphere of radius a centered at the origin and if (x) f(r) where r (xx)1,
then (3.29) reduces to

erfc []ra 1/2

If’ (r)

(3.30)
+a-f(r)]exp [-(r-a)J +O(t)

4t

which can be verified directly.
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Abstract. The algebra of linear partial difference operators is investigated, and an elimination procedure
demonstrated. Applications to combinatorics are given. In particular, a new proof and a q-analogue of
MacMahon’s Master Theorem are given.

Introduction. In this paper the algebra of partial difference operators will be
considered, and applications to combinatorics demonstrated. It is surprising that partial
difference equations have received so little attention while partial differential equations
flourished. The only serious study of partial difference equations was in numerical
analysis, and then only as a tool for solving partial differential equations numerically.
Specific partial difference equations arose in random walk and combinatorics, but no
unified theory such as in H6rmander [6] was attempted.

We hope to show here that partial difference operators are much more comfortable
to work with, since the shift operator Xf(m)= f(m + 1) has a simple "Leibnitz rule"
X (fg) (Xf)(Xg). This is so much simpler than the continuous Leibnitz rule:

D" (fg) E k
(Dkf)(D"-kg)"

A general theory of linear partial difference equations will not be attempted here.
Instead we shall, study the algebra of linear partial difference operators, and describe
how to extend the elimination procedure in the algebra of polynomials (Van der
Waerden [8]) to the algebra of partial difference operators. This will be followed by
various applications of the elimination procedure. Unfortunately, in most cases, the
algorithm is too cumbersome to be done by hand. However, since the algorithm
involves nothing more complicated than multiplication by polynomials, it would be
possible to employ a "symbolic" computer (such as MIT’s MACSYMA) to solve some
open problems in combinatorics.

This paper is dedicated to Richard J. Duffin whose pioneering work in partial
difference equations prompted the author’s interest in them. The author is also
indebted to Richard A. Askey who challenged him to prove Andrews’ [1] conjecture
( 5). The present paper is a result of attempts to prove this conjecture, which is a
q-generalization of the already resolved Dyson’s conjecture. We attempted to q-
generalize Good’s [12] elegant proof of Dyson’s conjecture.

Although our algorithm is capable of doing it, in principle, for any given n, it turns
out to be too involved to do by hand. However, our algorithm turns out to be useful in
other situations, as we hope to show later.

Next, let us describe briefly the content of the paper. In 1 the algebra of linear
ordinary difference operators is introduced and we show how to take an inverse of an
operator. This is generalized to linear partial difference operators in 2. Following this
is a description of elimination in the algebra of linear partial difference operators with

* Received by the editors January 26, 1979, and in final revised form March 24, 1980.
t Weizmann Institute of Science, Rehovot, Israel. This work was performed while the author was at the

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332.
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920 DORON ZEILBERGER

constant coefficients. This algorithm is then applied to give a new proof of MacMahon’s
[7] Master Theorem. Good’s proof of Dyson’s conjecture is quoted in subsection 3.4,
and 3 ends with the consideration of other possible generalizations to Dyson’s [8]
conjecture B.

Section 4 gives a generalization of MacMahon’s Master Theorem which answers, in
particular, a question posed by Andrews [1,p. 213].

Andrews’ [1] conjecture about the q-generalization of Dyson’s conjecture is
considered in 5. Although we failed to prove it, we describe how, in principle, for a
given n, the algorithm is capable of settling it. Section 6 presents the algorithm of
elimination in the most general setting, in the algebra of linear partial difference
operators with variable coefficients.

We are very grateful to George Gasper, whose valuable criticism and comments
transformed a disastrous first draft into a hopefully reasonable final version.

1. The algebra of ordinary difference operators. Let Z be the set of integers. We
shall here consider the vector space of functions ’1 {f:Z --> C}. A linear (ordinary)
difference operator is a mapping P:I -> 1 of the form

co,(m)f(m+a), fl,(1.1) Pf(m) [al<M
where M is a positive integer, and c are elements of 1. In case all the c’s are
constants (polynomials), we have a linear difference operator with constant (poly-
nomial) coefficients. Introducing the shift operator Xf(m) f(m + 1), we can write (1.1)
in the form

Pf [a,<M caXaf1.2)

The set of all such operators will be denoted by 1. Note that the operator X has a
particularly simple "Leibnitz rule",

(1.3) x (fg) (xf)(xg),

which proves that 1 is an algebra:

(1.4) (Y cX)(Y axO)=E E c(X"o)x+.

Let +I1, --I be the subalgebras

+1={ Y cX,forsomeM}
0a_<--M

-lil--’{ E caX,forsomeM}.-M=a_<O

+1 (respectively _1) can be embedded in the algebras of linear difference operators of
infinite order:

a->0

The domain of an operator in +/-1 is -, the space of functions of finite (=compact)
support:

{f:Z C; f- 0 except at a finite number of points}.
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An element of +/-1 has an inverse in +/-1 (assume Co 0) iff co(m) 0 for all m then
-1 -1

1+ Y. C’X’ Co
l<--a<MC0

k =0 l<a<M C0

Each term on the right-hand side is evaluated according to (1.4), and since the
lowest order term in ( (co,/co)X’)k is

k

we see that the sum in (1.5) is well defined, since the coefficients of any X are finite
sums. This is a generalization of taking the reciprocal in the algebra of formal power
series, the latter corresponding to the case where the c’s are all constants.

The above formalism can be applied to solve a general linear difference equation
M

(1.6) Z c(m)f(m-ce)=O, rn M,
=0

in terms of the initial values f(0), , f(M- 1). Of course there is a unique solution iff
co(m) 0 for all m, and we can write (1.6) as

(1.6’) cX =0 inmNM.
0

Extending by 0 in {m < 0}, we get

(1.6") cX-[=g inZ,
0

where g is supported in {0 N m NM 1} and each of its values is a linear combination of
f(O),...,f(M-1).

From (1.6")we get
M )-1
0

which is an explicit expression for , in spite of its formal" appearance.. Te lger t fi! eeeeeas. The discussion in 1 can easily be
generalized to several discrete variables. For n a positive integer, consider the vector
space of functions

={:zcl.

A linear partial difference operator is a mapping P’ of the form

P(m) 2l<c(m)(m +), e.(.1

Where multiindex notation is used; m, e Z, m (m,..., m), (1,""", ),
2 andM is a positive integer. The coecients c(m) are elements of. In

case all the c’s are constants (polynomials), we have a linear partial difference equation
with constant (polynomial) coecients. We introduce the shift operators
Xff(m,...,mi,...,m)=(m,...,mi+l,...,m), i=l,...,n; (Xi is the unit
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shift in the mi coordinate). We can write (2.1) in the form

P= E cX,(2.2)

because f(m + a)=X X"f(m)= Xf(m). The set of all linear partial difference
operators on Z" will be denoted by ,. The operators (X1, ’, X,) satisfy the simple
"Leibnitz rule",

(2.3) x(&) (xf)(xg),

which shows that n is an algebra:

(2.4)

Let F1," ", F2- be the 2 orthants in Zn; then if F is such an orthant,

r,, { caXa; only finitely many ca’s are nonzero}
is a subalgebra of ,, since F is a cone.

rn can be extended to the algebras of linear partial difference operators of infinite
order r0, {Yar CaXa}"

The domain of an operator rO, is o, the space of functions of finite (=compact)
support,

o,, {f. Z" + C; f 0 except at a finite number of points}.

As a matter of fact, if P e r0 involves all X1,..., Xn (i.e., it is not of lower dimension),
P can be applied to functions whose support is a union of "hyperstrips", i.e., functions
whose support is a subset of a set of the form U i=x {-Mi <- mi <-Mi}, where the M/
are positive integers. The space of such functions will be denoted by o-. Of course, it
may happen that the domain is even larger.

An element P of r, has an inverse in r0 (assume co 0) iff co(m) 0 for all m,
and then

-1 -1

(2.5) laMCaXa 1 + l<lal<MC0
Ca Xa Co

k

I; (-) E -x co.
k=0 l_-<lal_-<M C0

Each term on the right-hand side is evaluated according to (2.4); since the lowest
order terms in (l_lalM(Cdco)Xa)k have order k, it is seen that the sum in (2.5) is
well defined, since the coefficient of any X takes contributions only from the first I/[
terms in (2.5), and thus consists of a finite sum. This generalizes the taking of the
reciprocal in the algebra of formal power series of several variables, the latter
corresponding to the case where all the ca’s are constants.

The above formalism can be applied to solve a general linear partial difference
equation in an orthant F,

E ca(m)f(m-a)=O in{m;m-aF},(2.6) lal<M

in terms of the boundary values of f, that is, values of f near the axes. Of course (2.6) has
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a unique solution iff co(m)s 0 for all m, and we can write (2.6) in the form

(2.6’) ( Y c,,X-)/c=O in{m;m-aeF}.

Let us extend f by zero outside F. Then (2.6’) can be written as

(2.6") (., c,X-’).f=g inZn,
II<M

where gjs supported in a neighborhood of the axes, i.e., is an element of the function
space -0, discussed above, and each of the values of g is a linear combination of values
of f near the axes.

From (2.6")we get
-1

which is an explicit expression for f in F, in terms of its values near the axes. Suppose
P(z) is a polynomial in n variables, Zl,’’’, z,; then if

P(z)-1= 2 c(m)z m,
m_>0

and 8 is the discrete Dirac delta function:

then

So

z --z1 "Zn

8(0) 1, 8(m) O, mrs O,

c(m) (Y’. c(a)X-’)8(m), mZ

(2.8) c V(X-1)- 18,

and c satisfies the partial difference equation P_(X-I)c- 8, so c is a fundamental
solution of the operator P(X-X).

3. Elimination in the algebra of linear partial difference operators with constant
coefficients.

3.1 The algebra of linear partial difference operators with constant coefficients in n
variables, cn, is isomorphic to the algebra of polynomials C[z,..., z], and the
procedure in Van der Waerden i-8, 27, 77, 78] can be used to derive equations of
lower dimensions from a system of equations.

Example. Solve the system

(i) f(m + 1, n + 1)-2f(m, n + 1) +f(m + 1, n)=0,

(ii) .f(m, n) + if(m + 1, n) -f(m + 1, n + 1) if(m, n + 1) O, m,n>-O.

Setting Xf(m, n)= f(m + 1, n), Yf(m, n)= [(m, n + 1), we can write the above
equations in shorthand as

(XY- 2 Y +X)f O,

(3.1) (I+iX-XY-iY)f =O.
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Let us eliminate Y from

el(X, Y) XY- 2Y+X,

Pz(X, Y) I + iX-XY- Y.

We would like to get an operator involving X only, so we write

el(X, Y)= Y(X-2)+X,

Pa(X, Y) Y(X + i) + (I + iX),
and we get that

O(X, Y) (X + i)PI(X, Y) + (X- 2)P:(X, Y) -21 + (1 i)X + (1 + i)X,
(3.2a) (-21 + (1 i)x + (1 + i)x)f o.
Similarly, it also satisfies

(3.2b) ((i + 2) Y2-(i + 1) Y-I)f= O.

(3.2a), (3.2b) immediately yield f, given f(0, 0), f(0, 1), f(1, 0), f(1, 1).
In general, given n partial difference operators with constant coefficients, on Z",

we can use the elimination procedure to obtain n ordinary difference operators
Ol(X1)," , O,(X,). If this is the case, we say that the ring (P1, Pn) is "a complete
intersection". The elimination algorithm not only yields n ordinary difference opera-
tors Ol(X1), , O,(X,) in case of "complete intersection", but also tells us when the
algorithm "breaks down", whenever it is not.

3.2 The elimination procedure in Van der Waerden [8] can be applied in any
polynomial ring R Ix1, , x, ], where R is a commutative ring (there it is assumed that
R is a field, but for our purpose it is enough that R is a commutative ring), in particular,
if R is the ring of partial difference operators with constant coefficients. Let x
be n indeterminates, and suppose we have n + 1 operators with constant coefficients,

Pi(X,...,X,;x,...,x,), /= 1,..., n +1,

where the dependence on x1,"’, x, is polynomial. In other words, the Pi’s are
polynomials in X1, , X,, xl, , x,. In general it is possible to obtain, by elimina-
tion, an operator O(X1,’" ,X,), independent of xl,’",x,, which is in the ring
generated by P1," , P,+I; i.e., there exist Ol(X, x),. , O,+I(X, x) such that OlP1 +

+ O,,+IP,,+I is independent of xl,’’’, x,.

3.3 A new proof to MacMahon’s Master Theorem. MacMahon’s Master Theorem
(MacMahon [7], see also Andrews [1, p. 214]) asserts that the coefficient of x
in

I (= aox
i=1

is equal to the coefficient of z ...z" in the power series expansion of [det(&/.-
ai/.zi)]-1

Setting
F(ml, ", m, xl, ", x,) I-I ai/.

i=1 /=1

we are interested in Fo(ml, , m,) const, term in F(ml, , m, xl, , x,). Now

XiF ao F, i=l,...,n,
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and F satisfies the n partial difference equations

xj(-ai + 6ijXi)F O, 1, , n.
/’=1

These are n linear homogeneous equations in x 1,’’ ", xn and (in this case Gaussian)
elimination yields

(3.3) P(X)F O, rnl,. m,, -> O,

where P(X) det (-ai + 6i.X). Since P(X) is independent of x 1," , x,, and is a linear
operator, we also have

(3.4) P(X)Fo= O.

We now claim that

(3.5) Fo IX-( X;1P(X)]-16
X1 XnP(X)-1

[det (6ii aiXT, )3-’.
This follows from the fact that both sides are solutions of (3.3), and the boundary values
match by the inductive hypothesis. By the remarks at the end of 2 it follows that (3.5)
implies the MacMahon Master Theorem. We prefer, however, to preserve the theorem
in the form (3.5), because, as will be seen later, it yields a generalization.

3.4 Good’s proof to Dyson’s conjecture. In 1962, Dyson [2] made the following
conjectures:

Conjecture B.

The constant term in : 1-. is

ii,jn

and its generalization
Conjecture C.

The constant term in

(na)!/(a!)"

This was proved by Gunson [5], Wilson [9], and Good [4]. ’Good’s proof is the proof that
got us started in this business. Because of its importance, and also because of its
elegance, we shall repeat it, in our notation. Set

F(a, a,., Xl, x,,) I-I (1
<--i,j<--_n

F satisfies the n partial difference equations,

i=l,...,n, ai>O.

Elimination of X1, Xn yields

(3.6) (I-X- X)F 0 in al,’", a,, > O.

1-I (1 x) a’ (a+...+a,,)!
is

ij al!" an!
<-i,j<-n
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This equation is independent of x1,’", xn, and therefore (3.6) is also satisfied by
Fo(al,’’’, an), the constant term of F. So

(3.7) (I-X- X- )Fo O.

G(al,..., an)=(a+" "+an)!/(al!’" an!) is also a solution of (3.6) and the boun-
dary values match, by the inductive hypothesis. So it follows that Fo(al,""", an)
(al+" .+a,)!/(al! a,!).

3.5 There are many generalizations to Dyson’s conjecture B. In Dyson’s con-
jecture C the factors (1-(xi/xl)),’", (1--(Xi/Xn)), (i= 1, "’’, n) were grouped
together, but we can take any n subsets of the n(n 1) factors (1 -(xg/xi))(i j, 1 <= i,

<-_ n) and group them together, forming a function of a 1, ’, an, x, , xn. Then we
can use elimination to find a partial difference equation independent of x l, "’,

satisfied by that function, and therefore also satisfied by the constant term (or any other
coefficient, for that matter). Let us illustrate it by the following.

FACT. Fo(a, b, c) constant term in V(x1, x2, x3, a, b, c)

[(1__1)(1__ x)j,[(l__ X)(l__.l)][(1__3)(1 __)]c,
is given by,

G(a, b, c) (2a)!(2b)!(2c)!(a + b + c)!/[a !b !c !(a + b)!(a + c)!(b + c)!].

Pro@ F satisfies the following linear partial difference equations,

XIF (2 Xl x_)FX2

X2F (2 Xx X3F
X3 XI/

X3 2/
Eliminating xl, Xa, x3 we get that F satisfies the partial difference equation

(3.8) (X21 +X+X-2XlX2- 2XiX3 2X2X3 +XlX2X3)F O.

Since this is a linear equation and is independent of x, x2, x3, it is also satisfied by
F0(, b, c). It is straightforward (albeit rather long) to check that this equation is also

3satisfied by G(a, b, c). It is trivial to check that Fo G on the boundary of Z/,
{a 0}Ll{b 0}Ll{c =0}.

The special case a b c yields conjecture B for n 3. The above proof was given
for pedagogical reasons, because the Fact is equivalent to

(_l)k( 2a )( 2b )( 2c)= (2a),(2b)l(2c)l(a+b+c)l.
a+k b+k c+k a!b[c[(a+b)[(a+c)!(b+c)!’

this is equivalent to the terminating form of Dixon’s theorem, which in turn is
equivalent to Dyson’s conjecture C for n 3 (Andrews [1, p. 214]).

4. A generalization of MacMahon’s Master Theorem.
4.1 In 6 we shall describe how to generalize the elimination procedure to systems

of linear partial difference operators with variable coefficients. In this case the task is
much harder, since the ring of linear partial difference operators is not commutative.
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However, in some cases of variable coefficients operators the elimination method
generalizes right away. This happens when the operators to be eliminated are pairwise
commutative. In particular, let us prove the following generalization of MacMahon’s
Master Theorem.

THEOREM. Let (fii(mi)), 0 <= i, ] <-_ n, be a matrix of discrete functions (where the ith
row has functions depending only on mi), and for a discrete function G, let

G(m)= G(0)G(1) G(m 1).

Then Fo(ml, , mn) the constant term of

F(mx," ", m.; xx," x.)=
i=1

is given by

(4.1) G(m,..., m,)= [det (3,-fiiXT’)]-a6,
where 6 is the discrete Dirac delta function, det (6ii-fiXV, is a linear partial difference
operator with variable coefficients, and its inverse is calculated by (2.5).

Proof. The proof is along the same lines as the one given in subsection 3.3.
F F(ml, , m, x,. , x,) satisfies

XiF: = fij(mi)F,
Xi/

i=l,...,n;

xj[6i.rYfi -fii(mi)]F O, 1,..., n.
1=1

Gaussian elimination still works here because any two entries in the matrix

(6ijXi-fij(mi)) which are in different rows, commute, since Xi acts only on functions
independent of mi. Consequently F(m, , mn xi, , xn) satisfies

(4.2) det (tiiXi fii(mi))F O.

This partial difference equation is independent of Xl, , xn, and since it is linear it
follows that it is also satisfied by Fo(m,. ", ran), the constant term of F.

So

(4.3) det (i]Xi fii(mi))Fo O.

But we also have

(4.4) det (3ijX fii(m))G =- O.

Fo G on the boundary of ZT-, that is on U in= {mi 0}, by the inductive hypothesis, and
thus the theorem follows" F0---G throughout Z_.

4.2 A q-analogue of MacMahon’s Master Theorem. The above theorem answers,
in particular, a question raised by Andrews [1, p. 213] about a q-analogue to
MacMahon’s Master Theorem. The q-analogue of (a+b) is (a +b)(a+qb)(a +
qZb) (a + q"-b); and naturally the q-analogue of (a + b + c) would be (a + b +
c)(a + qb + qZc)(a + qZb + q4c) (a + q"-b + qZ’-Zc), and in general, a q-analogue
of (al +" + an)" would be

(al +’" + an)(al +qa2 +" +qn-a)
x (a +q2a2+. +q2n-lan) (al +q’-a2+" "+q"-("-tan).
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It is seen that a q-analogue of the Master Theorem is obtained by putting fgi(mi)=
aqq’’(-l), where the aq’s are constants.

5. About the possibility of proving a q-analogue ot Dyson’s conjecture. In [1, p.
216], Andrews conjectured that the constant term of

( eiiXi) {1, < j,
F= ,, Ei]

# ai q, j > i,
li,jn

is q,+...+,/(q.., q,), where (x)=(1-x)(1-qx)... (1-q-x). This is the q-
analogue of Dyson’s conjecture C. Let us try to generalize Good’s proof. We have the n
equations

XIF=(I_qXI) ( Xl)1-qF,

Xn-1]

By finding the expressions forX X for high enough , , n, it is possible in
principle (for a fixed n), to eliminate x, , x from these equations, and get a linear
partial difference operator P(a, , a X, ,X such that PF O. Then it would
be possible to check that P(q,+...+/(q... q))=0, and equate boundary values.
Details will appear elsewhere.

However, this process is very complicated to do by hand (a symbolic computer will
help here), and we were unable to find such an equation even for n 3.

.1. sselfi edg Ie eeeees.Since
the process of elimination in Van der Waerden [8] is based on Gaussian elimination in a
commutative ring, we shall first describe how to modify Gaussian elimination to the
noncommutative ring of partial difference operators. To begin with, let us consider the
ring of linear ordinary difference operators.

Suppose we have the two operators

(6. la) O (aX + b) +P(m, X)a +... +P(m, X),

(6. lb) O (a’X + b’) +P; (m, X)I +... +P(m, X)I,

where P, , P, P, , P are any linear difference operators and the coecients of
1 are first order. If a, b, a’, b’ were constants we could have just multiplied the first
equation by (a’X + b’), the second by (aX +b) and subtracted, thus getting rid of I.
But since a, a’, b, b’ are functions, (aX + b) and (a’X + b’) do not commute in general.

We first form

(6.2a) b’O bO (m)X +. .,
(6.2b) a’O-aO= -(m) +....

Now we apply X to (6.2b) and get

(.b’) X(a’O- aO) -[X(m)]X +....
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Since b and Xb are functions, they commute, and (Xb)(6.2a) + 4, (6.2b’) yields an
operator independent of A 1.

The above process can be described as reducing two equations in which the
coefficients of A1 are first order difference operators, to two equations in
(XA 1, A 2, , An) in which the coefficients of XA are zero order difference operators,
i.e. functions.

The same method can be applied to the case in which the coefficients of A are of
any given order k.

(6.3a)

(6.3b)

Now

Ql =(aoXk +alXk-lq "+ak)Alq-.

QE=(a’oXk +a’lXk-l + "+a)hl+.

(6.4a) aoOl aoO2 (blXk-l+ + bk)h "]- ",

(6.4b) a ’kOl akO2 (coXk-1 +" + Ck-1)X, -]"

Now applyingX to (6.4a) we get two operators, linear in (XA 1), h 2, , An, in which the
coefficients of (XA 1) are operators of order k 1. Continuing in this manner, we get rid
of h altogether.

If we have n operators, Q1," ", Qn linear in hi,." ", An, we can use the above
procedure to get n 1 operators linear in h 2, , An. Continuing in this manner, we end
up with one operator linear in An, and since it is possible to divide by An, we end up with
an operator Q independent of hi,."", An. This operator is in the ideal generated by
{Q1, Qn}, and so Qlf 0,..., Q,f O:ff Qf O.

6.2 Gaussian elimination in the ring oi linear lartial flitlerenee olerators. Let us
consider a special case first,

QI [(a Y + b)X + (cY+ d)]h + PE(m, X, Y)A2 +"" +Pn (m, X, Y)hn,

Q2 [(a’Y + b’)X + (c’Y + d’)]h +P(m, X, Y)A2 +"" +Pn (m, X, Y)hn.

Let us write it as follows,

Q1 (a Y + b)(XA 1) + (cY + d)h +’",

Q2 (a’Y + b)(Xh 1) + (c’Y + d’)h +" ".

Using the process of subsection 6.1 we get rid of XA, to get an operator

Q =PI(Y)AI+" .
Once again using the above process, this time to get rid of h 1, yields

O P2(Y)(XA 1) +’".

XQ; and Q are two operators, linear in (XA 1), A 2, , An, but with the advantage that
the coefficients of (XA 1) are just ordinary difference operators. In this form it is possible
to use the method in the previous subsection, to get rid of (XA 1) altogether.

In general, suppose that we know how to do Gaussian elimination for partial
difference operators of dimension K-1; let us describe how to perform Gaussian
elimination for partial difference operators of dimension K. Consider the two operators

(6.5a) A PI(X,"’, Xr)h + P2(X1,’’’, XK)A2 +’’" q- Pn(X,’",

(6.5b) B P (X1, , Xr)A1 +P(X1, , Xr)h2 +"" + P’n (XI, , Xr
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Let us write

L

PI(X1," ", X:) _. Qi(X2," ", Xr.)X,
i=0

L

(Xl, XK) E Oi (X2,""’, XK)X1.
i=o

Substituting in (6.5) we get that A, B are linearly dependent on A1,
(X1A 1), , (XA 1), Aa, , An. Using the algorithm for dimension K 1, we can get
rid of A 1, yielding

c +... +

and using it another time, we can get rid of (xLA 1)"

D DIA +" +DL-I(X-1A 1).

C, X1D are two linear operators in (XIA 1), , (xILA 1). Continuing the process, we can
dispose of (X1A 1), (X2A 1), , (XA 1) successively, and finally get rid of h altogether.
This algorithm eventually yields an operator which is independent of

6.3 General elimination. Let us recall that if P1, P2 e R [x 1, , xn ], where R is a
commutative ring, we get an element Q e{P1, P:z}, which is in R Ix2,’", x,,], by
expressing P1,. P2 as polynomials in xl, with coefficients in R[x2,’", Xn], and by
forming x P1, xP2 for sufficiently large l, thus getting linear equations in the powers of
xl, with coefficients in R[x:z,’", x,]; then we use Gaussian elimination. The same
method can be used in n[Xl,’", xn], where n is the ring of partial difference
operators on Zn. This is so because we know how to perform Gaussian elimination in
that ring.

In general, if we have N + 1 operators Pl(Xl, , XN)," ", Pv+l(Xl, ", XN),
where the dependence on x1,’", XN is polynomial, it is possible to get an operator
which belongs to the ideal {P1, , PN/a}, and which is independent of xl, , XN. The
present algorithm is a generalization to the ring of linear partial difference operators, of
the process described in subsection 3.2 for the ring of partial difference operators with
constant coefficients.

6.40verdetermined systems of linear partial difference operators. In subsection
3.1 we saw that two linear partial difference operators with constant coefficients usually
give rise to an operator of lower dimension. The same is true for general linear partial
difference operators. Let P, Q be two such operators on Zn, and write them as follows,

P=Zp (x ,

O E Oi(X2," ", Xn)Xl.

By considering P, X1P, , X[P, Q, X1Q," , XIQ for sufficiently large L,M we get
linear dependence on the powers of X1 and using the process of Gaussian elimination
described in subsections 6.1, 6.2, we obtain an operator involving only X2,’’’, X,,
which is in the ideal {P, Q}. In general if we have n operators
PI(X1,’",Xn),’",P,,(X1,’",Xn) we should get n "ordinary" operators
QI(X1),’", Q,,(Xn). If this is the case, the ideal {P1,""" ,P,} is called "complete
intersection". If this is not the case, then the algorithm will tell us so by breaking down.



ALGEBRA OF LINEAR PARTIAL DIFFERENCE OPERATORS 931

Example. Find 2 ordinary difference operators satisfied by every solution of the
system

(i)

(ii)

mf(m + 1, n + 1) + nf(m + 1, n) + 2mr(m, n + 1) mnf(m, n) O,

f(m + 1, n + 1)+(n + 3)f(m + 1, n)+mf(m, n + 1)-3mr(m, n)=0,
m,n>=O.

In our notation

P1 (X, Y)f (mXY + nX + 2mY- mnI)f O,

Pz(X, Y)f= (XY + (n + 3)x + mY- 3ml)f O.

We have to eliminate P1, Pz. Writing

P mXY+2mY+ (nX- toni),

P: XY+ mY + (n + 3)X 3mL
yields

Ol P mPz (2m m:Z) Y + (nX- mnI- m(n + 3)X + 3mZI),
O2 P1 2Pz (m 2)XY + (-(n + 6)X + 6m mn ).

Simplifying, we get

O1 m(2- m) Y + (n mn 3m)X + m(3m n)I,

O:z (m 2)XY + (-(n + 6)X + (6 n )mI).

XQI (1 m2)XY-(mn + 3m + 3)X2
4- (m + 1)(3m n + 3)X,

Oz (m 2)XY + (-(n + 6)X + (6 n)m).

(m-2)XOl-(1-m:)O:z will be an ordinary difference operator in the m-direction,
i.e., an operator in X. Similarly, it is possible to find an ordinary difference operator in
the n-direction.

Remark. In Even and Gillis [3] the authors mention that they were unable to find a
combinatorial proof of the ordinary difference equation (34) there, which is satisfied by
P,.st. However they exhibit 3 partial difference equations satisfied by P,.st, namely (9),
(32), and one obtained from (32) by replacing r by s. Thus our (completely elementary)
algorithm should yield their ordinary difference equation (34).
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Abstract. Let S be a Walsh series and denote its 2Nth partial sums by S2N for N 0, 1, . We show

that if f is a finite-valued function belonging to Lp, p > 1, if $2 converges to f as N c (for all but countably

many points in the interval [0, 1]), and if

k=l [S2k S2k-1]2 <,
then S is the Walsh-Fourier series of f.

1. Introduction. Let o, ," denote the Walsh-Paley functions (see [3]). Thus,
for each nonnegative integer k and each point x belonging to the unit interval [0, 1], we
have that

(1) k(X) exp (ixi+ki),
=0

where the numbers x and ki are either 0 or 1 and come from the binary expansions of x
and k:

x= xi2-i, k= ki2.
i= i=o

When x [0, 1) is a dyadic rational, the finite binary expansion is used.
Let N 0 be an integer. We shall denote the 2sth partial sum of a Walsh series

S k=O akk by
2-1

(2) s:(x) a(x), x [0, ].
k=0

In case the series S is the Walsh-Fourier series of some integrable function f, i.e.,

Jo f(t)Ok(t) dt, k O, 1,’",ak

we shall denote the 2th partial sums of S by S2(f, x).
In certain types of applications, especially those in communications, the signals

received or the data recorded are discrete values of the 2th partial sums of the
Walsh-Fourier series of a certain unknown function f whose values are being sought
(see, e.g., [1] and [5]). The integer 2s often corresponds to the number of readings or
samples taken and, presumably, as N gets larger the prediction for the values of f gets
more precise. In fact (see [3]), if f is continuous, then $2 (f) converges uniformly to f, as
N.

However, noise and other interference can alter the signal so much that the source
is impossible to recover. This situation can prevail despite the fact that the signals are
converging to a continuous function. For example, the Walsh series

(3) T Ok(X)
k=0

* Received by the editors September 14, 1979, and in revised form January 26, 1980. This research was
supported in part by the National Science Foundation under Grant MCS 78-00902.

" Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37916.
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has 2Nth partial sums which converge to zero everywhere on the interval (0, 1), but T is
certainly not the Walsh-Fourier series of zero. In particular, an additional criterion is
needed to conclude that a Walsh series, converging to an integrable function f, is the
Walsh-Fourier series of that function.

Fine [3] was the first to address this problem. He showed that if f is a finite-valued,
integrable function, if S is a Walsh series whose coefficients, ak, tend to zero as k -, ,
and if for every x [0, 1], S2(x)f(x) as N , then S is the Walsh-Fourier series
off.

Crittenden and Shapiro [2] obtained a far stronger result containing a theorem
which generalizes Fine’s result in two directions. First, convergence of the partial sums,
S2,,, can be relaxed at countably many points. And, secondly, the growth condition
"lim_, a 0" can be replaced by

(4) lim 2-Ns2 (X) 0, for all x e 0, 1 ].

That this growth condition must hold for every point x e (0, 1] can be verified by
observing that the series (3) satisfies (4) at all points except x 0.

Neither of these growth conditions is particularly suited for applications. On the
one hand, condition (4) uses the data as collected, but it can only be checked at the
sample points, i.e., at finitely many points x e [0, 1]. On the other hand, in order to
obtain the coefficients ak, one must use the formula

Jo Ok(t)S2u(t) dt, k < 2iv,ak

and then check to see whether ak is converging to zero as k - o. Notice that since $2,, is
a step function, the integral above can be computed exactly.

A growth condition using unprocessed data $2,, but involving average values
rather than pointwise conditions, would be more useful. We propose the following
condition. A Walsh series S is said to satisfy condition H if

Notice that when truncated to 0 -< k _-< N, this integral also involves step functions, and
thus can be computed exactly. Also, it requires one integral per layer $2/-$2 rather
than 2k integrals.

Recall [4] that the Walsh-Fourier series of any function belonging to dyadic H
necessarily satisfies condition H. Since dyadicH contains the spaces L[0, 1] for p > 1,
condition (5) is not too narrow to encompass most applications.

The following result will be proved in 3.
THEOREM. Let S k=O aklk be a Watsh series which satisfies condition H, and

suppose thatf is a finite-valued function belonging to dyadicHa. If limu_, $2, (x) f(x)
for all but countably many points x [0, 1], then S is the Walsh-Fourier series off.

It should be pointed out that the same proof can be used to establish the Haar series
analogue of this theorem.

2. The fundamental lemma. Suppose that

(6) Io [(P0-1)/2k, po/2k)

is a half-open interval, where po and ko are nonnegative integers. A sequence of pairs of
intervals {(/., /)}j=o is said to be properly nested in the interval Io if for each integer ] >- 1
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the following four properties are satisfied:

(7) the intervals I and Ii are half-open on the right and have dyadic rational
endpoints;

(8) the length of both Ii and . is 2-k-i;

(9) /" U " =/i-1 and/i f3/.
(10) /i /._.

Observe that conditions (7) through (10) guarantee two useful properties. Let ] _-> 1 be
an integer. If k is any integer which satisfies 2+-1 _-< k < 2+, then the Walsh function
0 is constant on both intervals Ii and I, and changes signs from one interval to the
other:

(11) 6k(X) --6t,(Y) for x Ii, y ..
The following lemma reveals the true nature of condition H. It prevents the partial

sums from building up before vanishing locally, thereby ruling out series such as
example (3).

LEMMA. Suppose thatS is a Walsh series which satisfies condition Hand thatIo is an
interval of the form (6). Suppose further, that S2o is never zero on Io and that the sequence
{(/,/’)}i=o" is properly, nested in Io. Then there exists an integer k > ko such that $2 is
never zero on Ik-ko.

To prove this lemma webegin by supposing to the contrary,that there is a properly
I)}i--o in 10 such that S2ko/J has a zero in/. for each integer/" > 0.nested sequence {(/.,

Since S2ko/J is constant on 1 and . for f > 0, we are assuming that

(12) x j>0.

By hypothesis, there exists a nonzero constant d, such that

(13) S2o(x)= d, x Io.

Thus by (12) and (10) (/" 1), it follows that

Applying (11), we conclude that

S2o+(x)-So(X)=-d,

This identity, together with (10) and (13), implies that S2o/l(x)--2d when x I.
Continuing by induction we have that

(14) x

for each integer j > 0.
It remains to see that (14) and condition H are incompatible. We shall verify this

fact by showing that (14) leads to an inequality of the form

dx >-- n c
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for large n, where c is a certain nonzero constant and where, (x)=- . (&(x)- &-,(x))
k--’-I

for x [0, 1], n 1, 2,....
Toward this fix positive integers n and j with n > ko +, and suppose that ko <-- k <

ko +. From (9) and (10) it follows that/. __c I/_go. By (14), then, we have that

(15) IS2k(x)--Szk-,(X)l=--2g-g[d[, X ..
Moreover, the condition n > ko +f implies that

ko+]-I
2> 2 (Sgk--S2k--1)2

k=ko

In particular, (15) yields the following estimate for/" 1, 2,..., n -ko"

(16) X, (x) 2i-lldl, x ..
We are now prepared to estimate the integral of n. By conditions (9) and (10), the

intervals/, are pairwise disjoint and their union equals Io. Consequently, we have that

,.(x) dx >- (x) dx

for n > ko. Applying (16) to each of these integrals, we conclude that

-ko
,n(X) dx -[d[ 2 2]-11[

]=1

However, according to (8), this inequality reduces to the following inequality, thereby
completing the proof of the lemma:

o
X, (x dx >-- (n ko)ldl2-ko-.

3. A proof of the theorem. Let A denote the Walsh series whose coefficients are
given by ak- ak (f), for k 0, 1,.... We have, then, that A satisfies condition H, and
that

(17) lim A2,,(x) 0 a.e. x e [0, 1].
N+oo

Suppose that the theorem is false, i.e., that A is not the zero series. Then there exists
an integer ko_->0 such that AEko is not zero on an interval Io of the form (6). If x is any
given point, we can apply the lemma (by chasing down any properly nested sequence in
Io which eventually avoids Xl) to choose an interval Ik-ko such that A2k is not zero on
[k-ko. Thus, if we avoided x and both endpoints of Io, we could choose an integer k
and an interval Io* [(p*-1)/2k3, p*/2k3) whose closure F satisfied xFIo such
that AEk(x) 0 for x e Io*.

It is our aim to carry this construction one step further. Specifically, we claim that
given a constant M, there exists an interval I [(qx- 1)/2", qx/2") such that Ix c Io*
and such that

(18) ]S2"(x)[>M, x I.
Suppose for a moment that this claim has been established. If we denote the set of points
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x at which S2N(X) fails to converge to [(x) by E {Xx, X2,’" "} and apply the above
construction countably many times, we generate intervals Ix, I2,"" and integers
m x, mE, such that for each integer ] > 0, xj does not belong to the closure of/., the
closure of/. is contained in/-x, and

(19) ]S:,.,(x)] > ], x Ii.
Let s be a point which belongs to all the intervals/. Then since # xi, ] 1, 2,. ., it
must be the case that $2, (:) f(:), as N - oo. In particular, (19) implies that f(s) +oo,
which contradicts the fact that f is finite-valued.

It suffices, therefore, to establish the claim which ends with inequality (18). Toward
this, suppose to the contrary that there exists a number Mo such that for all intervals
I c Io* of the form [(q 1)/2", q/2m) there exists a point in I at which the absolute value
of $2 does not exceed No. Since $2-, is constant on each of the intervals I, and since I3
can be written as a union of such intervals for each fixed m _-> ko*, it follows that

(20) ISz-’(x)l-<-Mo, x to*, m >_- ko*.
Recall that A2k(X d* # 0 for x Io*. This means that

(21) 0 # d /2 =- AE-,(t) dt, m >-k*o,

since the integral over Io* of each Walsh function ,i with ] >_-2 kt’ is identically zero.
However, (20) together with the bounded convergence theorem, implies that $2-,
converges to f in L X(I*o ), as m oo. Also, since f is integrable, we have that S2-,[f]
converges to ]" in L (I), as m - oo. Consequently, A2-, converges to zero in L (Io*), as
m oo. Since this conclusion and (21) are incompatible, we have arrived at a contradic-
tion. In particular, the claim is established and the proof of the theorem is complete.
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SOME BASIC HYPERGEOMETRIC EXTENSIONS OF
INTEGRALS OF SELBERG AND ANDREWS*
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Abstract. A. Selberg evaluated an important multivariable extension of the beta function integral.
Andrews found a related integral and evaluated it using a result of Dyson, Gunson and Wilson. Basic

hypergeometric, or q-series, extensions of these integrals are considered and evaluated in the two-

dimensional case. Conjectures are given for the values of these integrals in the n-dimensional case.

1. Introduction. In an almost unknown paper, A. Selberg [35] evaluated an
important multivariable integral of the beta function type. He showed that

(1.1)

l--[ t7 (1 ti) (ti i) dtl.., dtn
i=1 l<=i<]<=n

I F(x +(]- 1)z)F(y +(]- 1)z)F(]z + 1)
F(x + y + (n +i-2)z)F(z + 1)

Re x >0, Re y >0, Re z >-[l/n, Re x/(n 1), Re y/(n 1)].
Many important integrals are special or limiting cases of this integral. One is an

integral considered by Mehta and Dyson [28] (see also Mehta [27]).

1
exp -- 1-I (ti- ti) dt.. dt

(2rr)"/2 i=1 l<=i<]<=n

(1.2)
r(iz + )II= F(z + 1)

This can be obtained by setting y x and 2t 1 + s(2x)-/2 and using Stirling’s
formula. Another integral is

fO i=l-I t-le-till<=i<i (ti-ti)] dtl’" dtn

(1.3)

I F(x + (] 1)z)F(]z + 1)
]=1 F(z + 1)

Just let ti -> ti/y and take y --> o.
2Letting ti--> i, x 1/2, in (1.3) gives

exp 1-I (ti dtl"
i=1 li<j<=n

(1.4)

lei F(1/2 + (] 1)z)F(/z + 1)

= F(z + 1)

These integrals have been used to prove some conjectures of Macdonald [26].
Macdonald has some other conjectures that could be proven if an appropriate extension
of Selberg’s integral could be found. Three conjectured extensions will be stated and

* Received by the editors March 3, 1980. This research was supported in part by the National Science
Foundation under Grant MCS-78-07244.

t Department of Mathematics, University of Wisconsin, Madison, Wisconsin, 53706.
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proven in the two-dimensional case. Before stating these the appropriate one-dimen-
sional extension of the beta function will be given. The first is just a disguised form of the
q- binomial theorem.

Fix q, 0 < q < 1. Define the q-gamma function of F. H. Jackson by

(1.5) F(x)
(q;q)---- (1 q)-,
(q*; q)

where

(1.6) (a; q)o I-I (1 aqn).
n=0

If

(1.7) (a; q),,
(a; q)
(aq; q)o’

then the q-binomial theorem can be given as

(ax q) (a q),,
(1.8)

(x; q)oo .=o (q; ix
See [9, p. 66] and [7] for simple proofs.

Following F. H. Jackson, define

(1.9) f(x) dqx (1-q) , f(q")q".

The q-binomial theorem can then be stated as

(1.10) fo tx-1 (tq; q)o
dqt=(tqY q)o

r.(x)r.(y)
rq(x + y)

Rex>0.

Since lim_, Fq (x) F(x), [6], and

formula (1.10) extends Euler’s formula

(1 11) Io tx-l(1-t)y-1 dt=F(x)F(Y) Re x, Re y >0.
F(x + y)’

As far as I know the q-binomial theorem was first stated by Rothe [32].
Ramanujan found two other extensions of the beta function. After changing

variables by t! (1 + t) in (1.11), the resulting integral is

x-1 F(x)F(y)
Re x > 0, Re y > 0(1.12)

(1 + t)x+y
dt

F(x + y’
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Ramanujan extended this to

(1.13) Io tx-1 (-tqX+Y; q)o F(x)F(1-x)Fq(y)
Re x >0 Re y >0.(-t; q) dt=rq(x + y)rq(1-x)’

A simple proof is given in [7]. His other extension uses

(1.14) f(t) dqt= (l-q) E f(q")q".

Ramanujan also found that [31, p. 196, # 17]

(a;q)n (ax;q)(-x;q) (q;q)oo(;q)
(1.15)

(x; q)(’, q)(b’, q’m (J; q)
A proof of this is also given in [7]. References to other proofs are given there. This
implies that

(-cqx+yt; q)tx-1 dqt
Fq(x)Fq(Y)(-cqX; q)m(-ll-*c-l" q)

(1.16)
(-ct; q)oo Fq(x + y)(-c; q)oo(-qc -’, q)oo

Re x,

When q - 1 and c > 0, this converges to

Rey>0.

o

tx-X F(x)r(y) (1 +c -1)x r(x)r(y)
(l+ct)x+ydt= r(x+y (l+c)X F(x+y)

2. The first extension of Selberg’s integral. Selberg [35] first evaluated (1.1) when
z k, a positive integer, and then obtained the general result by use of a uniqueness
theorem for analytic functions (a special case of Carlson’s theorem 11 can be used). At
present I know how to obtain some results only when z is a positive integer. An ex-

x-1 -1 x-1tension of ti (1-ti)y is given by ti (tiq; q)oo/(tiqY; q)o. The problem comes from
)2ktrying to extend 1-I<i(ti We want a nonnegative function of order 2k which

vanishes when q-* 1. This is provided by

(2.1) I1 t2ik( tiq-k )
l<=i<j<=n ti

q
2k’

which vanishes when t and on k lines on one side of this line and k 1 on the other
side. By symmetry we could take

I-I t:k( tiq-k q)(2.2)
l<--i<j<--_n \’ti 2k

which also vanishes on k lines on one side of t ti and k 1 on the other side, but the
sides are interchanged.

One two-dimensional extension of Selberg’s integral is

(2.3) I01101 (tlq;q)___ (t2q;q)ootk(t2q-k )I2(x, y, k)= t-lt-I (q-i-q) (q;;i-q- \ ti q
2k

dqtl dqt2.
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Expand ((t2q-k/tl); q)2k by the q-binomial theorem to get

2k(q-2k"I01, (taq" q) If (t2q" q)x+i-aIz(x, y, k)= q)Jqk +zk-- dqtl t.
j=o (q; q)i

t (hqy q) (t2qy q)

2k (q-2k ;q)iqikFq(X + 2k-j)Fq(y)Fq(X +j)Fq(y)
=o (q; q)irq(x + y +2k-j)rq(x + y +j)

r.(x)r.(x + 2k)G(y)G(y) (q-Zk, qX ql-X-y-2k )k+y

Fq(x + y)Fq(x + y + 2k) 3@2 1-x-2k, + q, q
q q

dqt2

The basic hypergeometric series p+lq, is defined by

(2.4) (ao,’’’,ao. ) ,o (ao;q)n’’’(ao;q)n
p+lqp

b, ,b’ q’x (q;iii), --i2iq)nX"

Jackson [19] evaluated a series which is equivalent to

(2.5) 3q2
q-2k, a, b ql-k
1-2k 1-2k; q, --7-q q at)

a b

(qk+l; q)k(abqk; q)k
t-; "--k--i

Carlitz [12] gave another proof, first proving a quadratic transformation between two
basic hypergeometric series, then obtaining (2.5) as one term of this series identity. He
also obtained the identity

(2.6) 3q32
q-2k, a, b q2-k
1-2k q

1-2k; q, -a
a b

(qk+., q)k(abqk., q)k
(aq k’, q)k(bq k’, q)k

Using Jackson’s sum gives

h(x, y, k)
Fq(x)Fq(x + 2k)Fq(y)Fq(y)q-k(q k+’, q)k(q ’-r-k’, q)k

Fq(x + y)Fq (x + y + 2k)(q *+k’, q)k(q -*-y-k

r.(x)r,(x + k)Fq(y)Fq(y)rq(2k + 1)
(2.7) q

Fq(x + y)Fq (x + y + 2k)Fq(k + 1) (q*+Y’q)k,

Fq(x)Fq(x + k)Fq(y)F(y + k)Fq(k + 1)rq(2k + 1)
Fq(x + y + k)Fq(x + y + 2k)[rq(k + 1)]z

(x-1)kq

Either by symmetry, or from Carlitz’s second sum (2.6), one obtains

(2.8)
(tlq;q) (t--?; ) tl

;q
zk

dqt dqt2

rq(x)rq(x + k)Fq(y)rq(y + k)rq(k + 1)Fq(2k + 1) x
Fq(x + y + k)rq(x + y + 2k)[rq(k + 1)]2

q

Selberg’s proof of (1.1) is very ingenious. Unfortunately it does not seem to work in
the more general setting being considered. He used the symmetry of (1.1) in x and y in
an essential way. That is easy to see by replacing tg by 1 sg. The symmetry of (1.1 O) in x
and y is not obvious, though it is true. This symmetry fails in the two-dimensional case.
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Thus Selberg’s proof does not extend. No substitute proof has been found, so we will
have to settle for a conjecture in dimensions three or more.

Conjecture 1.

()
_

(t,__q;q) H t2 tq-k
i=

ti (tiq-i q)oo l<=i<j<=n ti
q

2k
dt dt

(2.9)
qa(k..)x+b(k,.) fi F(x + ( 1)k)F(y + (j 1)k)F(ik + 1).

/=1 [’q(X + y + (n +j--2)k)Fq(k + 1)

To show that it is likely that a(k,n)=k() and b(k,n)=2kZ(’), we need to
consider further extensions of Selberg’s integral.

3. Further extensions of Selberg’s integral. The first published statement of
Selberg’s integral is of an integral on (0, oo) which arises from (1.1) by the change of
variables ti si(1 + si)-, [34].

(3.1)

2z

(si si) ds dsn

fi r(x +(j-1)z)r(y+(j-1)z)r(/z +1)
j=l r(x + y +(n +j-2)z)F(z + 1)

A two-dimensional q-extension of the case z k can be found as follows.

x+y+2k 1-k

fO fO x--1 x--1 (--Slq x+y+2k’, q)m(--s2q "q)csk(S2q-- q) dSl ds2S1 $2
(--S1; q)o(--S2; q)m \ S1 2k

2k (q-", q)iq(t,+)i I SlX+2k-j-1 (--Slq x+y+2k’, q)o
i=o (q; q (--81; q)o

ds1

(--$2qX+y+2kx+i-1 ;q)
$2

(--S2; q)oo ds2

(q-2k; q)iq(+l)ir(x +2k-j)r(1-x-2k +i)Fq(y+])
-,=o ii ), G(1-x-2k+j)G(x+y+2k)

r(x +/)F(1 -x -/)r (y -i + 2k)
Fq(1 x -j)Fq(x + y + 2k)

Fq(y)Fq(y + 2k) (q-2k; q)iq(k+)i
Fq(1-x -2k)F,(x + y)ro(1-x)r(x + y)=o i )

(1 --x)j
"a" ,rr (qY; q)i (qX; q)i q

sin rr(x + 2k-j) sin r(x +j) (ql-x-2k., q)i (ql-y-2k., q)i q(y+2k)i
[r(x)F(1 x)]aG(y)G(y + 2k)

Fq(x + y)Fq(x + y + 2k)Fq(1-x)Fq(1-x-2k)

q-2k, qy, qX 2-k-x-y)32 1-y-Ek, 1-x-2k; q, q
q q

[r(x)r(1- x)]2rq(y)Fq(y +2k) (qt+l q)(q++y;q)
Fq.(X + y +2k)Fq(x + y +2k)Fq(1-x)Fq(1-x-2k) (q+; q)(q+Y; q)
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Fq(x + y + k)Fq(x + y + 2k)Fq(k + 1)Fq (k + 1)

Fq(x)Fq(1-x)Fq(x +2k)Fq(1-x-2k)"
This suggests the following conjecture.
Conjecture 2.

(3.2)
Io "’’Io fiS’[- (--siqX+y+2("-k;q)

i=1 (--si;q)m 1-I sik(S’q’’i-k );q dsl"’’dsn
1Ni<j<--_n \ Si 2k

G(x +(j- 1)k)G(y +(j- 1)k)rq(jk + 1)r(x)r(1 x)
=i rq(x + y +(n +j-2)k)Fq(k + 1)Fq’(X + 2(j- 1)k)Fq (1-x -2(/’- 1)k)"

One trouble with the integral in this conjecture is that the integrand changes sign
on the support of the measure. This drawback can be removed by using Ramanujan’s
sum (1.16) rather than his integral (1.13).

In two dimensions the result is

f;I; (_c$1qX+y+2k.q)o(_c$2qX+y+2k (
1-k

).-1 .- q) Sk q $2
;q dqSl dqs2S1 $2

(--CS1; q)o(--CS2; q)oo S 2k

(3.3) [r.(x)r.(x + k)Fq(y)Fq(y + k)Fq(k + 1)Fq (2k + 1)(-cq*; q)o

(-cqx+2k" q)o(-qX-*/c q)oo(-ql-*-2/c" q)o]

Fq(x + y + k)Fq(x + y + 2k)Fq(k + 1)Fq(k + 1)(-c; q)2 (-q/c" q)

The proof is identical to those given before, so it will not be repeated. It is now
natural to make the following conjecture.

Conjecture 3.

fo fo fi S[-l (--csiqX+y+2("-’k’q)’
i= (--CSi q)

1-k

s2i (siqSiII q) dqs dqsn
l<-i<j<=n 2k

[rq(x +(j- 1)k)Fq(y +(j- 1)k)F,(jk + 1)
(_cqX+2(i-)., q)oo(_q-,-2(i-)kc-1., q)o](3.4)

j=l Fq(x + y +(n +/- 2)k)F(k + 1)(-c; q)(-qc-’, q)oo

[rq(x + (j- 1)k)Fq(y + (j- 1)k)Fq(jk + 1)
-1 k(j-1)(1-2x)(-cq*; q)oo(-q-*c ;q)ooq

i=1Fq(x + y +(n +f -2)k)Fq(k + 1)(-c q)(-qc -1", q)cg(i-l)kq2k(i-’)

To complete the first conjecture take --ca x+y+2(n-1)k q to determine y and then take
-c qY (a different y). The left-hand side of (3.4) is then the left-hand side of (2.9). The
right-hand side of (3.4) is

[G(x +(i- 1)k)G(l-x-y-(2n -/- 1)k)G(ik + )

fi (qX+y+2(i-1)k., q)o(ql-X-y-2(i-1)k., q)o]
i= rq(1-y- nk +jk)Fq(k + 1)(qY; q)oo(ql-y; q)oo

[Fq (x + (j 1)k)rq 1 x y (n +j 2)k)rq (jk + 1)

fl (qX+y+2(i-llk., q)oo(q-X-,-2(i-lk., q)oo]-= Fq(1-y-(j-1)k)Fq(k+l)(qY;q)o(q-Y;q)oo

A I G(x + (j 1))G(y + (j- 1))G(jk + 1)
j=l Fq(x + y + (n +j-2)k)Fq(k + 1)
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where

[F(1 x y (n +j- 2)k)Fq(x + y + (n +j- 2)k)
(qX+y+2i-a)k., q)o(qa-X-y-Zi-)k., q)]

j=l F,(y + (j- 1)k)Fq(1 y -(j- 1)k)(q; q)(q-Y; q)oo

Hn (qy+(j-1)k q)(q -y-(/- 1)k q )oo(q x+ +2(j-1)k q)(q l-x- -2(j-1)k q)
j=l (qy; q)oo(q -y q)(qX+y+(,+i-2k., q)oo(q-,,-y-(,,+i-Z)k., q)o

(qX-y-(i-Xk; q)(i_l)k(qx+y+2(j-1)k; q)(n-j)k
j= i ")-j-1)k (q 1-x-y-(n+l-2)k; q)(n-j)k

I-I (--1)(i-a)k(--1)("-i)k
i=a aYi-kq ((ia)’)

--q

qX+y+Z(i-X)k,,-i)kq (("-i)k)

A tedious calculation shows that Conjecture 1 is true with this value of A when
n=3, k=l.

4. A q-extension of Andrews’ integral. In addition to Selberg’s integral and its
special cases, there is a second identity that suggests that further interesting beta
function integrals in several variables can be evaluated. This comes from another
integral Dyson encountered. In an attempt to evaluate

(4.1) I-I [e i’ e dO dO,,
l<--l<j<--_n

Dyson was led to conjecture:
If ai are nonnegative integers and if C.T. f(tl," ", t,) is the constant term in the

Laurent expansion of f, then

ai (a +’" .+a,)
(4.2) C.T. l-I 1 ti

l<--i/<=n -j/ al!" an!

He proved this when n 2 (easy), n 3 (equivalent to Dixon’s sum of a terminat-
ing well-poised 3Fz), n 4 and n 5, and ai-- 1, 2 or 4 for general n. This conjecture
was completely proven by Gunson 17] and Wilson [40], and finally a very elegant proof
was found by Good [16]. Many of these papers have been reprinted in Porter [30], and a
nice summary of much of the work that led to this problem and the Mehta-Dyson
conjecture is given in Mehta [27]. Andrews [3] found an integral similar to Selberg’s
integral that contains this conjecture. Selberg’s integral gives Dyson’s conjecture when
a are all equal, as will appear in a more general context in the next section. In a
preliminary version of his integral, Andrews considered

Io1 Io1 /Ii(4.3) ti-1 (1 ti) a’ I-[ 1 ti ai

dq. dt.
l<_ij<_n

Unfortunately this integral does not converge for any x when n => 3, so he had to use a
more complicated double circuit integral representation for the beta function. (See [3]
for details.) In the q-case it will be possible to extend (4.3).

The first q-extension in several variables was Andrews’ extension of (4.2). (See [1].)

(4.4) (Conjecture) C.T. I-[ () (q; q)a,+...+a,
Eij; q

1=i=, ,, (q; q),,,’’" (q; q)a,,
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with eii= 1 when < f and eq q when > f. He proved this when n 2 and n 3 and
Macdonald [26] proved it when a -= 1, ai 2 and ai oO for all n.

The same type of argument used above gives

(4.5)
Fq(al + a2 + 1 x)[Fq (x)Fq (1 x)]2

Fq(al + 1)Fq (a2 + 1)Fq (1 -x)

This suggests the following conjecture.
Conjecture 4. If Re x is sufficiently large and ai are nonnegative integers, then

(4.6)
Fq(a +. + an + 1 -x)[Fq(x)Fq(1 -x)]"

Fq(al + 1)... Fq(a. + 1)Fq(1-x)

Andrews’ conjecture (4.4) follows from (4.6). To see this, multiply both sides by
((1 -qX)/(1 -q))%

The resulting identity can be written as

a(il, i,) I-I Fq(x +ai)Fq(ai+ l-x)
i=1 Fq(Oq + ai + l)

Fq(a +... +a + 1-x)[Fq(x + 1)Fq(1 -x)]
Fq(a + 1)... Fq(a, + 1)Fq(1-x)

with al+." +an =0, because (tiegi/tg; q)a, is homogeneous of degree zero. The only
terms on the left-hand side that survive when x 0 are those that come from the
constant term in I-[ii(tgeii/ti; q)a,, for limx-,o (1-qX)Fq(x +ai) exists for all aj and is
zero when a > O.

It is natural to ask if Andrews’ integral has other q-extensions, in the same way
Selberg’s integral was extended in 3. In the two-dimensional case a different
arises, which probably cannot be summed. When a change of variables is done on (4.3)
in the case n 2 and the integral is evaluated by expanding (h-t2) a/a2, the resulting

form 3F2(a,- l-a, c. 1)with 2c +l=d +e. Such series were summed byseries has the
d, e

Whipple. (See Bailey [9, p. 16].) They can be summed because Dixon’s sum of the
well-poised

(4.7) 3F.( a,b,c "1)=a+l-b,a+l-c’

F 1+ F(l+a-b)F(l+a-c)F l+--b-c
a a)+-c F(l+a-b-c)

can be transformed to Whipple’s sum using a transformation of Kummer,

(4 8) 3F2(a’b’c" )1 =F(e)F(d+e-a-b-C)3F2(d-a’d-b’C’l).d, e F(e-c)F(d+e-a-b) d, d+e-a-b’
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Basic hypergeometric extensions of (4.7) and (4.8) exist. The extension of (4.8) is

(4.9) 32 d, e
;q’

e
,c

(e;q)o(__bc;q) 3qZ d,
de q,

\ ab

Two extensions of (4.7) when it terminates are (2.5) and (2.6). The power series
variables in these cases are (de/(abc)) 1/2 and (deqZ/(abc))1/ rather than de/(abc), so
these two identities cannot be combined. A q-extension of Whipple’s sum as a 4q3 was
found by Andrews [2]. I have, however, been unable to find an integral that extends
(4.3) that leads to this sum, or to evaluate any of the sums that arose in other attempts.
There may be an extension, but if so it is still hidden.

5. Connection between some of the conjectures. The q-analogue of Andrews’
integral has a connection with the first q-extension of Selberg’s integral contained in
Conjecture 1. To see this, observe that

1-k

(51) t/2k(/t’;q)=(--1)k(titi)kq’-(k2)(t ) ( );q ;q
2k k k

so Conjecture 1 can be written as

(5.2)
)eii; q fi t+(._)k_ (tiq; q)
k i=l (iq" -q--- dqti

k
k 2n(:),()()++-)+ ()r r.(x +(]-1)k)r.(y +(]-1)k)r.(ik + 1)

(-1) /=111 Fq(x + y +(n +j-2)k)Fq(k + 1)

When x is replaced by x-(n-1)k and y is replaced by k + l-x, then (5.2) can be
shown to reduce to the special case a an k of (4.6). Since Conjecture 4
implies Andrews’ conjecture (4.4), Conjecture 1 would imply the special case ai k of
Andrews’ conjecture.

Macdonald obtained his q 1 conjectures for B,, C, D,, B ,, C,, and BC from
Selberg’s integral using the change of variables t sin Oi. Such a change of variables
cannot be done in these conjectures. It is, however, possible to change variables
quadratically in a q-integral, for

2) i)q2i(5.3) f(t) dq2t (1 +q) f(tZ)tdqt=(1-q y. f(qZ
i=0

Then

tn..klq ti 2k k -q ti.(5 4) =ti ,q ti ,q, t q2 q . 2

2k ti 2k ti 2k

2)2kis a natural extension of (t t. so it may be possible to obtain more of Macdonald’s
conjectures once Conjecture 1 is proven.

6. Another consequence of Conjecture 1. There is a second way to let q 1 in
Conjecture 1 which leads to an identity different from Selberg’s integral. Multiply both
sides of (2.9) by ((qY; q)/(q; q))(1--q)2k()-", take qX a and y -N, and let q 1.
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The result is
Conjecture 5.

(6.1)

N (-N),
(1-k+mi-mi)2k 171 a

ml,...,mn=O l<=i<]<--n i=1 mi

(jk)!(1--alN"-2k(2)a k() fi (--Nl(i-1)k.

This can be written as
Conjecture 5’.

(6.2)

N

ml,...,mn=O
(1 k + m- mi)2k 1- p (1 _p)N

fi [p(l_p)](._,k (jk)! N!

i= k! [N-(j-1)k]!"

In a similar fashion, it is possible to take a limit in Conjecture 3. In a form similar to
(6.2), it is

Conjecture 6.

(I-I (1 k + mi mi)2k H mic (l-c)
ml,...,mn=O li<]<--_n i=1 mi

(6.3)

i= (1 c) k-- ()(i-1)k"

Because Conjecture 1 has been proven when n 2, Conjectures 5 and 6 also hold
when n 2.

There is a possible extension of Conjecture 5’ which would contain the case z k
of Selberg’s integral. It uses the hypergeometric distribution

(6.4) y,.N (x+a-1)(N-x+B-1) (N+a+fl-1).,=o x N-x N

A reasonable conjecture is then
Con]ecture 7.

N

" (xi+a-1)(N-xi+-l)Y l-[ (1 k + x. Xg)2k
xl,’",xn=O l<-i<]<--n i= xi N- xi

(6.5)

I-I (ce)(i-)(fl)(i-)k(a +
]=1 (Ol. +)(n+i-2)k(1)N-(i-1)kk!

Finally, it is possible that Selberg’s integral extends to the most general extension
of the beta function using the q-integral of Jackson that I know. This extension of the
beta function is

(6.6)

-c

dqx
I"q(Ol)Fq(fl)cd (--; q)oo ;q)
Fq(Ce+/)(c+d)( -q3cd q)oo( -qdc ;q)oo
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(See [4].) On the basis of very scanty evidence I close this set of conjectures with
Conjecture 8.

d d

Fq(x+(j-1)k)Fq(y+(j-1)k)Fq(fk+l) -U;q c
q (cd)l*(J-lk

q ;q q ;q (c+d)

The symmetry in Selberg’s integral that is missing in Conjecture 1 has been
restored. Also, Conjecture 8 is more general than Conjectures 1 and 7 and contains a
direct extension of Conjecture 7 when -c qNd. Unfortunately I have not yet figured
out how to expand t21k(q-ta/t; q)a in an appropriate series so as to prove the
two-dimensional case of this conjecture. It has been checked in one nontrivial case,
k=l,n=2.

7. Connection with other topics. Multivariate versions of the gamma function and
associated integrals have arisen in a number of different contexts. Wishart [41]
introduced a multivariate normal distribution and evaluated its integral. This is closely
related to the case z 1/2 in (1.2). Statisticians have primarily considered matrices with
real entries, and so have encountered the special case of Selberg’s integral when z .
(See Wilks [39, Chap. 18] for some examples.) Hermitian and symplectic matrices
correspond to z 1 and z 2, respectively. (See Mehta [27, p. 38].) The normal
distribution cases were considered by Mehta and Dyson [28]. Dyson [13] also gave one
reason why it is necessary to extend the results to other z. He wished to differentiate an
identity. The earliest special case of Selberg’s integral that was considered is the limiting
case when z --> c. Stieltjes considered the problem of finding the maximum value of

I t(1--ti)b I-I
i=1 l<=i<j<=n

for 0 _-< ti <_- 1, a, b > O. He showed that the maximum occurs at the zeros of

(-n, n + 2a + 2b -1)pn (t) 2F 2a

polynomials which are orthogonal on [0, 1] with respect to t2a-(1 t)2b-. (See Szeg6
[37, Chap. VII.) Stieltjes also evaluated the maximum value of this function. If
In (x, y, z) is the integral in (1.1), then the maximum of this function can be computed
using Stirling’s formula, for it is limz_o[I(2az, 2bz, Z)]1/(2z). Since 1--[i=lti (1 ti) b can be
computed easily when ti are the zeros of pn(t), this gives a new evaluation of the
discriminant of the polynomial 2F1. See Szeg6 [37, Chap. VII for another derivation of
this result and references to the earlier treatments of Stieltjes, Hilbert and Schur.

Another occurrence of a special case of Selberg’s integral is in work on moment
spaces. In(l, 1, 2) was used by Karlin and Shapley [22, Thm. 15.1] to find the n-
dimensional volume of a moment space. (Also see Karlin and Studden [23, p. 129] and
Schoenberg [33].)

There is another connection with orthogonal polynomials that promises to be very
important in the future. This concerns polynomials of several variables which are
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orthogonal with respect to the integrand in (1.1). When z =1/2 in (1.1), this is treated by
James and Constantine [21]. See James [20] for more on this and limiting cases that
correspond to (1.2) and (1.3). He also gives further references to other work. The
general case of (1.1) in two dimensions has led to a set of orthogonal polynomials in two
variables. See Koornwinder [24, Case VI, p. 450] and references to earlier work of his.
Later work is surveyed by Sprinkhuizen [36]. Other references there are to Berezin and
Karpelevic [10] and Maass [25]. Herz [18] should also be consulted.

Another important paper is Gindikin [15]. He gives only his multidimensional
integrals as integrals over groups, rather than over the underlying Euclidean spaces, but
there is a connection between Selberg’s integral and his work. Multidimensional gamma
and beta functions have also been considered in number theory. Some of this will be
surveyed in Terras [38].

Macdonald’s paper [26] contains many interesting conjectures. One of these can be
extended in the following way.

(7.1) x x2x3 (2a + b + c)I (2a)I (2b)I (2c)!(1-x.23) (1-) -(a+b+c),(a+b)!(a+c)!a!b,c!"
When a b c, this is his conjecture (2.1) for B2. The identity in (6.1) is true and

can be proven by two uses of Dixon’s well-poised sum (4.7) applied to the constant term
in the expansion of the left-hand side. First adjacent terms are grouped

2a

i- I- =- i-
the constant term is picked out, and the resulting double series is summed one series at a
time. The details are easy and so will not be given here. Morris [29] has found a
q-extension of (6.1), but this is as far as we have gotten in adding extra parameters to
Macdonald’s conjectures. Recall that Dyson added many extra parameters to get his
conjecture (4.2). Initially he conjectured this when ai k. As Macdonald has pointed
out, Dyson’s conjecture comes from the root systems of A. Until Selberg’s integral
came to light, it seemed impossible to prove results of this type without the extra
degrees of freedom provided by Dyson’s conjecture. This is no longer true. However,
with more freedom comes more information, so it is still interesting to try to extend
Macdonald’s conjectures in this way.

Gindikin 15] says that the right way to extend hypergeometric functions to several
variables is to use integral representations which generalize Euler’s"

) r(c iox (1 Xt)-atb-(1 t)c-- dt,
c r(b)r(c-b)

rather than extensions of Barnes’ integral representation"

(7.3) :FI(a’b,’x) r(c) l f]r(a+s)r(b+s)r(-s)(_z),dsc F(a)F(b) 2i g F(c +s)

when arg(-z)[< and the path of integration separates the poles of F(a +s) and
F(b + s) from those of F(-s). He may be right, and a test question is to see if Selberg’s
integral can be extended to Barnes type integrals. There is a q-extension of Mellin-
Barnes integrals which can be considered. The most general extension of the beta
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function integral I know is given in [8]. It uses the q-extension of the Mellin-Barnes
integrals, and in the absolutely continuous case it is

1 "l G (1 2xq + q2n)(1 2xq n+(1/2) + qan+l)(1 / 2xq + qan)(1 + 2xq+(/2) + q2n+X)

(7.4) (abcd q)o

(1 x2)-/2 dx

(ab q)(-ac q)o(-ad q)o(-bc q)(-bd q)o(cd q)oo(q; q)’

when max ([al, [b[, [cl, [d[, [ql) < 1.
This is a natural place to look for such an extension.
Another integral that seems similar to (1.2) is

(7.5)
(27r)n/2

this.

I_ ( 2
1 1 )exp -a dtl dt e a()

(ti tj)2 2 i=1

See Gallavotti and Marchioro [14] for a proof. It would be interesting to extend

Acknowledgments. I would like to thank F. J. Dyson for a translation of the proof
in [35], I. G. Macdonald for extensive correspondence on these topics two years ago and
for a copy of [26] and G. Andrews for a copy of [3] and for informing me about Selberg’s
integral. Kevin Kadell was a patient listener who forced me to revise one of these
conjectures.

Note added in proof. W. Morris observed that (7.1) and the q-extension of it are
essentially contained in two papers of L. Carlitz, Summation ofsome double series, I, II,
Glasnik Matem. 10, 30 (1979), pp. 73-81 and 11, 31 (1976), pp. 199-203.

There are other types of extensions of Selberg’s integral that directly relate to B,,
C,, BC, and D,. These will appear in another paper.
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ESTIMATES FOR THE DERIVATIVES OF SOLUTIONS TO
WEAKLY SINGULAR FREDHOLM INTEGRAL EQUATIONS*

JUHANI PITKRANTAt

Abstract. The paper deals with the differential properties of a function b(x) defined over a bounded
domain in R", m _-> 1, as a solution to a weakly singular Fredholm integral equation of the second kind.
Estimates near the boundary of the domain for the derivatives of b(x) are given, and an explicit local singular
resolution is derived for b(x) near a smooth portion of the boundary, assuming that the kernel of the integral
equation is of a specific form.

1. Introduction. Let l be an open, bounded domain in R ", m => 1. We consider the
differentiability properties of a function b (x) defined on 12 as a solution to a Fredholm
integral equation of the second kind,

(1.1) $(x)-InK(x, y)$(y) dy=q(x), x l,

where the kernel is at most weakly singular; i.e., ]K(x, y)l_-< CIx-y >-m.
Weakly singular integral equations of the form (1.1) arise in many physical

applications. We mention the integral equation formulations of various elliptic boun-
dary value problems [5, pp. 137-272], [1], [3], and the particle transport problems of
astrQphysics and reactor theory [2].

If the kernel K(x, y) has a singularity at x y, the solution of (1.1) is generally not a
smooth function, even if q(x) is smooth. Instead, we find that the derivatives of b (x),
starting from a certain order, are unbounded on 0fZ. In the one-dimensional case this is
known from previous studies; in fact, the nature of the singularities is known in detail
for many special kernels, see [4], [6], [7], [8], [9].

In the present paper we study the behavior of the solution to (1.1) in a general
multidimensional setting. In the first case we allow f to an arbitrary open and bounded
set. Assuming certain differentiability properties for K(x, y) and q(x), we estimate the
growth rates of the derivatives of $ (x) to arbitrary order as x approaches the boundary
Of. Such estimates are especially relevant for the design of efficient numerical
algorithms for the solution of (1.1): knowing the growth rates of the derivatives, one can
design numerical algorithms with local approximation properties fitted so as to achieve
any desired global convergence rate.

In the second case we make the more detailed assumptions that 0f contains an
open subset of a smooth surface and that q (x) is a smooth function in the vicinity of this
surface. We also assume some further properties for K(x, y). We then derive a local
singular resolution showing explicitly the behavior of b (x) near the smooth portion of
the boundary. The singular resolution consists of a linear combination of known
singularly behaved functions, with unknown smooth functions acting as coefficients.
This may be regarded as a generalization of the known expansions in one dimension.

The notation and the main results of the paper are presented in 2. Sections 3 and
4 are devoted to the proofs.

2. Notation and the main results. In what follows, D, denotes a bounded, open
subset of R m, m _>- 1, with boundary 0f. If x D,, we let p (x) infy0n [x y [, where [.
denotes the Euclidean norm. For a real-valued function defined on f, D$ denotes a

* Received by the editors September 27, 1979, and in final revised form April 7, 1980.

" Institute of Mathematics, Helsinki University of Technology, SF-02150 Espoo 15, Finland. This work
was supported by the Finnish National Research Council for Technical Sciences.

952



WEAKLY SINGULAR FREDHOLM INTEGRAL EQUATIONS 953

partial derivative of d(x), with a a multi-index, a (al, am), oi 0. The order of
the derivative is denoted by [a I, ]a a +’" + ce,. For a function q (x, y) defined over
f I’ we use the symbols D and D for the partial derivatives with respect to the
Cartesian coordinates of x and y, respectively. As usual, Lp(f), 1-<_p-<_o, denotes
the space of real functions q(x) such that [[Pl[tp(n [ IP[ p dx]lit’ < o. We let finally C
denote a constant which may take different values in different usages and may depend
on f and on any parameters to be introduced, unless noted otherwise.

Let s => 0 be a real number such that s k + tr, k integer, k -> O, and 0_<- tr < 1.
Then as usual, CS(f) denotes the space of real functions q(x) on f such that
]]o cs( < oo, where

max sup
lal_-<k

+ max sup
(D"q)(x (Dq)( y)1

For irregular domains, we modify the definition of CS(f) as follows. First, if x f,
denote by B (x) the p(x)-neighborhood of x. Then we define C (I) to be the space of
functions q (x) such that

The spaces C () and (s (1) coincide for integral s, and even for nonintegral s if 1 is
sufficiently regular. For example, it is possible to show that if l-I is a simply connected
Lipschitzian domain having a piecewise smooth boundary, then there is a constant C
depending on ll such that [[ []cs(o_-< C [l0 []es(a for all 0 (s(), i.e.,

We also need some spaces with norms containing weight functions. Let k => 0 be an
integer and/z =< k a real number, and let tzj max {0, tz k +}, O,. , k. Then we
say q k,, (fl) if ][0[[k.( <, where

j=0,...,k Il=jtx

We need finally some special classes of functions, which will be used as kernels in
(1.1). Let A be a real parameter, and let rt’x.. be the linear manifold of functions K(x, y)
defined on the set {(x, y) f f, x y} and such that

and

(i) [DK(x,y)l-<_C(l+[x-y[X-Il), x,yf,xy,[al-->_O,C=C(K,a)<,

(ii) if x f and if u, t f, u t, are such that u-x l< p(x), t-x l< p(x), then

K(u,t)=Ao(u,r,O),
1

r=lu-tl, O=-(u-t),

where A is defined on R" {r 6 R 1., r > 0} R and satisfies

-<C(l+rX-/), U R, r>0, OR’, ]0]-1,

I l,l l,t 0,
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It is obvious that if h _->/x, then Y/’x.a c {,,a. We also point out that if K (x, y) /’x,a, then
DK(x, Y)

If K Y/’x,a, h > -m, we may define a bounded integral operator T Lp (l)) --> Lp(l)),
1 <= p =< oo, through the formula

(2.1) (Tp)(x) Ia K(x, t)o(t) dr.

We denote by x,a the set of integral operators T defined by (2.1) with K flEA,o,

Now consider in L(f) the integral equation

(2.2) ck(x)-(Trk)(x) q(x), x II,

where T e ’x.a, h >-m. We have:
TI-IEOREM 2.1. Let b LI(II) be a solution (not necessarily unique) to (2.2), where

T ’x.a, h >-m, h integer, and let bn b-k=0 Tkq, n >-_ 1. Then we have the
inequalities

II,/,,, _<- c 4, if / (n 2)(m + h) > 0,

if A+(n-1)(m+h)>k,k>m+A,

k>m+A.

We make next some more detailed assumptions on T, 11 and q. First, we assume that the
kernel of the operator T in (2.2) has the more specific form

(2.3) K(x, y)=rXAl(x,r, O)+A2(x,r, 0), r--Ix-yl, 0.--(x-y),
where A,A2e(R"xRlxR")and h >-m (h may also be integral). Obviously
then T e -x,a. We assume further that 012 contains an open subset of a smooth surface,
with I locally on one side of the surface. Then there exists a coordinate system
{xl, , x,} and a sphere B c R" with center at z e 0II and with radius p(B) >0, such
that

B a {x B; x. > O(x," ", x._)},

where g, e C(R’-). We then assume that q in (2.2) satisfies qlnna C(B ["1 ).
Let B be another sphere also centered at z and with radius 0 (B 1) < p (B). Then we

have the following result for the behavior of the solution to (2.2) in B1 1:
TI-IEORZM 2.2. Let 4 L (II) be a solution to (2.2) under the above assumptions on

T, lq and q. Then if x B1 f’112, we have, for arbitrary k >-O, the representation

(2.3) b(x) ’ g(x)i("+X)[log g(x)]icii(x)+ r(x),
i=1 1=0

where cij, Ck(B1 f’lIl), io(m +h)> k, ]o(i) is the number of integers in the set
{,(m +h); ,- 1, 2,..., i}, andg(x)=x,-O(xl," ",

It could be proven (see [8] for the one-dimensional case) that under the assump-
tions made, the expansion (2.3) is the most that one can say about the smoothness of
b(x) in general, i.e., the coefficients cij (x) are generally nonzero at the boundary. In
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particular this shows that if A integer and q C(), the inclusions "+x (D.) and
k,k-,- (D.), k > m + h, as given by Theorem 2.1, cannot be improved.
With appropriate changes of variables, the results of Theorems 2.1 and 2.2 could

be formulated also in the case where (1.1) is defined over the boundary 012 of a bounded
domain lqcR "/1. As an example of this type of problem, consider the integral
equation arising from the use of single and double layer potential representations in
solving the Laplace equation in II [5]. This integral equation is of weakly singular type,
provided that 012 is regular to a degree C with s > 1. For example, if Ol2 consists of
smooth sections that are joined together so that the unit normal vector to 012 is
continuous everywhere on 012, then 012 is of class C with s < 2, and Theorems 2.1 and
2.2 could be applied to determine the behavior of the solution near the irregular points
of 0f. If instead 012 contains corners, then the integral equation is of singular type, and
the above results do not apply.

We finally point out that in the cases where (1.1) is defined over a closed surface,
the kernel is most often such that the solution is smooth, except at points where either
01q or q is not infinitely smooth.

3. Proof of Theorem 2.1. We establish first some boundedness results for weakly
singular integral operators.

THEOREM 3.1. Let T x,a, A >-m, A integer. Then T is a bounded map

Proo[. Let [Loo(12) be given and let (x)= (T[)(x)= K(x, t)[(t) dt. We let t, be
an integer such that m + A , tr (0, 1). Then if a is a multi-index such that [c -<_ u,
we have

ID  (x) I-< I. [DK(x, t)l If(t) dt

(3.a) _-< cI. x-t

--< Clllf11oo.),
so T is a bounded map from Loo(lq) to C"(12).

Now let c be such that [al v, and let K(x, y) DK(x, y). Then K Y[-,+,,a.
Let x, y s f be such that ]x y < o (x), and denote by B the Ix y l- neighborhood of x.
We write

D(u) fBK(u, t)f(t) dt+Ia K(u, t)f(t) dt
\B

=(u)+(u), ueB,

and we estimate 4Ji(x)- ffi(y) [, i= 1, 2. First, we easily conclude that

To estimate ]t2(X 2(Y)1, note first that if u B and/3 is a multi-index such that
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I]: 1, we have

IO%(u)l<=c[l[ll" I, lu-t[-/- dt
\B

where 6(u)=infvonlu-vl. Using this and observing that for u=u(s)=
sx + (1 s]y, s (0, 1), 8(u(s)) > six y], we get

Io d
gt2(x)-$2(Y)I ss $2(sx + (1-s)y) ds

clll<.)lx-yl o [Ix-ylsF-’ ds

Combining the above inequalities we have, for a I= and for x, y such that
Ix-y [<p(x),

[(DTf)(x)- (DTf)(y) C Ix y Illl<.
Together with (3.1), this completes the proof. [3

THEOREM 3.2. Let T a,n, A v-m + r, v integer, v _--> 0, cr (0, 1). Then if
k >= 1, T is a bounded map T" k.k-, (f) --> k+v.k-, (f).

Proof. Let f k.k- (l), k >- 1. By Theorem 3.1"

(3.2) [IDTII cIbll, I 1 .
To estimate the higher derivatives of Tf, take any a such that al v and write

(OTf)(u) K(u, t)f(t) dt + f K(u, t)f(t) dt

where K(u, t)=DK(u, t) and B is the p(x)-neighborhood of x. Take fl to be
another multi-index such that l[3lk. Then, using repeatedly the identity
(O/Ou)K (u, t) -(O/Ot)K (u, t) + (O/Ou + O/Ot)K (u, t), and integrating by parts, we
obtain

Xi ti Dt ,,,]:(t)dt +, In K, (x, t)D ’’f(t) dr;(3.3) (Oe$1)(x) ED’ nKe"(x’ t)Ix-tl
here the sums are over finite sets of indices and multi-indices satisfying Ifl’[ + [fl"l +
IB’"] [BI- 1 and [T’l +" ]B[, and we have used the abbreviation

(3.4) K(x, t) ( O ) ( 0
+ + (x,t), teB.
Oxa Ox

By our assumptions, we have K e -+,a. Hence, if u, e B, we may write

(3.) K(u,t)=a(u,r,O), r=lu-tl, O=i(u t)

where A satisfies

[oa(u,r, o)lCr-+, l0, C=C()<.
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Now, since (3.4) and (3.5) imply that K (x, t) DA(u, r, 0) [u=x for B, we have

tB.(3.6) [DxKa(x, t)[< fix -t]-+-I1

Using (3.6) and the inequalities

1/2p(x) <= p(t) <= 2p (x), /,
IDy(t)l<-o(t)-Ill[flle.-(., t:,
[’l+["’l-<[l-1,

in (3.3), we get after some computation"

IDl(X)l_-< C, (x) -Illbell.-.).
Noting finally that

ID=(x)lcf [x-t]-m+-Illf(t) ldt
\B

we have proved:

(DDTf)(x <

x n.
Together with (3.2), this completes the proof, l1

Suppose next that we are given the integral operators Ti, 1,..., n, with
Ti r’hi,/i > -mo Then if Ki is the kernel of T, the compounded operator I-[/=1 T/is an
integral operator with the kernel Mn (x, y) defined recursively as

(3.7)

Mi(x, y)= Jn Ki(x, t)Mi_l(t, y) dr,

M K1.

i->2,

Our next theorem, fundamental to the subsequent proofs, is concerned with the
differential properties of Mn (x, y).

THEOREM 3.3. Let n >= 2 be an integer, and let hi, 1,. , n be real numbers,
/i > -m. Further letKi Y{x,.n be given, and letMn be defined by (3.7). Then ifx, y f, we
have the estimates

(3.8) IDTM(x,

where/Xl ,
1, /J,i /J,i--1 "- (m + hi), _-> 2, e is an arbitrary positive number, and C is a

constant depending on Mn, Ice I, f and e.
Remark. For a -0, this result is well known, see [5, Thm. 1, p. 59].
Proofi Assume first that m + An- [al> 0. Then since the assertion is true for a -0

(see the above remark), we get

[DMn(x, y)[=< Cf (l + ]x [x"-I’l)(1 +ly-tl ’-1-) dt.
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Since h, -[a[> -m and/2,n- E > -m for e small enough, we may apply the estimates
for compounded weakly singular integrals [5, p. 59] to obtain

[DM(x, y) I_-< C(1 +lx-y /-/--)
c( +lx-y I---),

which was to be proved.
For m + h, -[a[ <_- 0 we consider two cases separately. First, let x, y e f be such that

p(x)<=4[x-y ]. We make the induction hypothesis that either n 2, or n _->3 and (3.8)
holds with n replaced by n- 1.

Let Bi={u R"; [u-x]<o}, i= 1,..., 4, where p=-p(x), O2=2a-lx-y l, 03
2Ix y ], and p4 diam (). We write

M,(u, y)= [ K,(u, t)m,_a(t, y) dt
aB

+ Kn (u, t)M_(t, y) dt
OBi\Bi_

4

Y O(u, y), u Bx,
i=1

and we estimate [Dq(u, y)l=x[ for each i.
For 1 we choose the multi-indices 3’ and fl so that 3’+/3 =a and -m <

h,- [y[ _-< 0, and we integrate by parts to obtain

DOi(u, y)u=.=YD+’[ K,,(x, t)
tg-x ,,,

.t Ix t] Dt
m,_(t, y) ds

(3.9)

where

+E Iz Dx’/Kz’(x’ t)Dt"M"-l(t’ y) dt,

+ + K,(x,t) tBa,
Ox Ox,, Ot,

and the (finite) sums are such that , + ’ + "[ + ’"l I - and V + [’[ + ["[
[a . By the reasoning familiar from the proof of Theorem 3.2, we have

[DvK(x,t)lclx-tl.-, x,tB,, , I10.
Also, by the induction hypothesis and since p(x) p(t) p(x) and [x y lt y
[x y for B, we have

c( + (x)+--1-- + p (x) +---tt- x y

]DTM=_(t, y)[ + ]x y [._-I1-), n 3

C(l+[x-y["---Il), n=2, tB, e>0.

Take e small enough so that m +h,_l-e >0. Then p(x)+"--f[x-yl+--,
and we have

[DTM=_(t, y)lfp(x)-t(l+lx-yl".--=3, tn, n2.

Apply this and the inequalities
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in (3.9) to finally obtain

IDOa(u, y)l,=[--< Cp(x)"+’"-Il(1 + Ix y [,,._-2).
For 2 we use the inequality

M._(t, y)-< C(1 /l t-y "---)

--< C(1 + x y [’"--), tB2,
to obtain

[D02(u, y)l=x[<-C(l+[x-y[’--) f ]DK.(x,t)ldt
aB2\B

-<C1(1 +[x-y ’"-x-e) f Ix-t] "-1[ dt
aB2B1

I-yl/2

N C(1 +Ix y ""-’-) [ rm-l+.-Il dr
Oo(x)/2

if

ifm+A-Il0.
< / C3(1 + Ilog o (x)l)(1 + Ix yl--’-)

Similarly, using the inequality

[D;g(x, t)[_-< C [x [*--I=l-< C1 Ix y .-I1,
we get

tEB3\B2,

[DO(u, y)l,,=xl <-- C Ix y I’"-I"l I ]M.-l(t, y)[dt
3\B2

--< C1 [x y [a"-Il I (l+[t-y[’n-’-)d
3\B2

_< Cz[x-y [.--I1 f r’-l(l+rm,-,-)dr.
gO

Since Ix-y]"+-I=l<-Co(x) m+’-t=l and l/llog[x-y][<-C(l/llog o(x)[), we obtain
the same estimate as for 2.

Finally, if 4 we have

IDZg,4(u, y)l=l<-CI Ix I-I1(1 /[y-t[ "-1-) dt
4\B:

_< Cz(1 + [log p(x)[ + [x y
I*’"-I=l-’),

m +, ’>

Upon combining the estimates for [DZOi(u, Y)I,=I, 1,..., 4, we obtain (3.8).
It remains to consider the case o (x) > 4 x y I. We will show that for each x

can be split as

(3.10) M,,(u,y)=U,,,,,(u,y)+V,,,,(u,y), xef, yea,
where U,,.,(u, y) is defined for all u, y s R’, u # y, and satisfies

(3.xa) IDZS.x(U,y)l__xl<-c(a/lx-y["-Il-), x, yea, xey, e>0,
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and Vn,x satisfies

C(O(X) n- ]+O(x).n- [--E), m+A,-lal<0, x,y, e>0.

It is clear that if (3.10) through (3.12) hold for p(x)>4[x-y , then (3.8) holds as well.
We prove (3.10) through (3.12) by induction. First, we recall from our assumptions

that we have

(3.13) K,,(u, y)=P,,.x(u, y)+O,,.x(U, y), x, y n, lu-xl<o(x), y u,

where P..x (u, y) is defined for all u, y R’, u # y, and satisfies

(3.14) ]D’P,,,x(U, y)[_-< C(1

and Q.,x satisfies

(3.15)
O,,,x(u, y)=O, if[u-x[<p(x), ly-xl<p(x),

ID’O,,.x(u, y)l,=xl<_C(l+[x-y] .-I1) ifyn,

In view of (3.13) through (3.15), the asserted splitting is true for n 1.
Next assume that (3.1.0) through (3.12) hold when n is replaced by n- 1. Let

n,-(u u-x i= a, 2, where 0x 1/20(x)and 02 diam (lq) + C, C const.,
C>0. Let e(u) be a smooth function defined on R" such that e(u)= 1 for u lq and
e(u) 0 for u R"\B2. We claim that we can define

U..x(u, y)= e(u) IR..P..x(U, t)e(t)U.-x.x(t, y) dt, u, y R ", u # y.

Let us first check that V..x M.- U..x satisfies (3.12). We have

Vn.x(U, Y) Ia K.(u, t)M-x(t, y) dt + IR\B1 re\B1

+ In P..x(U, t) V,.-X.x(t, y) dt.

Pn.x(U, t)e(t)U._x.x(t, y) dt

Here the first two terms satisfy the desired inequalities, as can be verified by direct
differentiation. For the third term we obtain the same estimates from a partial
integration formula similar to (3.9) and from the induction hypotheses. We omit the
details.

It remains to check that U..x(u, y) satisfies (3.11). We start from the formula

D:U..x(u, y) E [D’ e(u)]D’ IRm P,,(u, t)EDt e(t)]DT’"U.-1.x(t, y) dt,

where P(u, t)= (O/OUl +O/Otl) ’1" (O/aUra +O/Otm)’’Pn,x(U, t), and the sum is over a
finite set of multi-indices such that a’ + a" + a’" +/3’ +/3"= a and either a’ O,/x.-x
[a’"l > 0 or -m </z._l- [a’"] =< 0. If/z. la’"[ > 0 (and a’ 0) or if m +X.- I’1 > 0,we
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have

I[D’ e(u)]D’ IR..P,,,(U, t)[D e(t)]DT"’U._l,(t, y) dtl.=

-<_ C IB (1 +Ix .-I’1)(1 +It y ,._1-1’"1-) dt

--< C1(1 + Ix y I""-I=l-), e > 0.

In the remaining cases, i.e., m + h, -[a’l <-- 0 and m < t/,n-1 --[0’"1 -< 0, we write

I= "’ (t, y) dt= IB {. .} dt + I {...}atK,,(u, tl[D, e(tl]Dt U,-1.x
"\o

4(u, y)+ g,(u, y),

where B0 is the 1/2Ix y [-neighborhood of x. Upon integrating by parts in the first term,
we can now verify that

IO2’O,(u, y)l=[-<_Clx-yl""-I1- i= 1 2 e >0

Hence, U,,x(U, y) satisfies (3.11), and the proof of Theorem 3.3 is complete. 71
Remark. For fixed M,, a, and e, the constant C in (3.8) depends only on diam(fl).

Moreover, C remains bounded as diam(f) + 0.
As a consequence of Theorem 3.3, we obtain the following.
COROLLARY 3.1. Let T 3",,, A > -m, integer. Then ira + (n 2)(m + > 0,

T" is a bounded map T"’LI()+’m+(). If h+(n-1)(m+h)>k, k=integer,
k > m + A, then T" is a bounded map T"" LI() "+ k,k-m-h (-).

Proof. Suppose h + (n 2)(m + h) > 0. Then if M, is the kernel of T", M, satisfies
(3.8) with/x,=h +(n-1)(m+h)>m+h. Hence, DM,(x, y) is bounded for lal<
m + h, and so T" is a bounded map T"" Ll(f) + 0k (f), k < m + A, k integer. Now let
X x, X2ef be such that [xl-x2[<p(xx), let a be a multi-index such that o-=

m +h-[a (0, 1), and let M(x, y)=DM,(x, y). Then, writing

M(x, y)-M(x, y)= -sM(sx+(1-s)x, y) ds

and applying Theorem 3.3, we have

IM (X1, y)-M (x2, Y)I

Clxx-x21 In {p(SXl+(1--S)X2)r-I+IsxI+(1--S)X2 --Y I’r-x} ds.

Since  (SXl/(1-s)x2)>-slx -x=l and Isx /(1-s)x2-yl>-Is-s’ltx -x21 for some
s’ [0, 1], we get

IM (Xl, y)-M (x, y)l<-C[Xl-xzl,
where C is independent of x l, x2, y. It follows that T" is a bounded map T"’L(I)
+().

The second part of the assertion can be proved in a similar fashion. We omit the
details, gl

Using the above results, the proof of Theorem 2.1 is straightforward" if & is a
solution to (2.2), then b also satisfies

n--1

(x)-(T"b)(x) (Tkq)(x), x , n >--_ 1.
k=0
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The asserted estimates then follow from Corollary 3.1, Theorem 3.1, and Theorem
3.2. i-I

4. Proof of Theorem 2.2. We assume the notation of 2. Our first step is to carry
out a coordinate transformation so as to map cD, locally onto a plane. To this end, we
define the mapping F" R --) R as

F(x)=z: zi=xi, i=l,...,m-1,
(4.1)

z =x-(x, ,x_),

where is as in Theorem 2.2. (Here and henceforth we disregard the minor notational
modifications required in the case m 1, i.e., we assume m -> 2.) Since 4’ C(R"-I),
(4.1) defines a smooth invertible transformation of R onto itself. Moreover, F(B fq

0fl) is a section of the plane x, =0. We set p(x)=(F-l(x)), f(x)=q(F-l(x)), and
L(x, t) K(F-I(x), F-l(t))J(t), where x, OF F(fl), K is the kernel of operator T
in (2.2), and J(t) denotes the Jacobian of the transformation F-1. In this notation, (2.2)
may be rewritten in the new coordinates as

(4.2)

where

(x) (r)(x) =/(x), x f,

(’q)(x) In L(x, t)p(t) dt.

It may be verified from the definition of F that

F-X(x)-F-I(y) rF(x, r, 0), r Ix y [,
1

0 =-(x-y),

where F is a smooth vector valued function and FI is strictly positive. Hence, with K of
the form (2.3), we have

L(x, y)=lx-ylx.(x,r, O)+2(x,r, 0),

r=lx-y[, 0=l(x y), iC(R"xRxR")

We introduce some notation which will be required in the proof. With B and B as in
Theorem 2.2, let B’, B", and B’" be spheres such that B1 (C) B’"(C)B"B’ (C) B, and let
G F(B fq fl), Gx F(B CI D.), G’= F(B’fq l)), G"= F(B"CI D.), G"’= F(B’"CI D.), and
D’ F(B’ f-) O[l). We let e(x) be a smooth function defined on R such that e(x) 1 for
x F(B") and e(x) 0 for x R"\F(B’), and we define the integral operator -’ ’a.G’
as

(")(x) L(x, t) e(t)q(t) dt,

where L is the kernel of ’. Then, setting qo qlo’, we may rewrite (4.2) for x G’ as

(4.3) o(x)-(r’o)(X) [o(x), x G’,

where

l’o(x) =/(x) + (- -’), (x)

=f(x)+ I L(x, t)(1-e(t))p(t) dt.
,F\G"

Since fig C:. C(), it follows that fol,,, C*(-m).
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We state two partial integration formulae to be needed in the sequel. To this end let
q be defined on G’ and sufficiently smooth. Then, recalling that D’ OG’ OIF is a
section of the plane x, 0, and that e(t) together with all its derivatives vanishes on
OG’\D’, we have

O
(r’q)(x)=(riq)(x)+ r (x), i=l,.., m-1(4.4)

OXi OXi ,]

(4.5) Ox---O (r’q)(x)=("’q)(x)+( r’ Ox)(x)+ fo L(x’ t) e(t)q(t)

where is an integral operator with the kernel

+ L(x, t)e(t).

Assuming the above notation, we will first prove:
LEMMA 4.1. I is any multi-index such that =0, then Do C(G’) and

(O/Ox)Doe L(G’).
Proof. Let a be given such that a 0, [al k + 1, and let n be an integer.such that

A + (n 1)(m + A) > 1. Then (4.3) implies:

nk-1

(4.6) Do(x):P(’)%o(X)+ D(’)%(x).

Applying repeatedly (4.4), the first term on the right side can be rewritten as

(4.7) D(,’)o(x)= (,..) D" (,) o(X),
/=1 ]=2 /=1

where N 1 and e x.,. Now since I + (n 1)(m +> 1, it follows from
Theorem 3.3 that if eL(G’) then= (r)e (G’)= C(G’), and

[D (,il)(x)[Co(x)m+-l-llllL<G,), xa’, la[=l, e>0,
l=l

with p(x)=infya,]x-yl. Since G’ has a piecewise smooth boundary, we have
p(x)+x--L(G’), provided that e is mall enough so that m+A-l-e >-1.
Applying these arguments repeatedly in (4.7) we conclude:

(4.8) D(r’)"kq,oS C(--;), O---D(r’)"kqoSLl(G’).
Xm

To estimate the remaining terms on the right side of (4.6), let B2, B3 be spheres
such that B2(C)B3(C)B"’, and let Gi =F(BiCII2), Gi . Further, let d(x) be. a smooth
function on R" such that d(x)= 1 for x F(B3) an._d d(x)=0 for x s R"\F(B’").
Recalling that /ol,,,sC(G’"), we have dfosC(G’). Then, applying (4.4) and
Theorem 3.1, we conclude that Dr d[os C(G’), and further, using (4.5), that
(O/Ox,,)Dr d[o L (G’), whenever a,,, 0. Also, since 1 d (x) 0 for x __G3, we
have r’(1-d)folC(G:z). So, if a=O, we have D’r’folC(G2) and
(0/Ox,,)Dr’fol e L (G).

Proceeding by induction it follows that for arbitrary B:z B’", G:z F(B:z (’l II), and
for any ], ] _-> 1, we have

0 D,(r,)foIGeLI(G2) a, O.(4.9) D" (r’)fla- e C(G2)’ Ox-----
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Furthermore, since B’, B", and B’" can be chosen arbitrarily, it follows that (4.9) holds
for any G2 F(B2 fq I) such that B2 B. With this understanding, the assertion follows
by combining (4.6), (4.8) and (4.9). U

Our next step is to prove the following:
LEMMA 4.2. For any multi-index a with a. > O, qo satisfies

(4.10) Dqo(X) A(x)+ st(x), x Ga,

where (C(G1) and A consists o] a finite sum of functions of the type
(O/Ox.)li ri(x) where 0 < < a, 1 io io(a.) < c, and ri and are defined asi=1

(riq)(x) I,Li(x, t)q(t) dt,

(x) Io, Lio+a(x, (v, O))rl(v) dr,

where r C(D’) and Li admits the representation

L(x,t)=rA.(x,r, O)+A.(x,r, 0), r=lx-tl, 0 =1- (x t), x, R",

with Aii C(R R R",).
Proof. We use the formula (4.6), with n and k chosen so that X + (n 1)(m + A) > 1

and k a,. First, writing D (O/Ox)D and using (4.4), we find that

(rilD’o(X),

where. 0, ]N , and the kernels of operators i are of the form

+ + L(x, y)e(y),Lq(X, y)=
OX1 Oy OXm-1 Oym

where 0NN. By Lemma 4.1, D’oe C(G’) and (O/Ox)D’oeL(G’). Using
then (4.5), we get the further representation

D (r’)%o(x) (r)(x)
=0 ]=1

(4.11)

"j=l 1=1

where the kernels of rijt are of the form

0

ay,,, L(x, y) e( y),

with 0 _-< yi <_- ai, and the :i are functions of the type

i(X) ID’ Lii(X’ (v, O))r/(v) dr, n(v) no(v, o),

(4.12) Tlo(X)-" (7"i])[fi (’l’ifl)
i=l j=l /=1

x G’, na >=O, kx>-O, nx+nkl=nk.
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We claim that if 7 is as in (4.12), then r/ Coo(D’). Indeed, by Lemma 4.1,
D(O/Ox,,)D’po(X)=(O/Ox,,)D’+qo(x)Ll(G’) for any a such that a,,,=0. So,
applying (4.4) and Theorem 3.3, we have that___Dl-Ii=a(Zijl)(O/Ox,,)D’qo(X) C(G’),
and fu___rther by induction that Drto(X) C(G’) for all ce with a,, =0. Hence, r/
Coo(D’).

We know from Lemma 4.1 and from Theorem 3.3 that the second term on the right
side of (4.11) is in C(G’). So, we have obtained the representation

D(")"Co(X) A(x)+ r(x),

where A and sr satisfy the assertions of Lemma 4.2.
To handle the remaining terms in (4.6), let Gi F(Bg f3 D.), 1, 2, 3, where Bi are

spheres such that BI Bz(C)B3B’, an___d write fo= fa + fz_z_where f Coo(G’) and
f2(x) 0 for x G3. Then "f212 Coo(G2) and D%"fl C(G’) for any a with a,, 0.
Using (4.4) and (4.5) one then obtains the asserted splitting for D%"fl, a,, > 0, and
hence for D%"fo as well. Proceeding by induction, the same is obtained for D (")%,
> 1. The proof is complete, l-1
We will finally analyze the behavior of A(x) in (4.10) in more detail.
LEMMA 4.3. Let rt Coo(D’) and let L(x, t) rXA l(X, r, O) + A2(x, r, 0), x, R ",

r=lx-t[, O=(1/r)(x-t),Ag Coo(R"xRx R"),A >-m. Then ik >=0, we have the
representation

L(x, (v, 0))r/(v) dv 2 Cjk(X)X=+A-1 (log Xm) + Srk(X), X 6 G",
i=0

where Cik Coo(G’----;), (k Ck (-), fo 1 if A integer and fo 0 otherwise.
Proof. Upon expanding L(x, t) as

L(x, t) rXA l(X, r, O) + A2(x, r, O)

0 rA+i
i=

-, A(x, r, 0)lr=0 +L.(x, t),

we have L. sY{a+..., and so (.(x)=o,L.(x, (v, O))rt(v)dvC(-), with k-->o as
n --> oo. Therefore, it suffices to consider the behavior of functions of the type

tji(x) Io, rX+iLi(x’ O)rt(v) dr, r r(x, v), 0 O(x, v), Li C(R R").

Let x =(u, x), u 6R "-a, and choose Oo so that the po-neighborhood D.oo of u,
D..oo {v s R’-a’, Iv u < po}, is contained in D’ for all u such that (u, 0)
Then if

i,o(X) [_ rX+iti(x, O)rl(t) do,

we have lji- i.oS Coo(G"), so it suffices to study the functions i.o(X). Setting v u + pto,

p Iv u I, Iw 1, and expanding r/(v) into a Taylor series at v u, we get

i.o(X) rX+iLi(x, O) pici(u, to)+ (,(u, p, to) p,-2 dp dto,
/=0

where Do is the unit sphere in R m-a, c Coo(R m- Rm-a), r
,,2 \1/2 2)-1/20g (1 t,,) to, 1,. ., m 1, 0, x,, (x 2 + P and (. satisfies

(4.13)
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Since p -< r, it follows from (4.13) that if

(n(X) rX+iLi(x, O)(n(U, p, o))pm-2 do do),

then rn Ck (G1) with k oo as n o. So, we have reduced the problem to the study of
functions of the form

(4.14) ii(x rX +ipm-2+iA (x, O, o) dp do), i, j >-_ O,

where A C(R x R" x R m-1).
Upon performing the integration over o), (4.14) can be rewritten as

o
ii(x) rX+’p’-2+JA(x, 0", (1- 02m) a/2) do, AeCOO(R’xRaxRa).

Further, using the relations r x’/O’, O (1- 02m)l/2Xm/Om, and changing the integra-
tion variable, we obtain

ij(X)-" xm+’+i+i-lm I o-m-X-i-i(1--02"m)(m+i-3)/2A(x, Ore, (1 0)a/2) dO
a(Xm)

a/2
+i+/-1x "m+h+i+]-I o-m-Xm -i-iN (x, Ore) dora + x,+h r(x),

a(xm)

where a(x’) x’(p20 + x2")-1/2, Aa Coo(R" x R 1) and r e Coo(G"). Now choose n so
that m A -/" + n > 1, and expand A (X, Ore) into a Taylor series in 0,, to obtain

m+A+i+j--l{ IO
1/2

ij(X)-- Xm (X)"- 0 -nm-A-i-] An (X, Ore) dO"

(4.15) nl 1 (O@m)l fl/=+ A (x, Om)lO,.=O
/=0 E Onm-A-i-]+l dO,,

a(x,,)
"+++- O;m-"-i-iA,(x, 0,) dO,,,--Xm

aO

where An(x, 0") satisfies

(4.16) Dx A (X, Ore) <= C IOm n-l,

We can further simplify (4.15) as

C C(a, n, l) < oe.

S-m-A -i-]An (X, SXm ds

m+h+i+]--Ix log (x’)Oa(x) + O.(x),-- m+h +i+j--1
X (X + O(X ),

(4.17)
integer,
integer,

where b(x’) (Po +x)-a/2 and 01, t2
In view of (4.16), the first term in (4.17) can be embedded in Oz(X). So, recalling

that

L(x, (u, O))(u) do E i](X)-" n(X),
i=Oi=O

where rn Ck (G") with k --> c as n -->
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LEMMA 4.4. Lets >-1, u integer, u =>0, and letq ck(G"). Then there exists an
integer ko ko(k), with ko oe as k oo, such that if 0 <- < ko and ilL(x, t) satisfies the
assumptions ofLemma 4.3, then

L(x, t)t(log (t,))o(t) dt @(x)x"++’(log (xm)) + (l(X) x G’"
]=0

where G, ( e C () and

if A integer or m + A + s integer,
otherwise.

Proof. We have

L(x, t)t(log (t,))p(t) dt= N(x, t,)t(log (t,)) dt,,

where a sup {t,,; G"} and

(4.18) N(x, t,)= Io L(x, (v, t,))q((v, t,)) dr,

with Dt={vR m-l", (v,t,)G"}. Now since qg((V, tm))Ck(Dt) for each tG" in
(4.18), we find, essentially by repeating the arguments in the proof of Lemrna 4.3, that if
< ko, ko ko(k) -* oc as k --) oo, then

[Ix.,-t.l"+- loglx.,-t,lx(x)+z(x), h =integer,
N(x, t,,) m+h --1[Xm--t,l I(X) + 2(X), A integer,

with 1, 1/12 CI (O’"). The remaining part of the proof is an exercise of integral calculus;
the details can be found in [7], [8]. [3

We are now ready to prove Theorem 2.2. We apply first Lernrna 4.3 and Lemma
4.4 together with an induction argument to obtain for the function A(x) in (4.10) the
representation

otl j) (_m)A(x) E xr+x)i-1 (log (x,,))iciig(x) + *lk(X), X G1, k >= O,
/=o i=1/=o

where i0 and fo(i) are as in Theorem 2.2 and Cijk, rlk C (G1). From this and (4.10) it is
keasily verified by integration that for some dijk C (-11),

]o(i)
(ram+A) C kqo(X)- Y. Y’. x (log (Xm)) dijk(X) (G1).

i=1 ]=0

Upon changing the variables back to the original ones, the proof of Theorem 2.2 is
complete.
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ON FREQUENCY DOMAIN STABILITY FOR EVOLUTION EQUATIONS
IN HILBERT SPACES VIA THE ALGEBRAIC RICCATI EQUATION*

D. WEXLER

Abstract. We establish Lyapunov type stability for an evolution equation in a Hilbert space by using
some energy functions which are obtained via the algebraic Riccati equation. We discuss also briefly the
advantages and limitations of this infinite-dimensional extension of a well-known method. Our abstract
setting is motivated by some special systems arising in reactor dynamics and retarded differential difference
equations.

1. Introduction. We discuss Lyapunov type stability for the zero solution of the
differential system

(1.1) m_dx dtr
dt

Ax + qb(tr)b,
dt

(c, x)- qb(tr)p,

where the linear operator A generates a Co- (i.e., quasi-bounded) semigroup S on the
real Hilbert space X with inner product (., and norm ]. [, b, c X, p R, and b R
is a nonlinear, locally Lipschitz function with rb (r) > 0 for all r # 0 (so that b (0) 0). In
addition to this, we assume S to be exponentially stable, which means that there exist
M _-> 1 and a > 0 such that

(1.2) ]S(t)].z(x)<-Me -’t, for all t->0,

where (X) denotes the Banach space of bounded linear operators from X to X; for
the theory of linear C0-semigroups, we refer the reader to [11, Chap. IX]. The above
system will be viewed in the Hilbert space =X x with inner product

((xx, rx), (x2, r2)) (Xl, x2)-[-- rlr2.

System (1.1) is an abstract version for some significant special control systems,
among which we would like to mention first the integrodifferential system

0-0 T(t, ,)= -0[ ,,0pl(tj)-T(t, se) +p2()T(t, ’)+b(o-(t))b(),

(1.3)

No,(t) c(’) r(t, ,) d, for all > 0 and almost all : e ]y, y[,

subject to initial conditions and to homogeneous boundary conditions of Dirichlet-
Neumann type. Systems of form (1.3) arise as dynamic models of one-dimensional
continuous medium nuclear reactors. They have been studied extensively by Levin and
Nobel [12], Miller [14], Bronikowski, Hall and Nobel [1] and others (see [10], [19] for
more extensive bibliography) by reducing them to certain nonlinear Volterra equations,
which have been discussed by means of some energy functions and/or transform
methods. Infante and Walker [10] discussed (1.3) in its abstract form (1.1) with A
selfadjoint, by using the theory of nonlinear C0-semigroups combined with some
estimates obtained on the basis of a Lyapunov function, which is very similar to that
used previously in the theory of absolute stability of differential equations in finite-
dimensional spaces. Indeed, if we define A in X L(y, y) as the Sturm-Liouville

* Received by the editors October 23, 1979, and in revised form February 27, 1980.

" Department of Mathematics, Facult6s Universitaires N.-D. de la Paix, 61, rue de Bruxelles, B-5000
Namur, Belgium.
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operator

Au(s)=- pa(s) u() +p2(sC)u(),

and require appropriate conditions on A, then (1.1) with p 0 is an abstract version for
(1.3) (see [10], [19] for details). Clearly much more general integrodifferential systems
with elliptic operator A may be written in the form (t. 1).

As a second example motivating our general setting, consider the retarded
differential difference system

3(t) A ay(t) + A2y (t- r) + &(r(t))b,
(1.4)

6"(t) (, y(t))-&(r(t))p,

where A a, A2 are n x n matrices, r>0 and b, c R". Similar systems have been
discussed in control theory for retarded equations by Halanay [7, Chap. 4], Corduneanu
[2] and others by applying Popov type frequency domain methods to the corresponding
Volterra equation for r. For our purpose, the following initial conditions are suitable"

r(0) ro , y (0) n ",
y 4 a.e. in I-r, 0], where L2(-r, 0; Rn).

By using the semigroup associated to linear retarded equations [8], we can easily see
that system (1.4) may be written in form (1.1) with X L2(-r, 0; n) n, b (0,/;),
c (0, ) and A defined as

with domain
A(, rt) (O, Alrl +A2t(-r)),

D(A) {(O, rt) X" O AC([-r, 0], "), 6 e L2(-r, O, "), O(O) "O}.

Recall now that in the finite-dimensional case, powerful methods to discuss
stability of system (1.1) are available. Let us mention here the following ones" 1) the
application of Popov type frequency domain methods to the Volterra equation for r
associated to (1.1) [3, Chap. 3]; 2) the application of the Kalman-Yakubovich Lemma
(a result concerning a special case of the Algebraic Riccati Equation in optimal control
theory) to construct Lyapunov functions for (1.1)-[15]; and 3) the application of Popov
hyperstability 17], [6]. The above methods lead to so-called frequency domain stability
criteria, which are expressed in terms of b, c and the resolvent of the complexification
A of A. In finite dimension, such criteria are known to be most general and
easy-to-check.

We are concerned here with some infinite-dimensional extensions of the above
criteria. Although these extensions are still significant, to check them is not always an
easy matter, for in the infinite-dimensional case, it may be difficult to handle the
resolvent of AC; see [19] for more details. In addition to this, it seems that in infinite
dimension, the above three methods have no more the same area of application.

In [19] we have applied the first method to our infinite-dimensional setting under
the additional assumption that the semigroup $ is differentiable and p 0 (note that this
extension holds also for p => 0). Although most significant C0-semigroups are differen-
tiable, this condition does not seem quite natural to the problem, but only related to
some technical points in the proofs. Notice also that the semigroups associated to
retarded differential equations are not differentiable. For these reasons, we would like
to discuss here the application of the Algebraic (Operatiorial) Riccati Equation (for
short ORE). We use the Hilbert space version of the ORE by Yakubovich [21].
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In this way we can drop the differentiability condition on S, but we have to
introduce some other restrictions. As well known in finite dimension, the exact
controllability in finite time of (A, b) is a very useful and natural condition for the ORE
associated to the stability problem under consideration. This condition is meaningless in
our setting, for it follows by a result of Triggiani 18], that in infinite dimension (A, b) is
never exactly controllable in finite time. Moreover, weaker controllability concepts
seem to be of little interest here. However, under the assumption that the semigroup $
is exponentially stable, we may use Yakubovich results for the associated ORE in the
so-called nondegenerate case, which does not require exact controllability of (A, b).
The above narrows our stability results to the case p > 0; see Remark 1. The case p 0
(which is of interest too) is related to the ORE in the degenerate case. In this latter case,
under, the lack of controllability, it seems difficult to characterize the existence of
solutions for the ORE in frequency domain terms. We recall that, in the case p 0,
frequency domain stability may be obtainedby other means under the ditterentiability
condition on S [19].

Notice also that to the opposite of the finite-dimensional case, the energy functions
we obtain by using the ORE are no more "truly" Lyapunov functions, for they are not
necessarily coercive, see 3. This is related to some specific features of the Lyapunov
Equation (for short LE) in infinite dimension, see 2. However, we may still use these
energy functions to prove stability in our setting.

2. The Lyapunov and Riccati equations. It is useful to consider also the com-
plexificatio of the spaces and operators under consideration. The elements of the
complexification X of X will. be written as x + iy, x, y X, and the inner product of X
will be denoted by (.,.)xc. For any operator E in X we denote by E the linear
operator in X defined by

E (x + iy) Ex + iEy, with domain D(Ec) D(E) + iD(E).

! denotes the identity operator on X, so that I is the identity on X. The com-
plexification of the other spaces and operators which will appear below are defined in a
similar way.

In this section, we assume that A generates a C0-semigroup S on X which satisfies
(1.2). Recall that, by the Hille-Yosida Theorem, these assumptions are equivalent to
the following: A is densely defined, the resolvent set of A contains the halfplane
Re A >-a and, for each n 1, 2, 3,. , we have

(2.1) I(hI-A)-l.(xc)<--_M(Reh+a)-, forallhC, Reh>-a.

We see in particular that A-a (X).
The LE in infinite-dimensional spaces has been considered by Datko [4], [5] and

Pazy [16]. As they have not discussed the uniqueness property and we make use of it in
3, we state the following simple lemma.
LEMMA 1. For each selfad]oint operator P (X), the operator K (X) defined

by

Kx Jo S*(s)PS(s) ds (the symbol * stands for the adoint operator),

is the unique selfadjoint operator in (X) satisfying the LE

2(KAx, x) (-Px, x), for all x D(A).

Moreover, ifP is positive, so is K.
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Proo] As in the finite-dimensional case, (1.2) implies the convergence of the
above integral and the fact that the linear operator K is bounded. Selfadjointness is
obvious. To see that K satisfies the LE, note that

Kx Jt S*(s t)PS(s t)x ds,

differentiate (Kx, x) with respect to and take into account that d[S(t)x]/dt AS(t)x
$(t)Ax, for all x D(A) and =>0. To prove uniqueness, assume that/ (X) is
another selfadjoint operator which satisfies the LE. Fix x D(A) and put

O(t) (KS(t)x, $(t)x), (t) (IS(t)x, S(t)x).

Since K and/ satisfy the same LE, we have d/dt d/dt; hence by limt_,/(t)
lim,_,+ (t) 0, it follows that (t) (t) for all => 0. We see so that (Kx, x) (Ix, x),
for all x D(A), and hence for all xX (use continuity of K and/ and the fact that
D(A) is dense in X). Since K and/ are selfadjoint, it follows then that/ K.

Note that, according to [16], in the infinite-dimensional case, K is not necessarily
coercive, even if P is so, and this narrows the field of applications of the Lyapunov
Theorem in infinite dimension.

To state Yakubovich’ results !-21 in the form we use, let us consider another real
Hilbert space U, an operator B (U, X) and a continuous, quadratic form F defined
on the Hilbert space X U by

F(x, u)=(Fx,x)x+2(Fzx, U)u+(F3u, U)u, x X, u U,

where F1 (X), F3 (U) are selfadjoint andF (X, U). The complexification F
of F is the Hermitian form defined on X U by

F(z,w)=(Fz,z)x+2Re(Fz,w)v+(Fw,w)t, zX, wU.
TnzozM 1 [21]. Iffor some 6 > O,

(2.2) F((iwI-a)-aBw, w)>=lwl, for all w U, w,
then there exists a selfadfoint operatorH (X) such thatHand h -F (B*H +F2)
satisfy

(2.3) 2(ax+Bu, Hx)+F(x, u)=lF/Z(u-hx)12, forall (x, u)D(A)xU.

Note that, since according to [11, Chap. IX],
+cx

iotsc(iooI -AC)-z e- (t)z dt, for all z X, w ,
we have, by the Riemann-Lebesgue Theorem,

(2.4) (iwI Ac)-az --> 0 as w --> oe, for all z X,
so that the frequency domain condition (2.2) implies that FC(O, w) >-8lw], hence F3 is
coercive.

Relation (2.3) is nothing else but the ORE written in terms of forms (see Willems
[20] for the finite-dimensional case).

Yakubovich’ proofs rely on optimal control methods for the continuous-time
infinite-dimensional regulator problem. His results in [21] are given for bounded
Hilbert space operators A, but it is easy to see that his proofs may be adapted to
unbounded operators A which generate C0-semigroups. For the convenience of the



FREQUENCY DOMAIN STABILITY FOR EVOLUTION EQUATIONS 973

reader and following the referee’s suggestion, we sketch this adaptation in an
appendix ( 4). Theorem 1 is a consequence of the real form of Theorem 3 in 4. It
follows easily when the complex spaces under consideration in Theorem 3 are replaced
by the complexifications of the above real spaces X and U. See also [22] for related
problems and [13] for generalizations to some unbounded operators A in a setting
which is however different from our one. Note also the discrete-time infinite-dimen-
sional version of the ORE by Helton, based on a spectral factorization approach [9].

3. Stability. Throughout this section, we assume that A generates a Co-semigroup
S which satisfies (1.2).

The function (x, 0-) from the interval J with origin 0 to is said to be a solution of
(1.1) on J with initial data (Xo, 0-0) if

(3.1) x(t)=S(t)xo+ (0-(s))S(t-s)bds, for all tJ,

and 0- e C(J) satisfies

do"
(3.2) 0-(0)=o’o, -(t)={c,x(t)}-d)(0-(t))o, for all J.

Proposition 1 below reduces the initial data problem for (1.1) to the scalar
nonlinear Volterra equation (3.3).

PROPOSITION 1. For each (Xo, 0-o) and each nonvoid interval J with origin O,
there exists at most one solution o" (1.1) on J with initial data (xo, 0-0). This solution is
(x, 0-) i[ and only i 0- is a solution o the integral equation

(3.3)
0-(t) o + (c, S(t)A-xo- A-1xo)

+ Io b(0-(s))[(c, S(t-s)A-lb)-(c,A-ab)-p] ds,

continuous on Jand x satisfies (3.1). Moreover, if (x, 0-) is a solution on J with initial data
(Xo, 0-o) and if xoD(A), then the component x is also of class C and satisfies

x(t)D(A), -(t)=Ax(t)+b(0-(t))b, forall t6J.

The proof is similar to that for Proposition 1 in [19].
We shall make use of the following "local semigroup property".
PROPOSITION 2. /f (X1, O’1) is a solution of (1.1) on [0, 01] with initial data (x0, 0-0)

and if (x2, 0-2) is a solution on [0, 02] with initial data (x1(01), o’1(01)), then the function
(x, 0-) defined on [0, 01 -Jr 02] by

x(t) XI(/) if [0, 01], x(t) x2(t-- 01) if [01, 01

0-(t) 0"a(t) if [0, 01], 0"(t) 0"2(t- 01) if [0a, 01 + 02],

is the solution ol (1.1) on [0, 01 + 02] with initial data (Xo, 0"o).
The proof involves rather long but straightforward calculations based on Prop-

osition 1 and the semigroup property of S, so we omit it.
The zero solution of (1.1) is said to be stable in the large if: (i) for each (Xo, 0-o)

there exists a solution of (1.1) on [R+ with initial data (Xo, 0-o) (uniqueness is insured by
Proposition 1); and (ii) there exists a continuous, strictly increasing function H
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with II(0) 0, such that, for any solution (x, tr) with initial data (Xo, tro) and any r > 0,

[(Xo, tro)]-<_ r implies I(x(t), r(t))[ =< II(r) /t => 0.
The zero solution is said to be uniformly asymptotically stable in the large if it is stable in
the large and if, for any bounded set in , the solution (x, tr) of (1.1) with initial data
(Xo, tro) tends to zero as +o, uniformly with respect to (Xo, tro) .

We now state our main result.
THEOREM 2. Assume thatA generates a Co-semigroup S which satisfies (1.2). 11, in

addition to this,
(i) limlsl-, o & (r) dr +c, and
(ii) there exists 6 > 0 such that

p Re (c, (itoI Ac)-lb)x >- 6, for all to R,

then the zero solution of (1.1) is uniformly asymptotically stable in the large.
Our proof is in three steps.
Step I, local existence and continuous dependence on initial data. For each r > 0, we

may find 0 > 0 such that, for any (Xo, tro) with [(Xo, tro)[e-< r, there exists one and
only one solution of (1.1) on [0, 0] with initial data (Xo, tro). It is important to the sequel
to note that O does not depend on the initial data.

The above is an easy consequence of the Contraction Mapping Principle and
Proposition 1. Indeed, since & is locally Lipschitz, there exists a continuous strictly
increasing function l" R// such that, for each r > 0,

[b (rl) q (r2)l--< l(r)[r r2l, for all rl, r2 f-r, r].

Fix now r>0, put 3 2r[l+(M+ 1)lc[[A-le(x] and denote by 0 the unique
solution of

0

0 + J0 [(c, S(s)A-b)-(c, A-b)-ol ds (2l(/3))-1.

Choose an arbitrary (Xo, ro) with I(Xo, ro)[<--r and let cg be the subspace of
functions r C([0, 0]) satisfying r(0) O’o and ]r[ <_-/3 on [0, 0]. Clearly cg is a complete
metric space. For each cr cg, define the function /&r on [0, 0] by

’l&r(t) ro + (c, S(t)A-axo-A-axo)
+ Io O(o"(s))[(c, S(t-s)a-b)-(c,a-b)-p] ds.

By using (1.2), the Lipschitz property of &, &(0)= 0 and the choice of/3 and 0, we see
easily that /t is a strict contraction in ; hence the Contraction Mapping Principle
implies that equation (3.3) possesses one and only one solution on [0, 0]. Our local
existence claim follows now by Proposition 1.

Apply then Propositions 1 and 2 and the Lipschitz property of & to obtain
continuous dependence on initial data" if (x,, r,) is a uniformly bounded sequence of
solutions of (1.1) on [0, T], T > 0, with initial data (Xo,, tro,) and if (Xo,, Oo,) (Xo, ro),
then there exists one and only one solution (x, tr) on [0, T] with initial data (Xo, O’o) and
(xn, trn) (x, or), uniformly on [0, T].

Step II, stability in the large. Note first that, since rO (r) > 0 for all r # 0, we have that
&(r) dr >0 for all s # 0. The functions s-- &(r) dr from R- to + and s-- O(r) dr

from / to R+ are continuous, strictly decreasing (respectively increasing) and equal
iero at zero. In addition to this, condition (i) of Theorem 2 implies that these functions
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tend to +oo as s -az, (respectively as s+o). Denote by y-:I+R and by
+ R+ +y respectively the reciprocals of the above functions and put y max(-y

3,+). It follows that 3’ [+" [+ is continuous, strictly increasing, 3"(0) 0, 3"(s) - +oo as
s - +oo and

(3.4) (r) dr<-a implies Isl-,(a), forallseNanda__>0.

By (2.1) with n 1 and condition (ii) of Theorem 2, we may choose ’ > 0 such that

(3.5) o -’-Re (c, (ioI -A)-b)x-’l(ioI -a-ble- o e .
Define the quadratic form F on X x R by

f(x, u)=-’lxl-<x, c>u
Since, by (3.5),

F((iooI-A)-abw, w)>-_2-a6lwl, forall wCando[,

we may apply Theorem I with U and B X defined as Bu ub, to see that there
exists a selfadjoint H (X) and h (X, [) such that

2(Ax + ub, Hx)-(x, c)u + pu z 6’([xlz + u 2) + p(u hx)z,
(3.6)

for all (x, u) D(A) R.

For u 0, we get the LE

2(-HAx, x)=(-(6’I+ph*h)x,x), forallx D(A),

and then Lemma 1 implies that (-Hx, x)>-0 for all x X; hence the function

W’Xx, W(x, cr)=(-Hx, x)+ ck(s) ds

is also positive. As seen in 2, -H is not necessarily coercive, so that W is not a "truly"
Lyapunov function. However, its properties allow us to prove stability.

Fix an arbitrary r > 0 and choose any (Xo, cro) with (Xo, Cro)la: <-- r. By using Step I
and Proposition 2, we may see that there exists one and only one maximal solution (x,
with initial data (x0, or0) and that its existence interval [0, z[, 0 < z <_- +oo, is half-open (as
usual, a solution through (Xo, go) is called maximal if it has no proper extensions).

Assume first Xo D(A), so that, according to Proposition 1, the function W is
differentiable along this solution. By using (3.6), it follows that

(3.7) l/V(x(t), o’(t)) -6’[Ix(t)[ 2 + c(r(t))2]-p[(r(t))- hx(t)]2, for all [0, z[,

hence W(x(. ), r(. )) is decreasing. Then, by using the positivity of -H, sob(s) >= O, the
Lipschitz property of b and b(0)= 0, we see that, for all => 0,

o

’(t)

(s) ds <- W(x(t), r(t))<- W(xo, ro)
(3.8)

(<- r2[H[e(x + max\ cA(s) ds, c(s) <- r2(lHle(x + 2-11(r))

hence, by (3.4), we have }o’(t)[ --< /Z (r) for all t [0, z[, where

z ++, g(s)= y(sZIHlz(x)+2-l(r)).
Use then (3.1), (1.2), the Lipschitz property of b and b(0) 0 to see that Ix(t) _-< v(r) for
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all [0, z[, where

[+ + -1v" --,0 v(s)=rM(i+a Iz(r)l(i.t(r))).

It follows that the function II (1 + v2)/ is continuous, strictly increasing, II(O) 0
and I(x(t), o’(t))lx <= II(r), for all [0, -[. Use now again Step I to find a > 0 such that
all of the solutions with initial data in the closed ball with center 0 and radius II(r) are
defined on the same interval [0, ] and then apply Proposition 2 to see that z +oo. It
follows that

(3.9) [(x(t), tr(t))[-< II(r), for all +.
Finally, consider an arbitrary xosX. Since D(A) is dense in X, we may choose a

sequence (Xo, tro,) in such that Xo, D(A), I(xo, tro)[ _-< r and (Xo,, tro) (Xo, tro).
Denote by (x,, tr,) the solution with initial data (Xo,, tro,), so that, as seen above, ](x (t),
tr,(t)[_-<II(r), for all n t and s+. Apply then continuous dependence on initial
data to infer that -= +c and (3.9) holds whatever will be Xo X.

Step III, uniformly asymptotic stability in the large. Since we have stability in the
large and the semigroup property, it suffices to establish the following: for each
bounded set in and each e > 0, there exists T >_- 0 such that, for any solution (x, tr)
with initial data (Xo, tro)S , we may find s[0, T] such that I(x(), tr())[--<H-(e),
where II- is the function reciprocal to II.

Suppose the above claim does not hold. There exists then a bounded set
e > 0, a sequence (T,) of positive numbers with T,
such that the solution (x,, o’) through (Xo,, tro,) satisfies

(3.10) I(x(t),tr(t))l>II-(e), forallt[0, T].

By integrating (3.7) on [0, t], we see that, if Xo.SD(A), the solution (x, tr) with
initial data (Xo, tro) satisfies

(3.11) ’ [Ix(s)la + 4,(o-(s))] ds <- W(xo, Oo), for all _-> 0.

Use then the fact that D(A) is dense in X, stability in the large and the continuous
dependence on initial data to see that (3.11) holds for all xoeX. Replace (xo, o’o) by
(xo, oo), by T and estimate W(xo, Oo) as in (3.8) to infer that

(3.12) 6’ [[x,(s)lz + $(r,(s))2] ds <= r2(lHlse(x)+ 2-1/(r)) Vn e N,

where r sup {l(Xo, O’o)]se" (Xo, Cro) e }. By stability, we have ](x, (t), o’, (t))lse _-< II(r), for
all n and t; hence, with (3.10), we obtain II-a(e)< II(r). Put then

r/=inf {d(s)2" 2-/ri-()<__lsl<_ri(r)}
so that r/>0. By using (3.12), we see that, for sufficiently large n , there exists
t, [0, T with

]Xn(tn)[ 2--1/2I’I--1(8) and d(tr(t))

Since, by stability in the large, we have 1o- (t,)l-<- II(r), it follows then by the definition of
r/that ttr,(t,)[<2-1/II-(e), hence

[(x,(t,), o’,(t))[<H-(e), for sufficiently large n t,

which contradicts (3.10). The proof of Theorem 2 is complete.
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Remark 1. By using (2.4), we see that condition (ii) of Theorem 2 implies p > 0,
Remark 2. As in the finite-dimensional case, we may replace condition (ii) of

Theorem 2 by the following, more general condition: p +(c, a-lb) > 0, and there exists
6 > 0 and p _-> 0 such that

p-Re(c, (iwlC-AC)-l(I+pA-a)b)xc>-_6, forallo) eR.

We have then to replace in the proofF and W by Fa, respectively WI, which are defined
as

FI(X, u) F(x, u)-p(c, A-ix)u,
Wa(x, u)= W(x, u)+2p((c, A-ax)-o’)2(p+(c, A-Ib))-a.

4. Appendix. Throughout this section, X and U are complex Hilbert spaces, A is
the generator of a Co-semigroup S on X which satisfies (1.2), B (U,X) and
F" X x U R is a continuous Hermitian form,

F(x, u) (Fax, X)x + 2 Re (Fzx, U)u +(Fu, u)u,

where F1 (X) and F3 (U) are selfadjoint and F2 (X, U). Let us state Yaku-
bovich’ result [21] for the nondegenerate case in this setting.

THEOREM 3 [21 ]. For the existence ofa selfad]oint operatorH 5(X) such that the
form

(x, u)- Re (Ax + Bu, Hx)x + F(x, u)

is coercive on D(A) x U, it is necessary and sufficient that for some 6 > 0,

(4.1) F((ioolx-A)-lBu, u)>-_6lUl2u /u Uando6.

If condition (4.1) holds, then there exists a unique selfadfoint H+(X) such that H+

and h4= _F-I (B.H/ + F2) satisfy the following two conditions:
(i) 2 Re(Ax +Bu, H+x)x+F(x, u)=[F/2(u-h+x)l V(x, u)D(A) u;
(ii) the Co-semigroup S/ generated by the operatorA/ A +Bh /

satisfies S/(. )a
L2([+, X) for each a X.

We sketch here the technical changes to be made in Yakubovich’ proofs [21] in
order to adapt them to our setting.

Consider the Cauchy problem on +
dx

(4.2) d--(.)=Ax(.)+Bu(.), x(0) a X;

throughout this section, we consider only controls u(. ) LZ(/, U). The function

x(t) $(t)a + $(t- s)Bu(s) ds, >-_ 0,

is called the solution of (4.2). Clearly x(.)eL(IfU, X). For each a e X define the
Hermitian functional J on L(N/, U) by

J(u(.)) Jo F(x(t), u(t)) dr, with x(.) the solution of (4.2).

We denote by 1 the Fourier transform of a function f e Lz(N, Z), where Z is a
complex Hilbert space. So/Zis defined for almost all w e N as the limit in L2(, Z) of the
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function

/ +(2rr)-1/= e-i’tf(t) dt, as/ -+ +oo.

When f is defined only on R+, we extend it by 0 on R- and still denote by the Fourier
transform of this extension.

LEMMA 2. The Fourier transform of the solution x(. of (4.2) satisfies

(to)= (itoIx-A)-l(Bt(to)+(2r)-I/2a), a.e. in .
Proof. This is quite trivial when A is bounded. For unbounded A, we proceed as

follows. Put

y(t)=S(t)a

and

Z(t) Jo $(t- s)Bu(s) ds, >= O,

so that Y(. 37(. )+ z’(. ). Clearly

(27r)-/2 Io e-i" $(t)a dt (2,r)-X/=(itoI-A)-aa lto .
To prove that

(4.3) () (iwI-A)-aBa(o), a.e. in R,

assume first that u(.) is continuously differentiable and u(.), du(.)/dt e L2(R /, U).
Then, according to [1 1, Chap. IX], z(. is continuously differentiable,

dz
(4.4) z(t) e D(A) and --t-(t) Az(t) + Bu(t), for all _-> 0.

On the other hand, we may then differentiate the integral defining z (.) to see that

dudz
S(t)Bu(O) + S(s)B-(t- s) ds tt > O,

hence dz/dt belongs to L2(+, X), which combined with z(O)- 0 implies

dz
(to) ito(to) a.e. in R.

dt

By (4.4), we have

A-( dz )-(t)-Bu(t) =z(t) t_->0,

and then, since A-1 (X), the application of Fourier transform yields

A-(io(a,)-Ba(a,)) (o), a.e. in ,
hence (4.3) follows. To see that (4.3) holds for an arbitrary element u(. in La(/, U), it
suffices then to note that the operators involv6d in (4.3) are continuous and the space of
continuously differentiable functions u(. with u(. and du(. )/dt in L=(I/, U) is dense
in L2([+, U).
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By using the above lemma, we see that the Lemmas 2 and 3 in [21 hold also in the
above setting. We infer so the existence and uniqueness of an optimal control u( a)
minimizing Ja. Denote by x( a) the corresponding optimal state and by V(a) the
minimum of Ja. Lemma 5 in [21] clearly applies, so that a - V(a) is a continuous
Hermitian form on X. We denote byH+ the selfadjoint operator associated to V, so that
H+ :(X).

LEMMA 3. If the solution x(.) of (4.2) /s continuously differentiable and if
dx(. )/dt L2(I+, X), then

x(t)eD(A) and --;7(t)=Ax(t)+Bu(t), a.e. inl+.

Proof. Clearly

(4.5)
dx

(w iwy(w)-(2cr)-l/2a,
dt

a.e. in R.

By Lemma 2,

(w)D(A)

hence

and A;(to) iwZ(w)-(2"rr)-I/2a-Ba(to),

a.e. inR.

a.e. in I;

Apply then the reciprocal Fourier transform to see that

a-( dxat )--7:(t)-Bu(t) =x(t), a.e. in [/,

and this proves Lemma 3.
We adapt Lemma 6 in [21] as follows:
LEMMA 4. Assume the frequency domain condition (4.1) holds and put. for each

>-_ 0 and a X, S’(t)a x(t, a). Then
(i) S’ is a Co-semigroup on Xand S’(.) a L2(/,X) for each a X;
(ii) the generator A’ of $’ satisfies D(A’)c D(A) (so that a D(A’) implies

x(t, a) D(A) for all >= O and x( a) C:(/, X)); moreover, for each a D(A’), we
have

dx(t, a) Ax(t, a) + Bu(t, a), a.e. in +"(4.6) d----
(iii) for each a X and each s >= 0, we have

u(s + t, a) u(t, x(s, a)), a.e. in +.
Proof. The fact that S’(t + s) S’(t)S’(s), for all s, >-- 0 and (iii) follow as in [21];

$’(0) I and continuity of S’(. )a at 0 follow from the properties of x( a). As in the
proof of Lemma 5 of [21], we may see that the operator a u( ., a) from X to
L2(I+, U) is linear and bounded, and this allows us to see easily that x(t, .) (X) for
each _>-0, which achieves the proof of (i).

To prove (ii), we fix a D(A’). Then, S’(. )a C1(+, X) and

d
-::-S’(t)a A’S’(t)a S’(t)A’a,
dt

for each t->_ O.
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We see then that x(.,a)sCI(R+,X) and dx(.,a)/dt=x(.,A’a), so that
by (i) we have dx( a)/dt L2(R+, X); hence (4.6) follows by Lemma 3 with x( a)
instead of x (.). Moreover, it follows that

dx( a)
(co) x( A’a )(o ), a.e.;

dt

hence by (4.5) with x( a) instead of x(. ),

(27r)-l/2a ioox( ., a)(w) -x(.,A’a)(o), a.e. in .
Since Lemma 2 implies that the right-hand side belongs a.e. to D(A), it follows
that a D(A).

LEMMA 5. Assume the frequency domain condition (4.1) holds. Then each solution
x(. of (4.2) satisfies the dissipation inequality

(4.7) V(x(s))- V(x(r)) + F(x(t), u(t)) dt >= 0 Vcr, s, 0 <- r <- s.

Equality holds in (4.7) if and only if, ]’or some a X, u(.)=u(.,a), so that x(.)=
x( a).

Proof. As usual, define t(. a.e. in + by

a(t) u(t +o-), a.e. in [0, s-r],

a.e. in Is -or, +o[.a(t) u(t- s + r, x(s)),

Clearly t(. ) L2(/, U) and the solution of

d
d--- (.) A(. )+ Bt(. ),

is

2(0)=x(),

(t) x(t + o’) on [0, s o’],

(t) x(t- s + r, x(s)) on ]s r, +[.

Then it is easy to see that

(4.8) J(((. ))= F(x(t), u(t)) dt + V(x(s)),

and this, combined with Jx()((" )) => V(x(o,)) implies (4.7). If u(. u( a), then by
using Lemma 4, we may see that t(. u( x(cr, a)), so that (4.8) implies (4.7) with
equality. Conversely, equality in (4.7) combined with (4.8) implies, for r 0, that
Ja(U(" )) V(a); hence u(. u( a) by the uniqueness of the optimal control.

We adapt Lemma 7 of [21] as follows:
LEMMA 6. Assume the frequency domain condition (4.1) holds and define the

functional
G D(A) x U---> [ by G(x, u) 2 Re(Ax + Bu, H+x) +F(x, u).

Then
(i) G(a, v)>-_O, foralla eD(A) andv U;
(ii) for each a D(A’), there exists a setN g+ ofLebesgue measure zero such that

O(x(t, a), u(t, a)) 0 Vt e R+\N.
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Proof. Choose Uo(.)Cl(R+)f’lL2(+) with u0(0)= 1 and put u(.)=Uo(.)v, so
that u(.) C1(/, U) f3 L2(+, U) and u(0)= v. Then, according to [11, Chap. IX], the
solution x(. of (4.2) is continuously differentiable and

x(t)D(A)

and

dx
(t) Ax(t) + Bu(t), for all _-> 0.

dt

It follows that V(x(.)) C([/). We may then use (4.7) to infer that

dV(x(.))
+ F(x(O), u(0)) >- 0;

dt t=o

hence (i) follows.
To prove (ii), we fix a D(A’). By Lemma 4, there exists N + of Lebesgue

measure zero such that

(4.9) dx(t’a---)=ax(t,a)+Bu(t,a) VtN+\N1.
dt

By Lemma 5 we have

V(x(t, a))= V(a)- fo F(x(s, a), u(s, a)) ds, for all => 0.

It follows that V(x( a)) is locally absolutely continuous and there exists N2 c g/ of
measure zero such that

d
d-TV(x(t,a))+F(x(t,a),u(t,a))=O Vt+\Nz,

which, combined with (4.9), implies (ii) with N N t.J N2.
Proof of Theorem 3. Condition (4.1) implies that the operators H/ and h + satisfy

conditions (i) and (ii) of Theorem 3. Indeed, for each a D(A’), there exists a set
N c / of Lebesgue measure zero such that

(4.10) u(t, a) h+x(t, a) Vt +\N,
and

(4.11) G(x(t,a),u)=lF3/2(u-h+x(t,a))l It+\N andu U.

This follows easily by applying our Lemma 6 and Lemma 8 of [21] with

1-" F3, g (B*H+ + F2)x(t, a)

and

3’ Re([2H+A +F]x(t, a), x(t, a)).

Clearly we may then assume that (4.10) holds on all of + (modify, if necessary, u( a)
on N).

We have

(4.12)
,4

S’(t)a (A + Bh +)S’(t)a
dt

t => 0 and a D(A’).
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Indeed, a D(A’) implies, by Lemma 4, that a D(A) and x( a) CI(R+, X); hence,
by (4.10), u( a) C1([, U), so that, according to [11, Chap. IX],

d
d---t x(t’ a) ax(t, a) + Bu(t, a) t >= 0,.

and (4.12) follows by using again (4.10).
By (4.12), it follows that, if a D(A’), the function t-->Ax(t, a) is continuous on

+, so that, by letting 0 in (4.11), we obtain the equality of (i) of Theorem 3 for
(x, u D(A’) x U.

To see that D(A’)= D(A) and A’ A + Bh + we observe that, according to [11
Chap. IX], the operator A + Bh+ with domain D(A) generates a C0-semigroup S+.
This, combined with (4.12), implies that S’(t)a S+(t)a, for all 0 and a D(A’).
Then, since D(A’) is dense in X, we have S’= S+’, hence D(A’)= D(A) and A’=
A+Bh+.

Uniqueness of H+. Assume that the selfadjoint operator (X) is such that
and =-F (B*+F2) satisfy also conditions (i) and (ii) of Theorem 3. Put

Q(a)=(a, a). Then, as in [21, 1], we find that for each solution x(.) of (4.2)
with a D(A),

fo
(consider first the case u(. L=( U) C(+, U), for which x(. C(+, U) and
then use the density of L=(, U) C1(+, U) in L=(+, U)). By taking the infimum for
u(. L=(+, U), we see then that V(a) (a) for all a D(A); hence (by continuity
of V and ) for all a X. This implies that H+=.

The other claims of Theorem 3 follow now as in [2 i].
Note that Theorem 3 admits also a real variant which applies when X and U are

real Hilbert spaces. It is stated in the same way with only two modifications: we have to
delete the "Re" and to replace, in (4.1), U, B and A by their complexifications. This
variant follows easily by applying Theorem 3 to the corresponding complexifications
and by observing that then the Hermitian form V on X is the complexification of a
quadratic form V’ on X.
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GENERALIZED CONVEXITY*

S. GUDDER? AND F. SCHROECK$

Abstract. Classical convexity theory is not broad enough to treat certain blending situations arising in
nonlinear quantum mechanics, color vision, threshold phenomena, and chemistry. By relaxing some of the
axioms of the classical theory, we obtain a generalized convexity theory which can be applied to nonlinear
blending investigations. The axiomatic structure is derived, representation theorems are proved, threshold
phenomena and convex topologies are considered, and a generalized probability theory is developed.
Examples from color vision, petroleum engineering, and quantum mechanics are presented.

1. Introduction. In the early 1940’s, J. von Neumann and O. Morgenstern [14]
employed abstract convex structures in their theory of games and economic behavior.
Important contributions were made a few years later by M. Stone [12] (he called such a
structure a barycentric calculus). Since then, convex structures have been applied to
studies in color vision [4], utility theory [6-1, [13], quantum mechanics [1], [2], [31, [5-1,
[8], [9], and petroleum engineering [10], [11].

In order to apply this theory to a larger class of practical situations, we argue that
some of the axioms of a convex structure must be weakened. We then study the
consequences of such relaxations. Representation theorems, threshold phenomena,
and. convex topologies are considered. Finally, we develop a generalized probability
theory based on these structures.

We feel that the resulting generalized convexity systems can be used as a vehicle for
investigating nonlinear blending. To illustrate this, possible applications to color vision,
petroleum engineering and quantum mechanics are presented.

2. Convex prestructures. A convex prestructure is a nonempty set S together with
a map from [0, 1 x S x S to S denoted by (h, x, y) -* (h, x, y). We think of S as a set of
elements that can be blended or mixed, and (h, x, y) denotes a blend of x and y in which
the concentration (or proportion) of x is h and the concentration of y is (l-A). A
convex structure is a convex prestructure (S, (.,., .)) satisfying the following five
postulates:

(P1) (h,x, y)=(1-h, y, x) for all h [0, 1],x, yS;
(P2) (h, x, (/x, y, z)) (h + (1 h )/z, (h [h + (1 h )/x ]--1, X, 3" , Z) for all A,/x [0, 1

with h + (1 )t )z # 0 and x, y, z S;
(P3) (h, x, x) x for all h [0, 1], x S;
(P4) if (h, x, y) (h, x, z) for some h # 1 and some x S, then y z;
(PS) (0, x, y) y for all x, y S.
The following lemma is useful for computational purposes.
LEMMA 2.1. Under the additional condition h # 1, (P2) is equivalent to
(P2’) (a, (,x, y),z)=(a[3, x, (a(1-/)(1-a/)-1, y,z)) for all a,B e[0, 1], aB #

1, a #0, x, y, z S.
Proof. Consider the transformation

a 1-(1-h)(1-t,),

t a[-(1-a)(1-)]-,
* Received by the editors September 6, 1979, and in revised form February 20, 1980.
? Department of Mathematics, University of Denver, Denver, Colorado, 80208.
$ Department of Mathematics, Florida Atlantic University, Boca Raton, Florida, 33432.
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with inverse A a/3 and/. a (1 a)(1 a/3)-1. The Jacobians are

Y(a,/3; a, tz) -(1 -a)[1 -(1 -a )(1 g)]-,
J(a, tx a, fl) -a(1- aB)-.

Since (1-h)(1-/x)= 1 if and only if a =0, and a/3 1 if and only if h 1, the
equivalence of (P2) and (P2’) may be obtained by substitution. [-1

We shall show later that (P5) follows from the other four postulates. The prototype
example of a convex structure is a convex subset So of a real vector space in which
(A, x, y)= Ax + (1-A)y. In the sequel when we consider such a convex set So we shall
always assume that it is equipped with this convex structure.

Although postulates (P1)-(P5) are natural properties for many blending opera-
tions, we now argue that for certain applications, some of these postulates must be
relaxed. Some of the reasons for this are that the components being blended may
interact, or the final blend may depend upon the speed with which components are
mixed, or a threshold phenomenon may exist.

Postulate (P1) states that the order in which two components are mixed is
immaterial. However, it is well known that if water is poured quickly into a strong acid
solution, then a violent reaction occurs producing considerable heat and vapor. On the
other hand, if acid is poured into water there is little interaction and the resulting blend
is a weaker acid solution. For another example, when mixing a metal with a concen-
trated complexing agent, if the agent is added to the metal, only one ligand will adhere
to each metal atom. However, when mixing in the other order, several ligands may
adhere for a relatively long time.

Postulate (P2) states that if x is mixed with a blend of y and z the result is the same
as when a blend of x and y is mixed with z at the same concentrations. This may not hold
when blending interacting chemicals. If a small amount of oxygen is mixed with a small
amount of hydrogen, a reaction occurs creating water and energy. If a large amount of
nitrogen is now mixed with the resulting water, one bubbles nitrogen into the water.
However, if the same amount of nitrogen is first mixed with the above amount of oxygen
and the resulting blend is mixed with the hydrogen, a gaseous substance is obtained.
Also, it is well known from cooking recipes that the operation of mixing ingredients
need not be associative.

For a blending situation in which (P3) fails, consider octane ratings of gasoline.
.Suppose $ is the set of possible octane numbers and (A, x, y) is the octane number for a
blend of a gasoline with octane number x and a gasoline with octane number y in
proportion A to (l-A). Experiments have shown that octane ratings do not blend
linearly [10]. For example, one can mix a gasoline with octane number 100 with a
different gasoline with octane number 100 and get a gasoline with octane number 105.
In this case (A, x, x) x. As pointed out in [10], this occurs because x S does not
completely specify the gasoline. If other parameters are adjoined to the parameter
x S, so that the gasoline is completely specified, then (P3) would hold. The fact
remains that in some situations it is impractical or impossible to completely specify the
components of blends with a manageably small number of parameters, so (P3) might fail.

Postulate (P4) states that if y can be substituted for z in a blend with x at a certain
concentration, then y z. In a recipe calling for a small amount of butter, one can
frequently substitute margarine with no perceptible difference. However., butter and
margarine are certainly different, so (P4) may fail. Postulate (P4) is closely associated
with threshold phenomena which we shall consider later.
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Contrary to the other four postulates, we see no conceivable circumstance in which
(P5) fails. If one blends nothing with y the result should certainly be y.

In the sequel we use the notation R> {x R: x > 0}, R__> {x R: x => 0}. We now
give examples which show that each of the above postulates (except (P5)) is indepen-
dent of the others. That is, (P1), (P2), (P3), and (P4) cannot be derived from the other
four postulates. In Example n below, (Pn) does not hold while (Pro), m # n, hold, n 1,
2, 3, 4, m 1, 2, 3, 4, 5.

Example 1. Let S R and define

y)=x, ifA=l,
y, if0-<A<l.

Example 2. Let S R and define

(X,x, y)=

x, ifA =1,

y, ifA =0,

x, if x y,

x +y, otherwise.

To show that (P2) fails, suppose y z # 0, x 0, x # y and A,/ 0, 1. Then the
left-hand side of (P2) becomes x + y and the right-hand side is x + 2y.

Example 3. Let S R> and define

ifA =1,

(A,x,y)= y, ira =0,

x + y, otherwise.

Example 4. Let $ R> and define

ifA 1,

(A,x,y)=y, ifA=0,
/

max (x, y), otherwise.

In this case (1/2, 4, 3) (1/2, 4, 2), but 3 # 2.
The following example shows that (P5) does not follow from (P1), (P3), and (P4).

Let S R and (A, x, y) (1 A)x + Ay.
However, we have the following.
LEMMA 2.2. If a convex prestructure satisfies (P2), (P3), and (P4), then (P5) hoMs.
Proof. For 0< A < 1, applying (P2) and (P3) gives

(A, x, (0, x, y)) (A, (1, x, x), y) (A, x, y).

Applying (P4) we have (0, x, y)= y. ]

3. Representation theorems. If $1 and $2 are convex prestructures, a map F :$1
$2 is affine if F((A, x, y))= (A, F(x), F(y))2. We say that S and $2 are isomorphic if
there exists an affine bijection from S to $2. An important representation theorem due
to M. Stone [12] states that a convex prestructure S is a convex structure if and only if S
is isomorphic to a convex subset of a real vector space. The following lemma gives a kind
of converse to this representation theorem. This result was observed by M. Rusin 10] in
a slightly different context.
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LEMMA 3.1. Let $ be an arbitrary nonempty set, let So be a convex subset of a real
vector space and suppose there exists a bi]ection F" S So. ff we define (A, x, y)=
F-I[AF(x) + (1 A)F(y)], (A, x, y) [0, 1] S S, then (S, (.,., .)) is a convex structure
and S and So are isomorphic.

Proof. Direct verification shows that (P1)-(P5) hold. It is clear that F" S - So is an
isomorphism. 71

As an application of Lemma 3.1, let S R>, 0 # p R, and define (A, x, y)=
fax p + (1 -A)yP]I/P, A [0, 1], x, y S. If we define F" S R> by F(x) x, then F is a
bijection and (A,x,y)=F-I[AF(x)+(1-A)F(y)]. Hence (S,(.,.,.)) is a convex
structure.

For another example, let S R> and define (A, x, y) xay (1-), A [0, 1], x, y S.
If we define F’S-R by F(s)=logs, then F is a bijection and again (A,x, y)=
F-I[,F(x) + (1 A )F(y)] so (S, (.,., .)) is a convex structure. To illustrate the sensitivity
of the axioms to slight changes, suppose we now let S Re and again define (A, x, y)
xXy (l-x). Then the above function F is not defined at 0. We know that (P1)-(P5) hold for
x, y, z S0 and it is easy to check that (P1), (P2), (P3), and (PS) hold universally.
However, (P4) does not hold since for h 0 and y z we have 0y(l-x) 0z (l-x).

For a practical application we turn to petroleum engineering. A crude blending
model associates a pair of nonnegative numbers (n, a) with each type of gasoline [10],
where n is the octane number and a the aromatic hydrocarbon content. A blend of two
such components is defined by

(h, (n , a 1), (n2, a2)) (An q" 1 )n2 -b k 1 -/ )(a a2)z, ha + (1 h )a2),

where k is a fixed positive number. For example, if k 20, A =, nl n2 100, al --0,
and a2 1, then the octane number of the blend is 105. It is easy to check that postulates
(P1), (P3), (P4), and (PS) hold. However, the verification of (P2) is quite tedious. This
verification can be avoided by considering the map F" R2 - R2 given by F((n, a))
(n + ka 2, a). Then

F-I[AF((nl, al))+(1-h)F((nz, a2))]

F-a[(hn + 1 h )n2 + hka + 1 h )ka zz, ha + (1 --/. )a2)]

F-if(An + (1 h )n2 + kh (1 h )(a a2)2

+ k(ha + 1 h )a2)2, ha + (1 h )a2)]

(h, (n 1, a 1), (nz, a2)).

It follows from Lemma 3.1 that (R2, (.,., .)) is a convex structure. More precise
hydrocarbon blending models have been constructed using five parameters instead of
the two used above [11]. This again becomes a convex structure with base space R.

In what follows we develop more general representation theorems by relaxing
some of the postulates for a convex structure. For this it is useful to introduce the
concept of precones.

A precone is a nonempty set K together with two operations, +’ K K -K and o’

Re x K -K (denoted ax, a Re, x K) and an element 0 K satisfying"
(C1) a(x + y)=ax +ay, for all a Re, x, yK;
(C2) a (/3x)= (a)x, for all a,/3 e Re, x e K;
(C3) lx x, 0x 0, for all x e K.
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A precone K is commutative if
(C4) x + y y + x, for all x, y K.

A precone K is associative if
(C5) x + (y + z) (x + y) + z, for all x, y, z K.

A precone K is distributive if
(C6) (a +/)x ax +/x, for all a,/ R, x K.

A precone K is cancellative if
(C7) x + y x + z, for some x K implies that y z, for any y, z K.

A precone K has a zero if
(C8) 0 + x x, for all x K.
A precone which satisfies (C4)-(C7) is called a cone. A cone which satisfies (C8) is a

cone with a zero. The prototype example of a cone is a subset Ko of a real vector space
satisfying: x + y Ko, for all x, y Ko, and ax Ko, for all a _-> 0, x Ko. If K1 and K2 are
precones, a map T :K1 - K2 is linear if T(ox + fly) oTx +Ty, for all a,/ R,
x, y K1. We say that K1 and K2 are isomorphic if there is a linear bijection from Kx to
K2. It is implicit in Stone’s work [12] that any cone is isomorphic to a cone in a real
vector space.

A precone K is a convex prestructure under the natural operation (h, x, y)=
hx + (1- h)y, h [0, 1], x, y K. All precones will be assumed to be equipped with this
convex prestructure. A subset S of a precone K is convex if hx + (1 h)y S for every
h [0, 1], x, y $. A convex subset S

_
K is a base for K if 0 S and for every 0 # x K

there exists a unique s S and ce > 0 such that x
Let $ be a convex prestructure. We now associate with $ a natural precone. Define

S+ {(a, s):a R__>, s S}.We define (a, s) (/, t) if a =/ # 0 and s or if a =/ 0,
and we employ the notation 0 (0, s), for all s $. For x (a, s), y (/, t) S/ with
a +/3 # 0, define x + y (a + B, (a/(a + fl), s, t)) and define 0 + O 0. For a R__>,
x (/, s) S+, define ax (a/, s).

LEMMA 3.2. Let $ be a convex prestructure.
(1) S+ is a precone and S is isomorphic to a base ]:or S+.
(2) If S is isomorphic to a base for a precone K, then S+ and K are isomorphic.
(3) If S is a nonempty set, K a precone, So

_
K a convex subset, and T S So a

bisection, then S is a convex prestructure under the operation (h,s, t)= T-[AT(s)+
(1- h)T(t)] and S and So are isomorphic.

Proof. (1) To verify (C1) we have for/ + 3’ 0, a 0,

The cases/ + 3" 0, a 0 are trivial. To verify (C2) we have

[/(v, s)] (c/v, s) a/ (v, s).

(C3) follows from l(a, s) (a, s) and 0(a, s) (0, s). Define T:S->S/ by Ts (1, s).
Then. T’S --> T(S) S/ is a bijection. To show that T is affine we have

T((A, s, t))= (1, (A, s, t))= (A, s)+ (l-A, t)= AT(s)+(1-A)T(t).

By the above, T(S) is convex. Clearly, 0 T(S) and if 0 x (a, s) $+, then a > 0 and
(a, s) a(1, s). Hence, T(S) is a base for S+.
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(2) Let Tx" S - Tx(S)
_
K be an isomorphism, where TI(S) is a base for K. Define

F’S+-, K by F(a, s) aTls. Then F is a bijection, and F is linear since

F(a(O, s)) F(aB, s) aBTls aF(B, s),

and for a + fl # 0 we have

F((a,s)+(,t))=F a+B, (+),s,

(ce +/3)T1
(a +), s,

(aB)[a(a + B)-Ts + B(a + B)-Tt]
aTlS + BTt F(a, s)+F(B, t).

Moreover,

F(O + O) F(O) F(O, s) OTis O,

and by (C3) and (C1) we have

0 0(x + x) 0x + 0x 0 + 0.

(3) The proof is straightforward.
Lemma 3.2 shows that any convex prestructure can be represented as a base for a

precone. This lemma also showed that S+ is the unique precone (up to an isomorphism)
with this property. For this reason we call S+ the canonical precone associated with S
and the map T" S S+ defined by Ts (1, s) is the canonical embedding.

THEOREM 3.3. Let S be a convex prestructure.
(1) S satisfies (P1) if and only if S+ is commutative.
(2) S satisfies (P2) if and only if S+ is associative.
(3) S satisfies (P3) if and only if S+ is distributive.
(4) S satisfies (P4) if and only if S+ is cancellative.
(5) S satisfies (PS) if and only if S+ has a zero.
Proof. (1) If S satisfies (P1) and a + fl # 0, then

(a, s)+(fl, t)= (a +fl, (a(a +O)-x, s, t))= (/3 +a, (fl(a + 0)-1, t, s))= (/3, t)+(a, s).

Suppose S/ is commutative and x (h, s), y (1 A, t). Then

(1, (A, s, t))= x + y y +x --(1, (1 -A, t, s)).

Hence, (A, s, t) (1 -A, t, s).

(2) If S satisfies (P2) and a 0,/3 + y # 0, then

(a, s) + [(O, t) + (r, u)]= (a, s) + [(O + v), (0(/3 + v)-, t, u)]

(a + t + v,

( + t + v, ((, + t)( + t + v)-, (( + t)-, s, t), u))

(a +, (a(a + )-x, s, t)) + (r, u)

[(a, s) + (/3, t)]+ (y, u).

The other cases are left to the reader. Conversely, suppose S/ is associative and



990 S. GUDDER AND F. SCHROECK

x=(h,s), y=((1-A)(/z,t), z=((1-A)(1-tz),v), whereh+(1-h)/x0.

Then

(1, (h, s, (/z, t, v)))= (h, s)+(l-A, (/x, t, v))

(h, s) + [((1 h )/x, t) + ((1 h )( 1 -/x ), v )]

=x+(y+z)=(x+y)+z

=( + (1-X)/x, (A[A +(1-A)tz]-l,s,t))+((1-X)(1-lz),v)
=(1, (;t + (-;t), (;t [;t + (-x)]-, s, t), v>)

and (P2) follows.
(3) Suppose S satisfies (P3) and 3’ # 0, a +/ rs 0. Then

a(r, s)+ O(’/, s)= (a,, s)+ (By, s)

(( +/)r, (v[(, + )r]-, s, s))

(( +/),, s) (c +/)(,, s).

The other cases are left to the reader. Conversely, suppose S/ is distributive. Then

(, (X,s,s))=(x,s)+(-X,s)=X(,s)+(-x)(,s)=(,s).

Hence (A, s, s)= s.
(4) If $ satisfies (P4), a,/, y 0, and (a, s) + (/, t) (a, s) + (y, v), then

(a +/3, (a(a +/)-1, s, t)) (or + y, (a(a + 7)-1, s, v)).

Hence,/3 "y and

(cr(a + 0)-1, s, t)= (a(a + 0)-1, s, v).

Therefore, v. The other cases are left to the reader. Conversely, suppose S+ is
cancellative and (h, s, t) (h, s, v), h rs 1. Let x (A, s), y (1 -A, t), and z (1 -A, v).
Then x + y x + z, so y z and v.

(5) If $ satisfies (P5), and a rs 0, then

(0, t) + (, s) (, (0, t, s)) (a, s).

We have shown in the proof of Lemma 3.2 that 0 + 0 0. Conversely, if S/ has a zero,
then

(1, (0, s, t))= (0, s)+ (1, t)= (1, t).

Hence (0, s, t)= t. U
COROLLARY 3.4. A convex prestructure S satisfies (P1) or (P2) or (P3) or (P4) or

(P5), respectively, if and only if S is isomorphic to a base ]:or a precone K where K is
commutative or associative or distributive or cancellative or has a zero, respectively.

COROLLARY 3.5. Let $ be a nonempty set, $o a base ]’or a preconeKand T $ $o a

bisection. Define (h,s, t)= T-[ATs+(1-A)Tt]. Then (S, (.,., ")) satisfies (P1), (P2),
(P3), (P4), or (P5), respectively, if and only ilk is commutative, associative, distributive,
cancellative or has a zero, respectively.

One can generalize the concept of a vector space and obtain representation
theorems for convex prestructures on these generalized vector spaces. Since the
methods and results are similar to those for precones we shall just give a brief outline.
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We define a prevector space to be a nonempty set V together with two operations,
+" V V- V and o’R x V- V (denoted ax, o R, x V), and an element 0 V
satisfying (C1), (C2), and (C3) in which R is replaced by R and K by V. In a similar
way, by replacing R_ by R and K by V in (C4)-(C8) we obtain definitions of
commutative, associative,.., prevector spaces.

If S is a convex prestructure, we define V(S) {(x, y)’ x, y S+}. Define 0 (0, 0)
and (x, y)+(x’, y’)= (x +x’, y + y’). If a->0, define a(x, y)= (cx, cy), and if a <0,
define a(x, y)=(-ay,-ax). It is straightforward to check that V(S) is a prevector
space. Define W" S V(S) by Ws ((1, s), O) (Ts, 0). Then W is affine since

W(A, s, t)= ((1, (A, s, t)), 0)

((A, s)+ (l-A, t), 0 + 0)= ((A, s), 0)+ ((l-A, t), O)

x ((, s), o)+( -x)((i, t), o)= Ws +( -x)wt.

Thus, S is isomorphic to a base for the prevector space V(S), where the obvious
definitions are used. Then results similar to Lemma 3.2, Theorem 3.3 and their
corollaries hold with the notable exceptions of Theorem 3.3(3) and the distributive law
.in the corollaries. (For the failure of the distributive law consider (a +/3)(x, y), where
a/3 <0.)

4. Equivalence classes, homomorphisms. In this section we introduce several
natural equivalence relations on convex prestructures, and show that there is a
nontrivial homomorphism of any convex prestructure satisfying only (P1), (P2), and
(P3) onto a convex subset of areal vector space.

Denote the set of affine maps from the convex prestructure $1 to the convex
prestructure S: by Af(Sx, $2). We call the elements of S* Af(S, R) affine functionals.
It is shown in [3], [4] that S is a convex structure if and only if S* separates elements of S.

We now define three relations on a convex prestructure S. We write x-y if
(A, x, z)= (A, y, z), for all A 6 [0, 1], and all z s S. We write x y if there exists a
A (0, 1) and a z S such that (A, x, z) (A, y, z). Finally, we write x y if for all f S*,
f(x) =f(y).

It is easy to show that x---y implies x y implies x y, and that and are
equivalence relations. The statement "x---y" is interpreted "x may always be substi-
tuted for y" and "x y" means "x may sometimes be substituted for y."

LEMMA 4.1. If S is a convex prestructure satisfying (P1) and (P2), then is an
equivalence relation.

Proof. Transitivity is the only nonobvious property. Suppose x y and y z. Then
there exist A,/z (0, 1), v, w S, such that (A, x, v) (A, y, v), (/x, y, w) (/x, z, w). Let
k=/x(1-A)[/z(1-A)+A(1-/x)]-1 and r=A/z[/x(1-A)+A(1-/x)+A/x]-1. Then k,
o, (0, 1) and

(or, x, (k, v, w))= (r + (1-r)k, (r[o" + (1-r)k]-, x, v), w)

(r + (1-o’)k, (A,x, v), w)= (o" + (1-o’)k, (it, y, v), w)

(r, y, (/, v, w))= (r, y, <1-/, w, v))

<o’+ (I-or)(1-k), <o’[cr + (1-tr)(1-k)]-’, y, w>, v>
=(o" + (1-o’)(1-k), </x, y, w), v)

((r + (1- r)(1- k), (/x, z, w),v)

(tr, z, (1 k, w, v))= (or, z, (k, v, w)).

Hence, xz.
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In the sequel, when we speak of the relation we shall always assume that (P1) and
(P2) hold so we get an equivalence relation. We now form the quotient spaces
S/-, $/ consisting of the residue classes Ix]_., Ix]_-, [x]_, x S. Denote the natural
surjections by

THEOREM 4.2. The quotient spaces S/--., S, S/ are convex prestructures under
the operations

<, [xL, [y]-> [<, x, y>],

<, Exit, [y]> [<x, x,

<a, [x]_, [y]_> [<a, x, y >]_,

and i, f, and k are affine.
Proof. We shall do the proofs for =. Hence, let $ satisfy (P1) and (P2). To show

that the operation is well defined, suppose x x2 and y y2. Then there exists a
A (0, 1), z $ such that (A, z, Xl) (A, z, x2). For any/3 (0, 1], choose/x =/x(/3)
&/3[1-A +A/3]-1. (Hence,/x (0, A].)

Then we have

(, z, (t, x, y 1)) (, + (1 )t, (x, z, x), y)

(/z + (1 -/z )fl, (A, z, x2), y 1) (/z, z, (/3, x2, y 1)).

Hence, (/3, xl, yl) =(/3, x2, yl), for any/3 (0, 1]. Similarly, (/3, x2, yl) (/3, x2, y2), for
any/3 e (0, 1].
The case/3 0 follows from (P1).
Hence, S/= is a convex prestructure and

j((, x, y)) [(, x, y)]__ (, [x]=, [y]=) (, j(x),

so f is affine. 1-]

THEOREM 4.3 (1) The convex prestructure S satisfies (P1), (P2), and (P4). If S
satisfies (P3), then S/ is a convex structure.

(2) S/ is a convex structure.
Proof. The proof of (1) is straightforward. Iff S*, thenf (S/..m)* where ]([x])

f(x), and conversely, if (S/-m)* then k S*. Hence, if [x] [y] there exists an
fe S* such that f(x)#f(y), so (Sly)* separates elements of Sly. It follows from the
remark at the beginning of this section that S/ is a convex structure.

COROLLARY 4.4. Let S satisfy (P1), (P2), and (P3). Then there is an affine surfection
JofS onto a generating convex subset ofa real vector space V. Furthermore, J(x) J(y) if
and only if there exists a A (0, 1) and a z S such that (A, x, z) (A, y, z and V is
unique up to an isomorphism.

Proof. Since $ satisfies (P1), (P2), and (P3), $/ is a convex structure. Hence, there
exists an isomorphism T’S/- So for some generating convex subset S0 of a real
vector space V. Then T j. S $o is an affine surjection. If TI" S-* 81 is an aftine
surjection, where $1 is a generating convex subset of a real vector space W, then the
natural extension of T T-1 W- V is an isomorphism.

Thus, if S satisfies (P1), (P2), and (P3) it has a nontrivial linear representation and
any nonlinear behavior of a convex prestructure occurring through the failure of (P4)
gets lost (by indentfications) when making a linear representation of the system. Notice
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that any convex prestructure $ admits the trivial homomorphism f" $ R given by
f(x) 0 for all x S.

Since the relation is playing the major role in this homomorphism theorem, it
deserves a final piece of attention. We show that if x y for a single mixing parameter A,
then x y is achieved for infinitely many mixing parameters.

LEMMA 4.5. If S is a convex prestructure satisfying (P2) and (h, x, x)---x for all
h (0, 1), (a weakened version of (P3)), then

Hence,

(A, z, x) (A, z, y) for some A [0, 1 implies

(a, z, x) (a, z, y) for all a >= h.
Proof. For any p [0, 1 we have

(p,z, (A, z, x))-(p + (1-p)A,

( +(-o)x, z, x).

(0 + (-o)x, z,

=(p,z, (h,z,x))=(p+(1-p)h,z,x).

Thus, (a, z, x)= (a, z, y) for all
We may interpret Lemma 4.5 as follows. If we may substitute x for y in a mixture

with z where y has concentration 1 h, then we may substitute x for y in a mixture with
z for all lower concentrations.

5. Threshold Iehavior. In any application in which one has thresholds for dis-
tinguishing between objects or thresholds dividing linear from nonlinear behavior, (P4)
seems too strong an axiom. The following experiment in color perception is proposed as
a possibility for finding threshold behavior.

Project a colored pattern on a screen for a subject to observe. The pattern consists
of a small circle inside a large concentric circle. The inner circle is divided in half; one
half being color A and the other half color B. The annulus between the two circles is
colored with color C. With a fixed color A and color C, change color B until the subject
finds a match with A. Increase the size of the inner circle slightly and ask the subject if
colors A and B still match. Continue this process. If at some stage, colors A and B do
not match, a threshold effect has occurred. To our knowledge, no experiment of this
type has been performed.

In view of Lemma 4.5, one could define

t.y= sup {A’(1-h,z,x)=(1-A,z,y)},
h[0, 1]

the "threshold for substituting x for y in a mixture with z." Then x may be substituted
for y in a mixture with z whenever h < t,.y. Also, let t(x, y) inf {txZ.y z $} to get an
absolute threshold.

For an example of a threshold effect, let $ {x, y, z} and define

y) x,]. ifh 1,
(X,x,

y, ifh <1,

y,z)=j’y, irA=l,
z, ira <1,

x,z)=|x, ira 1,

z, ira <1.
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Define the operation with the other permutations of x, y, z so that (P1), (P3) and (P5)
hold. Then (S, (.,., .)) satisfies all the postulates of a convex structure except for (P4).
Postulate (P4) fails since for h # 1

(x, z, x)= (x, z, y)= z,

and yet x # y. Notice, however, that x y. If we think of x, y, z as vertices of a triangle,
we can get a nonlinear "coloring" of the solid triangle as follows. If a point of the
triangle has barycentric coordinates (A, t*), A, t* [0, 1 ], "color" the point with the blend
(A, (t*, x, y), z). We then obtain the following nonlinear coloring:

ifA=/z=l,

(A, (/x, x, y), z)= y, if A l, /x < l,

z, ifA <1.

We call the above an extreme threshold since the threshold occurs only at the extreme
points.

The following theorem shows that two nonextreme thresholds cannot exist for
interconnected pairs of elements in a convex prestructure satisfying (P1) and (P2).

THEOREM 5.1.Let S be a convex prestructure satisfying (P1) and (P2). Let x, y, z S
satisfy

y)=j’y,i ifA <Ao,
(,x, y, ifA_->Ao,

y,z)=z, if/x<tx0,
#z, if t* => t*o,

where Ao,/Xo > 0. Then either Ao or/xo equals 1.
Proof. Assume Ao < 1 and/o < 1. Then there exists a triple of numbers A, , 6

[0, 1] satisfying the inequalities" A < Ao, 6 </Zo,

/x(1-A)(1 ttA)-1 <t*o,/xA [b,A + (1-A)6]-1 <Ao,

ttA + (1-A)6
We then have

z <u, y, z> <, <Z,x, y>,z>
<, x, <u(-)(- t,x)-’, y,z>>
<, x, z>= <, x, <, y, z>>
(/zA + (1 -/xA )6, (/zA [/zA + (1

=<t* + (1-t)6, y, z> z.

Since this is a contradiction, Ao or t*o must equal 1.
The following theorem gives further constraints on nonextreme thresholds.
THEOREM 5.2. Let S be a convex prestructure satisfying (P2) and (P3). Suppose

y>=y, //cA<Ao<l,<,x,
x, for A some a, Ao <---a < 1.

Then x y.
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Proof. Suppose x (a, x, y) (/3, x, y). Then

x (, x, y)= (,, (t, x, y), y)

(aft, x, (a(1 -/3)(1 a/), y, y))

(ate, x, y).

Thus x (a 2, x, y) and by induction x (a", x, y). But a" < Ao for some n and hence,
x (a", x, y)=y.

In particular, (P2) and (P3) rule out step-function behavior"

y)=j’y, ifA<Ao,
(,x,

x, if A -> Ao,

except for extreme thresholds Ao 1. Lemma 6.2 in the next section yields further
constraints on threshold behavior when (P2) and (P3) hold. It thus seems that the proper
framework for studying threshold behavior is a convex prestructure satisfying (P2) and
(P5).

If x, y exhibit threshold behavior of the form

y, ifA<Ao,
(A,x, y)=

CY, ifA >Ao,

then if (P3) holds we have (h, y, y) (h, x, y) for h < h0, so x y. If in addition (P1) and
(P2) hold, Corollary 4.4 applies and this type of threshold behavior will vanish in a
well-controlled manner under linear representations of the system.

6. The natural topology. Let S be a convex prestructure. In order to discuss
convergence and continuity on S we define a topology which is compatible with the
convexity structure on S. In this section we shall always assume that S satisfies (P2).
Although it is not absolutely necessary to assume (P2), the topology becomes much
simpler when this postulate holds.

For xS and 0<e<_-l, we define the e-neighborhood of x to be Nx(e)=
{(A, y, x):y S, A < e} t_J {x}. We may think of Nx(e) as the set of mixtures of x with
other elements y where the concentration of y is less than e. Notice that if (P3) or (P5)
holds then x {(A, y, x): y S, A < e}, so the description of N(e) simplifies.

LEMMA 6.1. The collection {Nx(e):x 6S, 0<e <_- 1} is a basis for a topology on S.
Proof. Let z N(e). We show that there exists an el >0 such that Nz(el)_N(e).

If z =x, choose e e. If z Cx, there exist t6S, A <e, such that z =(A, t, x). Let
e e -A. Suppose u Nz (e ), u z. There exist v S,/ < e such that

But,

u (u, v, z)= (, v, (a, t,

=(/x + (1-)A, (/ [/. + (1-/)A]-a, v, t),x).

+(1-) = +(1-)< +(e-)(1-) e-(e-)<e.

Hence, u eN,(e) and Nz(F_,l)C_Nx(l?,). Suppose z eNx(el)f"]Ny(E2). There exist e, e
such that Nz(e’l)_Nx(el), N(e)Ny(e2). Letting e =min(e,e.) gives Nz(e)
Nx(ex)("]Ny(e2). [-]

We call the topology generated by the neighborhood basis {Nx(e)} the natural
topology on S. In considerations involving the real line we shall always assume that R is
endowed with its usual topology.
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LEMMA 6.2. IfS satisfies (P3), then the function h - (h, x, y) is continuous on [0, 1)
for all x, y S.

Proof. Let e >0 and hoe[0, 1). If [h-hol<ll-hole, and /x=(h-ho)(1-ho)-x,
then

(X,x, y)=( + (-)Xo, x, y)

=( + (-)Xo, (z[ + (- )Xo]-, x, x), y)

(, x, (Xo, x, y

Since/z < e, (A, x, y) is in the e-neighborhood of (Ao, x, y). I-]

In view of Lemma 6.2, threshold jumps may only occur at extreme thresholds if
(P2) and (P3) hold.

LEMMA 6,3. If S satisfies (P3), then the function x -(A, x, y) is continuous ]’or all
y S, h (0, 1].

Proof. Let e > 0 be given. We shall show that there exists a 8 > 0 such that z N(8)
implies that (h,z, y)N(x,x,r>(e). Since h(1-p)[1-hp]--h as p-0, by Lemma 6.2
there exists a (1 such that p < 8, implies

(, (1--p)[X --/p]-l, X, y)= <O’, U, <,, X,

for some u e $, tr < e/2. Choose 8 min (e/2,, 8x). Then z Nx(8) implies z (p, t, x),
p < 8, $, and

(A, z, y)= (A, (p, t, x), y)

(At), t, (A (1 -p)(1 -Ap)-1, x,

<At), t, <tr,/x, <A, x, y

(Ap + (1-Ap)o-, <Ap[Ap+(I-Ap)r]-’, t, u>, <A,x, y>>,
where

,p + (i xp)o- < ,p + (1 -hp)e e

2
<hp+ <e,

which completes the proof. I-]

COROLLARY 6.4. If S satisfies (P1) and (P3), then the ]’unction y(A, x, y) is
continuous for all x E S, A E [0, 1).

We say that f S* is bounded if there exists an M ->_ 0 such If(x)l =< M, for all x S.
THEOREM 6.5. f S* is bounded ifand only ill’is continuous in the natural topology.
Proof. Suppose I[(x)l-<M, for all x $. Let x‘" be a net converging to x E $ in the

natural topology and let 0 < e -<_ 1. Then there exists a/ such that c ->/ implies that
x‘" EN(e).Hence, x‘" (A‘’, y‘’, x) (or x‘" =x and set A‘" 0) for ->/3, where A‘" <e. We
then obtain

and hence,

f(x‘’) Aof(y‘’) + (1 A‘’)f(x),

If(x,,)-f(x)[ A‘" If(y‘’)-f(x)l <- 2MA‘" < 2Me.

It follows that f(x‘’) - f(x). Conversely, suppose that f 6 S* is not bounded. Then there
exist x, ES such that If(x,)l>n 2, n 1, 2, Now (n -1, xn, x)x, but

If(<n -1, x., x)) f(x)l In-lf(x.)- n-Xf(x)l > n-llf(x.)l n-tlf(x)l > n n-Xlf(x)l.
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Since the right-hand side of the inequality goes to o as n- oo, f is not continuous
atx. E

Let S denote the set of bounded aftine functions and let Ilfll sup {[f(x)l.x s,
for f Sb*. It is not hard to show that (Sb*, II’ll) is a Banach space.

LEMMA 6.6. IfF Af(S, $2), then F is continuous for the natural topologies.
Proof. Let x, $1 be a net converging to x $1 and let 0 < e _-< 1. Then there exists a

/3 such that c >_-/3 implies that x, Nx (e). Hence for a _->/3, x # x, there exists a A < e,
and a y S such that x (A, y, X)l. Then F(x) (A, F(y), F(x))2 and F(x)
NF)(e). Hence, F(x)F(x) in $2. F!

We use the notation Af(S)=-Af(S, S).
COROLLARY 6.7. IfF Af(S), then F is continuous in the natural topology.
We now extend the natural topology from S to S+. For simplicity of notation we

suppress the canonical embedding and look upon S as a base for the precone S+. Hence,
for any 0 # x S+, there exist unique a >0, s S, such that x as, and (A, s, t)=
hs+(1-h)t, forallA [0, 1],s,tS. Forx=asS+,a>O,sS, andO<e_-<l, define
the e-neighborhood of x to be

N,() {/3t S+ :l/3 -al < e, Ns (e)}.

We also define

No(e) {Bt S/’ [l < e}.

Thus, as8--> as if and only if a8--> a and s--> s and as--> 0 if and only if as-> 0. As
before, {Nx(e)} is a basis for a topology on S+ which we again call the natural topology.

If f s S*, define ’ S+ --> R by (as) af(s).
LEMMA 6.8. is the unique linear extension off to S+.
Proof. Let 0 # x as, 0 y fit. Then

f(,ex) ,ef(.s)=
f(x + y)=/(as + Bt)=f[(a + B)(a (a + )-1S +( + )--lt)]

=( +B)[( +B)-’f(s) +B( + B)-’f(t)]
af(s) + f(t) (as +f(t) (x +(y).

The other cases are left to the reader. For uniqueness, let g be a linear extension of f to
S/. Then

g(x) g(as) ag(s) af(s) =(as)=f(x), for all x S/. [3

If F Af(S), define P’S/ S/ by P(as) aP(s).
LEMMA 6.9. F is the unique linear extension ofF to S/.
Proof. Similar to the proof of Lemma 6.8. [
Define the linear functional on S/ by "(x)= (as) a. Denote the set of linear

functionals on S/ by S*+ and the set of linear maps from S/ to S/ by L(S/). We say that
f S*+ is bounded if there exists anM _-> 0 such that If(x)[ --< M(x), for all x s S/. We say
that F eL(S+) is bounded if there exists an M>_-0 such that [F(x)]<-M(x), for all
x s S+. The next theorem is an extension of Theorem 6.5 and Lemma 6.6.

THEOREM 6.10.
(1) Iff S, then the following statements are equivalent" (a) f is continuous in the

natural topology, (b) f is bounded, (c) f]S S’.
(2) IfF Af(S), then 15 is bounded.
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(3) IfF L(S+) and F $ $, then F is bounded.
(4) If F L(S+), then F is continuous in the natural topology if and only if F is

bounded.
Proof. (1) If f is continuous, then flS is continuous, so by Theorem 5.5 there exists an

M_->0 such that [f(s)l<=M, for all s S. If 0# x S+, then [’(x)]-lx S so ]f(x/’(x))[
M and [f(x)] <-M.(x). Hence (a)implies (b). That (b)implies (c)is trivial. If f[S S,
then by Theorem 6.5, f[S is continuous. Now suppose as - as. Then a - a and s s.
Hence,

f(s) f(s) ,f(s),

so (c) implies (a).
(2) If F Af(S), then for x as $+, we have

[ff’(x)] "[(as)] [aF(s)] a a(s) (as) (x).

(3) In this case F (F[S) and the result follows from (2).
(4) Define f(x) -[F(x)]. Then f S*+ and the result follows from (1).
The above results can also be extended to the prevector space V(S). We leave the

details of this to the reader.

7. Observables and instruments. In this section we begin a development of a
generalized probability theory in the framework of convex prestructures. This theory
may have applications in quantum mechanics [5] and possibly other fields such as
mathematical economics 14].

Let S be a convex prestructure. In this section we think of S as a set of "states"
describing a physical or mathematical system. For exarnple, in traditional quantum
mechanics [1], [7], S is the set of positive traceclass operators with trace one on a
complex Hilbert space, and in probability theory, S is the set of probability measures on
a probability space. In both these examples the conve structure is defined in terms of
the usual linear operations.

Equip S* with the usual pointwise order, and let r S* be defined by r(x) 1, for
all x S. An effect is a function f S* satisfying 0 f ’, where 0 S* is defined by
0(x) 0 for every x S. If g(S) denotes the set of effects, then g(S) is a closed convex
subset of the Banach space S*. For f (S), we interpret f(x) as the probability that the
effect f is observed when the system is in state x. Notice that 0 and r are the effects
which are never observed and always observed, respectively. In traditional quantum
mechanics, an effect is given by an operator A satisfying 0 A-</, and if s is a state,
then A(s)=tr (As). In probability theory, an effect is given by a random variable g
satisfying 0 g 1, and if/ is a state, then g(/.) g d/z. Proponents of hidden variable
theories for quantum mechanics claim that there are not enough effects to separate
states [5]. If this is the case, as we have seen earlier, S cannot be a convex structure.
Hence, convex prestructures might be a convenient framework in which to study hidden
variable theories.

Denote the Borel subsets of R by B(R). An observable is a map Q:B(R)
satisfying Q(R) r and Q(UEi)x O(E)x, for any disjoint sequence E . B(R) and
any x S. In short, an observable is an effect-valued measure. We interpret O(E) as the
effect observed when O has a value in E B(R). In traditional quantum mechanics, a
self-adjoint operator A gives the observable pa where pa is the resolution of the
identity for A. In probability theory, a random variable g gives the observable
E --) ,g-l(E

Whereas the elements of S are interpreted as states, we think of the elements of S+
as "unnormalized" states. The set of effects g(S+) on S+ are defined to be the set of
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functions f e S*+ satisfying <_- f <_- .. The map f) gives a natural bijection between
g(S) and ’(S+). We can also extend the concept of observable to S+. An observable on
S+ is a map Q :B(R)- (S+) such that Q(R)= . and Q(LJEi)x , O(Ei)x, for any
disjoint sequence Ei e B (R) and any x e S+.

An operation is a map FeL(S+)satisfying .[F(x)]<=.(x)for every x eS+. We
denote the set of operations by (7(S+). Notice that elements of (S+) and (7(S+) are
bounded and hence continuous in the natural topology (we assume in the sequel that
(P2) holds). We denote the set of linear operators on the real linear space S*+ by L(S*+).
IfF eL(S+), we define F* $*+ S*+ by [F*(f)](x) f[F(x)]. We then have F* eL(S*+).
If F e 7(S+), the effect f associated with F is defined as f F*-?. Notice that f e f(S+)
since

O<-(F*)(x)=.?[F(x)]<-?(x), for all x

Elements of 7(S+) are thought of as conditioning operations in the following sense. If
x e S+, F e 7(S+), then F(x) is the (unnormalized) state conditioned by an observation
of the effect associated with F. In other words, if x is the original state of the system.and
the effect associated wth F is observed, then the resulting state is F(x).

Although every operation is associated with a unique effect, an effect may have
many operations with which it is associated. For example, suppose (P3) holds and
leg’(S+). Let soeS and define F:S+S+ by F(x)=f(x)so. Then Fe(S+) since
F L(S+) and

-[F(x)J ?[f(x)so] f(x) <- ?(x).

Moreover, f is associated with F since

(F*’?)(x) ?IF(x)] "?[f(x )so] f(x ), for all x e S+.

An instrument is a map d’B(R)oL(S+) such that ?[d(R )x .?(x ), for every
x e S+ and d(UEi)x Y. d(Ei)x, for any sequence of disjoint Ei e B(R) and every x e S+
where convergence of the sum is in the natural topology. Notice that if is an
instrument, then (E)e 7(S+), for every E eB(R). Indeed, if E’ is the complement
of E,

"[.. (E)x <-_ .?[d (E)x + .?[ (E’)x .?[d (R )x ?(x

Thus, an instrument is an operation-valued measure. We interpret (E) as the
operation resulting from a measurement with the instrument giving a value in E.

The observable Q associated with an instrument 5 is defined by Q(E)= d(E)*.?
for all E eB(R). To show that Q is an observable, note that Q(E)e ;(S+) and

O(R)x [5 (R)*’](x) .[5 (R)x "(x),

so Q(R) ?. Finally, if Ei e B(R) are disjoint,

O(UE,)x [5(UEg)*?](x)

?[Z 5(E,)x X "[5 (E,)x

X [(E,)*.](x) X O(E,)x.

Notice that O is the unique observable satisfying Q(E)x [(E)x], for all E B(R),
xeS+.

An observable O may be associated with many instruments. For example, suppose
(P3) holds, let SoeS and define (E)x=[O(E)X]So. Then (E)eL(S+), for all E e
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B(R) and

"[5(R)x] ?{[Q(R)x]so}= ?[?(X)So] (x).

Moreover, if Ei B(R) are disjoint and x S/, then.. (UE,)x [O(UE,)x]so {E [O(E,)x]}so E [O(E,)x]So E (E,)x.

Hence, .. is an instrument, and 0 is associated with since

"[(E)x] "{[O(E)x]so} O(E)x.

If F, O (S+), then FO iT(S+) since

[FG(x)]<= [O(x)] < (x).

We thus see that 6(S+) is a semigroup. If 5, are instruments on B(R) and there exists
an instrument Yt" on B(R 2) such that Y((E x F) 5(E)(F), for every E, F B(R), then
Yt" is called the composition of following and is denoted 5 .

Let 5, be instruments with associated observables Q, P, respectively. The
observable E--(R)*[Q(E)] is called the observable O conditioned by the measure-
ment of P with instrument . ff 5 exists, then the observable T based on B(R 2)
defined by T(A) [5 oS(A)]*(,), A B(R2), is called the joint distribution of follow-
ing 5. The following lemma shows that the joint distribution has the correct marginal
distributions.

LEMMA 7.1. T(R E) =P(E), T(ER)=(R)*[Q(E)].
Proof. For any x S+ we have

T(R E)x {[5o 5(g E)]*,}x

=-{[5 5(R E)]x} .[(R)(E)x]

-[(E)x] [(E)*’]x P(E)x,
and

T(E x R)x .[(E)(R)x] {[(E)(R)]*.}x

(R)*5(E)*’]x (R)*Q(E)x,

so the results follow. 71
The above is just the beginning of a probability theory on convex prestructures.

This work is a generalization of the "operational" approach to quantum mechanics 1],
[23, [8], [9].
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A REMARK ON EQUATIONS y"+ply’+p2y =0 AT AN IRREGULAR
SINGULAR POINT*

J. F. COLOMBEAU? AND A. MERIL?

Abstract. We extend some classical results on the solutions of the differential equation y" + Ply’ + P2Y
0 at infinity in a sector of the complex plane to a much more general class of differential equations still of the
above type. The proof uses "scales of Banach spaces" and is inspired by that of the linear "Ovcyannikov
theorem".

1. Introduction. The origin of this work lies in a study of the existence and
asymptotic expansions of solutions of systems of partial differential equations of the
Cauchy-Kovalewsky type in the neighborhood of singular points. We had the idea to
combine both the classical study of systems of ordinary differential equations at an
irregular singular point and the theorems of existence of the Ovcyannikov type. We
show here in a rather general setting that this combination is indeed possible in some
cases and in this way yields new results of existence of solutions that are represented in a
natural way by asymptotic expansions that one may easily compute. In order to make
the paper shorter we give only one theorem which appears as a generalization of a
classical theorem of Hoheisel [3] on the solutions of the scalar equation y" +pl(z)y’+
p2(z)y 0 in a sector of the complex plane and for z tending to infinity.

There are a number of works starting from the Ovcyannikov theorem and its
applications to Cauchy problems at ordinary points of differential equations valued in a
scale of Banach spaces (Ovcyannikov [4], TrOves [5] [6]) then applying this method for
regular singular points (an example of this is in Baouendi-Goulaouic [1]). In this paper
we consider the more complicated case of irregular singular points.

For this we chose the method of Hoheisel [3] because it is directly adaptable to
combining with the Ovcyannikov type majorizations. The closely related method of
Erdelyi [2] (in the real case) would fit as well. Our proof relies upon the convergence of
some series which give the solution, hence we approximate it with explicit majoriza-
tions.

2. Notation. We only need some classical definitions, but we prefer to recall them.
A scale of Banach spaces E LI0<<l E is a family (E,)o<<l of Banach spaces such
that, if a < a’, E,,, is contained in E with (natural) injection of norm <=1. A classical
example (Tr6ves [6]) is the usual scale of germs of holomorphic functions at a compact
set K of Cn. E is obviously a vector space, and we denote by l(E) the vector space of all
linear maps from E into E. We denote by L(E,,, E,) the Banach space of linear
continuous maps from E,,, to E, equipped with its usual strong norm denoted by
II. If is in I(E) we denote by I/E, the restriction of to E,, c E. We shall
consider functions valued in a Banach space and then the asymptotic expansions are
defined exactly as usual in the scalar case (Wasow [7]).

3. Statement of the abstract result. Let E be a scale of Banach spaces and S be the
sector of the complex plane defined by Iz[> ro > 0 and 1 < arg z < 2.

We consider the E-valued differential equation

(*) y"(z) + Pl(Z)y’(z) + PE(Z)y(z) O,

* Received by the editors June 29, 1979, and in revised form February 5, 1980.

" Universit6 de Bordeaux I, U.E.R. de Math6matiques et d’Informatique, 33405 Talence, France.
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where if u 1, 2, P maps S into l(E) and has the following form:

P(z) a.o id + z-lay,1 id + z-2L(z),
(here id is the identity map on E, a,o and a,l are complex numbers, and L(z) is in
I(E)).

We assume that (a,o)2 4a,o and that, for every a ]0, 1[ and e ]0, [, every
z $, we have

and

L,.,(z)/z L(Eo,, Eo,-),

C
E

where C is a constant independent of a, e and z. Furthermore, we assume that the map
z -->L(z) from S to L(E,E_) is holomorphic, for every a >0, and every 0<e <a.

Let E be any subsector of S defined by 1 < arg z < q2 with 0 < q2-ql < 7r. Let
ao, a be given with 0 < a < ao < 1.

THEORZM. There is a number R > 0 and complex numbers m p such that for every
given element Xo of Eao there exists a solution y of (.) defined in E ]:or ]z[> R, valued
in E and such that,

lime(1,/2)z e z-y(z) Xo.

Remark 1. R is explicitly computed in the proof" there exist R > 0 andM> 0 such
that R =max (R1, Me/(ao-a)) where log e 1. r is defined by"

(al,o)2 zr 1 + 37r XI "b XIt2
arg r <r

4
a2,o,

2 2 2 2

(eventually 2 solutions),

a1,1 2a2,1 al,o al,1
P= 2 4or

Remark 2. If we assume that the functions L, admit asymptotic expansions as
z oo, z ES, then y admits an asymptotic expansion as z oo, z E E,, that may
be (formally) computed easily according to classical calculations (see Erdelyi [2],
Wasow [7]).

Remark 3. When the spaces E are Banach algebras we may find a second type of
solutions according to Hoheisel [3].

4. Motivations and applications. In [1], Baouendi and Goulaouic study partial
differential operators of the type"

tkD + ’, cp,13(X, t)DtDx,
o<,-

with the usual notations: t; n, k, m and p; x (xl,’’’

OP 01tl
Its[ =/31 +’’" +/3,,’, Dpt DOt"’ Ox Ox"

where the functions ce,a are smooth enough (analytic for example) and satisfy various
other assumptions (see [1]) and where a fundamental assumption is k =< m. These
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authors give some generalizations of the Cauchy-Kovalewsky theorem in the case of the
above operators and with initial data on a characteristic hypersurface.

A motivation of our abstract theorem was to study the case k > rn using a technique
of "irregular singular point". Of course, as it is well known for ordinary differential
equations, we obtain in this case results of a different kind (instead of solutions defined
in a neighborhood of a point we obtain solutions in a bounded sector and having certain
asymptotic expansions). We restrict ourselves to the case rn 2 in the sequel. We obtain
the following results.

Let the following partial differential operator be given (in which k R and k > 2):

Zk kD + , cp,e x D exD
p<2

where ranges over a complex sector

S={tCsuchthat l<argt<2with 0<2-l<min(k2_’rr2,2"rr) andltl<r},
where x ranges over a bounded open subset V of C" and where the functions cp,e are
holomorphic in V S.

Such an operator can be written (choosing a determination of the logarithm in S):

k tkD2 k/2 -1 [(k/2)-1] t[(3/2)k-2]b (x, t)DDt+ (Cl + C2tk )Dr + c3 + c4 + 1,13

+ k-2b2,a(x, t)Dx.

We assume that there is a choice of complex numbers ci for which (cl)2- 4c3 # 0 and for
which the functions bl, and b2,e are bounded on V x S.

We define two complex numbers tr and p by:

2 (C)2--4C3 "tr (k-2) 3zr (k-2)
tr

(2-k)2 -/2 4 (l+2)<--argtr--<-+ 4 (+2),

and

k-2c2 2ClC2-kc-4c4
P 2(2-k------+ 2tr(2- k)2

THEOREM. Them existsR > 0 (small enough) such that if is a bounded open subset

of C with c Vand iff is a holomorphic function on V there exists a solution u(x, t) of
u(x, t) O,

holomorphic i S, Itl < R and x II, such that"

lim e [(c/(2-k))-’]tt(-k/2>+ to[(k/2)-l]u(x, t)= f(x),
t--)O
tS

uniformly in x
If furthermore the [unctions t--> b,a(x, t) (v 1, 2) admit asymptotic expansions

when t-->O, S (with uniform ma]orizations in x V) then this solution admits an
asymptotic expansion if -> O, S,

U(X, t)... e[-c/(2-k)]tt(-k/2)+t-o[(k/2)-][f(X)+ , fn(x)tn[(k/2)-]],
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(with uniform ma]orizations in x f) and where the computation ofthefunctionsf. is easy
(and classicalmsee the proof).

Remark 1. We may obviously restrict ourselves to x e R and functions cp,o which
are analytic in x. But if is real our abstract theorem cannot be applied in the form given
in 3. Nevertheless, using the proof given in Erdelyi [2] in place of that of Hoheisel [3]
(in fact the proof in [2] is an adaptation to the real case of the proof in [3]) the interested
reader may adapt the proof of the abstract theorem to the real case and the functions Cp,o
may be C in (and analytic in x).

Proof of the theorem. Let l)s LI a B (x, s) where

B(x, s)= {sr C such that sup [xi- (il < s}.
We denote by Es (l)) the Banach space of the continuous functions on the closure l’ls of

which are holomorphic in fs and we equip this space with the norm

II ll sup I (x l.
’

If So> 0 is such that fso C V we consider the scale of Banach spaces (Es(f))o<s<so. We
set z (-k/2)/1 and y(z, x) u(t, x). The equation ku(x, t) 0 becomes"

02 2cl 2c2 k 1 1 2 2/(2_k))D+ + t- 2 bl,o(x, z
0Z 2 ’2-- k 2- k z z 2- k 1011

4C3 4C4 1 1 4
-+ Y b2,0(x, z

(2- k)2 + (2- k)2 z - (2- k)2 101--<a 2/(2-k>)D] y(z, x) 0.

We set

2c 2C2-k
a,o=2_ k, a,

2-k

4C3 4C4
a-,=(2_k)2, a2,1=

(2_ k)2,

L.(z) (2 2 k) y" b.,o(X, z2/(2-k>)D, if v I, 2.
101_-<1

It suffices now to:apply the abstract theorem (the majorizations on L,(z) come
from Cauchy’s inequalities: Lemma 1 of [1]).

Remark. We may also work with the dual scale (if is convex balanced g(lqs) is
dense in Yg(fs’) for s > s’; if not, do like [1, p. 459]). In this last case fo is an element of
g’(V); in particular fo may be a C function on V, and for each t, u(x, t) is no longer a
function in the variable x but an analytic functional on 1 (i.e., u(., t) Yg’(fl)). This
method is developed in Tr6ves [6].

5. Prooi oi the theorem. If o- is a complex square root of ((a 1,o)2/4) a2,o, the line
Re trz 0 is called a critical line. After a rotation in the variable z one may assume that

Rethe half-line{ira z=0 is in , that is contained in the set {z S such that zr/2 < <
arg z < < 3zr/2} and that Re z -0 is not a critical line.



1006 J.F. COLOMBEAU AND A. MERIL

(o)

Now let o- be defined by

tr
4 a2,0,

0" Re o" > 0.

We do the change of unknown function

y(z)=e -(al,/2)z .;(z).

Then (,) becomes

(1) ;"(z)+(al,lz -1 id+z-2Ll(Z));’(z)+G(z)(z)=O,
with

G(z) ( (a,o)2 ) _2L
a,o

-a2,0 id+(a2,-1/2al,0" a,a)z- id+z 2(z)----z-2L(z)4

hence, with obvious new notations, (1) becomes"

(1’) ]"(z)+[c,z- id+z-2L(z)]y’(z)+[c2.0id+c2,xz- id+z-2L’z(z)](z)=O.
We set

Cl,1 C2,1(1") 0=" 2 2tr’

and

b C2,1.
O"

Setting 37(z)= e (z)v(z) we obtain from (1’) the new equation

v"(z) + (2r + z-b)v’(z) z-2E(v),(2)

with

and

-E(v) Ll(Z)V’(z) + L2(z)v(z),

E2(z) [p(p 1)+ pCl,1] id + (o" + pz-)L(z) +L(z).
If ,t’ is a function of z e E valued in E we set (when possible)

(3) (Tx)(z) e-et-b e -’[E(x)](A) dh

Then we have the following lemma.
LEMMA 1. LetX be a holomorphicfunction from to such thatforsomeA > 0 and

some n e * (let . denote the norm in

[Ix(z)ll  AIz[
(4) IIx’(z)ll  Alzl

IIx"(z)ll NA(n

Then for some Ra > 0 (large enough and independent ofx) TX is definedfor Izl > and
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Furthermore for every e ]0, a [,

-<-

(5)

]:or some constantM> 0 independent of X, A, a, e, n.

Proof. From the assumptions on L1 and L2, E(X) is holomorphic from Y., to E_
and

(6) --<CA iz for some constant C > 0.

We set

(7) 2rXh b-2Eo(1 e (xl(h dh

with the path of integration given by the union of two straight line segments, [-, a U
[a, s], where a is a (negative) real number in E and - is the point at infinity of the
negative half real line in C.

From (0) (6), Cauchy’s integral theorem and if : ’+ i(’, ’, :" E, one has
==’+i"

f e2=XA b-2(E(x))(A) dA,

and

(8) =e<
CA _2,,e,,j(,),
E

with

,,2)b’-,+1))/ dR’,(9) J(’) e2’x’(h’2 +

where b b’ + ib", b’, b" .
The function A’-e’x’(M+:")’/ has its derivative of the sign of ’2+

(b’/2tr’)A’+:"2 which is positive if I(’l->_[b’I/<4cr’); if [(’l<lb’l/<4r’>, there is some
Xo>0 such that h’2+(b’/2cr’)h’+:"2_>-0, if h’<-Xo. We set Rl=(X+b’2/4tr’2)1/2.
Every point z h’ + is’’, h’, " s , in the subsector Izl> R 1, of Y_. has the property that
1"[ >= Ib’[/4tr’, or A’< -xo.

From now on we only work in for ]z I> R1, hence

" n2)-(n+l)/2(10) j(,) =< e 2r’’(,2 + n2)b’/2 (A t2 q.. dX’.

Now the fact that Z = {z s S such that r/2 < q[ < arg z < < 3r/2} and a straight-
forward calculation give:

(11) j(,)<__e2,,,(,2+,,Z)<b,_,,)/ ,C1 C1 constant > 0.
n
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Hence from (8)

(12) I1()11- < CCA 2,,’’-2,"c’(,2 ,,)(b’-,,>/2---e +
8n

Since

(12’) (Tx)’() e-2e:-bo (),

we have

AM
(13) II(T)’()II- Il-,

nE

and from (2), (6)[[(Tx)"(z)II,_<=(AM/e)[zI-L for a new larger constant M, which
give the two last inequalities of Lemma 1.

(9) may be rewritten

As before we have

J($’) I_ eO-’a’(A ,2
...1_ n2)[b’-(n+l)]/2 e,,,, dA’.

j(.,) _-<
e (.,2 j,,2)[b’-(n+l>]/2
o" +

so that

CA e2’’’ e-2""I1()11.- <- (,#,= _{_ ,2)[b’-(n+l)]/2.

hence from (12’)II(T)’(z)[l- <=(AM/e)lz[-’-1 (a new larger constant M). Now
(Tx)(z) zoo (Tx)’() d where the integration may be done on the half-line p e argz,
hence

II(wx)(z)ll,- AM[-<- zl-".
n8

Let X0 be a given element of E,o; we shall define by induction a sequence (h’,)n of
functions by

Xo(Z)=Xo,

Xn+l(Z)=(Txn)(Z).

LEMMA 2. For every n e N, ]z I> R and z e , d e ]0, ao[, g, (z is well defined and
IIx(z)llo- <=l[Xo[[o(Mnen/dn)lz[- (M is the constant given in Lemma 1, log e 1).

Proof. The proof follows an "Ovcyannikov method" of majorization. We shall
prove by induction that for every d e ]0, ao[ and if a’= ao- d we have

(14) IIx. (Z)lla’+d](n+ 1>
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For this we prove by induction that, for every d e ]0, ao[,

and IIx’ (z)ll,+/.+>_-<

IIx".(z)ll,+..+> <=

This is clearly true for n O, so that we may assume it is true for n 1 and apply
Lemma 1 with X =/’n-1, a o’ 4- d/n, e d/n and

dn-l l 1-
It follows that

IIx.(z)ll’ and

Remember that a’=ao-d, 0<d<ao. We set d=d’(1-1/(n+l)), hence a’=
ao-d’+d’/(n+l); for d’e]0, a0[ (hence we use only O<d<[n/(n+l)]ao) we set
a" ao- d’> 0. Hence for every d’ ]0, ao[,

[[Xn(Z)[la,,+d’/(n+l) and [lX(Z)[i"+d’/(+ald’(1--)’’’( 1-n+li)"
1d’(1-) (X-n+l)

which proves (14).
Since

(1 1 )" -, e"M"llxollolzl-"d,,n + 1 =>
e

Since the injection Eo’+[d/(n+l)] -’) Ea, is of norm _-<1,

Mr" eItx. (Z)Lo_ <--IlXOLo d--- I
End of the proof of the theorem. From Lemma 2 the series v(z)= n--0Xn(Z)

converges uniformly in E,,o-d if ]zl>Me/d. v is solution of (2) and y(z)=
e (-al/2)z eZ(z)v(z) is the desired solution. The proofs of the remarks are quite
analogous to the classical case (Hoheisel [3], Erdelyi [2]).

Acknowledgment. The authors are indebted to the referee for valuable criticism.
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KILLING TENSORS AND VARIABLE SEPARATION FOR
HAMILTON-JACOBI AND HELMHOLTZ EQUATIONS*

E. G. KALNINS" AND WILLARD MILLER, JR.$

Abstract. Every separable coordinate system for the Hamilton-Jacobi equation on a Riemannian
manifold V,, corresponds to a family of n- Killing tensors in involution, but the converse is false. For
general n we show how to characterize those involutive families of Killing tensors that correspond to
orthogonal separation, and for n 3 those families that correspond to nonorthogonal separation.

1. Introduction. We are concerned with the separation of variables problem for
the Hamilton-Jacobi equation

(1.1) gO,,,WOdW E, gO g, 1 <-_ i, j <-_ n,

and the relation between variable separation and second order Killing tensors on the
(local) manifold Vn with metric tensor {g0} in the local coordinates {xi}. (Here we allow
all coordinates and tensors to be complex, and adopt the tensor notation in Eisenhart’s
book [1].) Full understanding of the separation problem for the Helmholtz equation

g det (go),

depends on an understanding of the corresponding problem for (1.1). Indeed, it is
rather easy to show that any coordinate system yielding (product) separation of (1.2)
also yields (additive) separation of (1.1); see; e.g., [2]-[5]. For orthogonal coordinat;s it
was shown by Eisenhart [6] that a separable system {x I} for (1.1) yields separation of
(1.2) if and only if R0 =0, 1-< i<]=< n, where Rhl is the Ricci tensor (thus the
nondiagonal elements of the Ricci tensor vanish). For nonorthogonal coordinates the
conditions that separation of (1.1) yields separation of (1.2) are much more compli-
cated; for n 3 and 4 these conditions are given in [2], [3]. (For n 2, (1.1) and (1.2)
separate in precisely the same systems. Furthermore, the authors have shown that for
constant curvature spaces in dimensions 3 and 4 the two equations also separate in the
same systems.)

To study the relation between variable separation for (1.1) and,Killing tensors for
Vn we use the natural symplectic structure on the cotangent bundle V, of the manifold.
Corresponding to local coordinates {xi} on V,, we have coordinates {x i, pi} on "]’n. (If
{k (X)} is another local coordinate system on V, then it corresponds to {k,/3k}, where
k =P OX/Ok.) The Poisson bracket of two functions F(x, pi), G(x, pi) on I7", is
defined by

(1.3)

Let

[F, G] O,,F Ot,,G-Ov,F Ox,G.

(1.4) H

* Received by the editors October 25, 1979, and in final revised form April 3, 1980.

" Mathematics Department, University of Waikato, Hamilton, New Zealand.
$ School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455. The work of this
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A linear function L in the momenta pi,

(1.5) L (x)p,
is a symmetry for (1.1) if

(1.6) [L, H] 0.

In this case we say that {:i} is a Killing vector. It is straightforward to show that (1.6)
is equivalent to Killing’s equation

(1.7) i,j -[- j,i O,

where i, is the jth covariant derivative of :i 1]. Similarly the quadratic function

(1.8) A aiJ(xl)pipj, a ir= a ii,
is a symmetry of (1.1) provided [A, HI 0, and this is equivalent to

(1.9) aii,k -b aki,i q- ak,i O.

We say that {a} (or {a0}) is a Killing tensor of order 2. Note that the condition that two
quadratic functions A and B b’Ipip are in involution, i.e., that [A, B] 0, is

(1.1 O) aii, tb l + aki,tb + aik,b bii,la lk + bki,a + big,a i.

The basic link between separation of variables for (1.1) and Killing tensors is now
easy to state" To every orthogonal coordinate system {y} which permits additive
separation of variables in (1.1), there correspond n- 1 second order Killing tensors
A1,.. ’, A,-1, which are in involution and such that {H, A1,’’ ", A,-1} is linearly

W(yindependent. The separable solutions W Y.--1 are characterized by the
relations

(1.11) H(yi, pi)=E, Al(yi, pj)=hl, 1= 1,... ,n-l, pi=Oy,W,

where A 1, n--1 are the separation constants. See [7] and [8] for definitions and
discussions of the proof. For nonorthogonal separable coordinates the characterization
is the same except that one or more of the At are first order Killing tensors, i.e., Killing
vectors. For n _-< 4 all possible separable systems and their corresponding Killing tensors
have been computed [2], [3].

In the language of Hamiltonian mechanics, Killing tensors are "constants of the
motion". The basic link mentioned above states that if (1.1) is separable, then the
corresponding Hamiltonian system is "completely integrable" [9].

A fundamental difficulty remaining in this theory is that, whereas to every
separable system there corresponds a family of n 1 Killing tensors in involution, there
also exist families of Killing tensors in involution that are not related to separable
systems, see, e.g., 10], 11]. For a truly satisfactory theory a decision process is needed
to determine, for a given family of n 1 commuting Killing tensors, whether or not that
family characterizes a system of separable coordinates and, if so, to compute these
coordinates from the given Killing tensors. (Thus, we need to show which constants of
the motion lead to variable separation.)

In this paper we develop the decision process to characterize for all n _-> 2 those
families of Killing tensors that correspond to orthogonal, i.e., Stickel type, coordinates,
and for n 3 those families that correspond to nonorthogonal separation. Basic to our
theory is the algebraic classification of pairs of quadratic forms under conjugacy
transformations [ 12].
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In 2 we study the first and second order Killing tensors corresponding to a
2-dimensional Riemannian manifold, and show how to characterize those Killing
tensors that define variable separation. The case n 2 is especially simple, because
every manifold V. is conformally fiat and because variable separation is determined by
a single Killing tensor. Thus one is able to compute much more explicit and detailed
results than is possible for larger n.

In 3 we determine the maximum dimension of the space of second order Killing
tensors for a general Riemannian manifold Vn, and characterize the families of n- 1
Killing tensors that determine orthogonal variable separation for (1.1). Here the
conditions (1.10) expressing the fact that two Killing tensors are in involution become
important.

Finally, in 4 we show how to characterize for n 3 those Killing tensors that
define nonorthogonal separation.

The techniques of this paper are related to many subjects of physical and practical
importance. Separation of variables is one of the most powerful tools for obtaining
complete integrals of (1.1) and explicit solutions of (1.2). (In many problems one adds a
potential V(x) to the left-hand sides of these equations. Addition of a potential merely
places another restriction on the possible coordinate systems permitting separation.)
Most of the special functions of mathematical physics arise as solutions of (1.2) in
appropriate separable coordinate systems. For many examples and applications see
[13].

2. Separable systems for V. For two-dimensional Riemannian spaces there are
only three distinct ways that variables can separate in (1.1), corresponding to the
number of ignorable variables, i.e., variables associated with Killing vectors"

(1) 2 ignorable variables. The metric is

(2.1) ds2 (dx )2 + (dx2)2 gi dx dx,
and the Killing tensor is A =p. These are just Cartesian coordinates in flat space.

(2) 1 ignorable variable. The metric is

(2.) ds f(x)[(clx) + (dx)],

and the Killing tensor is A p21.
(3) No ignorable variables. The metric is

(2.3) ds 2 (o-l(x 1) + o’2(x2))[(dxl)2 + (dx 2)2],

and the corresponding Hamilton-Jacobi equation is

O’1 +0"2

The associated Killing tensor is

[(Ox,W)+(OxW)]=F.

Note that (1) can be considered as a degenerate case of (2), which in turn is a
degenerate case of (3). Furthermore, all separable coordinate systems for n 2 are
orthogonal.

In order to determine exactly when the above cases can arise, we study the space of
all second order Killing tensors for a given local manifold V2. In particular, we examine

(2.4) A=1(r2p trlp).
O" +0"2
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the pairs of forms

ds2 r gii dxi dxi, 1 <= i, j <= 2,
(2.5)

ai dx dx,
where the aij are components of a Killing tensor, i.e., satisfy equations (1.9). Using the
standard algebraic classification of pairs of quadratic forms under conjugacy trans-
formations [12] we can at a fixed point P s V2 choose the pair in one of the following
canonical forms:

22(i) [11]’ tc=gijdxidx=Cl(dXl)2+c2(dx ),

aii dx dx clpl(dxl)2 + c2p2(dx2)2.

Here cl, c2 are constants and the pi are distinct roots of the equation

(2.6) det (ai pgi) O.

(ii) [(11)]: This is type (i) with pl p2.

(iii) [2]: 0 2 dx dx 2

4 Cl(dX 1)2 + 2pl dx dx 2.
Here pl is a double root of (2.6). The standard notation for these forms is explained
in [12].

It is easy to show that the roots pi and the classification into canonical types are
independent of coordinates. Furthermore, except for some singular cases that are not of
interest here, a Killing tensor will maintain its canonical type in some neighborhood
of P.

Now we explicitly compute the possible Killing tensors admitted by a given space
and classify the possibilities according to their canonical types. To simplify the compu-
tations we note that every V2 is conformally fiat; i.e., there exist coordinates {x 1, x 2}
such that

ds 2 Q(x 1, x2)[(dx 1)2 + (dx 2)23 gii dxi dxj.

Equations (1.9) then become (SjQ---Qi)"

(2.7)

Writing aii Qaii and substituting the first two equations (2.7) in the last two, we obtain

(2.8)
20,,2(a12/O) + o,’((ti22 ti11)/O) 0,

20,,’(K12/Q) + O,2((dll- a22)lO) O.
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The integrability conditions for (2.8) imply

(2.9) [Ox,xl +2x2](11-22 =0,
\ /Q

/11 i22 2) 2) 212
(2 10) ---=f(x +ix +h(x-ix -----i(f-h),-
where f, h are analytic functions. The remaining equations (2.7) reduce to

Oxall O(/- h),

(.)

Oxa22=O(f-h).

The integrability condition for (2.11) and the first of equations (2.10) is

Oxlx2[O(f q- h)]+Ox[Ql(f h)]--O2[QE(f h)] 0.

If we choose new coordinates z 1= x+ ix 2 2
Z --X --ix 2, then this last condition

becomes

(2.12) 2(f(z)Oz h(z2)Qz2z:) + 3(f’Q- h’QzQ + Q(f"- h") O,

where the metric is

(2.13) ds2= Q dz dz 2.
If we regard V2, hence Q, as given, and find functions f(z 1), h(z 2) satisfying (2.12),

we can then employ (2.1) and (2.11) to determine the matrix (a) to within the addition
of a constant times QS g, where 8g is the Kronecker delta.

Recall that V2 is a space of constant curvature if and only if

(2.14) Oz1z In Q kQ,

for some constant k. The case k 0 corresponds to flat space
We now restrict attention to spaces for which Q(z , z 2) is analytic in a neighbor-

hood of the point (z o, z), which without loss of generality we can take as (0, 0), and
consider the vector space of all second order Killing tensors aij on V2, analytic in a
neighborhood of (0, 0). Let D be the dimension of this vector space.

THEOREM 1.
(1) 1 --<D--<6.
(2) D 6 if and only if V2 is a space of constant curvature.
(3) If V2 is not a space of constant curvature, then D <- 4.
Proof. We write (2.12) in the form

3f’O 2fQll 3h’O2 2hQ22
(2.15) f"+ Q +---=h"+ O +---
Prescribing the values of h(0), h’(0), h"(0), f(0), f’(0) we can use (2.15) to compute f"(0).
Differentiating (2.15) successively with respect to z , we can compute fk)(o) for all
k >= 2. Similarly, successive differentiation of (2.15) with respect to z 2 allows us to
compute h")(0) for -> 3. Thus any solution {f(z ), h (z2)} is uniquely determined by the
above five prescribed values. Once f and h are given, the Killing tensor ai is determined
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to within addition of an arbitrary multiple of gij. Hence 1 <-D =< 6, and assertion (1) is
verified.

For spaces of constant curvature D 6. Indeed, for flat space and Cartesian
coordinates the functions

(2.16) L1 =Pl, L2 P2, L3=xlp2-x2pl

form a basis for the Lie algebra of Killing vectors. Clearly the set {LjLk" 1 <-] <-k <-

3} forms a basis for a 6-dimensional subspace of second order Killing tensors. It follows
immediately from (1) that this subspace is in fact the full space of Killing tensors and
D 6. A similar argument holds for Riemannian spaces of nonzero constant curvature.

To finish the proof of (2) we note that D =6 if and only if the in.tegr’ability
conditions for (2.15) are satisfied identically. Suppose D 6. Applying the operator
0zl,2 to both sides of (2.15), we obtain

3Q1 3Q1 (2011,)02 (--) f" + 202(-) f’ + c312 (’---) f’ + c312 Q f
(2.17)

(__) (__2) 3Q2 (2Q22 h"=01 +201

If D 6, then this condition on f and h cannot be independent of (2.15). Hence, either
the coecients of f’, f, f, h", h’, and h vanish identically, in which case 012 In Q 0 and

V2 is flat, or 012 In Q 0 and (2.16) is obtained from (2.15) through multiplication by
012 In Q. In the second case one verifies easily that

0lnQ =0 =00 O O

hence that 0 In O kO, k 0. Thus, V is a space of nonzero constant curvature.
If D < 6, then 0 In O 0 and (2.16) is independent ot (2.15). Then we can

eliminate [" and h" between these two equations and obtain a condition relating only [’,, h’ and h. It follows that D N 4. Q.E.D.
Before proceeding further it is useful to recall the classical work of Stckel and

Eisenhart characterizing orthogonal separable coordinates {y} on a manifold V.
Stckel [14] showed that the orthogonal coordinates permit separation if and only if the
metric

(2.18) ds 2 H21 (dr1)2 +... + H2,, (dr")2

is in Stgckel form, i.e.,

(2.19) H r., S det (tpij(yi)) 0,

where Sil is the cofactor of toil in S. Eisenhart, [6] and [1, Appendix 13], found a more
intrinsic characterization of Stiickel form. His basic result is:

THEOREM 2. A necessary and sufficient condition that the metric ds2
gii dx dx on

Vn can be given the Stickel form is that
()(1) the space admits n- 1 Killing tensors a ii a 1,..., n- 1, such that the n

( form a linearly independent set;tensors {gi, a ,
(2) the roots p( for each of the characteristic equations det (a i -O(gi)=0 are

simple;
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(3) them is a coordinate system {yi} on V, such that

(2.20) (a () (h)giiii -P )A(h)=0, h=l,...,n, a=l,...,n-1,
() () Here,where p (), ,p, are the roots of aij (h) =Oxi/OY.

The coordinates {yJ} are those for which the metric assumes Stickel form. Note
that condition (3) requires that the vector fields h (1), , h (h) be normal, and that they
satisfy (2.20) for all a.

Of course the normality conditions on the vector fields are very difficult to check for
general n, and Theorem 2 is not very useful as a practical tool. (We will formulate and
prove a practical version of this theorem in 3.) Moreover, for n > 2 nonorthogonal
separation may occur, and this was not considered by Eisenhart.

On the other hand, for n 2 Theorem 2 simplifies greatly:
COROLLARY 1. Every Killing tensor aii that is linearly independent of gii and oftype

11] in a coordinate neighborhood defines a separable coordinate system ]:or the Hamilton-
Jacobi equation on Vz. Conversely, every separable coordinate system arises in this
manner.

Indeed it is simple to show that the two equations (2.20), (a 1, h 1, 2) must
always admit normal vector fields as solutions. Furthermore, for n 2 all separable
systems are orthogonal. (Note that the explicitly given Killing tensors defining variable
separation on V., e.g., (2.4) are all of type [11].)

Now we return to the explicit computation of second order Killing tensors on the
manifold with metric (2.13). Every tensor 6 aiidx dx obtained by solving (2.10)-
(2.1.2) defines a separation of variables, provided it is not a multiple of gi and it has
elementary divisors of type [11]. This latter condition, that of unequal roots, takes the
form

(2.21) d=(a-azz)2 +4a212 #0.

If is of type [(11)], then 0, and in fact a 11 a22, a 12 0 It follows easily from
(2.10)-(2.12) that then ax a22 AQ, h C. Thus there are no nontrivial type [(11)]
Killing tensors.

Now suppose p is of type [2]. Then 0, so

(2.22) all a22 +2ia2 # O.

Without loss of generality we can assume that the plus sign holds in (2.22). Then the
int’egrability condition (2.12) reduces to

(2.23)
Q

+f,2 + 3f’--- =0.

It follows immediately from this expression that type [2] tensors either do not occur or
form a subspace of dimension 2 or 3 (from which the one-dimensional subspace
corresponding to f--0 must be deleted).

THEOREM 3.
(1) V2 admits a 3-dimensional subspace oftype [2] Killing tensors ifand only if it is

flat.
(2) V2 admits a 2-dimensional subspace of type [2"1 Killing tensors if and only if

QI g(z)O + 1/2(g’- 2g2)O for some analytic function g.
(3) If V2 is of nonzero constant curvature, it admits no type [2] Killing tensors.
To prove (1), we note that if the subspace of type [2] Killing tensors is of dimension

3 then the integrability conditions for (2.23) must all be satisfied identically. Differen-
tiating (2.23) with respect to z 2, we obtain a condition on f and f’ alone, which must be
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trivial. Hence 012 In Q 0 and V2 is flat. Conversely, if V2 is flat we can choose Q --- 1 so
that (2.23) becomes f" 0 and the subspace of type [2] tensors is 3 dimensional. Parts
(2) and (3) of the theorem are proved by similar but slightly more involved compu-
tations. QED

For n 2 we now have a complete solution to our problem. Type [11] Killing
tensors independent of the metric tensor always define separable coordinates, whereas
type [2] tensors are never associated with separation. The manifolds admitting type [2]
tensors can be computed explicitly, and include flat space but not spaces of nonzero
constant curvature. A real Riemannian manifold with positive definite metric never
admits a type [2] tensor.

The most important example of a type [2] Killing tensor is

(2.24) a iipipj La(L1 iL2)

in flat space, where we are using the notation (2.16). Here

(2.25)
ds2 (dx 1)2 + (dx),, -x:Z(dx):Z + (xl + ix2 dx dx:Z- ix(dx:Z):z.

In [10], [13] the authors point out that (2.24) does not correspond to variable
separation. Moreover, as follows from [13, p. 60], this example is unique. Every type [2]
Killing tensor in flat space is, to within addition of a scalar multiple of p +p, an
element of the orbit of (2.24) under the adjoint action of the complex Euclidean
group E(2).

3. Orthogonal separable systems. Let V,, be a complex n-dimensional Rieman-
nian manifold. We choose a local coordinate system {xj} on this manifold and consider
the vector space of Killing tensors 6 aidx dx analytic in a neighborhood of 0,
(x 0, j 1,. ., n). Let D be the dimension of this space.

THEOREM 4.
(1) 1<--D<--_n(n+1)E(n+2)/12.
(2) If Vn is flat then D n(n + 1)2(n + 2)/12.
Proof. The condition that is a Killing tensor is (1.9), which we can write in the

form

(3.1) Okaii + tgjaki + Oiaik giik (X l, ahm ),

where the terms Riik are linear in ahm. Clearly, ff will be uniquely determined by the
constants ahm (0) and all possible derivatives of ahm evaluated at 0. These constants are
not independent of one another, since they are constrained by (3.1) and all possible
derivatives of (3.1) evaluated at 0.

Now the number of constants ahm(O) is Bo--n(n + 1)/2. The number of terms
Okaii(O) is B1 nE(n + 1)/2, and there are C1 n(n + 1)(n + 2)/6 equations (3.1) giving
linear restrictions on these terms. Similarly, there are BE nE(n + 1)2/4 terms Oklaij(O),
and by differentiating (3.1) we obtain C2 nE(n + 1)(n + 2)/6 conditions on these terms.
Finally there are B3 nE(n + 1)2(n + 2)/12 terms Oklhaii(O), and by differentiating (3.1)
twice we obtain Ca nE(n / 1)2(n + 2)/12 conditions on these third derivative terms.
We will show that the C1 + C2 + Ca conditions are linearly independent. This implies
that, since B3 C3, we can solve the Ca third order equations uniquely for the B3 third
order derivatives:

(3.2) tgklhaij(,)-- Sklhij,
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where S depends linearly on the tensor components of and their first two derivatives.
From (3.2) we can recursively compute all higher derivatives of agj, evaluated at 0. Thus
1 <=D <-_Bo+B1 +B2-C1-C2 n(n + 1)2(n + 2)/12.

In general the integrability conditions for (3.2) will impose additional constraints
on the constants, and D will not achieve this upper limit. However, if Vn is fiat and we
choose Cartesian coordinates, then Rgjk =0 in (3.1), and (3.2) reduces to

(3.3) Oklhaij(X) O.

The integrability conditions for (3.3) are satisfied identically; hence, D=
n(n+l)2(n+2)/12.

To finish the proof of (1), it is sufficient to show that the C3 conditions

(3.4) Olhkaii + Olhiak -F Olhiaki 0

are linearly independent. This is equivalent to showing that these conditions imply the
B3 equations Olhkai.iO, where "" denotes equality up to linear terms in the
components of and their first two derivatives.

Denoting the left-hand side of (3.4) by Mlh,kq we have

Mlh,ki] + Mkl,hi] Ml’l,kih Mi],lkh 2(Olhkai] Oijlahk O.

Substituting this result and the equivalent forms Okhlaq Oi]kalh Oi.ihalk into Mij,khl O,
we find Okhlaij O. Q.E.D.

This result is already known (see 15]-[17]). We have included it here because our
proof (though similar to [16]) contains a degree of novelty which enables us to very
easily obtain the following two corollaries.

If V, is flat, then in Cartesian coordinates {x} the Hamilton-Jacobi equation (1.1)
becomes

(3.5) i p/2 E, Pi OiW.
i=1

The symmetry algebra of this equation is g’(n) with basis

(3.6) pg, 1 <-_ <- n, mk Xpk X 1 <-- ] < k <- n.

COROLLARY 2. If V, is flat, n >--2, a basis for the space of second order Killing
tensors is

(a) PiP, 1 <--_ <-.i <- n,
(b) mgipk, mgkpj, 1 <= < f < k <= n,
(C) miip, j,
(d) miimi], < ],
(e) mikmih k, l, 1 <= k < <-_ n,
(f) miimkl, mikmil 1 <- < ] < k < <= n.

In particular, all flat space second order Killing tensors are expressible as poly-
nomials of order two in the Killing vectors. Corollary 2 follows easily from considera-
tion of the conditions on the first and second derivatives of the ai as obtained in
Theorem 4. It also follows from the proof of that theorem that if V, admits a space of
Killing tensors of maximal dimension D n(n + 1)2(n +2)/12, then a basis for this
space is {o(): 1 _-<a _-<D}; here o =A()+B(), the A() run over the fiat space basis
elements listed in Corollary 2, and

B(,) b ii
<,)PiP,
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with the order of each component biJ() in the variables {X k} strictly greater than the
order (0, 1, or 2) of the components of A().

If V, is a space of nonzero constant curvature (which we normalize as K 4), then
there exist coordinates {x k} such that (see 1]),

ii r2 tabX ax b.gii (1 + r2)2’

The symmetry algebra of the Hamilton-Jacobi equation for V, is o(n + 1) with basis

(3.7)
mik Xipk xkpi’ l <- f < k <- n

q=(2(x)2-r2+l)p-2x , xp, l<-l<--n.
sl

Clearly, all products of pairs of Killing vectors are Killing tensors for V,, and the tensors
PiPi, mqpk, mqmkl for flat space Cartesian coordinates agree respectively (up to terms of
lowest order) with the tensors qqi, miqk, mjmk on V,.

COROLLARY 3. I[ V, is a space of nonzero constant curvature, n >= 2, then D
n(n + 1)2(n + 2)/12 and a basis for the space of second order Killing tensors is

(a) qiqi, 1 <- <- j <- n,
(b) miiqk, mikqi, 1 <-- < j < k <= n,
(c) miiqj, j,
(d) miimii, < j,
(e) mikma, # k, l, 1 <-_ k < <- n,
(f) mijmkt,mikmit 1 <= < j < k < <- n.

Now we consider the problem of characterizing orthogonal separable coordinate
systems for general Riemannian manifolds V,. Although Eisenhart’s result, Theorem 2,
gives such a characterization, there remains the considerable practical difficulty of
determining when the vector fields {a Ch) } defined by (2.20) are normalizable; i.e., when
there exists an orthogonal coordinate system {y J} such that {a {h)} is orthogonal to the
coordinate surface yh const., for each h 1, ..., n.

The conditions for normalizability are classical and can be expressed in terms of the
invariants Ythk, the coefficients of rotation"

")/lhk (l)i,]’ (h)A (k), 1 --<_ l, h, k -<_ n

see, e.g., [1, p. 97]. Then a necessary and sufficient condition that there exist coor-
(Oxi/oyh)fh (no sum ondinates {yh} and nonzero invariant functions fh such that h (h)

h), is

(3.8) "/hkl O, 1 <- h, k, <-_ n, h, k, distinct,

see [1, p. 117]. Now suppose aii is a tensor field with n roots pa, , p,, not necessarily
distinct, and let {A (h)} be a corresponding orthonormal set of eigenvectors:

(3.9) (aij phgij)A <h) =0, h=l,...,n,

(3.10) A(h)l(k)i thk 1 <-h, k <-n.

Differentiating (3.9) covariantly with respect to x and employing (3.7) and (3.10), we
find

(3.11) aii,k’(h)hl)lm) (Ph --Ol)Yhlm, h m.

Now suppose the roots of a are simple, i.e., pairwise distinct. From (3.8) we obtain



KILLING TENSORS AND VARIABLE SEPARATION 1021

THEOREM 5 (Eisenhart, [1, p. 118]). If aii has simple roots pl,"’, pn then a
necessary and sufficient condition that the vector fields {A (h)} be normal&able is

(3.12) aij.kA(h)Al)A,) O, 1 <= h, l, m <- n, h, 1, m distinct.

We are now ready to prove our fundamental result. Let H, (1.4), be the Hamil-
tonian on Vn.

THEOREM 6. Necessary and sufficient conditions for the existence of an orthogonal
separable coordinate system {yJ} for the Hamilton-Jacobi equation (1.1) are that there
exist n 1 quadratic functions A), (1.8), satisfying:

(1) The {A(’)} are constants of the motion, i.e., [H, A(] O, 1,..., n- 1,
where [.,. is the Poisson bracket (1.3).

(2) The {A(’} are in involution: [A, A()] 0, l_-<a,/-<n-1.
(3) The set {H, AI), A-} is linearly independent (as n quadratic forms).
(4) At least one of the quadratic forms, say A1, has simple roots.
(5) In a local coordinate system {x j} the quadratic forms satisfy the algebraic

commutation property,

(3.13)

(This property is clearly independent of the coordinates chosen.)
Proof. Suppose conditions (1)-(5) are satisfied. Conditions (4) and (5) imply that

the quadratic forms can be simultaneously diagonalized by a family of orthonormal
vector fields. In the local coordinates {xj} we have

(3 14) (a(, hgi--O )A(h=0, h=l,...,n, c=l,...,n-1,
() and ,/i (hn)where p),... ,p(), are the roots of ai (h)2()=6. Setting p 1, for

h 1,..., n we can express condition (3) as

(3.14’) det (p)) O, l, m 1, , n.

Using (1.10), (3.11), and (3.14), we see that condition (1) implies

(3.15) 1 1 1 0, 1 <- a <- n 1, h,/, m distinct

Tmhl "Ylmh Thlm

and condition (2) implies

(3.16) plt) Oh)
Yhlm + Ylmh "hlm " Ymhl

=0, l<_-a </3 <=n -1.

From (3.14’), (3.15) we find mhl lmh "hlm. Substituting this result into (3.16) and
using (3.14’) again, we obtain "Ymhl-"- "Ylmh ")/him --O. Hence, by (3.8) the vector fields
{A h} are normalizable. Theorem 2 can now be invoked to show that the constants of
the motion A,. , A-1) determine an orthogonal separable coordinate system {y}.

Conversely, if we are given an orthogonal separable coordinate system {y} for
(1.1) we can apply Theorem 2 and reverse the preceding argument to show that
conditions (1)-(5) hold. Q.E.D.

We emphasize the importance of the algebraic property (3.13). In flat space with
Cartesian coordinates this property simply means that the matrices of the quadratic
forms pairwise commute.
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As a simple example of the application of Theorem 6 we consider 3-dimensional
flat space. A basis for the vector space of second order Killing tensors can be read off
from Corollary 2. Now consider the Killing tensor m12p3. It is easily verified that the
subspace of Killing tensors in involution with m12p3 is spanned by m12p3, m12m12 and
p3p3. In Cartesian coordinates {x J}, the matrices of these quadratic forms are

(3.17)

0

mx2P3 0

--x

tpp 0

0

0

0
2

X

0 0
0 0
0 1

2
--X

x m12m12 x
x

x
x X

xol i!
Now m12p3 has simple roots, bt its matrix does not commute with the matrices of
m12m 12 or P3 P3. Hence, m12P3 does not correspond to a separable coordinate system.
On the other hand, the matrices of mEm2 and p3p3 do commute and, say, mlEm2 +
P3P3 has simple roots. Thus mlEm12 and p3p3 define a separable coordinate system
(cylindrical coordinates).

In his proof of Theorem 2, Eisenhart essentially proves, but does not state, the
following result:

COROLLARY 4. Let aij be a Killing tensor with simple roots and suppose the
associated eigenvector fields {hlh} are normalizable; i.e., suppose condition (3.12) is

satisfied. Then there is a unique orthogonal separable coordinate system for (1.1)
associated with aii.

For example one can verify that rn 12m12 + P3 P3 satisfies the hypotheses of Corol-
lary 3 but that m2p3 violates condition (3.12).

Another interesting example concerns the complex unit sphere $3: (zl)2+ (z2)2+
(z3)2 + (z4)2= 1. We choose complex coordinates

(3.18) Z-- (Cosxlcosx2 2 3,cosx sinx ,sinx cosx ,sinx sinx3),

in which case the metric is

(3.19) o gi dx dx (dx 1)2 +cs2 x l(dx 2)2 + sin2 x (dx 3)..
Consider the Killing tensors

A( (p2 + P3)2 aipiph
(3.20)

A(2 (PE-P3)2= bipP
Here [A(1), A (2)] 0. We claim that these tensors do not define a separation of variables
for the Hamilton-Jacobi equation

OW(3.21) p2 +cos-2 xp22 +sin-2 xlp32 =E, p=ox
(Note that p2 and p3 are Killing vectors, hence they belong to the symmetry algebra
0(4)). We have

(3.22)
01 =aijdxidx --(cOs2 X1 dx2+sin2xl dx3)2,
12 bii dx dxi (cos2 x dxE-sinE x dx3)2,

and a direct computation shows that the algebraic condition (3.13) is violated. By
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considering the 4-dimensional vector space of all Killing tensors in involution with A (1),
we can similarly show that A (1) cannot correspond to any orthogonal separable system.
Another way to see this is to make use of Eisenhart’s results on normalizability of
eigenvector fields associated with tensors whose roots are not simple. For this example

det (a-og) -sin2 x cos2 xp2(O 1),

and it is easy to show that a0 is of type [(11)1]; see the following section. Eisenhart
proved that the necessary and sufficient conditions for normalizability of a type [(11)1
tensor are

aij,kA (hi)t {1)/ ,,) 0, h, l, m distinct,
(3.23)

(& {3)& 3) {2)A 2)) 0,

where h (1) is a unit vector corresponding to the simple root, and h (2, h 3 are mutually
orthogonal unit vectors corresponding to the double root [18]. Choosing

1 2(1, sin2 x -cos x 1),k( (0, 1, -1), k(2 (1, O, 0), k(3)
sin x cos x

we find

aii,kA (1)X {3)/ g2) --COS 2X O.

This shows that A(1) can never be associated with a separable orthogonal coordinate
system for the Hamilton-Jacobi equation (3.21).

4. Separable systems in.3 variables. For the Hamilton-Jacobi equation on 3-
dimensional Riemannian spaces, both orthogonal and nonorthogonal separable coor-
dinate systems occur. The characterization of orthogonal separable coordinates follows
from our general Theorem 6. Nonorthogonal systems have been classified in [2]. (The
classification of nonorthogonal systems for n 4 can be found in [3]. For general n the
classification is very complicated and has not yet been worked out.) The nonorthogonal
systems are of two types"

(1) 2 ignorable variables. The metric is

(4.1) ds2= gii(X 3) dx dx i,

where not all of the terms gst(X3), s t, vanish. (Here we regard two separable
coordinate systems {$i} and {xi} as equivalent if

(4.2) .1 ax + bx2 -2 2 -3 3x =cx +dx x =x

c d
0;

or

(4.3) .fx X l+h(x3), .fz= X2+/(x3), .f3 =f(X3);
or if {i} is obtained from {x i} by a succession of these transformations, since all
transformations preserve additive separation. Furthermore, if under such trans-
formations {x i} is equivalent to an orthogonal separable system, then we do not regard
{xi} as truly nonorthogonal.) Each such system is characterized by a pair of Killing
vectors L1, L2 which are in involution with one another and with the Hamiltonian H.
Here L Pl, L2 P2. It follows that these systems can be classified by determining the
conjugacy classes of 2-dimensional Abelian subalgebras of the Lie symmetry algebra of
the Hamilton-Jacobi equation.
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(2) 1 ignorable variable. The metric is

(4.4) ds2 [U(x2) + V(x3)][B(x3)(dx2)2 + 2 dx dx 2 + (dx3)2],
and the Hamilton-Jacobi equation takes the form

OW
(4.5) U + V)-I[-Bp2 + 2pl p2 + p23 ] E, pj ox

This system is characterized by the Killing vector-Killing tensor pair

(4.6) Ll=Pl, A=(U+ V)-l[U(p-Bp)-2Vplp2].
Here,

(4.7) ILl, HI [A, HI [L 1, Al= 0.

In order to derive results analogous to those of 2, we recall the standard forms of
two quadratic forms in three variables, corresponding to the various possible elemen-
tary divisors [12]. Any pair of quadratic differential forms can be reduced to one of
these types at a given point if it has the corresponding elementary divisors at that point.

[111]" go=giidxidx--Cl(dX1)2+c2(dx2)2+c3(dx3)2,

b aij dx dx cxpl(dxl)2 + c2p2(dx2)2-b c3p3(dx3)2.
Here the Pi are the (distinct) roots of the equation det (aii- pgii)= O.

[(11)1]" Same as [!11] but with pl=p2.

[(111)]" Sameas[lll]butwithpl=p2=p3.

[21]" a(dx2)2 + 2 dx dx 2 + b(dx3)2,

O A(dx2)2 + 2pl dx dx2 + p2b(dx3)2.
Here the roots are pl, pl, p2, but the forms cannot be simultaneously diagonalized. (It is
possible to take a 0, see [12], but the above expressions are more convenient for our
purposes.)

[(21)]: Same as [21 but with pl p2.

[3]" c 2 dx dx2 + a(dx3)2,
=2pl dx dx2 + 2 dx 2 dx3 + pla(dx3)2.

It is clear that Killing tensors corresponding to orthogonal separable systems are of
types [111] and [(11) 1], whereas those corresponding to nonorthogonal systems (2)
above are of types [21] and [(11)1]. The only type [(111)] Killing tensors are constant
multiples of {g ’. Killing tensors of other types do not correspond to variable
separation.

THEOREM 7 Let H i=g PiPi, A a’lpipi and L1 i. Necessary and sufficient
conditions that a nonorthogonal separable coordinate system ]’or

iOW OW Eg

be associated with the pair L1, A are
(1) [L1, HI [L1, A] 0.
(2) There exist linear functions L2 =’r/Pi and L3 =it p such that {L, L2, L3} is

linearly independent and [Li, Lj] 0, i, j 1, 2, 3.
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(3) L1 is null, i.e., L1 L1 igijJ O.
(4) L1 is an eigenvector of the dual pair/, 121 corresponding to eigenvalue

A 3:(aq A 3gii) O, 1, 2, 3.

(5) L3 is an eigenvector of,,{, ffI corresponding to eigenvalue

A2(A3 h2): (aii h2g/i)p, O, 1, 2, 3.

(6) L2" L3 "rligqld, O.
(7) [H, A] 0.
Proof. It is easily verified that the pair (4.6) and L2 p2, L3 p3 satisfy conditions

(1)-(7). Conversely, suppose conditions (1)-(7) are satisfied. From condition (2) we can
introduce new coordinates {xi} such that ti "-Pi, 1, 2.3. It is easy to verify that
conditions (1)-(6) imply

(4.8) (gii) g21 g22 (aij) A3g21 a22

0 0 g33 0 0 hEg33

where the matrix elements are independent of x 1. Then condition (7) is equivalent to

(x) 03(A 3g12) q- (A 2 2A3)03g12 0,

(2g22 02(g12)--O2g22) --2 a22 02g12 0,(fl) 02a22 +A3\ g12 g12

a22(4.9) (Y) OaaEE-2A3glEO3\GI-2OaglE+AEOagEE-O’g12
(t) 03A2 0, 02A3 0,

(q) aE(A 2g23) + (A 3 2A2)aEg33 0.

Equation (6) implies A2 AE(X2), A3 Aa(X3), and then (a) implies glE-’f(X2)(AE-A3).
Similarly, (q) implies g33 h (xa)(Az- A3). Substituting these values in (/3) we find
aEE--AagE2 (g12)ES(x3). Then substitution of this expression into (y) yields

g22

h2-h3
+S(x)f(x) K(x).

Making an appropriate change of variable X -’ X " q(x 2) followed by a change of scale
in x, x 3 we can assume K 0, h =- 1, [ 1. Thus

ds2= (A2-A3)[2 dx dx2- S(x3)(dx2)2 + (dx3)2],

which is the same as (4.4). Q.E.D.
Note that the conditions of Theorem 7 can be checked in practice. Indeed, if L 1, H,

and A are given, we first check (1), (3), (4), and (7). Then we use (5) and ILl, L3] 0 to
see if a suitable L3 can be constructed. If successful, we then try to construct L2 subject
to [L2, Lj]--0, /" 1, 3, and condition (6). It is not difficult to construct examples
showing that the theorem is false unless condition (6) holds.

In [2] all nonorthogonal flat space separable systems were constructed for n 3,
and it was shown that these systems all correspond to systems that separate the heat
equation in 2-dimensional spacetime. It was also shown that for n 3 a space of
nonzero constant curvature possesses exactly one nonorthogonal separable metric
(4.1), and no metrics (4.4).
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Note added in proof. The principal facts presented in our discussion of the structure
of the space of second order Killing tensors for V2 can all be found in the note, Sur les
ggodgsiques d intggrals quadratiques, by M. G. Koenigs (in G. Darboux, Th6orie
g6n6rale des surfaces, Vol. IV, 1896, pp. 368-404, reprinted by Chelsea, Bronx NY,
1972). Koenigs considers only the case n 2.
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ON q-BINOMIAL COEFFICIENTS AND SOME STATISTICAL
APPLICATIONS*

B. R. HANDAt AND S. G. MOHANTY$

Abstract. An expression for the number of lattice paths lying between two arbitrary boundaries and
having a given area below it, is obtained which is a determinant involving Gaussian polynomials (or
q-binomial coefficients). Some statistical applications are pointed out. A q-analogue of the Vandermonde
type identity is established for a class of coefficients possessing the q-additive property.

1. Introduction and summary. A q-binomial coefficient is defined by

[ x’ (qX --1)(qX-l--1) (qX-n+l_ 1)
(1)

n q (q -1)(q --1)...(q-1)
where x and q are real numbers, n is an integer, and (g)q I and (X)q 0 when x < n and
x is a nonnegative integer, or when n < 0. Clearly, as q-) 1, ()q becomes the usual
binomial coefficient (x). Expression (1) is known as a Gaussian polynomial. (See [2,
p. 51] for historical references.)

When x is an integer with x n, P61ya [9] has given a combinatorial interpretation
of (x,)q in terms of lattice paths. Let A denote the number of lattice paths from (0, 0) to
(rn, n) such that the area below each path in the positive quadrant of the XY plane is 1.
The generating function of A is then shown [9] to be

(2) Alql m + n

1--0 n q"
(For another combinatorial interpretation of q-binomial coefficients in terms of finite
vector spaces, see [10, p. 240]). In 2 of this paper, our main purpose is to derive an
expression for the generating function of the number of paths which lie between two
arbitrary boundaries having the area below the path equal to l. It is observed that the
expression is a determinant involving q-binomial coefficients. Since (2) is a special case
of the determinantal expression, the determinant is a generalization of the q-binomial
coefficient, in this lattice path context. The consideration of restriction on paths by
boundaries arises in applications which are pointed out.

The following q-analogue of the Vandermonde convolution formula for binomial
coefficients is well known (see [1], [3]), and is a special case of a formula on basic
hypergeometric functions due to Heine [5]:

k=O k q n-k q n q"
In an earlier paper [7], the authors generalized the Vandermonde convolution identity
for a general class of coefficients with the so-called additive property (defined in [7]). In

3, a q-analogue of the generalized Vandermonde type identity is established for a
class of coefficients possessing a q-analogue of the additive property called the
q- additive property.

* Received by the editors June 1, 1978 and in final revised form March 10, 1980. This work was

supported in part by the National Research Council of Canada.

" Department of Mathematics, Indian Institute of Technology-Delhi, New Delhi-29, India.

t Department of Mathematics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S
4K1, Canada.
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For completeness we state below a few known results [4] on q-binomial
coefficients, some of which will be needed in our discussion:

O<k<n,
q n-- q

(5)

(6)

n being a nonnegative integer;

q + +q
k-lq’k q k q k-lq k q

(-x) (_l),q_.X_.(._x)/2(x + n -1)n l q

n--1 k(k-1)/2{ Fl k(7) I-I (1 +sqi) Y’. q s.
]=0 k=O \ ]k q

2. A counting problem and applications. Using the usual representation [8] for a
minimal lattice path from (0, 0) to (m, n) by means of a nondecreasing vector
(Xl, x2,’", x,) of nonnegative integers where xi is the distance of the path from
(tn, n -i), denote by At(b; a) the number of paths from (0, 0) to (m, n) never crossing
the paths with vectors a (al, a2, , a,) and b (bl, b2, , b,). bi <= ai for all such
that the area below the paths in the positive quadrant of the XY plane is l. We prove

THEOREM 1.

(8) Al(b" a)q det q
t=t .,, j-i + l

where

([-i)(j-i+l)/2+(j-i+l)b[I,

a= ai, fl= Z bi, and
i=a i= y q+ Y q

Proof. Since the area below a path with vector (xx, X2, Xn) is= Xi, we have

(9)
l=/3 xl=bl X2=Y2 Xrt=Yn

where yi--max(x/_1, bi), 2, 3," , n.
Since the upper triangular determinant

nn ] q+q
is equal to 1, the right-hand side of (9) can be written as

(10) detl](xi-b) xi-bi-j+iq(j-i’(j-i+l)/2+(j-i+l)bil]
From the summation formula

E qx-h
x=t, q + q h+l q

(which easily follows from (5)), we have, for =< ],

(11) qX’-bi-]+i(xi-bJ)
Xi=yi j q+ =(ai-bi--b 1) _(Xi-l-)f-i+l /q+ \f-i+ q+

since bi <= bi.



q-BINOMIAL COEFFICIENTS 1029

Consider the summation on Xi, which only appears in the ith row of the determinant
in (10). Using (11), we obtain the fth element equal to

(12) q(,-i)(,-i+,)/2+(,-i+l)b,[(ai--b,+l _(Xi-l-bj) ] fori<_],
]-i+1 ]q/ \]-i+1 q/

and equal to 0 for i> j.
Now, if we add q-X,_1 times the (i- 1)st row to the ith row determined by (12), the

ith row so obtained is equal to the ith row of (8). Proceeding in this manner and summing
over Xn, Xn-1,""", Xl successively, we get the desired result (8). This completes the
proof.

In particular, if we set b 0, and a m for all in (8), we should obtain (2).
From Theorem 1, we have. At det

/=0 nXn + 1 q

(]-i)(i-i+l)/2q

In order to simplify the above determinant, we replace the first row of the determinant
by

(-(m + 1)) (i_l)(_2)/2+(i_l)(m+l)x(rowi)"
i=1 i-1 qq

The new first row of the determinant then becomes

[0, 0,..., 0, q,(n-1)/2+n(.+)(-(rn+ 1))]n q

by way of (3). Now expanding the determinant by the first row gives the value of the
determinant as

(_l)n+(-(rn +1)) n(n--1)/2+n(m+l)q

which simplifies to with the help of (6). This checks (2).
t/ q

The special case when q 1 gives the number of paths lying between a and b. This
result was first obtained by Kreweras [6].

Letting Do 1 and

where

Di A(bl, , bi; al, ai)q l,
=/3

oq= E ai and /= bi, ]=l,...,n,
i=1 i=1

we remark that Theorem 1 is equivalent to the following recurrence relation on the Dr’s
which is derived by expanding the determinant by its last column"

(13) Dn (-1) an-i i(i+l)/2+(i+l)b.D
i=0 + 1 q+q -’-1.
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A direct combinatorial proof of relation (13) or its equivalent

a,+- b. + 1
(14) q

i=0 n -i q+
(n-i)(n-i-1)/2+(n-i)b"Di O,

as suggested by the referee, is provided below.
Note that when n,

an+l-- b, + 1) 1,
// j q+

and therefore the value of an+l is of no consequence.
Consider the sets Si {(Xx, ", x,) xl <-" <- xi, xi/ >. > x,. bi <- xi <- ai

for all i}, ] 0, 1,. ., n, and assign the weight (-1)"-iqXl++x- to each sequence in Si,
for all . We want to sum these weights for all sequences. It can be seen that the sum of
the weights for sequences in Si can be written as

where

Ra ={(xa,... xi)" Xa <-. <=xi, bi <-xi <-ai, i=1,...

and

R2 {(X/+l, Xn)" Xi+l >" > Xn, bi <=xi <--ai, =j + 1,. ., n}

{(Xj+l, Xn)" ai+l Xj+l > > Xn b,}.
But

qX,+...+x, Di,
RI

and

(_ 1)n-iqXi+l+...+x. (_ 1)._i(ai+l b. + 1) (n_i)(n_i_l)/2+(n_i)bnq
R2 \ ] q+

This checks with the left-hand side of (14).
We derive the sum of the weights in another way. Observe that any sequence

(xl, , x,) in Si belongs either to Si-x if xi > x/ or to Si/ if xi <-Xi/x. Therefore, the
weights for any given (x,. , x,) cancel, occurring twice with opposite signs. Hence
the sum of the weights over all sequences equals zero, which is the right-hand side of
(14). This completes the proof.

As an application of Theorem 1, we assert that it provides an expression for the
probability generating function of the joint probability distribution of the two-sided
Kolmogorov-Smirnov statistic and the Wilcoxon-Mann-Whitney statistic. The Wil-
coxon-Mann-Whitney statistic is a linear function of the rank sum statistic U
where Ri is the number of Y observations that precede the ith largest X observation in
the two independent samples (X1,..., X,) and (Y, Y2," ", Y,) obtained from a
continuous distribution. Represent the ]th element of the combined ordered sample by
a horizontal unit if it is an X or by a vertical unit if it is a Y. Then the combined ordered
sample is represented by a path from (0, 0) to (m, n) with m horizontal unit steps and n
vertical unit steps. In that case the rank sum statistic is the area under the corresponding
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path. Also, for the Kolmogorov-Smirnov statistic

sup
--cx cx3

where F, and Gn are the empirical distribution functions, it is well known that the event
{D,,,n =< c} corresponds to the set of paths from (0, 0) to (m, n) which do not cross the
lines nx my + mnc.

Hence if (al, ", an) and (bl, ", bn) are the vectors corresponding to the path
boundaries nx my + rnnc and nx my rnnc, we have, by Theorem 1,

P(D,,.n <= c, U l)=
At(b; a)

This proves our assertion.
It is well known that any partition of into at most n parts can be represented by a

nondecreasing vector (xl, , xn) of nonnegative integers with the property Y’.i= xi I.
A(b; a) then represents the number of partitions (Xl, , xn) of into at most n parts
such that bj <-xj <= ai,/" 1,.-., n. Thus Theorem 1 provides an expression for the
generating function of such partitions.

The following result provides another application of Theorem 1.
Let X1, X2," ", Xn be a random sample from the geometric distribution P(X

x) pqX, x 0, 1, p + q 1, 0 < p, q < 1. Then for any nondecreasing nonnegative
integer vectors (al," ".’, an) and (bl," ", bn) such that bi <= ai for all i,

P bi <=Xi <=ai, 1, 2,..., n, O--<Xl -<X2 -<.,. <=Xn)

(15) =p, det [](a-bi + 1).n j-i+l q+q
The result follows immediately, because the required probability is given by the
right-hand side of (9) multiplied by pn.

If the x’s in (9) are real numbers instead of integers, we get
THEOREM 2.

l=bl 2"-Y2

’" q:’+’"+" dx1 dxn

(ai-bi)+ 1.)logq i-i+l/(j_i+l)
where (x)+ max(0, x).

Proofi As in Theorem 1, notice that the integrand qXl+.-.+x, can be multiplied by the
triangular determinant

(x’-bp+ 1)log q
(i-i)!,

which has value unity. Proceeding in the same manner as in the proof of Theorem 1, we
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can get (16) by observing that, for < j,

a qX+b(]-i) q(X-bp+_ 1, dxi
(i-i)! logq

qb,(i-i+1} (q(a-b,)+_l)j-i+l qb,(i-’+>
(i- + 1)! log q (i- + 1)! log q

As an application of (16) we have the following result.
Let X, Xa, , X, be the order statistic of a random sample of size n from a

distribution with pdf ((log q)/(q_qa))q, a xb, 0<q <1. Then for nonnegative
nondecreasing vectors (a, , a,) and (b, , b) having components in the interval
[a, b l, we have

P(bi Xi ai, 1, 2,..., n)

(17) ( q(-+ q(-?*- 1.n _q n (]-i + 1) log q

For the proof, we recall that the joint pdf of X(...., X( is n ((log q)/(q-
q))n q+"+, a <x <x<... <x <b. Hence the expression for the required prob-
ability is the expression (16) multiplied by the factor n ((log q)/(qb _qa))n.

If we put a 0, b 1 and q 1 in the above, the distribution tends to unit uniform
distribution and the right-hand side (17) reduces to

This result for the uniform distribution was obtained by Steck

3. A-analogue of the andermonde type convolution. In this section, we present
a q-analogue of the Vandermonde type convolution (see ) for a class of coecients
dened below.

Consider a sequence {(, q)} with the properties

0(,q)=l and (O,q)== 1
0 for n O.

For any squnc , ,. ., g(q)-coecient denoted
1 n, 1, is dened by

g(O) 1,

g(O, bg,..., b) det ll-i+l(bk+i-1,
(n-k+l)x(n-k+l)

We remark that apart from a slight change in the notation, the definition of g(q)-
coecient given above is exactly the same as that of g-coecient in 2 of [7], except
that the sequence {f} now depends on an additional parameter q. In particular, if

(19) fn(, q)=q"(n-)/2 ( ) n>0,=
q

we refer to g(q)-coefficient as g*(q)-coefficient. Note that g*(O, a,..., an)q is the
determinant of order n, which is the same as the determinant on the right-hand side of
(8) with b 0 for all i. Thus the class of g(q)-coefficients is a wider class which includes
those of (19).
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Let the generating function of the sequence given by (19) be &q(s, so). Since

(q(S, )-- H {(a + sqn)/(1 + sq+")} for Iql < a
n=0

(see [2, Th. 2.1], in which put =-sq and a q-e), it is immediate that bq(s, ) must
satisfy

6q(s, x + y) d)q(qYs, X)6q(S, y)

qbo(s, x)qbo(qXs, y).

Using this functional equation as a model, we define a generalization of the concept
of additivity used in [7]. Let G(s, ) be the generating function of the sequence
{fn(s, q)}. We say that Gq(s, ) is q-additive in sc if

Gq(s, x + y)= G(qYs, x)Gq(s, y)

(20) Oq(s, x)Gq(qXs, y).

Then additivity defined in [7] is in fact 1-additivity. Now it is possible to prove a
q-analogue of the Vandermonde type convolution (33) in [7] valid for g(q )-coefficients.

LEMMA 1. If the generating function Ga(s, ) of the sequence {fn(sc, q)} is q-additive
in , then

(21) g(0, :,""", )q (--1)rqrfr(--, q).

r

Note that this corresponds to Lemma 1 in [7].
LEMMA 2. Let Gm andMm be square upper triangular matrices of order m + 1 given

by
Om [g(0, bi,"’, bi-1)q],

M, [(-1)i-ifj_i(bi, q)].

Then

(22) G,Mm I M,G,, for any m >= O.
This is exactly the same as Lemma 2 of [7].

Next define the following infinite order upper triangular matrices:

G --[g(0, bi, hi+l,’’’, bi-1)q],

B [g(0, ai- bi, ai+l bi,. , ai_x bi)oq(i-g)b’],
G* G with bi replaced by ag for all i.

THEOREM 3. A necessary and sufficient condition for the matrix equation

(23) GB G*

to hold for any ai and b is that Gq(s, ) is q-additive in .
Statement (23) is equivalent to the convolution identity,

(n-i+l)bg(O, ai bi, ai+l bi, a, bi)qq
n-1

(24) + Y. {g(0, ai+l- bi+l, an- bi+)qq (n-i)b’+l g(O, be,"’, bj)q}
j=i

+ g(O, bi,’" ", b,)q g(O, ai,’’ ", an)q,
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for 1, 2, , n-l, n =2, 3,. ., and

g(O, a bn)qb + g(O, b)q g(O, a)q, n=1,2,....

The proofs of all the above results follow essentially the same steps as in the
corresponding proofs of [7]. We illustrate this by giving the proof of Theorem 3.

Proof o]’ Theorem 3. We write Goo, Moo as G, M respectively and let S’=
(1, s, s, ). Then by Lemma 2 GMS S, which implies that

(25) 2 g(O, hi+l,’’’, bn)qSnGq(-S, bn+l)= S
n=i

for 0. Replacing br by ar bi+l for r + 1, + 2, , in (25) we obtain the relations

(26) {g(0, ai+l bi+l," ", a, bi+l)snGq(-S, an+l bi+l)} s for >_- 0.
n=i

Necessity. Let M* denote M with bj replaced by aj for all/’.
Then

GB G*
(27) =MGBM*$ MG*M*S

BM*S MS, by (22)

:=) Y’. {g(O, ai+l- bi+l, a,- bi+l)qq(n-i)b’+Gq(-S, an+a)S n}
=i

siG(-s, hi+l) for -> 0.

If we put bi =/3 for all ] and replace s by q-s in (27) we have

oo{ Gq(-sq-t3,an+e)_q_St--f, -’ }(28) , g(O, qi+-,"’,an-B)q s" =s.
=i

Comparing (28) with (25) where bi is replaced by a -/3 for all ], we must have

Gq(-sq-t, a,+l)= Gq(-Sq-t, )Gq(-S, a,+-),
for n >_-O; i.e.,

Gq(S, an+l)= Gq(s, )Gq(sq, an+l--/),

for n -> 0.
Sufficiency. Replacing s by q b’+lS in (26), and using the fact that Gq(s, ) is

q-additive, reduces (26) to (27). Then by reversing the steps which lead to (27) we get
(23). This completes the proof.

We have already given one example of g(q)-coefficient, viz., g*(q) for which the
convolution (24) holds. As another example, if we set

ogq
L(:, q)

n!

we see that the generating function of this sequence is

exp{q’-I s},log q

which is clearly q-additive. Thus the corresponding g(q)-coefficient would also satisfy
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convolution (24). Moreover, this specialized coefficient is the same as the determinant
in the right-hand side of (16) with bi 0 for all and is equal to the g3-coefficient in [7],
when q 1.

Finally we remark that by using Lemma 1, Lemma 2, and Theorem 3, one can
extend all the results on inverse series relations described in [7] to g(q)-coefficients of
which (19) is a special case. This is done by changing f(.) and g(.) in [7] to f(., q) and
g(0, .)q respectively. For example, two q-analogue inverse relations are:

(i) x g(O)bn+l,..., br)qyr

if and only if

Y E (--1)’-fr-n(bn+l,q)Xr

(ii) xn g(O, br+l,’’’, bn)qyr
r=O

if and only if

Yn (--l)n--%--r(br+l, q)x.
r=O

Note that in both (i) and (ii), g(0, b,+l,’’’, b,)= g(0)= 1.

4. Acknowledgment. Both authors are grateful to the National Research Council,
Canada for financial assistance. The authors are also grateful to the referees for their
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A PERTURBATION OF AN ABSTRACT VOLTERRA EQUATION*

T. KIFFEt

Abstract. This paper discusses the existence of solutions to equations of the form u(t,x)+
a(t-s)[Au(s, x)+ g(u(s, x))] ds =f(t, x) where A is a differential operator on L2(I)), l) a bounded open

subset of R n, and g is a discontinuous real-valued function which is not necessarily monotone increasing.

1. Introduction. In this paper we will discuss the existence of solutions to Volterra
equations of the form

(1.1) u(t,x)+| a(t-s)[Au(s,x)+g(u(s,x))]ds=f(t,x), (t,x)(O,
Jo

where lq is a bounded open subset of R with smooth boundary F, x (Xl, , xn), a
and g are real-valued functions and A can be a differential operator. In recent years
equations like (1.1) have been viewed as special cases of abstract Volterra equations of
the form

(1.2) u(t)+Io a(t-s)Bu(s)dsf(t), O<-t<=T,

where B is a nonlinear operator defined on a subset of a Banach space X, f: [0, T] X
and a [0, T] R 1.

General existence results for (1.2) have been obtained by Barbu [2], Gripenberg
[7] and Londen 11 when B is a maximal monotone operator on a Hilbert space. These
results were extended to m-accretive operators on a Banach space by Crandall and
Nohel [6]. Existence results for (1.1) were obtained by taking L2(Iq) as the underlying
Hilbert space and requiring A to be a maximal monotone operator. These results also
required that g be a monotonically increasing function. Without this crucial assumption
on g the above mentioned abstract results do not apply to (1.1). An existence result for
(1.1) when A is a linear, self-adjoint differential operator and g is Lipschitz continuous
was obtained in [8].

In this paper we will extend the known existence results for (1.1) by replacing the
monotonicity condition on g required in [2], [7], [11] and the continuity assumption
required in [8] by a growth condition on g.

The paper will proceed as follows’ 2 will contain the preliminaries for a precise
formulation of the existence question, 3 will contain the proofs of existence, and three
examples which illustrate the applicability of our results will be presented in 4.

2. Statement and discussion of results. Let be a bounded open subset of R" with
smooth boundary F and let L2() denote the usual Hilbert space of real-valued square
integrable functions defined on l). The standard norm and inner product on L2() will
be denoted by[. land (’,’), respectively.

Let b be a proper, convex, lower semicontinuous function mapping L2(f) into
(-, ], with D(b) {u L2(f): b(u) < }. We shall assume that A c3b, where 0b is
the nonlinear, possibly multiple valued operator from L2() into L2(I’) defined by
uOqb(v) if and only if qb(w)>=qb(v)+(u, w-v), for every w L2(f). Then A is a
maximal monotone operator from its domain D(A)

_
L2() into L2(). For properties

* Received by the editors May 17, 1979, and in revised form April 14, 1980.
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of such operators see [4]. In addition we shall assume that, for some p -> 1,

(A1) {u" 4(u)+[u[<=K} is precompact in L2(I))
and bounded in L2p (II) for each K > 0.

Concerning the function g we shall assume

(2.1) g" R 1_.)R 1, g is measurable, and
Ig(t)l<_c/c=lt[, -<t<,

for some positive constants Cl and c2 where p is given by (A1). If (A1) is true with
then (2.1) reduces to g Lloc(-Oo, o). Furthermore we shall also assume that

(2.2) G(t) g(s) ds

for some positive constants C3 and C4o
Multiple valued functions play an essential role in solving nonlinear equations like

(1.1). If g is a monotone increasing function there is no difficulty in "filling in the gaps"
in the graph of g to make g a maximal monotone operator. We will follow the idea of
Rauch [12] in extending g when g is no longer monotone. To this end we first introduce
two auxiliary functions. For each e > 0 define

g (t) ess sup g(s), g (t) ess inf g(s).
Is-/l<e Is-tl<

For fixed t, is a decreasing function and g is an increasing function of e for decreasing
e. Let

g(t) lim g(t) and g(t) =lim g(t).
eO e-O

Then g is upper semicontinuous and g is lower semicontinuous. (Note that if g has a
jump discontinuity at then (t)= max (g(t+), g(t-)) and g(t)= min (g(t+), g(t-))).
We define a multiple valued function by

(2.3) g(t) [g(t), g(t)],

i.e., s g(t) if and only if g(t) <- s <- g(t). Let B denote the usual extension of g to L2(),
i.e., v B(u) if and only]f v(x) ,(u(x)) a.e. on 13, and v, u L2(D,).

We first assume that the kernel function a(t) satisfies

(al) a:RX-->R 1, aAC[O, T] and a(0)>0,

where ’= d/dt and AC[0, T] denotes the set of absolutely continuous functions on
[-0, T].

With these preliminaries the abstract equation we will consider can be written as

(2.4) u(t)+ a(t-s)Au(s)ds+ a(t-s)B(u(s))dsf(t), O<-t<=T,

where the given function f and the unknown function u lie in L2[0, T; L2(lq)].
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THEOREM 1. Let (2.1), (2.2), (A1) and (al) be satisfied. If fs W1’2[0, T; L2(II)]
and ]:(0) D() then there exist functions u, w, v LZ[0, T; LZ(II)] satisfying

(2.5) u W1’2[0, T; L2(D.)],
(2.6) u(t) D(A) and w(t) Au(t), a.e. 0-< t<- T,

(2.7) v(t) e B(u(t)), a.e. 0 =< <- T,

(2.8) u(t)+Io a(t-s)(w(s)+v(s))ds=f(t), O<-t<=T.

We remark that (2.7) can be rewritten as g(u(t, x)) <= v(t, x) <- , (u(t, x)). It is this
inequality which reveals the essential role multiple valued functions play in nonlinear
problems. In fact if we require v(t, x) g(u(t, x)), (2.4) need not have a solution even in
the case of a scalar Volterra equation [9]. If p oe in (A1) then Theorem 1 generalizes
Theorem 2 of [10].

The existence of solutions to (2.4) can be established under different hypotheses on
the kernel a(t). With a view toward applications we would like to allow a(t)- oo as
t- 0/. We shall now assume that the kernel satisfies

a e L2[0, T], a AC[6, T] for every 6 > 0, and
(az) a (t) is positive decreasing on (0, to) for some to < T.

THEOREM 2. Let (2.1), (2.2), (A1) and (a2) be satisfied. Iffe W1’2[0, T; Lz(D,)]
and f(O)eD(), then there.exist a function u eC[O, T; LZ(l)] and functions w, ve
LZ[0, T; Lz(D,)] satisfying (26), (2.7) and (2.8).

Since a’ need not be in LI[0, T] we are unable to obtain (2.5).
The condition a e L[0, T] may be weakened to a e L110, T] if we strengthen the

hypotheses on A. We shall now assume that A satisfies

(A2) {U" (U) <_-K} is precompact in L2(’) and bounded in L2(")
for eachK>0, inf (u)>-o.

L2(’)

We also modify (a2) to

(a3)
a e L110, T], a e AC[& T] for every 6 > 0, and
a(t) is positive decreasing on (0, T].

THEOREM 3. Let (2.1), (2.2), (Az) and (a3) be satisfied. Iffe wl’2[0, T; LZ(12)]
andf(O) D() then there exist]unctions u, w, v L2[0, T; L2(’)] satisfying (2.6), (2.7)
and (2.8) a.e. on [0, T].

It should be observed that under (a3) we cannot even claim that u(t) is continuous.
Concerning the strengthening of the last part of (a2) see the remark at the end of the
proof of Theorem 3.

3. Proofs.
Proof of Theorem 1. The first step in the proof of Theorem 1 is to write down an

appropriate approximating equation for (2.4). We begin by approximating g by smooth
functions. Let h(t) be a C function with support contained in the interval (-1, 1)
satisfying h(t)>=O for all and -oo h(t) dt= 1. Set hn(t) nh(nt) and define

(3.1) gn(t) | hn(t-s)x,(s)g(s) ds,

where ,g, (s) 1 if -n < s < n and is zero elsewhere. Each g, is Lipschitz continuous on
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(-c, c) and it is easy to show that (2.1) implies that there are positive constants c5 and
c6 so that

(3.2) Ign (t)l c5 / c61tl p, -c < <,
for all n. Next set Gn(t) to gn(s) ds, for-< <. It is not difficult to show that (2.2)
implies the existence of constants c7 and c8 so that

(3.3) Gn(t)>--c7-cst2, -<t<,

for all n.
Now define nonlinear operators Bn: L2()L2(fl) by (Bnu)(x)=gn(u(x)), for

u s L2(I)). Then each Bn is Lipschitz continuous on L2(12) and by (3.2) there are positive
constants K1 and K2 so that

(3.4) IBn (u)]-<_ Ka + K2 Ia [u (x)12P dx,

for all n. Define 0n" L2(1) -c, c) by 4,n(t) In Gn(u(x)) dx. It follows from (3.3)
that there are constants K3 and K4 independent of n, so that

(3.5) d/n(U) >--_ -g3- galul=,
and it is not difficult to show that if u WI’[0, T; L2(I’)] then On(u(t)) is absolutely
continuous on [0, T] and

d
(3.6) d---(Onu(t)) (u’(t), Bnu(t)), a.e. on [0, T].

The approximating equation we wish to consider is

(3.7) u(t)+ o a(t-s)[Au(s)+B,u(s)] ds 9 f(t).

To establish the existence of solutions to (3.7) we begin by approximating A. For each
A >0, let Jx (I +AA)-a and Aa =A-a(I-J), where I is the identity operator on
L2(f). Ax is called the Yosida approximation of A. If we set &x(u)=
(A/2)IAxu[2 + &(Jxu), then Ax Obx and we have

(3.8) (Au) _-< (u)-< (u).

Now fix n and consider the equation

(3.9) ux(t)+ a(t-s)[Axux(s)+Bnux(s)]ds=f(t), 0<t< T.

Since Ax and Bn are Lipschitz continuous on L2(), (3.9) has a unique solution
ua (t) W’2[0, T; L2(I))]. We now want to obtain bounds on the functions ux, Aux and
Bnu. First we have

(3.10) lu(t)l<=( la(s)[ ds [Axux(s)+B,,u,(s)[ ds +M,

whereM SUpo____t=<T If(t)[. Differentiate (3.9) with respect to t, multiply by A,u, + Bnua
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and integrate. With straightforward estimates and (3.6) we obtain

4,,, (u,, (t)) ,. (f(o)) + ,. (u,. (t)) 4,. (f(o))

+ a (0) [. IA,u,, (s) + B.u,, (s)l2 ds
(3.11)

1/2 1/2

+(Io (Io
Since is convex and 1.s.c., (3.8) implies that there are constants a and/ so that

(3.12) (u (t)) _-> -,, u (t)l-/3,

for all A >0. Applying (3.5), (3.10) and (3.12) to (3.11) there are constants M1 and M2
so that

(3.13)

a(O) Io ]Axu;(s)+B"ux(s)lZ ds

<_ la’(s)l ds+ZK4 la(s)lZ ds Ia.u.(s)+B.u.(s)lZ d

1/2

Choose T1 so small that oT’ la’(s)]ds+2K4To [a(s)l2 ds<=1/2a(O). Then (3.10), (3.11)
and (3.13) imply that

{Axux + Bnux} is bounded in L2[0, T1; L2(f)],
{u (t)} is bounded in L*[0, T1; L2(fD],

(3.14)
{x(u (t))} is bounded in L[0, T1],

{u](t)} is bounded in L2[0, T1; L2(fD].
Since Bn is Lipschitz continuous on L2(fD we also have

{BnuA} is bounded in L[0, T; L2(fD],
(3.15)

{Axux} is bounded in L2[0, T; L2(fl)].

We now wish to establish the uniform convergence of {ux (t)}. By (3.8) and (3.14)
{&(Jxux (t)} is bounded on [0, T1] independent of A and since Jx is a contraction (3.14)
also implies that {Jxux(t)} is bounded on [0, T]. By (A1) the set {Jxux(t): A >0,
0<=t-< T} is precompact in L2(fD. Since each ux e W’2[0, T1;L2(fD] and {u} is
bounded in L2[0, T; L2(fD] we have that the set {Jxux} is equicontinuous on [0, Tx].
Thus by the Ascoli theorem there is a sequence {Z,,},/m "-> 0 as m --> co and a function u,
so that Jx?ux..(t)u,(t) as m-oo uniformly on [0, T1]. Hence J.ux..-u, in
L2[0, T1; L (fD] and since ux.. -Jx..ux., Z,,Ax.u., (3.15) implies that ux. -Jx.ux. -->

0 in L2[0, T; L2(fD]. Hence we have

(3.16) u;,, u, in L2[0, T; L2()] as m oo.
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By (3.14), (3.15) and (3.16) there is a subsequence, which we denote again by {A,} and a
function w, L[0, T; L(I))] satisfying

(3.17) B,ux.. B,u, I in LZ[0, Ta; Lz(fD],

,n Un

where u’ is the distributional derivative of u, and denotes weak convergence. It
follows from [4, Prop. A.7] that u, W’z[O, T; LZ(l))] and it is clear that u,, w, and
B,u, satisfy

(3.18) u,(t) + J0 a(t-s)[w,(s)+B,u,(s)]ds=[(t), O<-t<-_T.

Also (3.16) and the first part of (3.17) imply u,(t) D(A) a.e. and w,(t) Au,(t) a.e. on
[0, T] by a well-known property of maximal monotone operators. Thus (3.7) has a
solution on [0, T].

We now wish to let n oo in (3.18). Since f(0) D() it follows from (Aa) and (3.2)
that [0,(f(0))] is bounded and hence we may repeat (3.10)-(3.13) with
replaced by u,, w, and , respectively. We now obtain

{w, + B,u,} bounded in L2[0, T1; L2([)],

(3.19)
{u,} bounded in L[0, T; Lz(Iq)],

{(u,(t))} bounded in L[0, T],

{u’} bounded in L2[0, T; L2(I))].
By (A), (3.4) and the first part of (3.19) we have

{B,u,} bounded in L[0, T; La(f)],
(3.20)

{w,} bounded in L2[0, T; Lz(fD].

By (A) and (3.19) the set {u,(t): 0 _-< _-< Ta, n 1, 2, 3,. .} is preeompaet in L2(II) and
{u,(t)} is equicontinuous on [0, T]. Hence by the Ascoli theorem there is a
subsequence, which we again denote by {n}, and a function uC[O, T;L2()]
satisfying

(3.21) u,(t) u(t) uniformly on [0, T] as n

By (3.19) and (3.20) there is a further subsequence, which we again denote by {n}, and
functions w, v e L2[0, T1; L2()] satisfying

Wn W

(3.22) B,u,---v,

Un--’U

weakly in LZ[0, T; L(f)] as n c, where u’ is the distributional derivative of u. It is
clear that u, w and v satisfy (2.8). Again (2.5) follows from [4, Prop. A.7]. By a well
known property of maximal monotone operators (3.21) and (3.22) imply (2.6).

To complete the proof all that remains is the verification of (2.7). Following 12] we
will establish (2.7) by showing that

(3.23) g(u(t, x)) <= v(t, x) <= (u(t, x)), a.e. on (0, T1) -.
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To this end let O be the subset of R "+1 given by O (0, T1)x f. Then (3.21) implies
that

(3.24) u,(t, x)- u(t, x) in LZ(Q) as n c.

Hence there is a subsequence which we again denote by {un} satisfying

(3.25) un(t, x) u(t, x), a.e. on Q.

Fix 0 < 6 < 1. By Egoroff’s theorem there is a further subseqOence which we again
denote by {un} and a set A

___
Q such that

(3.26) m(Q-A)<6, un(t, x)- u(t, x) uniformly on A,

where m denotes Lebesgue measure on R n+l. Let D,, {(t, x) O: lu(t, x)l-<- m 1}.
Fixing m we have that for any e > 0 there is an integer N > 2e-1 so that if n >N then
lu.(t,x)-u(t,x)[<e2-, for all (t,x)D,,fqA. Thus if n>N and (t,x)D,,fqA we
have that Is-un(t, x)l<e2-1 implies Is-u(t, x)l<e. Hence we have

(3.27) g(u(t, x)) <-- gn(un(t, x)) <-- (u(t, x)).

Consequently for any h L2(Q), h _-> 0 we have

(3.28) Io g- u h dt dx -<- IomnA mnA
gn(un)h dt dx <= Io g(u)h dt dx.

By (3.22) gn(un(t, X)) converges weakly in L2(Q) to v(t, x) so (3.28) gives us

(3.29) Io g-(u)h dt dx <-- Io vh dt dx <- Io g(u)h dt dx.
mnA mNA mnA

Since u is bounded on D,, n A, Lebesgue’s theorem allows us to take the limit as e 0
to obtain

(3.30) fo g- (u)h dt dx <= fo vh dt dx <= Ic, g(u)h dt dx.
mnA mnA mnA

Since h -> 0 was arbitrary we conclude that

(3.31) g(u(t, x)) <= v(t, x) <= (u(t, x)), a.e. on D,,NA.

Since we may choose 6 as small as we like and m as large as we like, (3.26) follows. The
standard translation argument for Volterra equations may now be used to extend the
solution to the whole interval [0, T], cf. [11, p. 962].

Proo/of Theorem 2. Let an(t)= a(t + I/n) and consider the approximating equa-
tion

(3.32) un(t)+ Jo an(t-s)[Aun(s)+Bnun(s)] dx [(t).

Since an satisfies (al), Theorem 1 guarantees the existence of functions un (t) and wn (t)
satisfying (2.5), (2.6) and

(3.33) un(t)+ an(t-s)[Wn(s)+Bnun(s)]ds=f(t), O<-_t<-_T.
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Differentiating (3.33), multiplying by wu + Bnun and integrating we obtain

6 (u. (t)) 6 (f(o)) + 4,. (t)) 6. (f(o))

+an(0) [ Iwn(s)+B,un(s)l2 as
(3.34)

Since a’ need not be in L[0, T] we apply a technique of Barbu [3]. By (a) and Young’s
inequality applied to the last term of (3.34) we obtain

(u(t))- (/(0)) + O(u(t))-On(f(O))+a(t) oW(s)+Bun(s)ds
(3.35)

0 to.
2a(t)

Now choose T1 so small that 0 < T1 < to and

(3.36) 8K4 lan (s)l ds < a (to), for 0 < < T1,

where K4 is given by (3.5). Then by (3.5), (3.10), (3.35) and (a2) there are constants M1
and M2 independent of n for large n so that

1
(3.37) 4)(un(t))+1/4an(t) tw.(s)+B.u.(s)lZds<=ma+2a.(t) M2, O<-_t <- T1.

Since b is bounded below by an affine function it follows from (3.4), (3.10), (3.37) and
(AI) that the first three statements of (3.19), (3.20) and the first two statements of (3.22)
again hold. The remainder of the proof of existence on [0, T] follows exactly as in the
proof of Theorem 1 except for showing that the family {un(t)} is equicontinuous. Since

an a in L2[0, T] the first statement of (3.19) implies immediately that the family
{an,(wn+Bnun)(t)} is equicontinuous and hence so is {un(t)}. Also it should be
observed that since an a in L2[0, TI] (3.22) implies that an *(wn +Bnun)--a *(w +v)
weakly in L2[0, T1; L2()].

To complete the proof of Theorem 2 we must establish existence on the whole
interval [0, T]. We proceed by induction. Suppose that there exist functions u, w,
v eL2[0, nTx; L2(fl)] satisfying (2.6), (2.7) and (2.8) on [0, nT1]. For 0<x <-nT
consider the equation

(3.38)

y(t)+ Io a(t-s)[Ay(s)+ G(y(s))] ds

f(x +t) a(x +t-s)[w(s)+v(s)]ds, O<_t<__ T.

If the right-hand side of (3.38) lies in W’2[0, T1; L2(’)] the first part of the proof of
Theorem 2 guarantees that (3.38) has a solution y(t) on [0, T1] (T1 is restricted only by
(3.36)). If we define u(t + x) y(t) then u(t) is a solution of (2.4) on [0, x / T1]. Thus set

h(t,x)= a(x +t-s)[w(s)+v(s)]ds for O<-x<-nT and 0<_-t -< T1. It is easy to show
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that for each fixed x, h(t,x) is absolutely continuous in and (O/Ot)h(t,x)=
a’(x + s)[w(s) + v(s)] ds, for 0 < _-< T1. Straightforward calculations yield that

-h(t,x) dtdx

and hence for almost every x [0, n T1] we have

L2[0, T1; L2(I))].+ t- s)[w(s) + v(s)] ds

Thus (2.4) has a solution on [0, x + T1] for almost every x e [0, nT1] and hence has a
solution on [0, (n + 1/2)T1]. In this way we eventually get the existence of a solution on
[0, T].

Proofof Theorem 3. The proof of Theorem 3 involves a few minor and one major
change in the proof of Theorem 2. First we now have (3.35) for 0 _-< <_- T. Since c4 0 in
(2.2), 0n (un (t)) is bounded from below and hence we obtain (3.37) for 0 <- <_- T. Since a
is only assumed to be in L110, T] we do not have (3.10), but (A2) now implies that the
first three statements of (3.19), (3.20) and the first two statements of (3.22) hold. The
major change in the proof of Theorem 2 enters in establishing

(3.39) {un} is precompact in L2[0, T; L2([),)],
which will then imply the existence of a function u e L2[0, T; L2()] and a subsequence
{nk} so that (3.24) holds. Under (a3) the family {un (t)} need not be equicontinuous, but it
is not difficult to show that (3.19), (3.33) and the fact that an a in LI[0, T] imply

(3.40) fo
T

lu.(t +a)-u.(t)l2 dt-o as 8 0 uniformly in n.

For each a>0 define Mun(t)=(1/2a)un(t+s)ds. Then (3.40) implies that
M,,un un in L2(0, T; L2([)) as ce 0 uniformly in n and that the family {Mun(t): n
1,2, 3,...} is equicontinuous on [0, T] for each fixed a. Also the set {M,,un(t):
0=<t -< T, n 1, 2, 3,...} is contained in the closed convex hull of {un(t): 0-<_t_-< T,
n 1, 2, 3, .} for each fixed c and hence is precompact in L2(’)). Thus for each c > 0
the set {Mun(t): O<=t<-T, n 1,2,3,...} is precompact in C[0, T; L2([)] by the
Ascoli theorem. Now it is not difficult to show that {un’n 1, 2, 3," "} is totally
bounded in L2[0, T; L2([)] and hence precompact, cf. [13, p. 86]. This completes the
proof of Theorem 3.

Remark. The only reason for assuming that a(t) is positive decreasing on the
whole interval [0, T] arises from the fact that a L110, T] is not sufficient to guarantee
that g a’(x + t-s)[w(s)+ v(s)] ds lies in L2[0, T; L2(I))] for any T>0. In particular if
a(t)=O(t-1/2) as t-0+ and w(s)+v(s) is bounded away from zero as s-0 then

o a’(x + t-s)[w(s)+v(s)] ds is not an element of L2[0, T; L2(12)] for any T> 0 and any
x>0.

(4.1)

4. Examples.
Example 1. Let D. be a bounded open domain in R with smooth boundary F, and

consider the equation

U(t, x)- , a(t-s)(Au(s, x)) ds + J,a(t-s)g(u(s, x)) ds f(t, x),

(t, x) (0, T) x D,
Ou

-/3(u), a.e. on (0, T)xF,
On
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where B is maximal monotone on R, 0 /3 (0) and/3 O] where ]: R [0, oo) is convex
and lower semicontinuous. It is well known [-5] that if we set

(4.2)

rk(u)=1/2 In lgrad ul2 dx + fr](u) dx,

D(b) {u Hi(I)):/(u) L(F)},
then Ock(u)=-Au and D(Ork)={u eH2(II):-(Ou/On)B(u) a.e. on F}. By (4.2) and
](u) >- 0 we have that {u e L2(II): $(u) + ]ul--< K} is bounded in H(O) and hence by the
Sobolev imbedding theorems is precompact in L2(II) and bounded in Lz’(II) for

(4.3)

1-<p-<eo if n=l,

1-<_p<oo ifn=2,

n
l_-<p_<- if n_->3.

n-2

Thus (A1) is satisfied if p is restricted by (4.3).
Example 2. Consider the equation

u(t, x)- (t- s)-a/Z(tr(ux(s, x)))x ds + (t- s)-X/Zg(u(s, x)) ds f(t, x),

(4.4) 0 <- -< T, 0<x < 1,

u(t, O) u(t, 1) O,

where r C1(-oo, oo), O__<r’ <_-M < oo and X(r)= o r(s) ds >=c(r2 1), for some >0.
If we define b :Lz(O, 1) (-oo, oo] by

(4.5)
X

du
dx if u H(O, 1),

otherwise,

then b is a well-defined, proper, convex, lower semicontinuous function and

d du
with

d du 1)}
By the growth restriction on 5: it is clear that {u: b(u) =<K} is bounded in H(0, 1) and
hence bounded in LP(0, 1), for all p -> 1, and precompact in L(0, 1).

Example 3. For our last example consider

u(t, x)-Io (t-s)-l/2(Au(s, x))dS + Io (t-s)-l/2g(u(s, x)) ds f(t, x),

(4.6) (t, x) e (0, T) x 1),

u(t, x) O, (t, x) (0, T) x F.

As in Example 1 we set $(u)= 1/2 In Igrad u]2 dx. It is immediate that (a3) and (A2) are
satisfied if p is restricted by (4.3).

Acknowledgment. I wish to thank the referee for several suggestions which
significantly increased the generality of the results presented here.
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CONDITIONAL POSITIVITY OF QUADRATIC FORMS
IN HILBERT SPACE*

D. H. MARTIN-t

Abstract. If X and Y are real Hilbert spaces, A :X Y is a bounded linear operator, and F
_
Y is a

closed convex cone, an immediate sufficient condition for a quadratic form Q on X to be positive subject to
the constraint Ax F, is that Q be decomposable as a sum Q(x) C(Ax) + S(x), where C is a quadratic form
on Y which is positive on F, and S is positive definite on X. The necessity of such a decomposition is not
obvious, but is established here for a class of quadratic forms which commonly occur in variational
problems--the Legendre forms. The proof furnishes formulas for C and S which are explicit apart from the
occurrence of an unknown scalar. The usefulness of the result is illustrated by the determination of the focal
(conjugate) time of a linear-quadratic control problem with inequality constraints on the final state.

1. Introduction and statement of results. Let X and Y be two real Hilbert spaces,
with a bounded linear operator

A:X- Y,

and a closed convex cone F___ Y being given. We shall say that a continuous quadratic
form on X is conditionally positive (relative to A and F) if

Q(x) > 0 whenever Ax F and x O,

and, as usual, that Q is positive definite or positive semidefinite if C)(x) > 0 for all x O,
or O(x)=> 0 for all x, respectively. If there is 7 > 0 such that the inequality

Q(x) >-_  llxll
may epla Q(x) O, w shall speak of tro conditional positivity o tro positive
definiteness, respectively. The problem of testing for conditional positivity arises, for
example, in second-order optimality conditions for constrained minimization problems
in Hilbert space.

Regarding quadratic forms C on the space Y, we shall say that C is
(a) F-copositive if C(y)>-0 for all y F;
(b) strictly F-copositive if C(y)>0 for all y s F\{0};
(c) strongly F-copositive if there exists , > 0 such that

C(y) >- ,llyll=, for all y F.

The following sort of immediate sufficient condition for conditional definiteness
was first noted by D. H. Jacobson in [6], dealing with the finite-dimensional case

(1.1) X=, F= [T__c ["= Y.

Let us say that admits a strict decomposition (relative to A and F) if it can be written in
the form

(1.2) Q(x) C(Ax) + S(x),

where C is a strictly F-copositive form on Y and $ is positive semidefinite on X with the
additional property that

(1.3) S(x) > 0 whenever Ax O, x O.

* Received by the editors August 24, 1979, and in revised form April 24, 1980.
National Research Institute for Mathematical Sciences, CSIR, Pretoria, South Africa. This work was

partially supported by a grant from Control Data.
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If C is strongly F-copositive and S is strongly positive definite, we shall say that Q
admits a strong decomposition.

THEOREM 1.1. A quadraticform which admits a strict decomposition is conditionally
positive.

This paper concerns the deeper converse question. For the finite-dimensional case
(1.1), Jacobson and the writer [8] have recently proved the strong converse result that a
conditionally positive form must admit a strong decomposition. Further interest is lent
to this fact by the failure, even in finite dimensions, of the corresponding conjecture
regarding conditional nonnegativity. A counterexample, with

X= y [2, F=[2+

is afforded by the form O(xl, x2) xlx2, with A:R2 R given by the matrix

1 0

Clearly AxeF lit x is of the form x’=(0, x2), and then O(x)=0, so that O is
conditionally nonnegative. However, as is shown in [8], O admits no decomposition of
the form (1.2) with $ positive semidefinite.

In this paper the methods and main result of [8] are extended to the general Hilbert
space setting introduced above, consideration being restricted, however, to a class of
quadratic forms O on X known as Legendre forms. This term was used in the detailed
study [4] by M. R. Hestenes, and is motivated by the occurrence of such torms as second
variation functionals in the calculus of variations and optimal control theory, when the
so-called strengthened Legendre condition (see, for example, [3, p. 116]) holds.

DEFINITION 1.1. A Legendre Corm 0 on a Hilbert space is a continuous quadratic
functional which can be written as a sum

O=O++Oo
of a strongly positive definite form Q+ and a completely continuous form Q0 (i.e., a form
continuous in the weak topology).

Properties of Legendre forms that we shall require are given in the next section.
The results of this paper are stated in the following three theorems.
THEOREM 1.2. A conditionally positive Legendre form must admit a strong

decomposition.
THEOREM 1.3. A necessary and sufficient condition for a Legendre form

Q(x) (x, Lx)x

on X to be conditionally positive is that ]’or some u > 0
(a) the form Q(x) + ullaxll2y is strongly positive definite on X, and
(b) the form

(1.4) C,.,(y):= ul]yll2y u2(y, A(L + ua*a)-la*y)y
on Y is strictly F-copositive. For such u, this form C on Y, together with the form
(1.5) S(x) := (Lx, (L / uA*A)-Lx)x
on Xprovide a strict decomposition ofQ. Furthermore, both C andS are Legendreforms.

Note that the self-adjoint operator L + uA*A has a bounded inverse because of (a).
The proof of Theorem 1.3 depends upon our final result, which is a theorem in the

spirit of a well-known theorem of P. Finsler [2] on quadratic forms on ". For further
related theorems and extensions see [6, p. 90], [8], and also [1, p. 75], [5, 2.6] and [7].
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THEOREM 1.4. Let O1 and 02 be quadratic forms on a Hilbert space H, such that
ispositive semidefinite while Oa + (2 is a Legendreform, and letC

_
Hbe a closed convex

cone. Then

(1.6) Oa(h)>0 whenever h \{0} and O2(h)=0

iff there exists , > 0 such that

(1.7) Ol(h)+vOz(h)>O whenever h \{0}.

These three theorems are proved in reverse order in 3, 4, and 5, followed in 6
by a remark concerning the evaluation of the forms C. Section 7 presents an application
of Theorem 1.3 to the determination of focal times for a quadratic functional on a linear
control system, subject to inequality constraints on the final states.

2. Properties o Legendre forms. The basic reference on Legendre forms is the
study [4] by Hestenes. Legendre forms have many nice properties, some of which we list
here. Let Q be a Legendre form on a Hilbert space H.

P1. There exists r > 0 such that for all positive 6 < r, the form

Q(h) Q(h)-6llhl]

is also a Legendre form on H.
P2. There exists r > 0 such that whenever h, H is a sequence such that

h,-- 0 and IIh.II a,
then

lim, O(h,) => r.

P3. is weakly lower semicontinuous (henceforth abbreviated to wlsc) on H; i.e.,
whenever h,-- h0 then

Q(ho) =< lim, O(h,).

P4. If O(h)> 0 for all nonzero h in some closed convex cone cg
_
H, there exists

y > 0 such that

O(h) >-’gllhll2, for all h

P5. Whenever h,---’ho and O(h,)--> O(ho), then h, --, h0.
P6. There is a closed subspace H1

___
H of finite codimension such that O is

strongly positive on Ha.
In the study by Hestenes which has been cited, he defined as Legendre forms those

forms having the properties P3 and P5, and he showed [4, Theorem 11.6] that this is
equivalent to the definition adopted here (Definition 1.1), and also [4, Theorem 11.4] to
property P6. Property P4 is an easy extension to the case of closed convex cones of
[4, Theorem 11.1] which proves P4 for the case cg H.

Properties P1 and P2 are immediate consequences of the definition and the fact
that the norm is wlsc. What is interesting, and also useful in the sequel, is that a property
apparently weaker at first sight than P2, namely

P2’. Whenever hn---0 with IIh, 1, then lim, O(h,)> O,
is sufficient to characterize Legendre forms. Routine convergence arguments can be
given to show this, but it is more interesting to see how P2’ implies P6.

The symbol denotes weak convergence, while denotes strong convergence.
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Given a quadratic form Q on H, consider the following inductive procedure.
Starting.at step 1 with an arbitrarily chosen unit vector h a, the Nth step supposes that we
have an orthonormal set {ha, hE,’’’, hN} such that

1
Q(h) < k=2,3,... ,N,

(k- 1)’

and the sequence is continued by selecting, ifpossible, a unit vector hN/l, orthogonal to
each of hi,. , hN, such that also

1
Q(hN+I) <--.

N

If this is always possible, the procedure never terminates, and produces an orthonormal
sequence for which

lim O(h) <-_ O.

Since every orthonormal sequence converges weakly to zero, this means that Q does
not satisfy P2’. The other alternative is that the procedure fails at the Nth step (for some
N), which means that for all h H orthogonal to {h,..., hN}, we have

1
O h >- - ]lh ,

showing that O satisfies P6. Thus P2’ implies P6, as asserted.
Finally we remark that the typical quadratic functional

T

J(xo, u(" )):= | [u’(t)R (t)u(t) + x’(t)O(t)x(t)] dt + x’(TIHx(TI,

where

2(t)=A(t)x(t)+B(t)u(t), O<-t<-_T, x(O) Xo,

which occurs in optimal control theory, is a Legendre functional iff there exists r > 0
such that for almost all [0, T], and all u R",

u’R(t)u >- rlul=.
This is known as the strengthened Legendre condition in optimal control theory. It

is, of course, not assumed that the matrices Q(. and H are positive semidefinite.

3. Proot of Theorem 1.4. Let Q1, Q2, H be as in the first sentence of Theorem
1.4. It is immediately obvious that if (1.7) holds for some constant u, then (1.6) holds.
For the converse, suppose (1.7) does not hold for any constant , > 0. Then for each
n 1, 2,... we can find hn , with [Ih.II- 1 such that

(3.1) Ql(hn) + nQ2(h,) <- O, n 1, 2,. ..
Being a bounded sequence, {h,} has a weakly convergent subsequence

k

hnk ho,

where ho is necessarily in the closed convex cone . From (3.1) it follows that

Oe(h,k) < Ql(hnk)<110111
nk nk
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so that, since Q2 is positive semidefinite, and hence wlsc, we have

(3.2) O2(ho) 0.

However it also follows from (3.1) that Ql(hn) + Q2(h,) <- 0, and hence by the property
P3 (wlsc) of the Legendre form Q1 + Q2 that

(3.3) Ql(ho) Q(ho)+Q2(ho)<=limk [Qx(hnk)+Qz(hnk)]<=O.

Comparing (3.3) and property P2 (or even P2’), it is clear that ho 0. But then (3.3),
(3.2) and the fact that hoe contradict condition (1.6), which completes the proof.

4. Proof of Theorem 1.3. Let Q(x)= (x, Lx)x be a quadratic form on X. Then,
with the forms C on Y and S on X defined by (1.4) and (1.5) for any u for which
L + uA*A is invertible, we have

C,,(Ax) ullAx]]2y u2(Ax, A(L + uA*A)-IA*Ax)v
(x, [ua*a -(ua*a)(L + ua*a)-l(ua*a)]x)x.

Hence using the general identity

L -L(L +M)-L M-M(L +M)-M,
it follows that

C(Ax) (x, [L-L(L + uA*A)-lL]x)x,
or

(4.1) O(x) C(Ax) + S(x).

The sufficiency part of Theorem 1.3 follows easily from this, and is actually
independent of the assumption that Q be a Legendre form. For if t, is such that
conditions (a) and (b) hold, then first, as already noted, the operator L + uA*A is
strongly positive definite, and hence has a bounded inverse, which is also strongly
positive definite. It follows that the form S,,(x), given by (1.5), is positive semidefinite,
with

S(x) 0, iffLx 0.

But, using (a) again, it follows that if Ax 0 but x 0, then Lx O, since in these
circumstances

0< O(x)+ ullAxll--- Q(x).

Thus S also satisfies (1.3), which, together with (b) and (4.1), shows that O admits a
strict decomposition, and hence, by Theorem 1.1, is conditionally positive. This proves
not only the sufficiency, but also that if (a), (b) hold, then the forms (1.4) and (1.5)
provide a strict decomposition of (2.

For the converse, let O be a conditionally positive Legendre form on X. Let
H X Y, and let

_
H be the closed convex cone

{Ix, y HIy F}.

We shall apply Theorem 1.4, with the role of Qx taken by the form [x, y]-- O(x), and

that of O2 by the form IlY- axll. To see that

(4.2) Q(x) + [[y axl[2y
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is a Legendre form on H, suppose Ix,, y,]--- [0, 0] with

(4.3) IIEx, y311-IIxllx+ [lyl[--2 1.

Since Q is wlsc on X and xn---" 0, we have

(4.4) _limn [O(x,) + I[Yn mx v] --> 0,
with equality only if there is a subsequence [x,, y, for which

Q(Xnk)O and IlYnk--AXnkllyO.

By P5, the first of these conditions would imply that x 0, and then the second would
imply that yn 0, contrary to (4.3). Thus strict inequality holds in (4.4), showing that
the form (4.2) has property P2’, and is thus a Legendre form. Finally, we note that the
conditional positivity of Q may be stated as

Q.(x)>0 whenever Ix, y] \{0} and Ily-Axl[.-0.
Thus Theorem 1.4 applies, and so there exists u > 0 such that

(4.5) O(x)+ lly-Axll>0 whenever y F and Ix, y][0, 0].

Henceforth in this proof u is held fixed at this value. Obviously any greater value would
also ensure (4.5). For y 0, (4.5) reduces to

Q(x) + llAxll-> 0 whenever x 0.

Since this form is manifestly also a Legendre form on X, it follows from P4 that it must
be strongly positive definitemi.e., condition (a) holds. Furthermore, by standard
theorems, the self-adjoint operator L + uA*A associated with this form has a bounded,
strongly positive definite inverse.

To prove that (b) holds (for this same value of u), we introduce a bounded linear
operator B Y-X by

(4.6) B u(L + uA*A)-IA *.

Direct calculation verifies that for any y Y, if we substitute x Buy into

(4.7) t[x, y]:=O(x) + ully-Axl[,

we obtain precisely C(y), as given by (1.4). Hence, by (4.5), we have

C(y) > 0 whenever y F and y 0,

showing that C is strictly F-copositive, as required.
It remains to show that the forms C and S are Legendre forms. The argument

used above to show that (4.2) is a Legendre form also shows that for any u > 0, the form
0 given by (4.7) is a Legendre form on H. Suppose now that y, 0 with Ilyll-- 1. Then
also By, 0, and so by P3 we have

lim C(y) lim O,,[B,,y,, y, >- O,

with equality only if for some subsequence y we have

0 E ’]y.,, y 0.

But then P5 would imply that y’ 0, which is false. Thus the form C has property P2’,
and is a Legendre form on Y.
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Finally, suppose xn---O with IIxllx 1. Since (L + ,A*A)-1 is strongly positive
definite, there exists 3’ > 0 such that

S(x) >- llLxl,
Hence

(4.8) lirn, S,(x,,) >-_ 0,

with equality only if for some subsequence x we have

Lx’
Since Q is a Legendre form, property P5 would imply that x 0, which is false. Thus
strict inequality holds in (4.8), proving that S, is a Legendre form. This completes the
proof of Theorem 1.3.

5. Proof of Theorem 1.2. This is an easy corollary of Theorem 1.3 and properties
P1 and P4 of the Legendre form Q. These properties imply that if Q is a conditionally
positive Legendre form, then there exists r > 0 such that

O(x) := O(x)- rllxll
is also a conditionally positive Legendre form. Applying Theorem 1.3, we conclude that
Q admits a strict decomposition. Hence there is a strictly F-copositive Legendre form C
on Y and a positive semidefinite form S on X such that

Q(x) C(Ax)+ S(x)+ rllxll.
By P4, the form C is actually strongly F-copositive, while the form S(x)+ rllxll is
manifestly strongly positive definite. Thus Q admits a strong decomposition, as
claimed.

6. Evaluation of the form C(y). The operator B, given by (4.6), was important in
the proof of Theorem 1.3 because of the relation

(6.1) C(y) O[By, y].

However, one can say more" if condition (a) holds, i.e., if

Q(x) + llAxll= O[x, 03
is strongly positive definite, then, as is easily verified,

(6.2) C,(y) min {O,[x, y]lx x},

with the unique minimizer given by

x By.

Thus, for given , C(y) may be evaluated as the unconstrained minimum over x X of
O[x,

7. An application to constrained focal times. For controllers u(t), tot T, in
x := L([to, T], ), let

T

O(u(.)):= [ (u’(t)Ru(t)+x’(t)Sx(t)) dt+x’(T)Hx(T),
gt

be a quadratic functional defined on the linear control system in ""
(7.1) A Ax + Bu, X(to) 0,



1054 D.H. MARTIN

where R, S, H, A, B are given matrices, with R, S and H symmetric. We suppose that
R is positive definite--as remarked in 2, this is necessary and sufficient for Q to be
a Legendre form on X. Suppose however that S and H are not both positive
semi-definite. Given a further r n matrix D, we could then ask: what is the infimum to*
of all initial times to such that

(7.2) O(u(’))>0 wheneverDx(T)>-O, u(.)O?

This instant to* is a "conditional focal time" for the functional Q. The final time T is, of
course, held fixed.

For each to, (7.2) is a question of conditional positivity, where

X LZ([to, T], R"), F==_= Y,

and the operator A"X Y assigns to each controller u (.) X the vector Dx (T) Rr.
Before dealing with the form C, we consider the testing of condition (a) in

Theorem 1.3ui.e., the question as to whether, for given u and to,
T

’( ’(T)(H+uD’D(7.3) O(u(’))/llau(’)l[- (u’(t)Ru(t)+x t)Sx(t))dt+x )x(T)

is strongly positive definite on X. It is well known (see, for example, [6]), that this is so iff
the Riccati problem

(7.4) -=PA+A’P-PBR-1B’P+S, P(T)=H+uD’D,

has a solution which exists over the full interval [to, T]. Thus, for given u > 0, one may,
by determining the "blow up" time of the Riccati problem (7.4), determine the infimum
of times to for which that u satisfies condition (a).

Using the strategy (6.2) it turns out that a similar statement can be made regarding
condition (b) of Theorem 1.3. The form Q on X x Y is given by

T

O,,[u(’), y]:= f (u’(t)Ru(t)+x’(t)Sx(t)) dt +x’(T)Hx(T)+ u[y-Vx(T)l2.
at

If we introduce a further state vector z Er satisfying

we may regard y as both the initial and final value of z. This leads to the representation
T

([u(’), y] f (u’(t)Ru(t) + x’(t)Sx(t)) dt
.it

(7.5)

-D uI z(r)

with

X(to) 0
(7.6) (;) (I i)() + (oB) u’ (Z(to), (y)"
As is well known, it follows that the minimum value of 0,[u(" ), y], for the fixed initial
state given in (7.6), over all u(. ) X, is given by the expression

(7.7) (0’, y’)/(to)(O),Y
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where/6(. denotes the solution of the (n + r)-square Riccati problem associated with
(7.5) and (7.6) in the same way that (7.4) is associated with (7.3) and (7.1), provided that
the solution P(. extends over the whole interval [to, T]. Because of the zero blocks in
(7.6), this new Riccati problem is found to decompose into the following coupled trio, in
which we use the block notation

(7.8)

(7.9)

(7.10)

(Pxx(’)/(’)
Pi2( :P22("

-Pll P11A + A’P11 -P11BR-1B’P11 + S, Pll(T) H + t,D’D

--P12 A’P12- P11BR-IB’P12, P12(T) -vD’

-P22 =-P2BR-B’P12, P::(T) vI.

One notices immediately that the only nonlinearity occurs in (7.8), which problem is
identical with (7.4). Thus, for given t, and to, if (7.4) does not "blow up", neither does
(7.8)-(7.10), and, by (6.2) and (7.7), for any y [r we have

(7.11) C(y) y’P2(to)y.

Since F R’, condition (b) in Theorem 1.3 therefore requires that

(7.12) y’Pz2(to)y > 0 whenever y _-> 0, y # 0.

Symmetric matrices which have this property are called strictly copositive--they
were first studied by T. S. Motzkin in 1952, who in [9] and [10] gave the following test
for strict copositivity of a symmetric matrix M" M is strictly copositive iff its diagonal
entries are positive, and for every principal submatrix M of M, whenever the cofactors
of the last row of M are all positive, then so is the determinant of M. (See also [6] for
further discussion and references.) Thus provided r is not too large, (7.12) can be readily
tested. It follows that for any given t, >0, we can determine the infimum of initial times
to for which that t, satisfies conditions (a) and (b) of Theorem 1.3 simply by solving the
coupled system (7.8)-(7.10) backwards in time, and noting the time to(t,) at which either
the solution blows up or P22(’ loses the property ofstrict copositivity. Note that because of
the remark following equation (4.5), if for some to, t, satisfies (a) and (b), then so does
any larger t,. Consequently to(t,) is a nonincreasing function.

Theorem 1.3 may now be applied to conclude that the desired focal point to* is
given by

t inf to(t,)= limk to(t,k),
u>0

for any sequence

This scheme was successfully applied to the following example. For the "double-
integrator" control system

kl Xz, :2 u, with X(to) O,

find the infimum time to* of times to < 0 for which
o

(U2--X) dt>O,
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whenever u(. 0 and

x(O)_->o, x(O)_-<o.

Firstly, the Riccati system (7.8)-(7.10) can be solved analytically, and, writing

c cos t, s sin t, C cosh t, S sinh

for brevity, the result for P22(t) is given by

(7.13) .(-cS-sCA. P22 V
SS

+ v(1 + cC)
cS-sC 0

where

(7.14) A(t, v) v2(1 cC) 2vsC + 1 + cC.

Let

-4.730040

denote the first negative zero of the coefficient

1- cos cosh

of u2 in (7.14). For any to> tl, this coefficient is positive on [to, 0), and so for all
sufficiently large u, the Riccati system does not blow up and A > 0 on [to, 0].

Let M(t) denote the 22 coefficient matrix of u2 in (7.13). If M(t) is strictly
copositive, and > ta, then, for all sufficiently large u > 0, P22(t) will also be copositive.
Thus if t2 denotes the first negative time at which M(t) ceases to be strictly copositive,
the desired infimum time to* is given by

to* max (q, t2).

Since the off-diagonal entry is positive in (-zr, 0), it follows from Motzkin’s test that
M(t) loses strict copositivity in this range only when one of the diagonal entries ceases to
be positive. This distinction falls first to the leading entry, and thus t2 is the first negative
zero of

(7.15) cos sinh + sin cosh t.

We thus establish analytically that

(7.16) to* t2 "--2.365020..

is the first negative zero of the function (7.15).
As a numerical test, (7.8)-(7.10) for this example were integrated using a Kutta-

Merson fourth-order method, checking the strict copositivity of Pz2 every 0.02 time

units, and using cubic polynomial interpolation to find the time at which strict

copositivity was lost. With truncation error controlled by a mixed test of the form

[el < 1o-S(1 / Ie[),

the results for u 1, 2, 4, 8, 16, 32 are given in the following table.
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2
4
8
16
32

to(v)

-2.144572
-2.225842
-2.285386
-2.322211
-2.342798
-2.343695

Remarkably enough, these values of t0(u) are all correct to the six decimal places shown,
as may be verified by computing the first negative zero of the leading entry of P22, which,
from (7.13), is equal to the first negative zero of

-v(cos sinh +sin cosh t)+ 1 +cos cosh t.

Finally, using cubic polynomials in v- successive fours of these values were used
to extrapolate for to* to(OO). These extrapolation results are given in the final table, and
are satisfactorily close to to* as given by (7.16).

Extrapolation from

v=1,2,4,8
v=2,4,8,16
v=4, 8, 16,32

-2.364624
-2.364991
-2.365O18
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UNIFORMLY VALID EXPANSIONS FOR LAPLACE INTEGRALS*

L. A. SKINNER?

Abstract. Uniformly valid asymptotic expansions for a class of parameter-dependent Laplace integrals
involving coalescing saddle points are obtained by a direct method based on matched asymptotic expansion
theory. Bessel functions of large order are treated as an example.

1. Introduction. The idea in this paper is to use singular perturbation techniques to
obtain asymptotic expansions of functions defined by integrals of Laplace type. We
shall, in particular, establish new uniformly valid expansions for Laplace integrals
involving coalescing saddle points. A key feature of the method to be described is its
freedom from dependence on nonlinear transformations. Computationally, it resem-
bles the procedure developed by Erdelyi and Wyman [3] in which a certain fundamental
factor of the integrand is identified and an infinite series is introduced for the remainder.
The significant difference is that in our asymptotic expansions the gauge functions
depend only on the large parameter in the problem.

Throughout this paper the conventional order symbols will be used exclusively to
denote uniform estimates. Thus w(r, e) &(r, e)+O(e v) as e0+, for 0_-<r=<l, or
all r [0, 1], means there exist constants K, 6 >0 such that Iw(r, e)-c(r, e)[ <-_Ke, for
all (r, e)[0, 1]x(0, 6]. We shall write f(r)CN[o, 03] if f(r)CN[o, 1] and g(r)
cV[0, 1], where g(r)=f(1/r). Also, for rn >-0,

(1.1)

and

f"3(r) -. f(r),

1 (_/,2 _)rn(1.2) f-"3(r) -. f(r).

Thus if f(r) C[0, oo], f"3(0) is the coefficient of r in the (asymptotic) power series
for f(r) as r--> 0+, and f-"3(oo) is the coefficient of r in the corresponding series for
r-, . Analogous notation will be used for functions of more than one variable. In
particular, for m, n => 0,

(1.3) [E’’-"a(r,R)=(m!)(n,----- f(r,R).

For short, ftr(r, R, t)=f’’’(r, R, t). Finally, f(e)=o(e) as e-*0+ means/(e)=
o(e") as e - 0+ for any fixed n.

Suppose for e #0 that w(r, e)=f(r, r/e), where f(r, R) C2V-1([0, b]x[0, o]).
Then if 8 (0, b ],

(1.4) w(r, e)= Ovw(r, e)+O(eN), as e -0+ for 6 <=r<=b,

where

(1.5) Ovw(r, e)= E /[’-"](r, ).
n--0

* Received by the editors April 7, 1979, and in revised form April 8, 1980.
t Department of Mathematical Sciences, University of Wisconsin, Milwaukee, Wisconsin 53201.
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Following Van Dyke [9] and Fraenkel [4], we call the function ONW(r, e) the N-term
outer expansion of w(r, e). The matching :,l-term inner expansion is

(1.6) 1Mw(r,e)= Y’. r"f[’’] 0,
m=0

Indeed, for M _-< N + 1,

(1.7) ONItw(r, e) rmf"-"(O, OO)= IMONW(r, e).
n=0 m--0

It follows that the composite expansion

(1.8) Cr,rw(r, e)= [ON + IN ONIN]w(r, e)

has the same inner and outer expansions, up to N terms, as w(r, e). In fact we have the
following theorem.

THEOREM 1. If w(r,e)=f(r,r/e), for O<-r<-b, 0<e<_-eo, where [(r,R)6
C([0, b [0, a3]), then for N >-_ O,

(1.9) w(r,e)=CNW(r,e)+O(eN), ase-O+ forO<-r<-b.

Proof. Consider 0 _-< r-<_ e 1/2 and e 1/2--- r _-< b, separately, as suggested in Part II of
[4]. If e e (0, 1] and el/2<-r<-b, then rm(e/r)2NeN for 0=<m -<N and rN(e/r) eN

for n _-> N. Therefore

(1.10) w(r, e)= Ozt,rw(r, e)+O(eN),
and

(1.11) INW(I’,t)--’O2NINW(I’,)-I-O(,N), ase-O+fore/2<-r<__b.

In other words,

(1.12) w(r, e) CNW(r, e) + ANw(r, e) + O(eN),
where AN (02N ON) + IN(O2N ON). A straightforward calculation reveals

(1.13) Aw(r, e)= rN O(r),

where

(1.14) O,(r) r- /[o,-,1 r, Y. r 1(0, )
m=0

Clearly O,(r) is a bounded function, indeed O,(r) C[0, b], and therefore ANw(r, e)
1/2 . < 1/2O(e N) as e-->0/ for e =r=b. The validity of (1.9) for O<-r<=e is similarly

established by adding and subtracting IZNW(r, e) and 12NONW(r, e).
Actually, (1.9) holds even if f(r, R) is only of class C2N-1 on [0, b][0, c].

However, we shall not pursue this point here. For our present purposes we just need a
straightforward corollary to Theorem 1.

COROLLARY 1. Let A denote a closed (not necessarily bounded) region in the
complex plane. If f(r, R, t) C([0, b x [0, o] A) and if ft’-"’l(r, , t) 0, for 0 <=
n <= N, then

( 0(1.15) f r,, e ftn] 0,, +o(eN+a),
n-----0

as e -->0+ for all (r, t) s [0, b]A.
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2. Laplace integrals. We are interested in the asymptotic evaluation of integrals of
the form

b
1/m fO -vh(r,(2.1) I,,(t, u)= u e t)g(r, t) dr,

where g(r, t) and h (r, t) are C functions on [0, b A and Re [h (r, t)] has its minimum
(with respect to r) at r=0. Let an(t)= hen1(0, t) and bn(t)= gent(0, t). Without loss of
generality we shall assume ao(t) ax(t) 0.1

By way of introduction, suppose Re [aE(t)]>0, for all A. If we put u(r, t)=
r-Eh (r, t) then

(2.2)

where

(2.3)

b

I2(t, )= -1/2 Io &(r, ul/2r, t) dr,

(r, R, t)= g(r, t) exp [-R2u(r, t)].

Also, u(r,t)eCoo([O,b]A) and Re[u(r,t)]>O, for all (r,t)e[O,b]A. Hence
(r, R, t) e C([0, b] [0, ] x A). Thus by Corollary 1 it follows almost immediately

that

N-1

(2.4) I2(t, v) v-n/2Pn (t) + O(v-N/2),
n=O

where

as u o for all A,

(2.5) Pn (t)= Io R ncb n(O’ R, t) dR.

This, of course, is just what one gets by the classical Laplace method. From the power
series expansions for g(r, t) and h (r, t), it is readily verified that

(2.6) &tn(0, R, t) pn(R, t) exp [-aE(t)R2],
where

(2.7a, b) po(R, t)= bo(t), pl(R, t) bl(t)- bo(t)aa(t)R 2,
and

(2.7c) p2(R, t) b2(t)-[bl(t)a3(t) + bo(t)aa(t)]R 2 + 1/2bo(t)a(t)R 4.
In general pn (R, t) is a polynomial of degree n in R 2.

The problem of coalescing saddle points arises in connection with (2.1) when a2(t)
has one or more zeros in A. Suppose 0 A and ak(O)=O, for 2 <-k-<m-1, but
Re [a,, (0)] > 0. Then, besides the saddle point of h (r, t) at r 0, there will be additional
saddle points (not necessarily m 2) which approach r 0 as 0. We could proceed,
at least in principle, according to the method of Chester, Friedman and Ursell [2], and
transform the variable of integration in (2.1) from r to, say, s (r, t) so that h(r, t)
is replaced by a polynomial in s of degree m. Thus, as in [1] and [8],

(2.8) h(r,t)
1 ,,-2

=--s (r, t)+ Y k(t)sk(r, t),
rn k =o

If at first al(t) 0, let r’= r/2.
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where the coefficients (k(t) are determined by the condition s[1](sc(t), t) 0, for any
coalescing saddle point solution r $(t) of hill(r, t) 0. Unfortunately, explicit expres-
sions for these functions generally do not exist. Furthermore as noted in [8], even
computation of their power series expansions is not very practical when more than a few
terms are required. We propose instead to generalize the analysis leading to (2.4).

Under the above assumptions on ak (t) for 0 _-< k _-< m, if we let

(2.9)

where

Vm (r, t) r-m[h (r, t) Cem (r, t)],

m-1

(2.10) am(r, t)= , ak(t)rk
k=2

then Re [Vm(r, 0)]>0 and therefore Re [Vm(r, t)]>0 in a neighborhood of 0. Hence
we now want to rewrite the integrand for (2.1) in terms of

(2.12) d/l(O, R, t) qm,(R, t) exp [-am(t)Rm],

Corresponding to (2.6) and (2.7), we have

O (0, R, t)= qmn (R, t) exp f-am (t)R m],(2.12)

where

(2.13a, b) qmo(R, t)= O, qml(R, t)= bl(t)-bo(t)am+l(t)R m,

(2.13c) qm2(R, t) b2(t)-[bl(t)am+l(t) + bo(t)am+2(t)]R + 1/2-bo(t)a 2 (t)R 2mm+l

and in general qmn (R, t) is a polynomial of degree n in R m.
THEOREM 2. Let Ira(t, ’) be the function defined by (2.1) where Re [h(r, t)]>0 on

(0, b A, g(r, t) and h (r, t) are of class C on [0, b]A, and ao(t) al(t) O. Assume
OA and ak(O)=O, for 2<-k<-m-1, but Re[am(0)]>0, and let S[p]={t’tA,
Itl<-p}. .rl there exist boe (0, b) and Co>0 such that Re Jam(r, t)]>_-0 on [0, bo]S[co],
where am(r, t) is the function defined by (2.10), then there exists po>0 such that

N--1
--n/m(2.14) Ira(t, ,)= ’ Qm,(t, -2/maE(t), ul/mam-l(t))+O(’-N/m),

n-----0

as u - for all S[Oo ], where

(2.15) Qm,(t, T2," ", Tin-l)= R"qm,(R, t)exp -am(t)R m- TkR
g

dR.
k=2

-1/mProof. Let e , Then

(2.16) Ira(t, 9) e Om r, , exp f-yam(r, t)] dr + o(e),

as e-->0+ for all teA, where 4,m(r,R,t) is given by (2.11), and, as already noted,
there exists 01 (0, co] such that 4’re(r, R, t) C([0, bo] x [0, c] x S[01]). Also,
lexp [-,c.(r, t)]l<_- 1, for all (r, t) [0, bo] S[pl] and therefore, by Corollary 1,

io O( ) (,)-1 r r(2.17) Ira(t, ,)= e Y e 0 0, -, exp [-uam(r, t)] dr + o(elV),
n=0
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as e 0+ for all S[pl]. Let

(2.18) /3,,(r, t) ak(t)rk-z r-Z[a,,(r, t) + r’a,,(t)].
k=2

Since Re [fl,, (r, 0)] > 0 for r > 0, there exists p2 (0, Co] such that Re [/3,, (r, t)] > 0 for all
(r, t) [bo, ] x S[p2]. Therefore, in view of (2.12),

as e 0+ for all S[p2]. Thus we can replace bo in (2.17) by . It remains to show that
2--ma --1(2.20) O,,,(t, e 2(t),’", e a,-l(t))= O(1),

as e-0+ for all s S[po], where po is the minimum of pl and /92. But this follows
directly from (2.19) and the fact that Re [a,,(t)] Re Iv,,(0, t)]> 0, for all s S[po].

The assumption on am (r, t) in Theorem 2 can be met in several ways. It obviously is
satisfied if Re[ak(t)]>=O, for 2<-_k<=m-1. On the other hand, since h(r,t)=
r2[az(t) + O(r)] and Re [h(r, t)]> 0, for r 0, we must have Re [a2(t)] _-> 0 anyway. Thus
for rn =3 the assumption is redundant. As another possibility, suppose
Re [a21 (0) ei]>O, for a =< 0 <=ft. Then, since

(2.21) a,(r, t)= r2t[az(O)+ O((r2 + tz)a/)],

there exists bo, Co> 0 such that (rZ[t[)- Re [a,,(r, t)]> 0 and therefore Re [a,(r, t)]>= 0,
for all (r, t) 6 [0, bo] V[co], Where V[p] {t" [t] <- p, a <- arg -< fl}. These considerations
also suggest the following result.

THEOREM 3. I]: the conditions o" Theorem 2 are satisfied and if Re [fl,, (r, t)] > 0, for
all (r, t) [0, ] A’ where A’= A- S[po], then (2.14) holds for all A.

Proof. Note that

x-/"a2(t), I/’a,,_(t)) +/" f /2r,(2.22) O,,,(t, t, r F,,,(r, u t) dr,
o

where

(2.23) F,,(r, R, t) qmn([RZr’-z]1/’, t) exp [-R2,,(r, t)].

Since Re [fl,,(r, t)]>0 on [0, m] x A’, we have

1/21.(2.24) r Fm, (r,

as uc for all A’, and F,,,(r,R, t) C([0, b0][0, ]N). The condition on
fl,,(r, t) means also that Re faro(t)]> 0 on A’, and therefore

N--1

(2.25) ,,(r, R, t)= r"q,,,(R, t) exp [-a,(t)R’]+ O(rN),
n=0

as r 0+ for all (R, t) [0, o] A. Now note that

/’, y,, (r, t)],(2.26) b(r, R, t)= O,, (r, [RZr"*-2] t) exp [-R

where b (r, R, t) is defined by (2.2) and

m--1

(2.27) y,,(r, t)= Y ak(t)r-2= r-a,,(r, t).
k=2
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Since Re [y,, (0, t)] > 0 on A’, it follows from (2.25) and (2.26) that

(2.28) (h(r, R, t) e#,,N(r, R, t) + O(rN),
as r 0/ for all (R, t) e [0, oo] x A’, where

N-1

(2.29) dP,,N(r, R, t)= E rnF,,,(r, R, t).
n=0

This means that dpO,R,t)=qb[](O,R,t), for O<=n<=N-1. Therefore, by
Corollary 1,

N-
1/2 1/2r,(2.30) v dPmN(r, V t) dr E v-"/2P, (t) + O(v-m2),

n=0

as v oo for all A’, where P, (t) is given by (2.5), which is what we needed to show.
A comparable extension of the Chester, Friedman and Ursell theory for the special

case of two coalescing saddle points has been given by Ursell [7]. In this case we require
Re [a3(t)]>0 on A which is analogous (but not equivalent) to Ursell’s boundedness
condition on r(t).

As an illustration of these results, let h (r, t) tr2 + 1/2r 3 log (1 + r) and consider

(2.31) E(t, b,)- J0 e-vh(r’t) dr.

If we choose 8 > 0 and let V[p] {t: It[ <-- p, [arg t[-< ,r/2 ), then for any finite value of
c >0, h(r, t) C([0, 1Ix V[c])and Re [h(r, t)] has its minimum at r =0. From

(2.32) h(r, t)= tr2+ 1/2r4- 41-r5 + O(r6),

we see that m 4 in this example and, referring to (2.13),

q40(R, t)= 1, q41(R, t)= 1/4R 4(2.33)

Also we have

(2.34) ce4(r, t)= tr2, fl4(r, t)= +r2,

and the conditions on these functions in Theorems 2 and 3 are obviously satisfied.
Therefore, substituting into (2.14) and (2.15),

-1/4Eo(vl/2t) /2Es(v t) + O((2.35) E(t,/’)--/,’ +1/4/-1 1/2 /,,,-3/4),
as v --> oo for all V[c ], where

(2.36) E,(T) f R" exp [-1/2R 4- TR 2] dR.
o

Alternatively,
1/2

(2.37) Eo(T) () D-1/2(T) exp[1/4T2],

where D-1/2 is the parabolic cylinder function of order -1/2, and
1/2

(2.38) Es(T) () (1 + T2) erfc (2-1/2T) exp [1/2T2]-1/2T.

Treatment of (2.31) by the method of Chester, Friedman and Ursell would involve the
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other two coalescing saddle point positions, say r sx(t) and r r/(t), which satisfy

(2.39) 2t +r2 log (1 + r) + 1/2r(1 + r)-1 0,

plus the determination of s(O, t), s(sC(t), t), s(rl(t), t), and k(t) for k 0, 1 and 2 from
the requirement that (2.8) and the derivative equation,

s3(r, t) + srx(t) + 22(t)s(r, t) O,

must be satisfied for r 0, so(t) and rt(t).

3. Bessel function expansions. Theorems 2 and 3 lead to some interesting results
for the Bessel function

1 f+i e-t’’) dz, larg (sech t)[ < -,(3.1) J(u sech t)
Z

where f(z, t) z -sinh z sech t. The results are different from those established in [2],
[5] and [6], which involve ’(t)= [(t-tanh t)]2/3. They include, for example, the first
order result [10, 8.43]

(3.2) -1/3e --vf(t,t)[ 1/3J(v seth t)= v Go(v tanh t)+ O(v-/3)],

as v oo for 0 =< -<_ oo, where Go(T) is defined below.
Choose 6 > 0 and again let V[p] {t: Itl--< , [arg tl <,r/2- }. mso let A

/2 1/46. Then
(3.3) :1=3iARe [f[3](t, t) e sin (1/46) > 0,

and, since tanh + O(t3) as 0, there exists c > 0 such that

(3.4) Re [f21(t, t)e+2 =l-ltl cos (arg +/- 1/26) + O(t3) -> 0,

for all t V[c]. This means we can choose b >0 such that Re [h(+)(r, t)]>0 for all
(r, t) (0, b x V[c ], where

h (+)(r, t) [(t + r e +i, t) -f(t, t).(3.5)

Therefore
-1/3

(3.6) J,,(9 sech t)= 2zri e-f(t’t)[eiXl(+)(t, 9)- e-iXl(-)(t, 9) + R (t, 9)],

where the integrals
b

(3.7) I()(t, 9)= 91/3 Io exp [-gh ()(r, t)] dr,

both satisfy the hypotheses of Theorem 2, with m 3, and
+be-iX oo+ i.tr

(3.8) R (t, 9)= f + f e -tr‘z’’)-’(’’) dz.
iTr .It+be

It is a straightforward matter to show that R(t, 9)= 0(9-) as 9--> , for all V[c],
provided c > 0 is sufficiently small. Hence, introducing

1 fooeiX z" exp [1/2 rz z +z3] dz,(3.9) F,(T) --i aooe-’
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with a little computation we see by Theorem 2 that there exists po > 0 such that

(3.10) --1/3 --uf(t,t) l-n/3Qn(t, vJ(v sech t)= v e 1/3 tanh t)+ O(v-v/3)),
as u for all V[0o], where

(3.1 la, b) Oo(t, T) Fo(T),

and

(3.11c)

1
Ol(t, T) -7:. (tanh t)Fa(T),

Q2(t, T) . Fs(T)+ (tanh t)2Fs(T).

(3.12)

The functions Fn (T) are closely related to the Airy function
oOei/3

1 Jo exp [1/2z 3- Tz] dz.Ai (T) / -’/3

In particular,

(3.13)

and

Fo(T) 21/3 Ai (2-2/3T2) exp [1/2T3],

(3.14) FI(T) -TFo(T)-22/3 Ai[1] (2-2/3T2) exp [1/2T3].
Also, F2(T) -2TFI(T) and for n >_- 1,

(3.15) Fn+2(T) + 2TF+I(T)+ 2nF,_I(T) O.

As To, F2,(T) O(T-n-1/2) and Fz,+I(T) O(T--5/2) provided [arg TI <-
r/2- 6. Therefore

Ql(t, v 1/3 tanh t)= 0(v-1/3),(3.16)

and
1

(3.17) O2(t, v 1/3 tanh t)=.Fs(v 1/3 tanh t)+O(t-2/3),

as v - oo for all e V[Oo]. In fact it is true in general that

1/3 -2k/3Ank 1/3(3.18) O2(t, v tanh t)= v (v tanh t),
k=O

and

1/3 -1/3 . -2k/3Bnk 1/3(3.19) Q2n+l(t, v tanh t)= v v (v tanh t),
k=0

where A,k(T)= O(1) and B,k(T)= O(1) for all T such that larg Tl<--r/2-8. We can
therefore rewrite (3.10) in the more attractive form

1/3 -n/3an 1/3(3.20) J(v sech t)= v- e-(’) u (v tanh t)+ O(v
rt=0

as v oo for all r S[po], where Go(T)= Fo(T) and

(3.21)
1

GI(T) [TF4(T) + F(T)],
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or by (3.15),

(3.22) 01(T) T2Fo(T) T4F1(T),

and, in general,

(3.23) G,,(T) pn(T)Fo(r) + q,(r)Fl(r),

where p, (T) and q, (T) are polynomials.
Comparable results are obtained for the Hankel functions

(3.24) H(1) (v sech t)
1 f +i= e -’4(z’’) dz, [arg (sech t)[ < rr

t Jo 2’

and

/4(2 uf(z,t)(3.25) (u sech t) |
J-

e dz, ]arg (sech t)] < .l’ff ao+ i,n-

These results may be stated as follows. Let v[o]={t’ltl<=o, largt-=(1-1/2k)l<=
7r/2- 6}. Then there exists po > 0 such that

1/3 -,f(t,t) -2n/3 (1) 1/3 -2ri/3(3.26) H ( sech t)= - e G ( e tanh t)+ O(-/

as m for all e V[0o] and

(3.27) H ( sech t) u-/3 e+(’ -/G (/ e/ tanh t) + O(-/)
n=0

as m for all e V[0o], where for certain polynomials p(T) and q(T),

a (rl p(r)Fo(r) +q(r)F(r).(3.28)

In particular,

(3.29)

and

(3.30)

Pok(T) --2(--1) k e -k=i/3 qok(T) 0

plk(T)=eg’i/3T, qlk(T) =T4.
In view of the connection formula

lr r__r(1) (z) + H(f(3.31) J(z) =,_ (z)],

(3.26) and (3.27) together determine J(u sech t) uniformly on [arg t-r/2] =< ’/3- 6.
This result along with (3.20), and the fact that sech (-t)=sech t, establishes the
asymptotic behavior of J(u sech t) in a full neighborhood of t=0. In contrast to
Chester, Friedman and Ursell we do not, however, obtain a single expansion for the
whole neighborhood. On the other hand, Re [f[2](t, t) e2x > 0, for all > 0, and it is
readily verified that R (t, u) o (,-), for all e [0, oo]. Therefore, by Theorem 3, (3.20)
is uniformly valid for all e [0, col. The Chester, Friedman and Ursell expansion for
J(u sech t) is known to be valid for unbounded complex t. But this is an independent
result of Olver’s [6] derived from the Bessel differential equation. From the asymptotic
expansion of Ai (z) and its derivative as z --> oo in ]arg z I< - ([5]), it is clear that for # 0
expansions (3.20), (3.26) and (3.27) reduce to the classical Debye expansions, and thus
are uniformly valid in certain unbounded regions of the complex sech plane deter-
mined by Watson [10, 8.6, 8.61].
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HARMONIC ANALYSIS ON BILATERAL CLASSES*

KURT BERNARDO WOLF AND THOMAS H. SELIGMANt

Abstract. The theory of harmonic analysis over coset and conjugation class spaces in groups is

generalized to functions over the space of bilateral classes. The latter are novel equivalence sets which include
the above as particular cases. The relevant orthogonal function bases are partial traces. The standard
harmonic functions and characters are recovered as special examples.

1. Introduction. Equivalence classes of group elements are among the main
objects of study not only of group theory per se, but of any branch of mathematical
physics which requires homogeneous spaces for group action. Closely related to these is
the theory of group representations and the associated harmonic analysis. All textbooks
on this matter introduce the concepts of cosets and of conjugation classes, and the
ensuing developments of harmonic functions and characters are ubiquitous throughout
the literature. It is thus perhaps surprising that a generalization of these two cases of
equivalence classes can be defined rather naturally, and certain consequences drawn
which somehow seem to have escaped notice by several generations of thorough
workers in this field.

The need for a more general classification of group elements in equivalence classes
exhibiting a certain correlation between the right and left group action arose originally
in applied studies in quantum chemistry [3]. They concerned the classification of
transition amplitudes between certain molecules called permutational isomers, which
differ only in the way in which the ligands are distributed on the skeleton. The
mathematical meaning and subsequent construction of what are now called bilateral
classes were explored shortly thereafter, and appeared in condensed form in [4]. A
more complete discussion is given in [5]; some of the results of this paper were briefly
summarized in [7].

As the construction of bilateral classes is not yet widely known, we shall restate the
relevant points in 2, stressing certain particular cases. Section 3 sets up the notation
and the needed subgroup reduction adapted to the most general bilateral class partition
such that functions of this space can be subject to a reduced harmonic analysis. The
complete and orthogonal basis function set, which we call partial traces, is then
constructed in 4. In the two traditional cases of cosets and conjugation classes they
reduce to the well-known spherical functions and characters. In 5 we offer some
concluding remarks.

2. Short survey ot bilateral classes. The elements of a group G can be partitioned
into a complete family of disjoint sets through an equivalence relation. Equivalence
relations with group theoretical significance which have been fruitfully exploited are
those which lead to left, right or double cosets, or conjugation subclasses: if H and K
are subgroups of G, g G, h H, k K, then the above relations are g’--- g iff there exist
h, k, such that, respectively, g’= hg, g’= gk, g’ hgk or g’= hgh -1.

A generalization of the above relations with group-theoretical definition makes
use of the following construction.

(a) Let (gl, g2) G G, and consider the action of this group on the elements g G

* Received by the editiors November 2, 1979, and in final revised form December 21, 1979.
f Instituto de Investigaciones en Matemiticas Aplicadas yen Sistemas, Universidad Nacional Aut6noma

de M6xico, M6xico 20 D.F., Mexico.
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given by

(1)
(gl’g2) g,g ggg

(b) Select a subgroup P c G G and introduce the following equivalence relation
between the elements of G"

P
(2) g’" g ::l(gl, g2) Pig’= glgg21.

P
The properties of symmetry, reflexivity, and transitivity hold for ---, since P is a group.

P
The equivalence relation thus partitions G into a complete family of disjoint sets
which we call bilateral classes or, more specifically, P-bilateral classes. The bilateral
class containing an element gi G is the set

(3) BP {gg,gl, (gl, g2) P c G G}.

The exploration of all possible subgroups P of G G (sometimes called subdirect
products of G with G) was undertaken by Goursat [1], who showed that the relevant
structure is described by the quintuplet

P{/-, H; (p;K, R},
where/-Hc G Kt>/, (H and K are subgroups of G, and/r and/ are normal
subgroups, respectively, of H and K), and where 0" H/I K/ is an isomorphism
which correlates the factor groups.

The elements of H/t and K/I are sets of elements in G. Out of each one of these
we can choose a representative/ t and/ ’{, where f and ’{ are sets of elements in
G which need not form a group. Different representatives/,/ of the same element of
the factor groups may be obtained through multiplication by elements of the normal
groups. We subduce from the isomorphism p a one-to-one mapping (p’) tr which by
abuse we denote through the same symbol as (p(/)=/. The equivalence relations (2)
may then be presented in more detail as,

P
(4) g’--.g::]I2I,, ] Rig’ =//gc#(/)-/.

The bilateral class (3) of an element gi is then characterized as the set

(5) Bf=/-/g,(p(/)-’/,

The number of elements of P is [P[ [l Igl IH//l. If Pi is the stability group P of a
given element g,, then the number of elements of B’ is [Bf IPI/IP, I. Ofcou  e, IP,
divides IPI, and IPI divides GI=,

As particular cases of the P-bilateral classes we have the following classical ones.
Left cosets of G by H are determined by P H x e -H given through P{H, H; ;
e, e}, where e is the group identity in G and the dash indicates that the correlation
function is trivial. Right cosets by K are characterized by P e xK-K through
P{e, e; ; K, K}, and double cosets by P H x K through P{H, H; ; K, K}; i.e., the
left and right factors in (1) are uncorrelated. Finally, conjugation subclasses of G by H
correspond to P=(HXH)D -H given though P{e,H; Pe; H, e}, where qe is the
identity isomorphism in H; i.e., the right and left factors in (1) are totally correlated.

A particular case which is of practical ipo.rtance occurs when the group Hsplits,
i.e., when it is a semidirect product H H ^ H, H<H t. In that case may be
identified with /-:/, because a set of representatives exists whose elements form by
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themselves a subgroup of G. When H =/- ^/- and K =/ ^/, every element of these
groups can be decomposed uniquely as h =// =///’ and k k/ =//’. In this case
q’/-:/-/ is an isomorphism between subgroups of G.

Bilateral classes defined by P{/-, H; 0; K,/}, where H and K split, will be related
now to bilateral classes defined through P{e,/:/; q;/, e}, where/ q(/-), and to
double cosets defined through p{/r,/-r; _;/,/}. For the former, P---/-;/and

P
(6) g’-- g /-irl g’ g()-.
The set containing gi,

(7) C’ =/-gq(/-)-a,
will be called a q-twisted subclass. A bilateral class p{/r, H; q; K,/} in this case is the
union of an entire number of q-twisted subclasses P{e,/-:/; q;/, e} (as in (7)) whose
representatives g are subject to the double-coset equivalence relation defined by p{/_]r,
H; ;/,/}. Conversely, the same bilateral class consists of an entire number of the
latter double cosets whose representatives are subject to the q-twisted subclass
equivalence relation (6). Note that whereas in general a bilateral class always consists of
a direct union of double cosets p{/_]r,/.; __;/,/}, the decomposition into q-twisted
subclasses occurs only when H and K split.

There are two main types of q-twisted subclasses P{e,/-; q;/, e}" those which are
defined by conjugation automorphisms q/(/)= lti1-1, and those which are not. The
former may be extended from/-:/to the whole of G, and further classified into those
which are inner to/-:/(i.e., /-:/), and those which are outer to/-:/but inner to G (i.e.,
l/- but lG). The following result allows us to recognize 0-twisted subclasses
defined by conjugation automorphisms, and to determine all the possible extensions to
G"

A q-twisted subclass partition of G by a subgroup/-;/stems from a conjugation
automorphism if and only if there exist classes consisting of a single group element. The
q-twist is then induced by an element G, where - is any of the one-element classes.

In order to prove this statement, consider the centralizer Z of/:/in G, i.e., z//=
for all z Z, ///-it. The set Z contains at least, e. Then, every element z Z is an
(untwisted 0e) conjugation subclass of G by/:/, and every zl- (for fixed G) will be
a q/-twisted conjugation subclass. Conversely, let 1-1 G be a single-element q-twisted
subclass of G by/-:/, i.e., 1-1 /l-1q (/)- for all///:/; it follows that the automorphism
q is given by..q(/)= lti1-1. If we replace by any/z, z Z, the new automorphism will
coincide on H with the original one, but its extension to G will be different for elements
of Z which are not in the center of the latter.

It is also evident that if C is an ordinary (i.e., untwisted) subclass, then for any
conjugation automirphism q9 the corresponding q/-twisted subclass will be Cl=

P()g, P(’e) gCl-1; i.e., g gl I. The -twisted partition of G is thus simply a right
translate by 1-1 of the untwisted conjugation class partition.

If the automorphism defining P G G is outer to G, the above arguments no
longer hold.

3. Representations and subgroup adaptation. In describing harmonic analysis in
this article, we shall consider only the case when G is a discrete, finite group of
elements. This is done in order to keep our considerations as simple as possible, without
involving ourselves with the definitions of Haar and Plancherel measures. The structure
of the results in this and the following section, however, will point to a straightforward
generalization to compact Lie groups and, provided sufficient knowledge is available
about the Plancherel measures, to locally compact Lie groups as well.
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Let the Unitary Irreducible Representations (UIR’s) of G be labelled by 3’, 3’ e G,
and let Dp,(g) be the UIR matrix elements with row and column labels p and p’. Let the
dimension of Dr be d(3"). Then, it is known [2] that the UIR matrix elements form an
orthogonal and complete set of functions over G.

We can also define skew UIR’s [6] by choosing two unitary matrices U and V, and
writing

(8) A+(g) U+D+(g)V.

The representation properties then require the use of a metric V+U as

(9) A’(g’g) AV(g’)V+UAr(g).

This set of skew UIR matrix elements has the same orthogonality and completeness
relations as the ordinary UIR’s:

(10a) Ap,., (g)*A.(g) 8 v,,v3 p,,p3

(lOb)
d(r)E Y A ’*

where the 6’s are Kronecker symbols over O, G and the d(3")-dimensional space of
rows and columns, as implied by the context. Any complex-valued function A(g) with
domain on G can be thus expanded in the basis afforded by the skew UIR matrix
elements as

(lla) d(V)A(g)= *
IO] ..A’AP"(g)

The generalized Fourier coefficients Ar are matrix-valued functions on ( which can be
determined through

(11b) A,= , A(g)A.(g).

The unitary transformation matrices U and V may be chosen to symmetry-adapt
the row and column labels to different chains of subgroups" we may choose p (p, r/, r)
where /labels the UIR’s of H c G, p resolves the multiplicities in the subduction from
y to r/, and r is some column label for D’(h), the UIR’s of H. Similarly, we choose
/z (q, K, s), where K labels the UIR’s of K c G.

This sequence adaptation allows for the relation

(12) 3’ --1)Apn,q(hgk D" (hrr’ )Apnr’,q,,s’(g)D s,s(k-’).
r’s’

We shall now consider the sequence adaptation to the chains of subgroups which
are relevant for the decomposition into P-bilateral classes. In descending along the
chains/Q<H c G and G K/, we are interested in those representations of H and
K which contain the trivial (unit) representation of the normal subgroups. We denote
these by r/0 and K0. These are the most general UIR’s of the factor groups H/I and
K/I. (This fact may be most familar to the reader in the case of the Poincar6 group,
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where the representations containing the null momentum are labelled by the UIR’s of
Lorentz group.) Finally, because the elements of the factor groups H/ISI and K/I are
related through the isomorphism q, we may choose the row-and-column labels of their
UIR’s such that

(13) D() (h) D’f,() (q(h)) D-,(h)

where h H/IgI and - labels the UIR’s of the factor group.
Having made the above considerations on the UIR row and column indices

following the structure of p{/-), H; tp; K,/}, we shall now relate the space of bilateral
classes to a remainder of these indices.

4. Functions over the space of bilateral classes and partial traces. We shall con-
P

sider functions A on G which are constant over bilateral classes Bi, i.e., g’---g ==>
A (g’) A (g), and which thus may depend only on the bilateral class to which g belongs.
We will express them as A(gi)--A(Bi), where Bi F and F is the space of P-bilateral
classes. The Fourier coefficients of such functions will have corresponding restrictions
and independences, as we shall now see. The sum over the group G in the Fourier
analysis formula (llb) can be split into a sum over the IBil elements g Bi, times a sum
over Bi, Bi F. The former, in turn, will be expressed as sums (due to (4)) over the group
elements of/--r,/ and some of representatives/ in , that is,

(14) Apr,q,,s E A(Bi) E Apr.q,,s(g).
BiEF gEBi

We shall now calculate the last sum using (a) the decomposition (12)-(13) of the last
section; (b) the orthogonality relation (10a) for each of the sub.groups^in question,
noting that the one-dimensional trivial representation appears for H and K; and (c) the
fact that the stability group Pi of any one element gi in B,, has Iei[-IPl/[Bil--

Igl IH/ I/IB, elements. As a matter of notation, we shall indicate by a bar (as f and
g) the row indices of the representations (as r and s) of H/t K/I.

We can thus write"

(15)

The first expression is thus diagonal in, and independent of, the row and column labels
of the H and K UIR’s, namely r and s. It depends only on the G UIR index % the H/ISI
UIR index - and the possible multiplicity indices p and q. This implies that the index
dependence of the Fourier coefficients (14) will be restricted likewise to

(16) Apnr,q,s t n,noO.) ,o(,) .r,.r’Srs Ap.rq.
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We define the partial traces associated to the bilateral class partition P{/, H; q; K,
/} as

(,)=y aXpq pno(r)L,o(r) (gi

(17)

ese will be an orthogonal and complete set of functions on the space F of P-bilateral
classes since, from (10) and through steps analogous to (15) and tracing, we obtain

BiF

(18b) 2
d(y) [BI r )* (B)=6,.

us any function on F may be expanded as

(19a) A(B,)= 2
d(v)

v5 wqE Aq Xq(B,)*,

(19b) Aq= E A(B,)xL(B,).
BiF

Since the bilateral class partition generalizes the coset and conjugation subclass
partitions the partial traces (17) will generalize harmonic functions and characters over
the group. Thus, for left cosets P{H, H; --; e, e}, the sum over the row indices o

Dpo.(Bi) overH/H {e} disappears e partial traces become the harmonic functions
the manifold of left cosets, where the row index is specified by an appropriate
multiplicity label for the subduction G H which contains the trivial representation of
H. e column index q is fully determined by a complete suboup chain of G.

--; Dp.qo(Bi), andSimilarly, right cosets P{e, e, K, K} lead to "spherical harmonics"
double cosets P{H, H’,,’K, K} to "diamond Wigner d-functions" Dv0,.o(B). For
ordinary conjugation classes P{e, G; e; G, e} we have the usual characters xg(B)=
oDo(Bi), while for conjugation subclasses P{e, H" e; H, e}, the Xo,, (Bi) are as given
by (17) for the row and column labels referring to the same subgroup chain.

For the case o split subgroups and -twisted subclasses defined through con-
jugation automorphisms t as P{e, ; ; , e}, l1-1.e group suboup chain
or the column indices of the UIR matrices is thus obtained from the row indices
through a transrmation by as

Do,(g)D,,(l),(20) A(g)= y 3, 3,

where by D3,(.) we indicate UIR matrices whose rows and columns are classified by the
same subgroup chain. The values of the partial traces for a 0-twist will thus be equal to
the ordinary partial traces mentioned above, but valued at the class C’ Ce1-1. The
Fourier coefficients of functions constant on C can be referred to the same subgroup
chain, in place of (16)-(19b), as

(21 a) 3, eat? /33, 1-1A1,,q’s
,

pw’" p’’r,q"s ),
p’

(21b) , .A(C)ex.,(CI).Ap,
cqr a(-)
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In the above, r refers to the UIR label of H. If we now let A(C) be constant over
double cosets by/- and/,, i.e., A(C) A(ICfI) the multiplicity indices p and q must
be replaced by (p, r) and (q, K), while constancy over these sets now imposes 8...,, and
6 K.KO factors, reducing the number of independent Fourier coefficients in (21) to those
containing the trivial representations of H and K.

5. Conclusion. We have extended the classical results of harmonic analysis on
cosets and conjugation classes to bilateral classes. This unifies their treatment as well as
that of a number of other special cases. From a practical point of view this result may
also be quite useful, e.g., if we keep in mind the original applications [3]. Assume we
wish to describe functions valued over the different transitions; these can certainly be
expanded and analyzed with respect to their harmonic components. Such a procedure
has proved useful in many applications and the possibility of performing it in this new
situation seems relevant.
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INVARIANT SETS FOR NONLINEAR ELLIPTIC
AND PARABOLIC SYSTEMS*

HENDRIK J. KUIPER?

Abstract. In this paper we consider systems of weakly coupled nonlinear second order elliptic and
parabolic equations with nonlinear, possibly coupled, boundary conditions. The aim is to find invariant
sets of the form

S {(Ul, u2,’’’ Um)[pi(x) <= u(x) <- b(x) a.e.}

for certain nonlinear reaction-diffusion equations,

Ut+ LU=F(U) in 12 [0,),

BU= G(U) on 012 [0,),

where L (L, L2, L,), (L a linear second order elliptic operator), B (B1, B, B,), (B a
linear boundary operator of a general type), and U (ul, u, u,). One of the main results says in es-
sence that S {U =< U } is an invariant set if

L -< F() and L ->_ F(q) in [0, ),
and

B@ =< G() and B G(q0 on 0f [0, ).

The work also includes some existence results for the parabolic problem and the associated nonlinear el-
liptic problem.

1. Introduction. Consider the reaction-diffusion equations

(DE) Ouk + Lku f(x t, U) 1 < k < rn

where L1, L2, Lm are second order elliptic partial differential operators on a
bounded open set f C R", together with the conditions

(BC) Bu gk(x, U), <= k <= m,

imposed on U(t) (ul (’, t), u2(’, t), urn(’, t)) at the boundary. For [0, T)
we may think of U(t) as belonging to some Banach space of real valued functions
from f into R m. Let K C [0, T) be a set whose sections K(t) are closed convex
sets in . K is then called an invariant set for the problem (DE)-(BC) if U(to)
K(to) implies that the solution U(t) K(t) for all (to, T). Reaction-diffusion
equations have lately received a great deal of attention. Their interest lies partially in
the fact that they occur in the mathematical models for a wide range of natural pro-
cesses (see e.g. [4], [5], [6], [24], and the references given in those papers). In partic-
ular there has been interest in the existence of invariant sets. Usually some restric-
tions are put on the form of K. For example, Weinberger [23] considered the case
where K(t) is independent of and consists of functions which take on their values in
some closed convex subset C C Rm. Unless the elliptic operators Li are the same for
all i, more restrictions have to be placed on C ([1], [4]), such as requiring that C
[c1,/31] [a2,/32] [am, tim]. The present author [13] obtained results for
invariant sets of the form

K(t) {(ul, u2, Um) i(x, t) <= u(x, t) <- b(x, t) V x f}.

Received by the editors April 26, 1979, and in final revised form February 8, 1980. This work was
sponsored by the United States Army under Contract No. DAAG29-75-C-0024, and supported in part by
an Arizona State University Faculty Grant-in-Aid.

? Department of Mathematics, Arizona State University, Tempe, Arizona 85281.

1075



1076 HENDRIK J. KUIPER

Such results might be more properly referred to as "comparison theorems". In 1964
Walter obtained such comparison theorems for classical solutions to general non-
linear boundary value problems, thus extending some work of Mlak and Szarski
dating back to the 1950s [23; 32].

In this paper we consider generalized rather than classical solutions. For the
semilinear equation we obtain results which are analogous to some of those ob-
tained by Walter. We also obtain some existence results for elliptic as well as par-
abolic problems.

In order to handle the nonlinear boundary conditions we use the nonlinear semi-
group theory of Crandall, Liggett and Pazy, which seems to be particularly well-
suited. This approach reduces the problem to one of studying invariant sets for asso-
ciated elliptic problems. The solutions of the elliptic problem which we consider will
be distributional solutions in (H1(12))m. The solution of the reaction-diffusion equa-
tions which we will look at will also be of a weak type. This then means that the re-
sults on invariant sets which we obtain will also be valid for solutions of stronger
type such as classical solutions or solutions U C1((0, T), (L2(O))m) (’1

C([0, T), D) where D C (Hi(O))m is the domain of (L1, L2, Lm).
Although the main theorems (9), (10), (11), (16) can be read with only the aid of a

few well marked definitions (the hypotheses being explicitly stated), we feel it might
be helpful to the reader if we state a somewhat simplified version of the invariant set
theorem for the parabolic problem, and give one simple application.

Let Lk(k 1, 2, ..., m) be uniformly strongly elliptic with coefficients in
C1(1). Let the functions f and gi be of class C1( R Rm), and assume the
boundary conditions are of the form

Bkuk fik Vuk + 7kUk gk(x, Ul, b/m) on 0,

where flk is a nowhere vanishing C vector field on 012 (which is assumed to be of
class CZ), and 0 -< yk C(). Alternatively, the boundary condition may be of the
Dirichlet type,

Let i and 0i
C1(") with i --< ui _-< Oi,

Lii <=fi(x, t, Ul, uz, ui-1, pi, ui+l, urn)

Lig/i >- fi(x, t, Ul, uz, ui-1, g/i, Ui+l, Um)
(A0)

Bii <= gi(x, t, ul, u, ui-1, i, Ui+l, Urn)

Biqi >- gi(x, t, ul, u2, ui-1, Oi, ui+l, urn)

Bkuk =-- Uk(X) gk(x, Ul, him) Ok(X) on

(1 --< --< m) be C1() N CZ(12) functions which satisfy, for all

in ,
in ,
on 0,

on O.

Then {(ul, u, urn) pi(x) <- ui(x) <= Oi(x) V x , <- <- m} is an invariant
set for the problem (DE)-(BC).

Application. Let us consider a system of equations which arise in the theory of
combustion (cf. [4], [11]). For simplicity we restrict ourselves to the one-dimensional
case,

nt klnxx -FIe-E/RT

Tt- k:Txx Qne-v’/m’,

where T and n denote the temperature and concentration of the fuel, and where E, R,
Q, kl, and k are constants (the calculations below can still be carried out, however
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if, for example, kl and k2 depend on x). We assume that the region of interest is x U
[0, L], and that fuel is fed in at the right end and heat is lost at the left end" we impose
the boundary conditions

n(O) O, n(L) g(n),

Tx(O)- T’, T(L) O,

where g(O) 0 and g(z) >= 0 whenever z _-> a0, and where a0 > 0 is some constant.
Suppose that we are given some initial conditions and that To max T(x, 0), no
max n(x, 0), and a max (ao, no, k2T/QL). We then claim that the set

= {(n, T) lO-<n =<n0, O_-< T-< }
is invariant if we choose

O(x) (-/)’ + rx -x/2L,

where r QaL/k. Let us verify that b satisfies the right inequalities (see (A0)), the
inequalities for the other functions used in the definition of being trivially satisfied.

kb"(x) k’c/L Qa >- Qno >- Qne-m*,

0(0) , (0) -/(0)0p

OO(L) O,(L) - - > O.
Ol

Also we note that O(x) >- (0) (-/)’ >- To, and therefore we know that

(n (. t), T(. t)) for allt >_-0.

2. The linear elliptic problem. Let L, _-< k _-< m, be linear second order uni-
formly elliptic operators with real coefficients acting on real valued functions of x
(x, x2, x,) in a bounded open set C R",

Lu =- -D,[a(x)Du + d(x)u] + b(x)D,u + c(x)u,

where summation is, and subsequently will be, carried out over any index which
occurs both as a subscript and as a superscript within the same term. Next let B,

_-< k _-< m, be first order boundary operators, of transversal order 1, acting on real
valued functions defined on some subset A of the boundary 0. In this section we
shall look at the weakly coupled linear system

(1) (L + X)u(x) h(x)u(x) f(x), (x ),

with boundary conditions

(2) Bu(x) e(x)u(x) g(x), (x A),

(3) u(x) O(x), (x r 0/A),
for all -< k -< m. We will look at this problem from a variational point of view, and
hence it will be necessary for us to write the operator B in the form

Bu v[af(x)Du + du] + o’(x)u + t(x)Du,

where v (Vl, v," Vm) is the unit outward normal on 012, and t (t, t,
tg) is a tangential vector field on Of v,(x)t(x) =- 0 on Of for all =< k =< m.

We will use (., ")r to denote the usual U(Y) inner product. When we take a
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direct sum of rn copies of L2(Y) we shall still use the same symbol for the inner prod-
uct on this direct sum; i.e., if F (fl, f,’" ,fro) and G (gl, g2," gin) are
members of1 L(Y), then (F, G)v 2,1 (f, gi)v. The norm is denoted by

If Y f we shall delete the subscript ). Hence I1"110 denotes the LZ(l))-norm, (., .)
the L2() inner product (or the (LZ(fD)m-norm and inner product respectively). The
norm on the Sobolev space W’,P(D) (derivatives of order <_-m are in LP(fD) is
denoted by II’llm,p" Ifp 2 we also use [’llm to denote the norm on Hm(fD
Corresponding script letters will be used to denote m-fold direct sums of function
spaces e.g., I(fD @I=1 HI(fD, l(f) =1 CI(fD, etc.

A formal integration by parts of the expression

k=l

with uk’s which satisfy (1)-(3) and vk’s which vanish on F, leads to the equation

where U (ul, u2, urn) and V (/)1, v2, Vm)" If the coefficients ofL and

B are sufficiently well-behaved, then the bilinear form Ax is certainly well defined on
c1() x 1(). We will impose conditions which will allow Ax to be extended to a

continuous R-coercive form on x R for some subspace
(I). Ft is a bounded open set in R" whose boundary is of class C2.

This condition can be weakened to requiring that 0f be Lipschitz continuous in a
sense defined for example by Neas [20]. However it seems this would require us to
handle the tangential derivatives in Bk rather than, as we shall be able to do, re-
move them from consideration by treating another but equivalent problem. The na-
ture of the work involved is then such that one might as well consider very general
boundary operators, namely those which map H1/2(0,) into H-1/z(O) (see e.g., [2]).

Let @(ft) be the C(Ft) functions of compact support, and @(fD’ the Schwartz
distributions. The nonnegatively valued functions in (), denoted by +(), form a
cone in @(fD. Let @+()’ be the dual cone" f @+()’ iff f((h)
@+(fD. Consequently, we have a partial order _-> on @(D’ :f -> g ifff g @+(fD’.
This partial order extends the usual partial order on Ll(fD-functions" f _-> g ifff(x) ->_
g(x) a.e. Furthermore we can extend such partial orders to vectors and matrices by
saying F >- G if the relationship is satisfied componentwise.

We use 3’o to denote the 0th order trace map, i.e., the extension of the map u --uloa from CI(’) into C1(0") to a continuous map from WI’p() onto WI-I[P’P(O)
L (0a) for p > ([ 1], [16], [17] or [18]).

We shall, on occasion, refer to the various Sobolev-Kondrasov embedding re-
sults. We mention the following [15, p. 43]"

Wr’p()) C Ls() if
1 > 1 r=---,pr< n,s >= 1.
s p n
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Wr’;() C C() ifpr> n, a< 1, a <-Pr- n.
P

The second embedding is a compact linear map, as will be the first embedding pro-
vided the first inequality is strict.

We also need

(II). a L(), d L(), b L(), c L/2(),

Dd L/(), 0 h La/z(), 0 e L;(O),

0 L;(O), t Wl"q(),

with supp T0t C 5, where p > n 1, p > 1, q > n, and q 2. Also vd 0 on
0, and there exists a constant 1 such that c Dd -1.

The above hypotheses are directly related to the Sobolev embedding theorems.
We also require the operators L to be uniformly elliptic:

(III). There exists a positive constant v0 such that for every k m and all
Rn we have

m

i1

This condition can be weakened in order to treat certain degenerate-elliptic problems
by methods described in [19].

(IV). is an open subset of 0 such that the (n 1)-dimensional Lebesgue
measure of its boundary in 0 is zero.
Let W,() (respectively, H()) be the subspace of W,;() (respectively, H())
obtained by taking the closure of (). The dual space of W,;() may be repre-
sented by W-,’’ (), the collection of all Schwartz distributions of the form DO +
with and in L’’ (), where l/p* + 1/p 1.

Before we proceed it should be noted that the usual Green’s formula

(v, Dw) -(Dv, w) + (VyoV, 0w)o,

which holds for v, w HI(), should be interpreted in the appropriate sense when
n 1. Although the results in this paper apply as well to the one-dimensional case,
we shall not take the trouble here to point out the various obvious notational modifi-
cations which need to be made.

For S C OG, let H](G) be the closure in Hi(G) of

{u H(G)[u(x) 0 a.e. on an open neighborhood of OG S}.
With this notation H(G) (G). If OG is sufficiently regular, it can be shown (e.g.,
[10]) that this space also is equal to {u HI() 0u 0}. We shall use () to
denote =1H().

Our first objective will be to simplify our problem somewhat. Consider the bi-
linear functional Ax. Using the Sobolev inequalities one easily shows that the first 5
terms are continuous on 1() x 1() (see e.g., [15]). Using the fact that if u
HI(), then 7oU H1/2(O)C L(2n-2)/n-2(O) (see e.g., [16] for the embedding
theorem for fractional Sobolev spaces), we also easily verify that the next two terms
in the expression for A(U, V) are continuous bilinear functionals on () x
1(). The last term is also continuous. However we can use the following result of
Fiorenza [9] to remove it from consideration.

i.e.fa (dD + Dd)dx 0 whenever 0 H().
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THEOREM 1. Suppose is a bounded open set in Rn, n >-_ 3, whose boundary is

of class C2, and suppose t E Wa’q(). Then there exist functions c (= -a )E
L(I)) and functions L(), such that for all u, v Ha() we have

(tDu, v)o (Du, Dv) + (Du, v).

Although in the proof Fiorenza assumes t L=() W’"() (D W’()), and
hence gets the ’s in L"(), an examination of the proof easily reveals that assuming
our slightly more restrictive condition t W’() does yield L(). The proof
for the case n 2 is especially easy" let s denote the distance along 0, measured in
such a way that when moving along the boundary in the direction of increasing s,
lies to the left of 0. Let 7be the unit tangent vector in the direction of increasing s,
and let fl t ( (t, t)). The last term in the expression for Ax(U, V) takes
the form

flv(Vu ") ds V(flv) x Vu dx dy
k=l k=l

[flk(VVk X Vu) + vk(Vflk X VUk)] dx dy

=1

Of course this proof requires that we extend to a W,() vector field. (Note that the
product of two members ofW’() is again in W’()). We know however that t
C(O) C W-’(O), and hence the extension is possible by the trace theorem
[16].

Using this theorem we can remove the last term for Ax(U, V), and replace
a by a + a and b by b + y. These new coefficients satisfy exactly the same
hypotheses as the unaltered ones. Even the ellipticity constant u0 is preserved.
Without loss of generality we shall from now on assume t 0 for all k and i.

LEMMA 2. For any e > 0 there exists a constant C(e) such that for all u
H’()

Moreover there exist constants eo > 0 and o > O, independent of , such that

(ii) ax(u, U) e0Ul[] + (X- 0)lU,
i.e., Ax is ()-coercive.

Proof We shall use the following result due to Lions [20]: IfX C X C Xc are
Banach spaces with norms [[.[[, [[.[, [[’[c respectively, and if the first inclusion is com-
pact linear and the second continuous linear, then for each e > 0 there exists a cbn-
stant C(e) > 0 such that

We now close HI() C L() with respect to the norm

u" foa udS + fa udx’

and call this space H. Now we merely apply Lions’ result to Ha() C H C LZ(). 0f
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course this proof can also be accomplished by the standard partition of unity argu-
ment. For the proof of (ii) we note that the first term of Ax (U, U) satisfies

k=l i=1

Hence it suffices to show that each of the other terms is dominated, in absolute
value, by a quantity of the form

where the > 0 can be chosen arbitrarily small. This is easily seen to be the case.
For example

By the Sobolev-Kondrasov embedding theorem the embedding HI()
is compact continuous. Hence we can again use Lions’ results to deduce that the
above quantity is

--<   llvvll /  - lld ll0.o{  llv, ll / C( )II, II <  llVvll / c( )llvlf .
provided e is chosen sufficiently small. As another example let us take one of the
integrals over Ak,

where p > n 1, r 2p/(p 1). This in turn is

We again apply Lions’ result to 1(")C 6 C ,2(") where is the closure of
N(f) with respect to the norm

gll II ’0u ll0.r.O /

Since 1(), ,:92(’) is a compact embedding, and since HI()--* HI/2(OO)C
Lr(Ol)) is a composition of a continuous linear map y0 and a compact embedding
(since 1/r >- -1/2/(n 1), we can apply the Sobolev-Kondrasov results) we may
conclude that

+

At this point it will be convenient to introduce some abbreviated notation. If
U (Ul, u, urn) Y(I(I)), then HU (hui, hui, hmu,), and EU
(elu, emui) We also setF- (fl,f fro) G= (gl, g2,’’" gin)e2bli
(R) (01,0z,’’’,0m),A A Az Am, andF F Fz Fm,L
and B will respectively denote the operators (L1, Lz, L,,) and (B1, B,
B,,). With this notation, (1)-(3) can be written as

(4) (L + X-H)U= F inl),

(5) (B-E) U= G onA,

(6) U (R) on F.
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DEFINITION. For F 1(")’ (the dual space of ygl(f)) and G Yg-a/2(01) (the
dual space of y(x/2(f) y0Y(l(fl)), and 19 y(l(fl) (’1 =(12) we will define U to be a
generalized solution of (1)-(3), if U-6) Y((f) and Ax(U, V)= (F, V)+
(G, V)a for all V Y( (f) (or equivalently for all V (f) {(va, v2," Vm)
(f)lv 0 on an open neighborhood of F, 1 =< -< m}). Of course every classical
solution is a generalized solution and, for sufficiently large X, there exists at most one
generalized solution.

We shall need the following theorem of Stampacchia.
THEOREM 3. Let A be a continuous bilineard’hnctional on a real Hilbert space

with inner product (., .) and let ?1 C be a closed convex subset. Suppose A is

strongly coercive on -ll ?1; i.e., there is a positive constant c such that A(y, y) >-_

c(y, y) for all y tl all. Let

o?1 {y [z + ey for some s>0}.

Then for each f 21 there exists a unique element z li such that

a(z, y) >- <f, y) for all y -1G.

The proof of this theorem can be found in [22] for the case where A is strongly coer-

cive on all of . However, an examination of the proof shows that strong coer-
civeness on - suffices. The minor modifications needed in the proof were
pointed out in [12].

We use K to denote the cone of nonnegatively valued functions in H (fD. Con-
sistent with our earlier notation, Y{ will denote the Cartesian product of m copies
of K.

We remark here that the following two lemmas, 4 and 5, are true even if we im-
pose no regularity conditions on 0f or A. These two lemmas correspond to similar
results obtained by Stampacchia [22]. First we need another definition.

DEFINITION. Let be a subspace of ya(f). Then U yga(f) is called a -subsolution for (1)-(3) if A(U, V) <= 0 for all V 07/(3
LEMMA 4. If U1 and U2 are Y(a (f)-subsolutions, h > liD, tZo as in Lemma 2, and

W max (U1, U2), the component-wise maximum, then W is also a

Y(x (fD-subsolution.
Before we prove this lemma we need to make several observations whose

proofs can be found in 15, pp. 50-54]. If k is a constant, then the function (u /k)
(x) max (u(x), k) is a member of HI(fD whenever u Ha(fD. Also, if un -- u in
Ha(f), then un k/k u /k in HI(fU. Moreover the distributional derivatives of
u /k satisfy

0 ifu(x) <- k,
D(u / k)(x) Du(x) ifu(x) > k.

But since u /v u + (v u) /0 Ha(f) if u, v HI(-), we see that

Di(u V v)(x)
fDiu(x)Dv(x)

if u(x) >= v(x),
if u(x) < v(x).

Of course everything is modulo sets of measure zero; in particular Du Dv a.e. on
the set where u v. Analogous results also hold if we replace u k/v by u/k v
min (u, v).

Proof. Let { U Yga(fU U -<_ W and U W Y(k (12), where -<_ should
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be interpreted as componentwise a.e. Clearly R C Y(). For each F R,
we define

a//. {V y(l()] + eV ll for some e > 0}.

We have the inclusions ag. C YI(I)) and -3’{" Yk(l)) C .. Now let be the
unique element in 0 such that Ax(q, Z) _-> 0 for all Z a//.. This means that must
be an Y( ()-subsolution. Let max (U1, ). We note that there exists an ele-
ment V 9() such that V / W. There exists a sequence {V.} C Y(() such
that for each and n there exists an open neighborhood N.., of F, such that the th
component of V. vanishes on N., and such that V. --* V in (YZ). From the above
remarks we see that max (V. / W, U) (V. / W) converges to
but also the ith component of max (V. / W, Ua) (V. / W) vanishes on N...
Therefore 1 (1)), and we have 0., so that

(7) Ax(, - ) ->_ 0.

We also claim that

(8) Ax((I), (I)- ) -< Ax(U1, P- ).

To see this we write

Ax( U1,
=1

which is indeed 0 since u and O while h and e are 0. Combining
(7) and (8) we obtain

A(- , - ) A(U, - ) 0,

since U is an ()-subsolution and Y{ (). Because h > 0, we
see that and hence Ua . Similarly it follows that Uz and conse-
quently W

LEMMA 5. If U is a generalized solution of (1)-(3) with > o, F O, G O,
and O O, then U O.

Proof. Both -U and 0 are ()-subsolutions and hence so is W
max (0, -U). But since W is also in Y{ () we see that Ax(W, W) 0 and
therefore W 0.

Remark. Iff L() andf 0 a.e., then, f +()’, but the converse is not
generally true. However since O =() one can easily show that 0 +()’ im-
plies 0 0 a.e. by merely taking a sequence in +()’ which converges in L() to
the characteristic function X of the set {x O(x) < 0}. Therefore (0, X) 0.

THEOREM 6. Problem (1)-(3) has a unique generalized solution for each F
l()t, G -l/Z(0) and 0 () () provided X o.

Proof. This is a simple application of Theorem 3. Let be the affine space O +
() and the Hilbert space a(). By the Riesz representation theorem there
exists a T() such that (T, U) (F, U) + (G, U)oa for all U 1(),
where (., .) is the usual inner product on Ha() extended in the obvious manner to
the direct sum of such spaces. Hence, since N(), there exists a unique
U such that

Ax(U, V) >= T, V) VV

But since V N1() we have in fact equality.
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Using the Sobolev embedding theorem one finds that Lq/2(12)C HI(-) and
L(012) C (y0Hl(f)) ’. This justifies the following definition.

DEFINITION. Let Y( denote the space fflX(-)["] ,:,o(-) with norm IIIuIII
IIUlll, + IIul[0,=, and let Gx be the map from 3?q/2(fD x v(A) x Y( into 1(’-)
which associates with each triple (F, G, 19) the unique solution U to (1)-(3) (X >/x0).
THEOREM 7. Suppose h > tZo and U is a generalized solution to (1)-(3) with F

q/2(12), G (0) and (R) ff)l(’-) f ,(D(’). Then U =(fD.

Proof In order to apply known results for single component equations we first
consider the case where H 0 and E 0. It will suffice to show that the solution is
bounded from above. Let/z > 116)110, and M (/z, /x, /x); then U’ U- M
satisfies

(L + h)U’ F q/2(-) in f,

BU’ <= 61 .P(O-) on A,

U’ (R)-M-<0 onF,

where F (fi,f9,, ,flm) withfi fi + tzDjdl /xci /xh and G (gli, g19,

glm) with gl g /xo-. Applying Lemma 5 we see that U’ =< V where,

(L+ h)V=F2 inf,,
(A)

BV G. on 0,

where F2 (resp. G.) consists of the absolute values of the components of F (resp.
G). Let V be the generalized solution of

(L + ))V1 F2
(B)

OV1/ON 0 on 0f,

where O/ON v(aDj + d]). We can apply a result of Stampacchia [21] which
states that the solution u of

(Lk + h)u f W-1"(12),

Ou/ON 0 on

will be in L(fD if/9-1 > r-1 n-1 (p w is allowed, setting 1/w 0). By the So-
bolev embedding theorem VO0,a’:’ C La/2;:’ where c* a(c 1)-1. Therefore La/2 C
W-I.(fD and, since q-1 //-1 < 0 we have V1 =(fD. Recalling that o-k ->_ 0 and
noting that V >- 0, we see that V V -<_ V2, where

(C)
(L + h) V2 0,

G ().ON

Another regularity result, due to Murthy and Stampacchia [19], tells us that Vz
=(12) since p > n 1. (The work of Murthy and Stampacchia deals with a more
complicated problem, namely certain degenerate elliptic problems. Also the theorem
we need, [19, p. 61], contains some minor, but confusing, errors. For these reasons
we have included a proof of this result in an Appendix). The regularity results which
we used were proven for single component problems. When one includes coupling
terms HU and EU on the right-hand side of (A), they are no longer a priori in
q/2() and (0) respectively (unless n _-< 3). Although we will not take this
route, we do note that one can treat (B), with coupling -HU, by bootstrapping,
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showing that if U E Leo(O), p < q/2, then U wo+(f) for some 0 < e _-< q/2 p,
etc. The proof of the regularity result for (C) is relatively simple, and can be easily
extended to the case where we introduce a coupling term -EU. However to use this
approach to deal with the case where we have both coupling terms present is rather
lengthy (unless n _-< 3). Therefore, we will use a different approach. Let n <
p’ < p, n < q’ < q, r so large that r-1 + p-1 < (p,)-l, and r-a + (q/2)-1 < (q’/2)-.
Let 3 be the map from q,/2(f) x p’(0f) into N defined by

(L + h)(F, G) F

B(F, G) G

One easily sees that 3 is a closed linear operator and hence continuous by the closed
graph theorem. We claim that the map cgo defined by the diagram below is a
compact continuous linear map from Y( into itself:

U (U, yoU) r(f) x (0f) -- (HU, EU) 5#,/2(f) x

’(an) v
To see this we note that by H61der’s inequality g is bounded linear, while 5 is ob-
viously continuous. But 5 is also compact, for if {U,} is bounded there must exist a
subsequence {U,} such that both U, and y0U, converge in 2(g) and (0g). If
U, - U then afortiori, y0 U,-- y0 U. It may furthermore be assumed, without loss
of generality, that U,-- U a.e. in g, and y0 U,.-- y0 U a.e. in 01). But we also have
bounded conditions a.e.; therefore, applying the dominated convergence theorem,
we have U,-- U in (g), and y0U,-- y0U in (Og). We next consider, in , the
equation

(D) U- U-- (F G1).

According to the Fredholm theory this equation has a solution in if ker (id. +
) is trivial. But if U0 were in the kernel, then one easily sees that (L + h

H) U0 0 and (B E) U0 0 with ?, > /Zo. By Lemma 5, U0 0. Therefore (D) has
a solution U which is also a solution of (1)-(3). By uniqueness the proof is
complete.

THEOREM 8. Gx" ----> (h > /z0) is a continuous map which is monotone in the
sense that FI <-
Gx(F2, G2, (R)2)a.e.

Proof. The monotonicity is of course a direct consequence of linearity and
Lemma 5. Let U Gx(F, G, (R)), 1, 2; then U1 U2 Ygla () and hence let-
ting e min (e0, h tz0),

 llu1-
(F1 F2, U1 U2)1 + (G1- 62, /oUa- ’)/oU2)oD.

_-< cst {][F F2[[o,q/2

where we have used the Sobolev and H61der inequalities. Hence for fixed (R), Gx must
be a closed linear operator. Applying the closed graph theorem, we have continuity
with respect to (F, G). To conclude the proof it suffices to show that Gx is continuous
with respect to t9 for F -= 0 and G -= 0. Again this reduces to showing that the graph
{((R), G(0, 0, (R))} is closed. To see this suppose O -- 0 and G(0, 0, O) -- W; then,
by extending standard arguments (see e.g., [2]) to the multi-component case (cf. (7))
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it can be shown that

0 (L + ) H)UW dx Ax(U, W) W dS,

where O/ON’Y(x(fD Y(-/2(Of) is a continuous linear map corresponding to
{’i(aDj + dikjk=am (Since we will never use continuity with respect to (R)i, we omit
the details). Therefore, for > tz0 we have

au

One can show, using the methods used early in the proof of the previous
theorem, that the graph is closed in the 2-topology" ][U[I -< cst 11(R)112,1,a. Either of
these inequalities can be used in conjunction with the closed graph theorem, or these
inequalities may be used together without resorting to the closed graph theorem. []

It will be convenient to introduce the following notation"
DEFINITION. max (tz0, a).

3. The nonlinear elliptic problem. Throughout the rest of the paper we will as-
sume that hypotheses (I)-(IV) are satisfied. Let us consider

(4’) (Lk + .)uk hui= f(x, U) inf,,

(5’) Bu- eu gk(x, U) on A,

(6’) uk 0k on I’.
Using the more concise notation we define the formal nonlinear operator d" by de-
fining (U) V if V is a generalized solution of

(L + h)V- HV= F(x, U)

BV- EV G(x, U)

V=O

in ,
on A,

on F.

Then solving (4’)-(6’) is tantamount to finding a fixed point for . We shall be inter-
ested in the case where F and G are dominated by affine functions. This is a reason-
able assumption for many practical applications. For one thing, it means that posi-
tive solutions to the associated parabolic equations (i.e., reaction-diffusion equations)
grow no faster than exponentially, thus ensuring existence of a global solution when-
ever local solutions exist. In other words, we want to assume that there exist a ma-
trix Hr(x) whose entries are all positive, and some vector D(x) such that

(9) F(x, U) <-Hr(x)U + D(x).

Obviously, due to the presence of H on the left side of our equations, we may sub-
tract H U on both sides, therefore assuming that F, and similarly G, are bounded
from above for all U. As a specific example, let us consider the case where one
models the processes of chemical reactor kinetics or of flame propagation (see [4] for
the equations). In both these cases one of the components is temperature, and the
boundary condition is obtained from heat flux considerations at the boundary. If a
significant amount of heat is lost by radiation, one expects a boundary condition of
the form

(10) K--v g(u) =- + flu ’)/1(///4 //) on Of,
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where u => u0, u0 is the temperature of the exterior region, c => 0, yl is a positive
constant obtained as the product of the emissivity of the container’ s surface and the
Stefan-Boltzmann constant [3], and K is the heat conductivity. If, on the other hand
one assumes natural convection at the boundary, one obtains [3]

Ou
(11) K--- g(u) -y2(u u0)5/4,

where y2 > 0 and u _-> u0. In the interval 0 < u < u0, the remaining physically mean-
ingful range of the temperatures, one might have some other boundary condition
which matches at u0. In any case we notice that in both cases g(u) is dominated by a
linear function for u => 0. For u < 0 we can apparently define g to be whatever is
convenient in order to satisfy mathematical hypotheses. That this causes no
problems follows from a result which we shall prove; the existence theorem stated
below is still valid even if the linear domination hypothesis fails in some region, pro-
vided some other condition holds. In the above example this condition amounts to
observing that if we set t) 0 we get

0/

K -<_

When the corresponding partial differential equation is also nonhomogeneous, we
must require a similar inequality there. For example if we are dealing with a one-
component case Lu flu), we also require Lfi -<_ fit)). (Following standard terminol-
ogy one may call t a subsolution, a term which we however have already used.) In
addition to domination by an affine map, we also must require some reasonable local
behavior.

DEFINITION. Let (S, /x) be a measure space and T a function mapping S x Rm,
or a subset thereof, into Re. Then T is said to satisfy the Caratheodory condition if
T(x, U) is measurable in x for each fixed U Rm, and is continuous in U for almost
all x in S.

DEFINITION. Let oW C S x Rm. Then or(ow)denotes the class of all functions T:
---> R which satisfy the Caratheodory condition and also satisfy:

(i) There exists a D r(S) such that T(x, U) <- D(x) for all (x, U)
(ii) For each real number v there exists a Tv Le(S) such that F(x, U) >- Tv(x)

for all (x, U) C oWwith U _-< (,, ,..., v).
A simple example of a map T C ff(f x Rm) is one which is continuous, nonin-
creasing, and bounded from above. Another example is a continuous function which
is bounded. In particular, if O is bounded and closed, and T continuous on ow, then
T (Se) for any 0 < r -< .

We introduce another hypothesis which will be needed for almost all subsequent
results.

(V). There exist numbers yl -> 0, / ->_ 0, such that for all (x, U), (x, V)

(F(x, U) F(x, V)). (U- V) <-_ yllU- VIz,
(G(x, U) G(x, V)) (U- V) <- TzIU Vl.

Using the notation of Lemma 2 (i) and (ii) we define y ,/x + ),zC e0.
THEOREM 9. Suppose (I)-(IV) are satisfied, (R) 1(’-)

q/z() x Rm), G @ o%p(02 R") and h > . Then (4’)-(6’)has a generalized solu-
tion. If (V) is also satisfied, then this solution is unique for h > tXo +

Proof. Let Dr 5fq/z(f) and Da P(0I)) such that F(x, U)<-DF(x) and
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G(x, U) <- Do(x) for all U Rm. By Theorem 7 we know there exists a number v >
0 such that Nv (u, u, u) _-> d(Dr, Do, (R)). Let

{U E l(f)ludx(Fv, G, (R)) _-< U <_- N},

where F(x, U) >= F(x) 5E2() and G(x, U) >= G(x) ?P(O) for all U -<_ Nv.
Now is mapped into itself by aV, for if U then

Jg’(U) ( (F(x, U), G(x, U), (R)) _-< gx (D, Do, (R)) < N,

and

(u) >- (F, G, O).

It remains to prove that is compact continuous (in the l(l)-topology) because
then the result follows from Schauder’s fixed point theorem. Suppose {Ui} is a se-
quence in ,t which is bounded with respect to the norm [1"1]1 in y(l(). We can, by Rel-
lich’s lemma, find a subsequence {Uv} which converges in 2(). Also, since y0"
l(t)) (O) is compact continuous, we may assume that y0U, converges in
z(O) (a fortiori to y0 U, where U is the z()-limit of the sequence { Uv}). We have
(Lemma 2),

So[[(Uv) (Uj)[[ ax((Uv) (U,), (U,) (U,))

fa (F(x, U,) F(x, U,)) ((U,) (U,)) dx

( (G(x, Ui, G(x, U,)). yo((U,) (U,))+ dS.

By Theorem 7 ()is bounded in the norm [[[.[[ [{’[[1,,a + [[’[[0,=,a of
1() =(). Therefore there exists a constant c such that

0llx(,,) (])
(2)

.{lIF(, ,,)- F(, ,)ll0,, + 1(, V,,)- (,

Since is a bounded set in =() the Nemytskii operator F takes into /().
Similarly the image of y0() under the Nemytskii operator G is bounded in (0).
But this means [14, p. 22] that these operators, being defined through functions satis-
fying the Caratheodory condition, are continuous on , and y0() in their respective
l-topologies. Hence, by (12), {(Uv)} is a Cauchy sequence in 1(). We have in-
cidentally shown that (12) also implies continuity. To prove uniqueness we suppose
that (U) U and (V) V; then using Lemma 2 we get

0- vt + (- 0)[- vi
A(U- V, U- V)

A(X(U) X(V), U- V)

0V Vll + 1V
Therefore, if h > tz0 + y then U V. U]

Of course the above theorem is also valid if the conditions on F and G are re-
placed by -F q/z(t) Rm) and -G ,(O Rm). The above result as well
as the next theorem generalize similar results obtained in [12] for one-component
equations.
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THEOREM 10. Suppose (I)-(I) are satisfied, 19 Y(l(l) fq (12), F and G sat-
isfy the Caratheodory condition on 2 Rm and Of R respectively, and h > .
Suppose there exist nonincreasing functions dp and Ofrom R into itselfsuch thatfor
all k >=ko > O,

(13) lim sup
kcfl(kq(s)) < 1,

and for each 1 <-_ < m we have the growth conditions

fi(x, Ul, U2, Urn) gi(x, Ul, U2, Urn) <-- f(S) if uj _-> s Vj’,

fi(x, Ul, Ugh,’" Urn) gi(x, Ul, U2, lira) >- qJ(S) if uj _-< s Vj.

Then (4’)-(6’) has a generalized solution. If (V) is also satisfied and h > tZo + y,
then the solution is unique.

Remark. Simple examples of functions satisfying (13) are O(s)=-a- b
max (0, s)rl and b(s) a + b max (0, -s), where a, b, 71, and ,/2 are positive
constants satisfying /,/z < 1.

Proof. Let N1 (1, 1,. 1) R and kl IIG (N , gl, I l)[t / ko, and let

{U a(f) kaq(y) =< u, <_- y},

where y > 0 is chosen so large that kld(ka(b(y)))/y < 1. Then 3c maps y into itself.
To see this we may assume without loss of generality that b(0) -(0) -> 1.

Also

AF(U) Gx(F(x, U), G(x, U), O) >= Ga(qt(y)N1, t0(y)N1, Iol)
_-> 6(y)Gx(N, N1, [(R)[) -> klq(y)N.

dg’(U) <-- Cx(dp(katO(y))N1, d(kltO(y)N1, I1) -< d(ktO(y))klml <- yNa.

As in the proof of Theorem 9, we have all the necessary components to justify the
use of Schauder’s fixed point theorem. Uniqueness follows from the same argument
that was used in the proof of the previous theorem. V]

We conclude this section with a theorem on invariant sets which constitutes the
crucial ingredient in the proof of the invariant set theorem for the reaction-diffusion
equations discussed in the next section. Instead of viewing the result as an invariant
set theorem we might, maybe more appropriately, regard it is a nonlinear general-
ization of Lemma 5, i.e., as a sort of maximum principle. We would then expect to
need the following conditions" i) the th component of F(x, U) + HU is nonde-
creasing in u for eachj (corresponding to the hypothesis H -> 0 in Lemma 5); ii)
(V) is satisfied (corresponding to the coerciveness requirement ofA x). Also in order
to be able to treat nonlinearities of the type occurring in (10) and (11) we certainly
want to allowf(x, U) to decrease "rapidly" with respect to u. This last requirement
has tended to make our proof rather lengthy. Before we proceed we must introduce
some more notation.

DEFINITIONS.

(i) /(x, U) F(x, U) + H(x)U, P-- (1, , m),

d(x, U) G(x, U) + E(x) U, -- (1, ,""", m)"

(ii) We use + o (resp. -) to also denote the extended real valued function
x + w (respectively x -w). For convenience we define (L + X) (m) m
and Bi() .
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(iii) ((/1, 2, m) where i E HI(-) CI L(I) f3 C(I)) for _-< _-< d
and ;i -oc for > d. (01, 02," 0m), where
for 6 <_- -< and 0i +c for < i or >/. Also we assume the indexing is such
that &-<_d+ 1. In other words the indices _-<i< are those for which pi is
finite-valued and 0i is + oc, the indices & _-< <- d are those for which both
are finite-valued, the indices d + _-< _-< are those for which , is - but t0 is
finite-valued, and the indices < _-< m are those for which both , - and 0
+ c. We also use [, ] to denote { U 1() U

(iv) ,_w {(x, U) Rm dP(x) <- U <- xIt(x)},

0,_7’ {(x, U) E Ol Rm]yo (x) -< U _-< yo(X)}.

(v) For any U 1(’-), U, ((91, (/92, (tgd, 1/d+l, /Am) and U*

(lil, 112, //8-1, [08, [f/6+l, l, H/+I, Hm)" That is to say U is obtained
from cI) by replacing all components which are - by corresponding components
from U, and similarly U* is obtained from by replacing components which are +
by corresponding components from U.

THEOREM 11. S,ppose that (I)-(V)are satisfied and h > fz + y, 0 1(’-)
(12), F E q/z(), G (0**), and that (x, u, uz, Urn) and i(x, ///1,

u2, u) are nondecreasing in ufor all <- j <= with j i. Suppose cb <- (R) <_

and that for all U [, T]:

(L + h) <- HU. + F(x, U.) and (L + ))W >= HU* + F(x, U*) inO,,
(IQ)

B <- EU. + G(x, U.) and B. >=EU* + G(x, U*) on A.

Then (4’)-(6’) has a ltlliqlle generalized solution U [, ].
We shall postpone the proof until the end of this section. This theorem can be

viewed as an invariant set theorem in the following way. For h sufficiently large, let
-,k --q/2(’-) X QgP(0’-) X "---) [’ ((’) be the operator defined by 3-x(F0, Go,
(R)0) V, where V is the unique solution of

(L + h- H)V- F(x, V) Fo
(B E) V- G(x, V) Go

V Oo

in

on A,

on F.

The fact that V c(12) follows from known regularity results [15, p. 201]. Suppose
F o/(f Rm), G (OfZ R), and that the inequalities (IQ) are satisfied for
all U E [, xp]. Then for fixed 190 [, ] and/x > 0, the map W -x+u(/zW, 0,
190) leaves [, ] invariant. The proof of this follows immediately from the
inequalities (L + h + tx)b <-_ HU. + F(x, U) +
HU* + F(x, U*) + tz W. It is also easy to prove the following generalization of
Lemma 5.

COROLLARY 12. Suppose (I)-(V) are sati6fied,
=(fD, F /(1" Rm), G v(Of Rm) and that for all <-_ <- l" (x, u,
uz, u.) and (x, ul, uz, urn) are nondecreasing in ufor allj i. Then -is an order preserving map; i.e.,

if F1 - Fo, G1 --> Go, 01 >= 0o, then x(F1, G1, 01) h(F0, Go, Oo).

To prove this let -x(Fo, Go, Oo) and U x(F, G1, O1) and apply the
theorem.
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In Corollary 12 we have a lot of monotonicity available. At the other extreme we
may delete the monotonicity requirement entirely from the statement of Theorem 11,
provided we replace (IQ) by the requirement that for all U [, ],

Lkk + Xk <- hui + f(x, ul, u2, u_l, , u+l, ,urn), (1 =<k-<d),

Bks <= eui + g(x, ul, u2, u_l, S, uk+l, ,Urn), (1 <=k<=d),

Lq + XtO >= hu + fk(x, ul, u-l, , u+l, urn), (3 <= k <-_ l),

BO >- eu + g(x, ul, u-l, , uk+l, Urn), (3 <-- k <= l),

yielding a result akin to Theorem 8 in 13]. Since we only assume that the inequalities
are satisfied for U [, Tl, instead of for all U 1(), this result is notjust a re-
peated application of the theorem. We will return to this point with a remark at the
end of this section.

The following lemma will be necessary for the proof of Theorem 11.
LEMMA 13. Suppose u H({) ffl L(fD N C(fD, G {x {) u(x) > 0}, and

R S f’) OG. Then the restriction of u to G is a member of H(G).
Proof. Let

G xa -< u(x) <-

Then there must exist a subsequence {k(n)} of positive integers such that
lim,_oo m(Ek(,) 0, where m is the usual Lebesgue measure on {1. We define

G(x) max [0, min (1, 2 k(n)]u(x)[],
a function which is a member ofHl(O), which is equal to 0 whenever lu(x)] => 2/k(n),
and equal to when lu(x)[ _-< 1/k(n). Moreover,

-sgn (u(x))k(n)Du(x) if x
DiG(x) 0 if x

One easily verifies that DiGu uDG + GDu. We first show that Gu-- 0 in
HI(ID. Let

then we have

while

S, {x [ u(x) _-< 2/k(n)};

fs 4m(fl)<-_ Gu) dx
k(n)

We note that since m(fD < w, the last term tends to 2 fs (Du) dx where S
u-l({0}). But by the remarks made just before the proof of Lemma 4 it follows that
this integral is zero. The next-to-last term tends to zero because m(Ek(,,) -- 0. There
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exists a function J (0, ) -- (0, oo) such that

l (Du) dx < e whenever m(o-) < J(e).max
l<=i<_n

Since u H(), there exists a sequence {u} C H() such that for each posi-
tive integer n, there exists an open neighborhood N of O\S such that u van-
ishes on N. We may assume without loss of generality that there exists a posi-
tive number K such that lug(x)- u(x)l <- K a.e. for n 1, 2, ..., and that
lu(x) u(x)[ <- 1/k(n) except on a set o- of measure less than J(1/k(n)). Clearly
(1 n)U, restricted to G, is a member of HI(G) which vanishes on a neighborhood
of OGIS. We observe that

u (1 sn)Un --,(U U,) + (U Un) + sqU,

where the last two terms tend to zero in H1(12). Obviously s%(u un) tends to zero in
the L2(l))-topology, so that we only need to examine convergence of its derivatives.

{D,[:,(u u,)]} dx 2(D:,)(u u,) dx + s%[Di(u u,)] dx
k(n)

--< I 2(D,u) dx + I 2k(n)]D,ul’K dx + 2]]u- u,l]
in) N (12 \G JEk(n) N

2(Du)2dx + 2KZ/k(n) + 2][u- u,[I]--+0 asn--w. W1
dEk(n)

Remark. In the proof of Theorem 11 we will use the following fact. Suppose we
alter E and H by setting certain entries equal to zero. This changes the quadratic
functional ax(u, U) to a new one, A(U, U). Let U* (lUll, ]u,.],..., ]Um[); then

A(U, U) -A(U*, U*) A,(U*, U*) -  ollU*ll - ; ollU*ll8  ollUll - ; ollUll .

Hence all the results which we have proven are still true, for the same values of X, for
the problem obtained by setting one or more of entries h and. e equal to zero.

Proof of Theorem 11. We will use u V v to denote the function x
max (u(x), v(x)), and if U (ul, u,., urn) and V (Vl, vz, Vm) then UV
V (/41 V /-)1, /42 V /)2, /4m V vrn)" We similarly define the greatest lower
bounds u/ v and U/ V. Next we introduce a notation which can be used to denote
certain matrices obtained from H and E by replacing one or more columns by col-
umns of zeros. IfM (mij) is an rn x rn matrix, then the matrix [k,r]M ([k’r]mo) is

the matrix defined by

[e,r]mij { mij if k -<_ j _<- r,
0 otherwise.

Let S -> 0 be a member of 9g’(12) t"l o() which we shall choose later. Next we de-
fineF0:1 RmRmandG0:012 Rm--+Rmby

Fo(X, U) F(x, (U V (I))/ xI)’) -k- [1,i-1]H(x) ((U V (I))/ S)

+ [’a]H(x) ((U V do) xI*) + [a+,ZH(x) ((U/ q*) U),

and similarly

Go(x, U) G(x, (U V (I))/ xI,) + [’-a]E(x) ((U V )/ S)

+ [’a]E(x) ((U V ,:to)/ xI,) + [a+la]E(x) ((U/ xI,) U).
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Let * maxl__<i_<a and q* max__<i_<_ We note that the first term
appearing on the right-hand side of the definition of F0 is a member of oq/2(tl x Rm).
The second term is <-_HS; for U _-< (v, ,, ,), where , is a real number, it is
bounded from below by -H(x) (*, p*, p*) q/2(fl). Hence the second term
is a member of q/,.(tl x Rm). The third term also belongs to o/(tl x Rm), because
it is bounded from above by H(x) (0", q*, q*) /2(t2), and from below by
-H(x) (*, *, *) /2(tl). Finally, the last term is _-<0 and, for U -< (v, ,,

v), is bounded from below by H((0, 0, 0) A (- q*, -v t)*,
-’ 0")). Hence F0 q/(fl x Rm). Similarly, we have Go ffp(0fl x Rm).
Therefore we may apply Theorem 9, which says that we have a (generalized) solu-
tion U0 to the problem

(L + h)Uo td+l"m]HUo Fo(x, Uo) in ft,

BUo ta+l"m]EUo Go(x, Uo) on A,

Uo= (R) onF.

Let 0 <-_ F q/z(l)) be an upper bound for the sum of the first, third and fourth
terms in the definition of F0. Similarly, 0 <- C; Lep(0l)) is an upper bound for the
sum of the first, third, and fourth terms in the definition of Go. Let S be the solution
of

(L + X)S HS F- t’aHS

BS ES -te"aES

S=OV0
Applying Lemma 5 to

(L + h)(S- Uo) -td+l"mH(S- Uo) >- 0

B(S Uo) -ta+l"mE(S Uo) >- 0

S-Uo>_O

we get S => U0. But this means that

(L + h)Uo <- P(x, Uo V ) A )

BUo <= d(x, (U0 V ) A q)

U0=O

in

on A,

on F.

in

on A,

on F,

b Uo. For each -< _-< rn

(L + h)bi => (x, (U0 l/)*)

BOi >--_ (x, (Uo V ),i,)

Oi >-- Oi

{x Uok(X) > qk(x)}. We claim that Gk

in ,
on A,

on F.

in ,
on Ai,

on F.. Suppose this were not the situ-Let Gk
ation. We can show 8k A 0 is a member ofHA (12). To see this, we first observe that
since Uok 0k H(I)), there exists a sequence {v} H1(12), such that v u0k
0k in nl(), and such that v 0 on a neighborhood of Fk. But then [tkk (v +
0k)] A 0 ik A 0 in H(I)) asj -- , which implies that 8k A 0 H(12). Applying
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the |emma, ik Hlk (G) where Rk Ak 71 OG. Therefore,

(Lk + X)(3k --> jk(x, Uo V (ql,""", b/0B-1

--k(X’ /401 V (ql A ill ,..., /./01

b/0m)

V (l / i, b/0/+l /’/0m) 0 in

Bk(3k -->-- k(X, /g01 V (/1, /’/0i--1

:k(X’ U01 V @1 A 1I1, b/01

V (ql ’/ l/]l, b/0/+l, /d0m) 0 on

(3k 0 on OGIRk,
where we used the monotonicity and the fact that (u0k k/k)/k (0k 0k on G. Actu-
ally, some care must be taken to verify that the boundary condition on Rk is truly
satisfied for the problem on G. To prove this we first show that if u Hk(G) then
a Hhk(f), where we define a simply as

u(x) ifx G,/(x) 0 ifxff G.

In order to do this we may, without loss of generality, assume that u(x) 0 on a
neighborhood N of OGIRk. Let v @(f), and define to be a function in
which agrees with v on supp u supp v and such that supp C G. This is possible
since supp u 71 supp v and OG are disjoint compact sets. Now

fa aDv dx j uD v dx

Hence, for each i, Da(x) equals Du(x) on G, and is 0 outside G, i.e., Da L2(f).
Moreover t7 0 on a neighborhood of Of\R, namely \supp u. Now, since k is
defined on all of f and satisfies Bkk BOk Buoon Ak, (in the generalized sense
via Ax), it follows that the boundary condition is satisfied on Rk, i.e., via the bilinear
functional Ax defined on N(G) x a(G). Therefore, by Lemma 5, (3 _>- 0 on
which implies Gk . Hence U0 =< . Applying the inequalities which we know
hold for U0., we obtain

(L + ))(U0- U0.)->_/?(x, U0 k/(I))-/?(x, U0.) in a,
B(Uo U0) _-> ((x, U0 k/(I)) ((x, U0.) on A,

(Uo U) ->_ 0 on F.

Using an argument entirely analogous to the one used to show that Uo _-< , we ob-
tain from the above inequalities the fact that U0 >_- (P, thus concluding the proof of
the theorem since U0 also solves (4’)-(6’).

Remark. Suppose one has several pairs ((P(), ()), _-< j =< r, as in the state-
ment of Theorem 11, and suppose that

(L + X)(P() <-_ ’(x, U.,,) and (L + X)() ->/(x, U*‘,) in

B(P() =< d;(x, U..,) and BT() >- ((x, U*(,) on A,

and that (P() _-< (R) <_- T) for all -<_ j <_- m and all U [(I), q], where
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0 V V 0 and q It’(1) / I/’() /" / %I/’(r). Then there exists a solution

U0 [O, ] to (4’)-(6’). To see this one merely notes that the first part of the proof
of Theorem 11 still shows that there exists a solution U0 to

Next we note that

(L + k)Uo =/(x, (Uo V O) A )

BUo O(x, (Uo V O) A

in f,

on A,

Uo=O onF.

(L + X)O( >/t(x, ((Uo V O) A )*) in a,
and a corresponding inequality holds on A. Letting t 0 u0t we obtain the
appropriate inequalities for t which show that u0t -< O Hence U0 _-< and similar
arguments lead to the conclusion that U0 _-> .
(14)

(15)

(16)

(17)

We
can

4. The nonlinear parabolic problem. We turn our attention to the system

O blt

at - Ltut t(x, t, U)

Btut t(x, U)

ut(x, t) Or(x)

u(x, O) u(x)

inIx (0, T),

on At x (0, T),

on Ft x (0, T),

in

assume that the only explicit time dependence appears in the Jt’ s, although this
be generalized. For example, if the coefficients of Lt are regular enough, then we

can allow time dependence in the principal coefficients without complicating matters
too much. Time-dependent boundary conditions, however, seem to lead to more
serious difficulties.

In order to obtain our results we shall employ the nonlinear semigroup theory of
Crandall, Liggett, and Pazy [7], [8]. This seems to be appropriate for the investiga-
tion of invariant sets, since this type of semigroup "lives" on a closed set which does
not necessarily have to be an entire Banach space. We first briefly describe the non-
linear semigroup results which will be used.

Let Xbe a Banach space, and for each -> 0 let s(t) be an operator from @(t) C
X, its domain, into X, which satisfies

Ilx / xsi(t)x (y + xsc(t)y)ll _-> ( xo)[Ix yll

for all x, y @(t) and all 0 < X < 1/6o, where 6o is some given positive number. Sup-
pose that the closure, @(t), of the domain is independent of time and

@(t) @(0) C Range (I + Xs(t)) for all 0 -< < T,

and all 0 < ) < 1/60. Finally, we suppose that Jx(t) (I + XsC(t))-1 satisfies

[IJx(t)x- Jx()xll--< xl(t) ()lM(llxll)
for all 0 _-< t, - < T, and x @(t), where/z [0, T] --* X is a continuous function of
bounded variation and M [0, oo) [0, o) is a nondecreasing function. Under these
assumptions,

n

-It(t, s)x lim 1-[ J(t-s)ln (S n i(t s)/n)x
i=1
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exists for all x @(0), 0 _-< s < < T, and

lim(t,s)x=x V x @(O).

(t, s) is called the propagation operator because if y: [0, T) X is a continuous,
strongly differentiable map satisfying

dy + (t)y O, y(s) Yo @(0)
dt

then y(t) Gll(t, S)Yo [8, Theorem 3.1].
Our aim will be to find an invariant set which is equal to @(0) for an appropriate

nonlinear semigroup. This means that we must find @(t) such that (15) is satisfied.
This makes it necessary to determine exactly the domain of the operator L. The diffi-
culty in this lies in the interpretation of the boundary condition (2). Sincea L(I1)
and Duk L2(11), their traces on 011 are not well defined. However we can circum-
vent this problem as follows. Define/ to be the unique linear operator

/: T’(L) --{u l(n)I LU- HU ,2(D.,)}---> -’/(,.0,),

which satisfies

Ao(U, V) (LU- HU, V) (/U, ToV)o,

for all V 1(11). The existence of/ is easily established via the Riesz represen-
tation theorem [2]. One can also check to see that if U and the coefficients of L, H, B,
and E are sufficiently well behaved, then

kU pi[aDu + du] + cruk eui,

where the right hand side can be evaluated pointwise. Since 1() is a Hilbert space,
there exists an orthogonal projection operator rra :Y1(11) yl(O) with
ral(l)) k(ll). Suppose a 1/(01). Let U yffl(a), and define -/raa
yorraU Yg/z(0l) y0Y(l(l)) C Y(1/2(011). This is a well-defined map, since if
yoU yoU’ then U U’ Y((I1) C 1A(1), SO that yorra(U U’) yo(U
U’) 0. Hence we have a projection operator -/ra satisfying "/ray0 y0rra. We also
have the corresponding adjoints rr* 1(11)’ --) (1)’ and

LEMMA 14. Suppose F (), G Yg-1/z(011) and (R) a(l); then U is a
generalized solution of (1)-(3) iff

(a) (L + h)U- HU F, (as distributions),
(b) -h-, [/U- G] O,
(c) [u- o] u- o.
Proof. If U is a generalized solution, then

Ax(U, V) (F, V) + (G, V)o V V 1(11).

In particular,

A(U, V) (LU + )tU- HU, V) (F, V),

for all V c=(11) with compact support in 11, and therefore (a) is satisfied. By the
definition of/,

Ax(U, V) (LU + ) U- HU, V) + (U, y0V)oa (F, V) + (G, y0V)0a,
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for all V (), and hence

([1U, yoZr V)on (G, yozr V) V V

so that

v [u G] ,v’[u G] O.

Since 3’0 is surjective, hence y injective, (b) follows. Because U (R) (t)),
r(U 6)) U (R). Conversely, suppose (a), (b), (c) are satisfied. Obviously U
(R) (). Using the definition of/) together with (a), (b) and the fact that @() is
dense in LZ(t2) yields

Ax(U, V) (F, V) + (G, yoV)on VV ().

Returning to the problem (14)-(17), we see that the above lemma implies that

(t) U-- LU- (x, t, U)

is a well-defined operator from

{U 2t() LU z(), zr(U (R)) U (R),/6(x, t, U) z(),

.h- [:U jJ(x, U) O}

into (), where j" ;(Ot)) C -/z(agt). The closure of this set will, if the coeffi-
cients of L and B are "nice", be all of(). In order to obtain invariant sets of the
type described in the Introduction, we will instead define the domain by

@ {U 1() LU (), rr(U O) U O, r[[U -jQ(x, U)]

O,/(x, t, U) (), -< V _-< }.

The following hypothesis will also be needed.
(VI).
(i) There exists a constant K > 0 such that

[/(x, t, u) -/(x, , u)l_-< KIU[ It l.
We also assume that F satisfies (V) with , independent of t, and

(ii) There exists a collection @o0 C (@(gt))m such that @oo is a dense subset (with
respect to the (ft)-topology) of

0 {U 1(-) LU HU 2(t2), zra U U, -/r*/)U 0}.

Condition (i) is more restrictive than needed. Condition (ii) is a technical necessity
which can be replaced by additional regularity requirements on the coefficients. For
example, if aL and dL are of class Cl(fl) then we can set @00 (@())m. If these
coefficients are sectionally C with discontinuities across surfaces in t) whose union
F has a closure whose n-dimensional measure is zero, then @00 can be taken to be the
collection of al! =(fl) functions with compact support in

Please recall that/(x, t, U) H(x, t)U + F(x, t, U) and ((x, U) E(x)U +
G(x, U).

LEMMA 15. Suppose (1)-(VI)are satisfied, 0 01(") [-’-),(’), and for each
fixed [0, T),with T < ,wehaveF /(3’)and G (O’).For <-
l, we suppose fi(x, t, u a, uz, urn) and (x, ua, u2, u,) are nondecreasing in
u]’or all j # i, <-j <- I. Finally suppose that ( 0 <- , and that for all U
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[,,

L -< +(x, t, U,)

B _<- ((x, U)
Then M(t) satisfies"

and Lq>=.k(x, t, U*) in [0, T),

and Bxp >_ J(x, U*) on A [0, T).

_-> I1- ?(/0 + ym(2))]][U- VII,
where we use (VI), Lemma 2, and the definition of y.

(ii) Let U be the generalized solution of

(L+ X)U=/(x,t, U) in, (,>),
BU O(x, U) on A,

U=O onF.
Suppose W is any element in @oo such that cp U + W =< xF. Since W -=- 0, on some
neighborhood of 0 we have

(a) (L + X- H)(U+ W) =F(x, t, U) + (L + H)W 2(1),

/(x, t, U + W) 2(),

(b) 4rA*[/}(U + W) -jd(x, yo(U + W))] r2[/}U- jJ(x, yoU)] 0,

(c) r(U+ W-O)= W+ r(U- 0)= W+ U- O.

Hence @ D {U + W] W 00, =< U + W -< }, which upon taking closure with
respect to the z()-topology yields

{u + w Jw (a), =< u + w-< ) [].
(iii) Let Fo [, q], and consider

lx U+ LU=[(x,t, U) +- Fo in,

BU J(x, U) on A,

U=O onF.

Ilu- vllollU + (t)u- v- 2,(t)vllo
->_(U- V, U- V)+ XAo(U- V, U- V)

X(F(x, t, U) F(x, t, V), U- V)

X(G(x, U) G(x, V), U- V)oa

(i) II(u + 2(t)U) (V + 2,(t)v) Io => (1 o)llu- Vllo,

for all U, V @ and all 0 < < o-1, where o is some fixed positive number.
(ii) The 2()-closure of is - {U (12) p <- U <- }, a set we will

denote by [-p, xF].
(iii) Range (I + AM(t)) D [ep, ]
(iv) If W(t) + XM(t)W(t) Fo [Pl ] (i.e. W(t) Jx(t)Fo), then

IIw(t) w(t)[[o -< c[t t[ ([[Fl[0 + 1),

for all tl, t2 [0, T), where C is a constant.

Proof.
(i)
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By Theorem 11 we have a generalized solution U [(P, ] if ( + y)X > 0.
(iv) Let Wi+ X(ti)W=F, (i= 1,2).Then

(--to ) IIWl/ / olIW1- W211I<--A1/x(W1-W2, W1- W2)

<- (F(x, ta, Wi) F(x, tz, Wi) W W2)

+ (F(x, t2, W1)- F(x, t2, W2), W W2)

+ (G(x, Wl)- G(x, W2) W W2)A -- (F -F, W W2)

<- c’41tl t21 Ilwallollwl wllo / IlWl wll / IlWl-
/ IIF1 F2110llWl W2110,

Using Lemma 2, we see that there exists a constant C’(eo) such that the above
inequality implies

(- tZo- C’(eo)
(8)

First we let tz
sponding to the case where F

) []Wl wllo + o/21]wa w211

<-_ C’]tl- tl IlWxl]o + IlF-

to, some fixed value in (0, T), and W, Wo, the solution corre-
0. We then obtain

+ c’ TIIWlll + IIFIlI,

or

IlWlll < ( X[o / c’(o)3)llWoll + IIFdl
Xo[/o + C’(eo) + C’T] (X < Xo),

where X0 is chosen so small that the denominator is larger than 1/2. Hence we have

IlWlll 211Wol + 2IIFII[.

Returning to inequality (18) and setting F1 F2 F, we obtain, for 0 < h < ho,

IlJx(tl)F- Jx(t)FII- IlWl Wll- 4Xf’lq tl{llWoll / [IFII}.

This concludes the proof of the lemma which guarantees the existence of a propaga-
tion operator for a nonlinear semigroup on [(I), T] generated by M. [5]

DEFINITIONS. U [0, T) 2(f).) is called a strong solution of (14)-(17) if
(a) U is continuous on [0, T) and U(0) U.
(b) U is absolutely continuous on compact subsets of (0, T).
(c) U is differentiable almost everywhere on (0, T), and is a generalized solution

of (14)-(16) (regarded as an elliptic problem) for almost all (0, T). A subset 0 C
(f) is called an invariant set for (14)-(16) if U(t) 5f for all ff (s, T) whenever
U is a strong solution of (14)-(17) with U(s) 5f.

THEOREM 16. Suppose the hypotheses of Lemma 15 are satisfied (except that
T is allowed). Then there exists a propagation operator (t, s) defined on
[, :] corresponding to problem (14)-(16). In particular, [ap, ] is an invariant set
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for this problem. Moreover, if the graph of sg(t) is closed, then -ll(t, O)U is a strong
solution for each U @.

Proof. The existence of ag(t, s) follows from the lemma. By Theorem 3.1 in [8],
any strong solution U of (14)-(17) with U(s) [, ] must satisfy U(t)=
?l(t, s)U, >= s, and hence [, ] is an invariant set. The last assertion of the
theorem follows from Theorem 3.4 in [8].

As in the elliptic case, there are various possible corollaries we could state. One
such result was stated in the introduction. We shall state two more.

COROLLARY 17. Suppose (1)-(VI)are satisfied, (R) 1(’) 1" ,oo(’), (I) and
are members of(f) ((f) tq (12), F and G are continuous on Rm+l and

Rm respectively, andfor each -<- k <-_ m, j(x, t, u, uz, urn) and (x, ua,
uz, urn) are nondecreasing in ufor j k. Suppose cb <- 0 <- and

L <- P(x, t, ) and Lq >-_P(x, t, ) in f [0, T),

B <- (7(x, ) and B >= (x, ) on A [0, T).

Then [---] is an invariant set, and ?l(t, O)U is a strong solution whenever U
c Ira,
Proof We only have to establish that ’(t) is closed. Suppose U. @ and U. -U in z(O.), and l(t)U. =- F. - F in (). Using (18) one easily sees that this

means U. -- U in gg(gZ) and hence y0 U. -- y0 U in (0). But since F and G satisfy
the Caratheodory condition, for each this means F(x, t, U.) - F(x, t, U) in /(),
while G(x, U.) - G(x, U) in v(Ol)). To see this we use the fact that the U.’s are
uniformly bounded and a standard continuity results for Nemytskii operators [14, p.
22]. Using (18) once again, we see that Jx(t), and hence s(t), is closed.

We also have the following result for the case where we have no monotonicity
requirement on the coupling.

COROLLARY 18. Slippose (1)-(Vl) are satisfied, 0 Yg(f) f’) (), and jbr
each fixed [0, T)we have F /() and G (0), where cb <_ 6) <- .
Then [b, ] is an invariant set provided that for all U [b, ] we have

L ---j’(x, Ul, uz,. U-l, , U+l, Um), (1 -< k _-< d),

L/k--l, (qgk, //k+l, L/m), (1 _--< k -< d),

/’/k-l, Ok, /’/k+l, b/m), (( - k /),

Bkt0k => k(X, /1, //2, b/k-l, lk, //k+l, btm), ( _-< k =< 1).

These inequalities are essentially requirements that the "velocity" on the "faces"
{ U]u k} and { Ulue qe} is in the right direction. If one has monotonicity, this
"velocity" only needs to be checked at the "edges" {Ulu , 1 <- <- d} and
{U] u q, -< _-< l} (the statement of the theorem) while in the extreme case of
totally monotonic coupling (Corollary 17) we only need to check the "velocities" at
the "vertices" and .

Proof By the remark at the end of the section on elliptic systems we see that it
suffices for the inequalities to hold for all U [, ]. Hence part (iii) of Lemma 15
is still true. The other parts of Lemma 15 are obviously also still true since the rele-
vant hypotheses are those which this lemma and Theorem 11 have in common.
Therefore the proof of Theorem 16 again applies here. []

The results on invariant sets are of course still true for the case where F depends
on the first order partial derivatives of U with respect to x(F F(x, t, U, U)), pro-
vided we know that the solution u is sufficiently regular and the map W-- F(x, t,
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W, VU(x, t)) satisfies the hypotheses of Theorem 16. Furthermore, Theorem 16 can
be used to derive results on the existence ofpositively invariant sets (using the termi-
nology of [4]) for classical solutions to problem (14)-(17).

In conclusion, we mention that these results can be generalized to problems in-
volving even more general, but still time-independent, boundary conditions on Lip-
schitz continuous boundaries. We can also allow time dependence in the elliptic oper-
ators Lk, provided the coefficients are sufficiently regular. This is done by applying
the full power of the semigroup results in [8].

Appendix.
THEOREM. Suppose that u HI(-) and that for all v in HI(),

ax(u, v) =- fa [ai(Dju) (Div) + duDv + bvDu + (c + h)uv] dx foa gvdS,

where we assume that (1)-(IIl)are satisfied, (since we are dealing with the one-
component case, m 1, the subscript k is deleted), that )t > c, and g LV(OO).
Then u L=(fD.

LEMMA. ([19, p. 24]). Let (t) be a nonnegative, nonincreasing function on
the half-line >= 0 such that there are positive constants C, a and/3 such that

(h) <- C(h- k)-[(k)] forh >k_->0.

Then, if fl > 1, there exists a constant d >= 0 such that (d)= O, (e.g., d
C1/[(0)](/3-1)/a2/3(-1)).

Proof of the theorem. Let v (sgn u) max (lul k, 0) (u k) V 0 / (u /

k)/ 0 t nx(.). We have, letting E(k) {x 1 lu(x)l --> k},

ax(u, v)= (rE + fa ) ((aiDu + d’u)D,v + (bD,u + (c + X)u)v) dx
(k) \E(k)

fE ((aiJDv + div)Div + vbDiv + (c + X)v2) dx
(k)

(dDv + cv + Xv)dx

k f{u(x)<__k (diDiv + cv + by)dx

ax(v, v) + k fE() (d’D, lvl + cll + xll)dx

ax(v, v) + k fa (d’D, Ivl + cll + xll)dx

ax(v, v)+ k fa (c + )t D,d’)lv + k foa v’d’lvl dS.

Hence ax(u, v) >-_ ax(v, v). Also there exists a constant K _>- 0 such that

IIll Kax(v, v) <= Kax(u, v) K gv dS.

If we set F(k) E(k) N Of, then

foa gv dS fF()
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where p 2(n 1)/(n 2) and r 2(n 1)/n. We note that p > r, hence another
application of H61der’s inequality yields

IIg[lo,r,F(tc) <- I]gllo,p,F(k) m(F(k))l/r-lIp.

Using the Sobolev inequality IlyoV[Io,o,oa <-_ C01[Vlll, and the fact that v 0 on Ol21F(k),
we have

IlYoVllo,,F(k <-- KCllgllo,,,oam(F(k))/r-/’.

Hence if h > k then

m(F(h))/(h k) <-_ II 0vll0,o,F, , _-< gcg[Igllo,,o, m(F(k))/r-1/p.

Letting g(h) m(F(h)), we have, for h > k > O,

;(h) <- (gcllgllo,,o.)(h k)- ;(k)/’-1/.

An application of the lemma concludes the proof.
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A UNIQUENESS THEOREM FOR HELMHOLTZ’ EQUATION:
PENETRABLE MEDIA WITH AN INFINITE INTERFACE*

GERHARD KRISTENSSON*

Abstract. In this paper we will prove the uniqueness of a solution to Helmholtz’ equation for two
halfspaces of different media in n dimensions. The theorem allows a finite number of bounded inhomogene-
ities in each halfspace. The surface separating the halfspaces is assumed to be a cone of arbitrary cross
section far away from the origin and is furthermore assumed to be smooth. We assume all space to be
lossless, and in each halfspace we assume a radiation condition to be fulfilled. The boundary conditions at
the interface are a general coupling in the field and its normal derivative with constant coefficients.

1. Introduction. The first uniqueness theorem for Helmholtz’ equation for the
exterior problem was shown by A. Sommerfeld [23]. In the exterior problem the field
outside a bounded surface S satisfies

(1.1) (V2+k2)--0.
Here k is a real or complex constant, and at the surface S certain boundary conditions
are assumed to be satisfied. To obtain a well-defined problem he introduced a
radiation condition for large distances from the obstaclea boundary value at
infinity. The solutions of (1.1) separate in two classes, satisfying either

i9
k/ o( r_ ) r-->cOr

or

0__ + k o( r- ’)r
The first class holds for the outgoing spherical waves (if we take the conventional time
dependence to be e-it) while the second is satisfied by the ingoing spherical waves.
From potential theory this property was unfamiliar, and in his paper Sommerfeld
clarifies the differences between the static and the wave solution. He adopts the
outgoing spherical wave, and the radiation condition thus reads

(1.2) O ik=o(r_l))r

uniformly in all angles as r-->oo. An additional condition for large distances was also
introduced:

(1.3) ---- O(r-l),This is the "condition of finiteness" which was later proved to be superfluous by W.
Magnus [13]. In a number of papers [2], [12], [14], [21], [29] the results have been
sharpened and also generalized to an arbitrary number of dimensions. Some of the
papers use a slightly weakened form of Sommerfeld’s radiation condition, first found

*Received by the editors July 19, 1979, and in final revised form January 23, 1980.
tlnstitute of Theoretical Physics, S-41296 G6teborg, Sweden. This work was supported by the National

Swedish Board for Technical Development (STU).
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in Rellich [21 ]"

-r ik6 dS o(1) r--> oo

Here X(r) is a large sphere of radius r.
If the bounding surface S is infinite, we then have a more limited number of

results. The pioneer paper is [21], which establishes uniqueness for the solution for
Helmholtz’ equation in Rn, when the infinite surface S intersects the plane xn=constant
for each x and furthermore

(1.5) ;-n<0 on S,

where 9 is the normal into the exterior of the volume considered. The radiation
condition to be satisfied at infinity is a modified version of (1.4): is now a plane
x=constant, and the radial derivative is replaced by (O/)x). The importance of
(1.5) is also discussed, and an example proving the non-uniqueness of a solution for
Helmholtz’ equation for a geometry violating (1.5) is given. Further results are given
in [22].

Additional results for boundary value problems where the surface S is infinite are
given in [7], [16], [19], [20]. D. S. Jones [7] gives a uniqueness theorem for surfaces
which for large distances are cones of arbitrary cross section; these results are
extended by F. M. Odeh [19] who shows uniqueness if (Or/)v)<= 0 on the surface for
large r. By analytic arguments W. L. Miranker [16] shows uniqueness results for
domains in which a cone with an angle greater than r/2 can be inscribed, but certain
restrictions which must be introduced on the normal derivative make the result less
general. A two-dimensional formulation is found in [20], where the infinite boundary
is a straight line for large r. A number of Russian authors [3], [4], [5], [24], have also
studied various aspects of the problem, mostly extensions to differential equations of
more general elliptic type, and in the limiting case where the losses vanish. Some
results for boundary value problems with infinite boundary for a general type of
elliptic differential equation have recently been published by V. Vogelsang [25], [26].
These theorems are essentially extensions of the results of Rellich.

The geometry in all these theorems proving uniqueness for Helmholtz’ equation
with an infinite boundary is such that the surface gets wider for increasing r. This is
achieved by assuming conical shapes or by assuming that (1.5) is satisfied. This
guarantees that the energy radiates to infinity as required by the radiation condition,
e.g., (1.4).

The results for Helmholtz’ equation in infinite domains are, as may be seen from
the brief review above, both diverse and comprehensive. Uniqueness is established for
many situations of interest in applications for both finite or infinite bounding surfaces
as well as for real or complex wave numbers. Now focusing on geometrics with
penetrable media, we find that the results here are very scarce. Werner [28] has
analyzed the uniqueness of the solution for Helmholtz’ equation in the case where we
have penetrable obstacles of finite extension. A very specialized situation where the
surface is infinite is found in [19]. Odeh here analyzes two halfspaces separated by a
flat interface. The boundary conditions on the interface are very restricted, e.g.,
continuity in the field and kE/On, but the result holds for real wave numbers.

The aim of this paper is to derive a uniqueness theorem for penetrable media for
a more general geometry in the lossless case, and for a more general type of boundary
conditions compared to Odeh [19]. In 2 we will give the principal definitions and
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symbols used in this paper. The lemmas and the uniqueness theorem are proved in 3,
while conclusions and a discussion of applications are found in 4.

2. Principal definitions and notations. In this section we will define the notations
found in this paper and state the problem more precisely.

Consider two infinite halfspaces V and V2 in R (the radial distance is defined in
the usual way as r 2 j= x)) separated by an infinite surface S as depicted in Fig. 1.
We will assume the interface S to be sufficiently smooth, so that an application of
Green’s theorem at every finite part of VI and V2 is valid. Sufficient conditions for this
to hold are found, e.g., in [1], [9], [17]. The volumes V and V2 are assumed to be
homogeneous and isotropic with wave numbers k and k2 respectively, except for a
finite number of inhomogeneities V and V (if several inhomogeneities are present,
let V and V be a notation for the sum of obstacles in each volume respectively, even
though the boundary conditions and wave numbers may differ). For simplicity we
take V and V homogeneous and isotropic (wave numbers k’ and k) and bounded
by $1 and S2 respectively. Let 0 be an arbitrarily chosen origin (this will be specified
later), and let V(R) and V2(R) denote the interior of a hypersphere centered at the
origin, of radius R, in V and V2, respectively. The portion of the hypersphere in V is
denoted Y.(R) and X2(R) is defined similarly. The intersection of the hypersphere
and S is called C(R), and the part of S enclosed by the hypersphere is denoted S(R).
The normal ; of S is directed into V while the normals ; for S and S2 are
conventionally taken as directed outwards.

We will assume all space to be sourcefree, since in proving the uniqueness
theorem we study the difference between two solutions having the same sources.
Thus, when we consider the difference, the source term disappears, and we will in this
paper study fields satisfying the following conditions.

o
origin

s()

FIG. 1.

XI(R)

Vl, kl
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Condition 1.

j= 1,2.

Condition 2.

k]>0, k’ >0, j--" 1,2.

Condition 3 (boundary conditions).

0 0#22A--v --’A2-0v
BI --’B22

on S,

on Sj., j= 1,2.

Here As, A., B2, Bj,j__= 1,2 are arbitrary complex constants such that C. =--AsB2 =A2B2,
and C.’ =Aj.Bj AsBs, where j 1,2, are nonnegative real numbers.

Condition 4. The surface S is conical outside a given radius, i.e.,
IR0 such that for r>=R o we have

a) .=0 on S (This specifies our origin),
b) a finite number of inhomogeneities and V.(R0) Vj, j= 1,2.
Condition 5 (radiation condition).

ffx ,., -ikjj. aS=o(1), R--->oo, j---1,2.

Here and below A will denote the complex conjugate of the complex number A.
The second condition states that all media are lossless. The case with loss will not

be analyzed here, but it can be expected to be easier due to damping. The third
condition gives the conditions at the boundaries; in this paper we will assume both
the field and its normal derivative to be discontinuous. The co__upling constants A and
B can be arbitrary complex numbers such that the C=AB are nonnegative real
numbers. The theory allows any A or B to be zero, and in this special case the theory
is the problem treated by Jones [7]. The fourth condition requires the shape of S to be
conical for large r, and also limits inhomogeneities in V and V2 to a finite number.
The choice of origin is now also fixed due to the condition P. 9=0 for large r. The
radiation condition which will be adopted here is the radiation condition discussed,
e.g., by Rellich [21] and Jones [7]. See also Wilcox [30] for additional comments on the
choice of radiation condition. Notice that this fifth item is nonlinear. However,
Minkowski’s inequality proves that the sum or difference of two fields satisfying
Condition 5 still satisfies the radiation condition.

It is convenient to work with field quantities where a specific radial dependence
has been extracted, so as to make the remaining radial dependence of the fields easier
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to study. We will therefore adopt the following notation.

j(* ) j/.(n--1)//2j( ),

(2.1) j()=rkj(), j= 1,2.

=r(V -F 0
V1

The 71 operator is defined on the unit sphere (FRn" IFI= ), and is independent of
the radial coordinate r. A direct computation of the gradient in spherical coordinates,

Xn--- r COS tgn_
Xn- r sin 9,_ COS 1L 2’

x r sin tg,_ sin tg_2"" sin t91,

0<ILnm /"

0<= 2’" ll <

shows this. It is also a general result from differential geometry (for more details see
e.g. [6]). If the Laplace-Beltrami operator on the unit sphere in R is denoted V21 and is
denoted V2 in R itself, we have the following relation (see [27, p.6])"

(2.2) V21-- r2V2 r3-n O ( O )
Helmholtz’ equation can be rewritten in terms of the field ej with V21 and radial

derivatives as

(2.3) qj’ + 7V21qj+(k-p,(r))qj=O,
where

(2.4) p(r)---- (n- 1)(n-3)
4r2

We notice that the quantity p,(r) which depends on the dimension n is nonnegative,
except for n= 2. We also define the solid angle 2 for a part of a hypersphere Y, in R"
as the projection on the unit sphere

(2.5) ".//.n--1
( here is used both as a notation for the surface and for its measure). This solid
angle 2 for Xj(R) is a constant for r>= R0, with R0 chosen as in Condition 4.

Green’s theorem for two fields u and v defined on the hypersphere will be used
extensively (see, e.g., [6])"

ffx V u+V v ]dS fcv(2.6) - Iv lU" IV -r #c" Vudl.

Here X is a part of the hypersphere of radius r, C is its periphery defined in n-2
dimensions, and ;c is the outward normal to the periphery C (see Fig. 1).

In the following section we will prove the uniqueness of the fields . and j’,
j= 1,2, satisfying Conditions 1-5 defined above; i.e.,we will show that the only
possible solution to Conditions 1-5 is the trivial solution j=--’. =O,j= 1,2. The main
building blocks in this theorem will be four lemmas which will be proven first. The
first three will make no use of the radiation condition, i.e., they give some general
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features of fields satisfying Conditions 1-4 for large radial distances. These lemmas
are extensions to and modifications for the present situation of lemmas given by Kato
[8]. However, in this paper we will not rely on the symmetry properties of V2 as in [8],
but will make explicit use of Green’s theorem on the hypersphere. The last lemma,
which includes the radiation condition, will serve as a contradiction to the former,
leaving just the trivial zero-solution as the only remaining solution.

Some quantities will appear often, so for convenience we define, for r>=R o, the
following functions depending on the radial distance r.

2

(2.7) E(r)
j=l

2

(2.8) G(r)=--E(r)- 7"=1 ffu df.

Here 2j is the solid angle for YT(r), which, as pointed out earlier, is a constant for
r>-_Ro

3. Uniqueness theorem for permeable media. We will in this section prove the
uniqueness theorem for a configuration as depicted in Fig. and with the assumptions
and definitions stated in 2.

LEMMA 1. Consider two fields dpj satisfying Conditions 1-4 in the preceding section.
We then have for r >-_ R o"

2 2 d 2

SSo,(3.1) G’(r) -- --1 .IVlsl2 df+P"(r)-d-r "-I

Proof. We take the derivative of (2.7) for r_-> R0. Then we get, since fly is constant
for r>_- R 0,

2

E’(#’): 2 Rej__ ff,,[ +;’7; +

We insert (2.3) and get
2

We apply Green’s theorem (2.6) and get

E’(r) =2 Re PndPjP + j
j--i

The contribution from C vanishes. To see this, notice that

since for rR0 we have #. ?=0 and

v,,s= W.
By use of the boundary conditions on S (see Condition 3 in 2) and the definition in
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(2.1) we can show the continuity of qj across S,

O2 0 0 1)/2

=l__l( --1 l)l Ol
,,r,,, +

since .f0 for r R 0 and can be differentiated along f on S. e contribution
from (3.2) is thus zero and we have

{ dffa dffa }E’(r)= p Ijl 2da+ IV#l 2da
j=l

since V is independem of r.
From (2.8) we get, with this expression of E’(r),

2 dffnlVl’[2d"+p(r) ffn,,[’[ 2d",’() . .=

and the lena is proved.
The quantity F(m, r), which will be used in the following lena, is defied as

ff[ ( m(m+l)) ]F(m,r)j=l [jm[2+ k] ar + r 2
[1 [Vl[ 2

(3.4)

a=--Ro min k}=--Ro x 2.
j== 1,2

j= 1,2, rn is an arbitrary positive integer

j=l,2,

LEMMA 2. Let Conditions 1-4 in 2 be fulfilled. Then there are positive integers m0,

m and a number r >= Ro such that
d

a) -r (r2F(m, r))>= 0 for all m>-_m and all r>__ Ro,
b) F(mo, r)>O for all r>rl unless qj=--O, j= 1,2.

Proof. For r>= R 0 we have
2

-r(r2F(m, r))=2r2 Re .
j----I

-(.j dpj + k
a
r

re(m+ 1))
r 2 tJ" r k- 1712+-[:r 12 aft.

It is straightforward to prove, using (2.3), that qj" satisfies the following differential
equation:

,,,+ 2m ,,,,+ m(m+ 1)
’j r2 Vtj 7qbj r2

,7+ (k:-p(r))07=O.



HELMHOLTZ’ EQUATION" PENETRABLE MEDIA 1111

We thus get, after some algebra,
2

(3.5) -(r2F(m, r))=2r Re
j=l

+ s 7("-a)- 7
e last te i the integrand disappears by use of Green’s theorem (2.6) and the
continuity of j(OO/Ov), since on C we have

Furtheore, from H61der’s inequality for inteals on the hypersphere we have the
following estimate:

2 2

j=l

Thus we can write (3.5) as

-r(rF(m, r))=2r Z I,/,jl-(2m+ 1)+ k- r 1’71
j----1

+ Re ( ( rpn a ) dpjm dp’ ) d

>_- 2rj._, Ijl:(2m+ 1)+ k--r 171 - de

-(rlP.l+a)lff.l<l>J"l-duIffl<l>’]’l:df }
The right hand side is a quadratic form which is greater than zero if

(3.6) ( a )> (rlP.i +(2m+l) k}-r a)2 (In-llln-3l )2.4r + R02
Since kf-a/(2r)=kf-(Rol2r)r2>O for r>=R o, and the fight-hand side of (3.6) is
independent of m and bounded for large r, we can find m such that (3.6) is fulfilled
for all m >-m and r >__ R o, i.e.,

d (r2F(m r))> 0 for all m>m and all r>_Ro,

and the first part of the lemma is proved. If 0, then there exists an r ->R0 such
that

2

jl’= ffuj *j 2d> r---- rl
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(If this is false for every rl>R0 then qj=0 for all r>=Ro and by the properties of
solutions to Helrnholtz’ equation is zero everywhere.) We can write F(m, r) in (3.4)

(3.7)

F(m r)-- rTM
m + I12_

j----I r dpj + dpj + k} a
_

_Iv d2.

For an r chosen as above let mo>ml, where ml is given by the first part of this
lemma, such that F(mo, rl)> 0. But according to the first part of this lemma we then
have F(mo, r)>0 for all r>-r >=Ro, since r2F(mo, r) is a nondecreasing function in r;
i.e. F(mo, r) can not change sign. The proof of Lemma 2 is thus completed.

The next lemma, in which we will use the previous one, reads
LEMMA 3. Let Conditions 1-4 be fulfilled andfurthermore let

2

j--1

If qjO then there exists an infinite sequence of real numbers {r}. such that

t--++ and G(r) > O.
Proof. Define a set T such that

i++lan_<_0T r>R o rr.=l
T is an infinite set and furthermore contains arbitrarily big elements. This is a
consequence of the assumption

2

_
I+/I 2 d--o(), roo.

j=l ""[j"

For an r, T we have
2 d 2

j= 2dr j==l

Thus we have, for r T,

2ff. rn  ffo[’ m2Y, I+j+--+xl-df<= I++1-+ -I++1 a.
j---1

r "--1

We can now estimate F(m, r) (for definitions see (3.4) or (3.7)),

2ff.+[ (__ m(2m+ 1) )a + I++l- --IV,++l:F(m, r")<=rf’j--lX 1+12+ k] r. rf rf
Let m=m0, where m0 is chosen according to Lemma 2 b). For all r T such that

ra >-r >-Ro (r given by Lemma 2 b)) we have

O< F(mo, r,) <- r’{G(r)
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Let r2 -_> r such that
a R0 /2 => mo(2m0+ 1)/r. Then for all r, T such that r _._> r2
r2 r2

we have
0 < F(mo, rz) <-r’O(r,)G(r,) >0,

and the lemma is proved.
The last lemma makes explicit use of the radiation condition (Condition 5 in 2),

and furthermore contradicts Lemma 3 as will be seen in the theorem below.
LEMMA 4. Let Conditions 1-5 be fulfilled. Then

ff Il=dS=(1)
.(R)

R--.o, i---- 1,2.

-l=dS--(1),
Proof. The radiation condition (Condition 5) can explicitly be written as

Multiplying both sides by lk and suing overj= 1,2 (g.=AsBj), we get

We now apply Green’s first formula in Rn (this is analogous to (2.6), which holds on
the hypersphere) on the field and its complex conjugate in V and Vj, j= 1,2. We
get, forj= 1,2,

j-gTas= IVj "-- 5:’ %’ "- av.

The plus sign holds for j= and the minus for j=2. This is a consequence of the
direction of the surface normal ; on S.

We have so far not specified the smoothness properties assumed for the surface
S, Sl and S2. These properties are here assumed to guarantee the finiteness of the
surface integrals over S, S and $2 above. This property was not used in the preceding
lemmas. The last term in (3.8) can be rewritten as

Im jl (Rc-as =Im

+ ffs(R) -]all11 Otl2Cll/ C21/2-- dS--O,
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since C.0/0v is continuous over S, S and $2 by the boundary conditions. Thus we
have, from (3.8),

=

Since each term is positive the statement of the lemma is proved.
We have now collected results enough to prove the main theorem of this paper.
THEOREM. Let . and : j= 1,2 be fields satisfying Conditions 1-5, defined and

discussed in 2. The only possible solution to this problem is the solution which is zero
everywhere.

Proof. Lemma gives, for r => R o,

2 2 2

G’(r) 7 ":1 j:l
+j+jdn,

Furthermore we have (x min kj)
j----l,2

2 2

O j=IE ff,[qj++-Kqj[Zdf=?. "=1 ffnj
and we can write (if n va 2 use the plus sign, if, n= 2 the minus sign)

2 2 2-j-1 =

_-> [P"(r)l G(r) for all r >= r3 => R0,
K

where r3 satisfies

2 > Ipn(r)_____ In-llln-3[
r3
3- rx 4r34x

Thus we have the following differential inequality"

(3.9) G’(r)+f(r)G(r)>=O,
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where f(r)=lpn(r)l/x=bn/r 2. The solution to (3.9) is

G(r)>__G(ro)exp (t)dt =G(ro)exp b 7- o for r>ro.

Lemma 4 gives
2

Lemma 3 now states that there exists an arbitrarily large r0 such that G(ro)>0
provided cj0; we thus have limr__,ooG(r)>0 unless qj----0. On the other hand we
have

2

lim G(r)<= lim E(r)= lim X ff.,[Iq,jl + flq, l=]ar-oo r--,oo r--oo j=

Furthermore Lemma 4 gives

2 2

j=l j(R)

n- 0j 122s aS=o(1).

This last step can be shown by H61der’s inequality. We thus have limr__,oG(r)< 0.
This contradicts limr_,ooG(r) > 0, and we have g}j------0 everywhere.

4. Conclusions and applications. We have in this paper shown the uniqueness of
the solution for Helmholtz’ equation in the lossless case for a special class of infinite
surfaces, namely those which eventually become conical. As a special case, if one of
Aj or Bj equals zero, we have the result of Jones [7].

The proof of the theorem relies in several places on the fact that ?-;=0 for

r>=Ro This property makes it possible to differentiate one of the boundary
conditions in the radial direction. A uniqueness theorem valid for a more general
geometry thus must in some parts use different techniques and arguments. In 19] it is
stated that the case with losses (complex kj) can be proved by simple boundedness
conditions, but this is not carried out in detail. The theorem proved in this paper can
not be extended as it stands to complex values, but we expect that only slight
modifications will be required in order to make this extension possible. The boundary
conditions assumed in this paper are fairly general, but an interesting extension would
be to investigate how more general conditions would affect the uniqueness. At present
this is an unsolved problem. The volumes V and V were assumed homogeneous and
lossless, but these assumptions can easily be relaxed.

The uniqueness theorem for Helmholtz’ equation together with the derived
growth properties at large distances is of great interest in many situations. One
application which has recently appeared is the question of completeness of various
systems of functions on a given surface, finite or not; see, e.g., [10], [11], [15], [18].
This question is of special interest for eigenfunctions to Helmholtz’ equation for
surfaces which are not coordinate surfaces to the eigenfunctions. The technique used



1116 GERHARD KRISTENSSON

by Millar [15] relies on the uniqueness results (in the use of either Dirichlet or
Neumann boundary value problems) for the corresponding geometry, in the interior
and the exterior case.
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